Lecture # 11

Prof. John W. Sutherland

Sept. 21, 2005

Last Class -- Some Data

44, 62, 39, 53, 80, 33, 57, 22, 49, 68

What distribution describes this data?

Are the data normally distributed??

Cumulative Histogram (Plot)

Rank X's in Ascending Order

į	1	2	3	4	5	6	7	8	9	10
Ranked X's		33	39	44	49	53	57	62	68	80
Cum. Prob., P _i	.05	.15	.25	.35	.45	.55	.65	.75	.85	.95

Smallest X must represent lowest 10% of underlying distribution

$$P_i = (i - .5)/n$$

Cumulative Histogram

Normal Probability Paper

Normal Probability Paper

10, 23, 3, 27, 10, 29, 13, 28, 21, 4, 25, 7, 17, 30, 5

25, 16, 39, 21, 12, 28, 19, 23

Normal Probability Paper

Hypothesis Testing

- 1. State Null and Alternative Hypotheses (H_0 and H_A). Define test statistic.
- 2. Define, α , the risk level.
- 3. Collect Data calculate test statistic.
- 4. Define reference distribution.
- 5. Make statistical decision
- 6. Draw conclusion.

Example #1

MUB claims soup is served at 160 deg. on the average. Soup temps. are know to be normal with a std. dev. of 10.

We want to test this claim!!

1.
$$H_0$$
: $\mu_x = 160$ H_A : $\mu_x \neq 160$

Select a single bowl at random

2.
$$\alpha = 0.05$$

3.
$$x = 145 \text{ deg.}$$

4. Draw the reference distribution under the null hypothesis.

5.

$$Pr(X \le 145) = Pr(Z \le -1.5) = 0.0668$$

Compare 0.0668 with $\alpha/2 = 0.025$. Since the value obtained is not a rare event. Cannot reject H₀. This means that H₀ could be true.

6. The MUB's claim cannot be refuted. It may be true.

Example #2

MUB claims soup is served at 160 deg. on the average. Soup temps, are known to be normal with a std. dev. of 10. X's follow normal distribution.

We want to test this claim!!

1.
$$H_0$$
: $\mu_x = 160$ H_A : $\mu_x \neq 160$

Select 4 bowls at random -- to form a sample

2.
$$\alpha = 0.05$$

- 3. Pick 4 bowls (X's) $\overline{X} = 175 \text{ deg.}$
- 4. Draw reference distribution under null hypothesis.

5.

$$Pr(X \ge 175) = Pr(Z \ge 3) = 1 - 0.99865 = 0.00135$$

Compare 0.00135 with $\alpha/2 = 0.025$. Since the value obtained is a rare event. Reject H₀.

6. The MUB's claim appears to be false.

