Definitions - Toxicology

Toxicology

- entry of toxicants into organism

- elimination from organism

- effects on organism

quantitative

Industrial hygiene

prevention or reduction of entry

Toxicant

- chemical agents

- physical agents: particulates < 5 μm,

noise, radiation

Toxicity

property related to effect on organism

Toxic hazard

likelihood of damage based on exposure

reduction by appropriate techniques

Entry Ways for Toxicants

	ROUTE	ENTRY	CONTROL	
	Ingestion	mouth, stomach	rules on eating, d smoking	rinking,
*	Inhalation n	nouth, nose	ventilation, hoods, protection equipment	
	Injection	cuts in skin	protective clothin	g
*	Dermal Absorptio clothing	n skin	protective	

* industrially most significant

²

Response to Toxicants

When a set of organisms is exposed to a toxicant at a fixed concentration, a variety or responses is obtained, depending on a number of factors:

Age of organism

Sex of organism

Health of organism

Etc.

Need a statistical way to represent response.

Response vs. Dose

Can also use a probit transformation to change s-shaped curve into a straight line.

4

Threshold Limits

THRESHOLD DOSE: NO DETECTABLE EFFECT

Threshold Limit Value TLV: worker's lifetime 8 hours per day 40 hours per week

TLV - TWA *	time weighed average
TLV - STEL	short term exposure limit
TLV - C	ceiling limit

* ≈ PEL Permissible Exposure Level

some toxicants have zero threshold

Threshold Limits Values

TLV-TWA (ppm)

Carbon Monoxide: 50

Chlorine: 0.5

Formaldehyde: 1

Methyl Alcohol: 200

Methyl Ethyl Ketone: 200

Phosgene: 0.1

Turpentine: 100

ppm: parts per million by volume

Industrial hygiene

Concerns conditions related to workplace injury and sickness e.g: exposures to toxic vapors, dust, noise, heat, cold, radiation, physical factors, etc.

ANTICIPATION

expectation of hazard existence

IDENTIFICATION

presence of workplace exposure

EVALUATION

magnitude exposure

CONTROL

reduction to acceptable levels

Chemical Plants & Labs: requires co-operation from industrial hygiene, safety & plant operations people

Identification

Requires study of:

CHEMICAL PROCESS

OPERATING CONDITIONS

- process design
- operating instructions
- safety reviews
- equipment description
- chemicals description MSDS's

SOME POTENTIAL HAZARDS:

- volatile liquids
- vapors
- dusts
- noise
- radiation
- temperature
- mechanical

HAZARD DATA:

- physical state / vapor pressure
- TLV's
- temperature sensitivity
- rate and heat of reaction
- by-products
- reactivity with other chemicals
- explosion limits

Evaluation Volatiles

monitoring air concentrations

variation in time and place

Time Weighted Average

Continuous:

$$TWA = \frac{1}{8} \int_{0}^{t_{w}} C(t)dt$$
 ppm or mg/m³

Intermittent:

$$TWA = \frac{1}{8} \sum_{i=1}^{i} C_i T_i$$

Additive effect multiple toxicants: $\sum_{i=1}^{i} \frac{C_i}{(TLV - TWA)_i} < 1$

$$\sum_{1}^{i} \frac{C_{i}}{(TLV - TWA)_{i}} < 1$$

Mixture:
$$(TLV - TWA)_{mix} = \frac{\sum_{1}^{i} C_i}{\sum_{1}^{i} \left(\frac{C_i}{TLV - TWA}\right)_i}$$

Equivalent

Source Models

- What: Describe how material escapes from a process
- Why: Required to determine potential consequences of and accident

Risk = f(**Probability, Consequences**)

What do Source Models Provide?

- Release rate, mass/time
- Total amount released
- State of material: liquid, solid, gas, combination

Source Model: Liquid thru a hole

- 1. Pressure drives liquid thru hole
- 2. Pressure energy converted to KE as liquid escapes
- 3. Frictional losses

Orifice Discharge Equation

$$Q_m \stackrel{\circ}{\circ} C_o A \sqrt{2 \Im g_c \Omega P}$$

Dispersion Models

What? Describe how vapors are transported downwind of a release.

> 100 m

Why? To determine the consequences

Results: Downwind concentrations (x,y,z)

Area affected

Downwind distances

Dispersion

DOWNWIND DILUTION BY MIXING WITH FRESH AIR

ATMOSPHERIC DISPERSION

- wind speed
- atmospheric stability: vertical temp. profile
- roughness ground: buildings, structures, trees, water

difficult

- height release above ground level
- momentum and buoyancy: effective height

Fires and Explosions

FIRE: Rapid exothermic, oxidation, with flame

may trigger each other

EXPLOSION: Higher energy release rate (mixture)

pressure or shock wave

EFFECTS

Injuries / casualties
Property losses
Process interruption

Thermal radiation, blast wave, fragments, asphyxiation, toxic products.

REQUIRED KNOWLEDGE FOR PREVENTION

Material properties

Nature of fire and explosion process

Procedures to reduce hazards

Fire Triangle

FIRE TRIANGLE

Oxidant may not be oxygen! For example, chlorine can oxidize.

Application of the Fire Triangle

Fires and explosions can be prevented by removing any single leg from the fire triangle.

Problem: Ignition sources are so plentiful that it is not a reliable control method.

Robust Control: Prevent existence of flammable mixtures.

Definitions - 1

LFL: Lower Flammability Limit

Below LFL, mixture will not burn, it is too lean.

UFL: Upper Flammability Limit

Above UFL, mixture will not burn, it is too rich.

Defined only for gas mixtures in air.

Both UFL and LFL defined as volume % fuel in air.

Definitions - 2

Flash Point: Temperature above which a liquid produces enough vapor to form an ignitable mixture with air.

Defined only for liquids.

Auto-Ignition Temperature (AIT): Temperature above which energy can be extracted from the environment to provide an ignition source.

Definitions - 3

Minimum Oxygen Concentration (MOC): Oxygen concentration below which combustion is not possible.

Expressed as volume % oxygen.

Also called: Limiting Oxygen Concentration (LOC)

Max. Safe Oxygen Conc. (MSOC)

Others

Typical Values - 1

LFL UFL

Methane: 5% 15%

Propane: 2.1% 9.5%

Butane: 1.6% 8.4%

Hydrogen: 4.0% 75%

Flash Point Temp. (deg F)

Methanol: 54

Benzene: 12

Gasoline: -40

Typical Values - 2

AIT (deg. F)

Methane: 1000

Methanol: 867

Toluene: 997

MOC (Vol. % Oxygen)

Methane: 12%

Ethane: 11%

Hydrogen: 5%

Flammability Relationships

Explosions - Definitions

Explosion: A very sudden release of energy resulting in a shock or pressure wave.

Shock, Blast or pressure wave: Pressure wave that causes damage.

Deflagration: Reaction wave speed < speed of sound.

Detonation: Reaction wave speed > speed of sound.

Speed of sound: 344 m/s, 1129 ft/s at ambient T, P.

Deflagrations are the usual case with explosions involving flammable materials.

BLEVE

BLEVE: Boiling Liquid Expanding Vapor Explosion

Vessel with liquid stored below its normal boiling point

Below liquid level - liquid keeps metal walls cool.

Above liquid level - metal walls overheat and lose strength.

After vessel failure, a large amount of superheated liquid is released, which will flash explosively into vapor. If the liquid is flammable, a fireball may result.

Most Important Concept

Chemicals have hazardous properties that can be well characterized and are well-understood.

- Toxicity
- Flammability
- Reactivity
- Others