Chemical Hazards

Purpose of Lectures on Chemical Safety

- To understand the hazardous properties of chemicals prior to their use.
- To transport / handle / use / manage chemicals safely.

Outline of Lectures on Chemical Hazards

Lecture 1:

- Definitions
- Accident Statistics
- The Accident Process
- Case Histories
- Regulatory Requirements

Lecture 2:

- Toxicology / Industrial Hygiene
- Chemical Release / Dispersion
- Fires / Explosions

Definitions - 1

Safety: Strategy of Accident Prevention

Loss Prevention: Prevention of accidents which result in injury to humans, damage to the environment, loss of production, damage to equipment, or loss of inventory.

Definitions - 2

Hazard: An inherent physical or chemical characteristic of a material, system, process or plant that has the potential for causing harm.

Chemicals provide additional hazards due to the toxic, flammable, explosive, and reactive hazards.

Risk: For episodic events, risk is a function of probability and consequence.

Risk Analysis: Quantitative estimate of risk

Risk Assessment: Results of risk analysis are used to make decisions.

Statistics-1

OSHA Occupational Safety & Health Administration incidence rate per 100 worker years = 200,000 h exposure

FAR Fatal Accident Rate

fatalities per 1000 employees and entire life = 108 h exposure

FR Fatality Rate

per person per year (exposure poorly defined)

Statistics-2

	OSHA	FAR	FR
Chemical Industry Steel Industry Coal Mining Agriculture	0.49 1.54 2.22 4.53	4 * 8 40 10	
Staying at Home Travelling by Car Rock Climbing 20 Cigarettes / day		3 57 4000	17 x 10 ⁻⁵ 4 x 10 ⁻⁵ 500 x 10 ⁻⁵
Struck by Meteorite Struck by Lightning Fire Run over by Car			6 x 10 ⁻¹¹ 1 x 10 ⁻⁷ 150 x 10 ⁻⁷ 600 x 10 ⁻⁷

^{*50%} by chemical exposure

Statistics-3

US Accident Fatalities:	1990	1999
Auto:	47,000	40,800
Total Industry:	6,217	6,026
Walking across street:	6,475	5,220
Bicycles:	642	
Trains:	601	
Airlines:	39	
Home:	22,500	30,800
Chemical Industry:	22	

Chemical Plant Accidents

	Risk	Hazard Fatalities	Hazard Economic Loss
Fire	High	Low	Intermediate
Explosion	Intermediate	Intermediate	
Toxic Release	Low	High	Low

Accident Pyramid

Explosions

Hi

Nature of Accidents - 1

Nature of Accidents - 2

Defeating Accidents

STEP	DESIRED EFFECT	PROCEDURE
Initiation	Diminish	Grounding, bonding Inerting Explosion proof electrical Guardrails and guards Maintenance procedures Hot-work permits Human factors design Process design Awareness properties chemicals
Propagation	Diminish	Emergency material transfer Reduce inventories of flammables Equipment spacing and layout Nonflammable construction materials Emergency shut-off valves
Termination	Increase	Firefighting Relief systems Sprinklers Emergency shut-off valves

Significant disasters

Flixborough, England, 1974

rupture inadequately supported bypass pipe, 155 ° C, 7.9 atm

vapor cloud 30 ton cyclohexane

explosion & fire inventories (10 days)

28 killed, 36 + 53 injured, much damage

Seveso, Italy, 1976

reactor out of control (run away)

vapor cloud 2 kg dioxin

700 affected, 730 evacuated

25 ² km contaminated (40 factories)

Bhopal, India, 1984

not operating scrubber & flare system

vapor cloud 25 ton toxic MIC

2000 killed, 20.000 injured, no damage

Regulatory Concerns

OSHA - Occupational Safety and Health Administration.

Force of law with respect to on-site workplace hazards / accidents.

OSHA 1910.119 - Process Safety Management

- Must identify hazards
- Must train and certify workers
- Safe work system
- Management of Change
- Accident investigations
- Process Info / Documentation
- Contractor safety
- Operating procedures
- Mechanical integrity
- Others

EPA - Environmental Protection Agency

Handles releases outside of plant.

EPA RMP - Risk Management Plan

- Considers offsite impacts due to fires / explosions / toxic release
- Must perform risk assessment
- Must perform consequence analysis

Implemented May, 1996. First report due May, 1999.