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1 Introduction

The Webb group works on theoretical and experimental aspects of laser physics and technology,
and problems related to optomechanics, super-resolution imaging, imaging and sensing in scattering
media, and neuroscience. All of this work relies heavily on mathematics. Consequently, the graduate
and undergraduate students involved in this work pursue mathematical work daily that relates
directly to the topics treated in the 7th grade math curriculum.

Four “stations” with themes that relate to research and education in electrical engineering are
treated. Each is intended to be attended by about 5 students for 10 minutes. The leader for each
station is a Ph.D. student at Purdue.

2 Station 1: CD Diffraction Grating – Laser Scatter from Objects

Adam W. Behnke: behnkea@purdue.edu

Lasers are used in many systems we might use daily, including optical fiber communication – when
your cell phone communicates with the tower, the signal from the tower likely moves through and
optical fiber network within the United States and to other parts of the world. That information
is conveyed through the fibers using laser light and a wavelength of about 1.55 µm (because the
loss of silica fibers is low at that wavelength). Lasers are also used for machining, atmospheric
measurements, and imaging. For instance, fluorescing proteins being studied under a microscope
would be exciting using a laser.
Theory and Background: An optical disk has a set of pits that are used to store information
such as data or music, and this information is read by scattering laser light from the disk as it
spins. Incidentally, the repeating pattern of tracks in which the pits lie also forms what is known
as a reflective diffraction grating. One can show with the Huygens–Fresnel Principle (where each
point along a wavefront can be treated as its own point source) and far field approximations that
the fields will interfere constructively in certain directions, and destructively in others.

One can show through some more involved mathematics that the directions of the intensity
maxima are given by the well-known grating equation, written as

sin(θm)− sin(θi) = m
λ

d
, (1)
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Figure 1. A depiction of the setup to be used to measure the quantities needed to calculate the optical disk track
spacing, using a laser of known wavelength. Because of the right angles in the setup, all quantities of interest can
be found by measuring only a, b0, and b±1. θr is the usual angle of reflection, θr = θi, which is also considered the
m = 0 diffraction order angle.

where θi is the angle of incidence (positive θi being counterclockwise from the surface normal), λ is
the wavelength of the illuminating radiation, d is the grating period, m = 0,±1,±2, . . . is an integer
corresponding to the “diffraction order,” and θm is the angle of maximum intensity of diffraction
order m (referenced to the surface normal, positive θm being clockwise). Which sine function is
subtracted from which on the left hand side of the equation is merely a matter of convention, since
m can be either positive or negative. Here we choose the sign convention resulting in positive m
orders being further from the surface normal than the zeroth-order.

Although the physics and math that result in this formula are far beyond what would be
expected in a seventh-grade math class, the experimental setup depicted in Figure 1 allows for
the determination of all quantities on the left-hand side of equation (1) using only a rectangular
surface, a ruler, and the Pythagorean theorem. With a known laser wavelength, this allows for the
determination of track spacing (or pitch) on an optical disk, or laser wavelength if the track spacing
is known, with only a few simple computations. The activity area would be set up by a graduate
student before the arrival of any seventh-grade students. The graduate student would also be in
control of any lasers.

Activity Setup and Measurements:

1. Place some sort of straight reference line (such as the edge of a piece of tape) along the
surface of the table, exactly perpendicular to the two edges on which it ends. (If a protractor
or square is available, this can be used to ensure perpendicularity.) This will act as the
reference for the surface normal; i.e. the dashed vertical line near the middle of Figure 1.
Measure the reference line’s length; this is distance a in Figure 1.

2. Attach the optical disk to a side of the table with which the reference line is perpendicular.
Attach it such that the reference line meets the grating portion of the disk, and such that the
middle of the disk is slightly above the table edge, so that the laser meets the grating at the
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appropriate height.

3. Attach a viewing screen to the other edge of the table, such that the distance of intensity
peaks from the reference line can be easily measured. This could be a piece of paper that
could be marked, or a meter (or yard) stick from which measurements could be read directly.

4. With the laser parallel with the table top, shine it such that it impinges on the optical disk
surface at the point where the reference line meets the disk surface. No specific angle is
required, as long as at least the zeroth and positive first diffraction orders’ intensity maxima
are visible on the viewing screen (the negative first order may be oriented on the laser side of
the surface normal). Mark the distances of the zeroth and first diffraction orders’ intensity
maxima from the reference line (distances b0 and b+1, respectively).

Students’ Calculations: To avoid introducing trigonometric functions, the left side of equa-
tion (1) can be rewritten with the geometric definition of the sine of an angle for m = +1, as

b+1

c+1
− b0

c0
=

λ

d
, (2)

where cm is the hypotenuse length of the right triangle formed by the reference line, the viewing
screen, and the optical path of diffraction order m. Since this is the hypotenuse of a right triangle,
cm =

√
a2 + b2m.

When the laser wavelength λ is known, the computed ratios of triangle sides can be used to
compute d, the center-to-center pitch of the tracks on the optical disk (for CDs, this is nominally
1.6 µm [1]). After d has been calculated from the measurements, a different laser of “unknown”
wavelength can be used, and the same measurements can be taken again, this time using them
to find λ, effectively using a CD as a spectrometer. Some common wavelength options would be
650 nm, 532 nm, and 405 nm.

The students would thus perform the following mathematical steps, which could be outlined on
a worksheet with a simplified diagram to streamline the process:

Computational Steps:

1. Measure the lengths b0 and b+1 on the viewing screen.

2. Using the known length a, compute the lengths of the hypotenuses c0 and c+1 using the
Pythagorean theorem, cm =

√
a2 + b2m.

3. Subtract the ratios of the measured and computed quantities: (b+1/c+1)− (b0/c0).

4. The final step depends on which quantity (λ or d) is known, and which is being found:

(a) If finding track pitch (d) from known wavelength (λ): Divide the known laser
wavelength λ (in µm) by the difference found in Step 3 above to find the track pitch d
(in µm).

(b) If finding wavelength (λ) from known track pitch (d): Multiply the difference
obtained in Step 3 by the track pitch d (in µm) to obtain the wavelength λ (in µm).
This could be either the nominal track pitch (1.6 µm), or the one found with a laser of
known wavelength.
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Figure 2. A depiction of the setup to be used to measure the height of a distant object with the inclinometer. Students
will measure b1, b2, h1 and θ

3 Station 2: Inclinometer for Measuring Height – Laser Ranging
and Motion Sensing

Christopher M. Lacny: clacny@purdue.edu

Lasers are often used in industry and academic research to measure distances or the motion of
objects. These measurements are generally based on time of flight or geometric measurements.
Most commercial laser distance sensors operate based on time of flight measurements. The sensor
sends out a laser pulse which reflects off of a target object and returns to the sensor. The sensor
then records the time it took for the pulse to return, and computes the object distance based on
the speed of light. There are many possible laser sensing configurations for measuring distance
which are based on geometry as well. One of the Webb group’s active experiments uses this type
of sensor. In this experiment, a laser beam is shined at an angle on a membrane. As the membrane
moves back and forth, the position where the laser beam reflects off of the membrane moves left or
right, causing the beam spot on a detector to move horizontally as well. This allows the position
of the membrane to be tracked with a high level of accuracy.

By mounting a laser pointer to a protractor, a simple inclinometer can be constructed which
can measure the height of a distant object based on the same principle. In this activity, students
will use this type of inclinometer to calculate the height of various objects and explore some basic
principles of geometry and trigonometry. A diagram of the experimental setup students will work
with is shown in figure 2.

Students’ Calculations: The mathematics of the inclinometer will initially be explained to
students based on the properties of similar triangles. The triangle formed by the top and bottom
of the measured object and the pivot of the laser pointer (shown in yellow) is similar to the triangle
formed by the tip of the laser pointer, the ground, and the pivot (shown in green). As a result, the
ratio of the height to the base of the two triangles will be the same. Thus, the height of the distant
object can be determined using

h2 = b2
h1
b1

. (3)
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Figure 3. An illustration depicting the intended principle of operation used in membrane motion sensing in a Webb
group experiment. The incident laser (red) impinges on the membrane obliquely, reflecting to the quadrant photodiode
(black). As the membrane moves (to the dotted blue), remaining parallel to its original orientation, the reflected
beam moves laterally (to the dotted red). This lateral motion is detected by the quadrant photodiode. While broadly
similar to the inclinometer in that a laser is used to measure a distance, its principle of operation differs in that the
lateral displacement of a beam is measured. In contrast, the inclinometer measures the angle a beam makes with
some reference line.

Students will be given a worksheet showing the geometry involved and outlining the measurements
that they need to take and the computational steps required to measure the height of the distant
object. Students will then be asked to make the same calculation using the angle measured on
the protractor and trigonometric functions. Using this approach, the height of the object can be
expressed as

h2 = b2 tan θ. (4)

The instructor will explain that these functions act as a sort of ”lookup table” for the ratios of the
side lengths of right triangles, and how this is a useful tool in science and engineering.

Experimental Procedure:

1. Place the inclinometer on the ground or a suitable flat surface.

2. Measure a position 3 meters away from the pivot of the inclinometer using a measuring tape
and mark it with a piece of tape.

3. Place a large object at the marked position (a backpack, a desk, a lamp etc.).

4. Rotate the laser pointer on the pivot until the beam touches the top of the object.

5. Measure the height of the tip of the laser pointer from the ground and the base length of the
triangle formed by the laser pointer and pivot using a ruler.

6. Measure the angle between the laser pointer and the ground.

7. Compute the height of the distant object using the similar triangle formula.

8. Compute the height of the distant object using the trigonometric formula.

9. Measure the height of the object using a meter stick or measuring tape and compare to the
computed result.

10. Repeat the procedure with various objects.
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4 Station 3: Estimating π – Understanding Physical System Mod-
els

David W. Alexander: alexa210@purdue.edu
The parameter π is used in countless situations and in virtually all aspects of our research.

Its properties and their impact is truly remarkable. It is the Greek letter for the “p” sound and
the Greeks were very interested in the properties of circles. This might have been of practical
importance in building the columns in the Parthenon in Athens, or perhaps they were just curious!
Some people celebrate Pi Day, March 14 (3/14), and this was Albert Einstein’s birth date (March
14, 1879).

The value for π is known to many decimal places and, to five decimal places has the value
3.14159. If r is the radius of a circle, then the circumference is 2πr and the area is πr2. For a
sphere of radius r, the surface area is 4πr2 and the volume is 4πr3/3.

While π can be estimated using many different procedures, we consider two of these that are
summarized in the 7th grade math textbook [2].
Method 1: With a tape measure, measure the circumference of three different objects with a
circular cross section (more or less, these would be circular cylinders). Then measure the diam-
eter d = 2r, with r the radius. Tabulate each of these measurements. We no estimate π as
Circumference/d. How close to 3.14159 did your result become and why might the results differ?
From these measurements, how might you obtain a better estimate for π?
Method 2: Again, we must find the circumference of a circle. If it has unit radius (r = 1),
then the circumference should be numerically equal to 2π. We use inscribed (inside the circle) and
circumscribed (outside the circle) polygons [3, 4]. The principle is that a polygon drawn around the
circle will have a total length greater than that drawn inside, where the vertices touch the circle.
As the number of sides of the polygon increase, the inscribed and circumscribes results approach
the circumference of the circle. We can use this to estimate π. This is an activity in the 7th grade
math book [2].
Step (i): Draw squares, hexagons, and octagons inside and outside a circle. For the inside polygons,
the vertices touch the circle and for the outside polygons it is the sides of the polygon that touch.
In the first case, that of the square, the outside square has side equal to the diameter of the circle
and the inside one has a diagonal equal to the diameter of the circle.
Step (ii): Measure the perimeter (length) of the outside and inside polygons and record those
results. Then calculate the average (sum each and divide by 2). This becomes an estimate of the
circumference of the circle (one result being slightly larger and the other a little less).
Step (iii): Divide each of the average polygon perimeters by the diameter of the circle to estimate
π. What do you notice at the number of sides on the polygon increase?
Illustrative Application: Consider a simple model for the antenna in your cell phone. Let us
say that your cell phone radiates a total of Pc W (the unit for power is Watt, with the symbol W)
when you speak with a friend. An electromagnetic wave is radiated by the antenna in the phone
to a cell phone tower antenna somewhere nearby, and then the signal moves through optical fiber
or other transmission systems, and is transmitted to your friends phone, even if they are sitting
nearby. Consider the simple (and slightly incorrect picture) that your phone radiates the same
signal in all directions. This would mean that the power density (W/m2) at the cell phone tower
r m (m is meters) is

Sr =
Pr

4πr2
(W/m2), (5)

because we think of the cell phone tower being on the surface of a sphere r m from your phone. We
can think of the antenna on the cell phone tower as having an effective area Ae m2. This allows
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us to estimate how much power comes out of the antenna on the cell phone tower and into the
network as

Pd = SrAe (W). (6)

Knowing the lowest value of Pd would be important in designing the cell phone communication
system, because there is background noise and the received signal needs to be larger than the noise
and hence considered in the design of this communication system.

5 Station 4: Monty Hall Problem – Statistics and Probability
Theory

Justin A. Patel: patel705@purdue.edu
Probability is a unique branch of math because, in a way, it’s mostly a lie. Sure, if you flip a coin

many times in a row it will probably give about 50% heads and 50% tails. If you talk to physicists
though, they’ll tell you that, if you flip a coin exactly the same way twice in a row (making sure
even the smallest details are the same), the physics says the coin should travel in the same way
both times. So who is right? Is the world around us really completely predictable, or is it random?

The truth is that, while many things in the world are not fundamentally random, probability
theory can make it a lot easier to think about certain things. It is true that, at the very small scale
in physics, some things really are fundamentally random. Even outside this small scale, though,
any experimental measurements made in a lab will have some amount of ”noise” that is most easily
modeled as random. In a simple example, the Monty Hall problem makes no sense when thinking
about it intuitively, but is easily explained using probability theory.
Monty Hall: The Monty Hall problem comes from a game show. Before the contestant are three
doors: behind one of them is a car, and behind the other two are goats. The contestant wins if they
correctly guess the door with the car. The game begins with the contestant randomly choosing a
door, let’s call it Door A. After this comes the twist. Monty (who knows where the car is) opens
one of the doors that has a goat behind it. Let’s call that Door B. The contestant now knows that
the car must be behind either Door A or Door C. Finally, Monty asks a devious question: ”Would
you like to switch your guess to Door C?”

Well, should you switch? Does it matter? At first, it may seem like it may not matter, because
it feels like another 50-50 chance of winning either way. However, if you play the game many times
in a row, you’ll find that you win more often if you do switch to Door C. Why is this the case?
This is the Monty Hall problem.
Exercise: Students pair up and take turns playing the Monty Hall game using cards (one face
card and two non-face cards). Each pair decides which one of them will use the “stay” strategy,
and who will use the “switch” strategy. As they play, they keep a tally record of how many wins
and losses the two strategies result in. At the very end, all the counts are collected together to see
which strategy ended up having a better win rate.
Explanation: Figure 4 shows a table of all possible outcomes when playing the Monty Hall game.
A common misconception is that, after Monty reveals one of the goat doors, the probability changes
to 50% that you picked the correct door. However, this is not the case. Right at the beginning,
you had a 1/3 chance of choosing the door with the car, and this doesn’t change even after Monty
gives you a bit of information later.
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Figure 4. Why is switching doors the best strategy for the Monty Hall problem? This table shows all the different
possible outcomes, all of which are equally likely. Try counting the number of winning outcomes for each strategy.
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