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@W@ @ Figure 1: Driving simulator setup Figure 3: Ego-vehicle approaching a construction
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Construction Experiment Objective: To perturb the human driver’s cognitive

_ N o Automation i states (x) and consequently their reliance (g) on the automation by
During safety-crltlcal.appllcatlons of 1 Available varying task complexity (d) in a medium fidelity driving simulator
autonomous (or semi-autonomous) Sl ﬂ ......... — » (Figure 1).
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systems in uncertain environments JOLICERIOK ®@1Or VO & * Task complexity is varied as a binary signal (Figure 2).

involving human interaction, such as Intersection )

automated driving, human complacency Figure 2: Binary signal for task complexity
may cause misuse of automation,
sometimes leading to fatal accidents.
While efforts have been made to
understand cognitive states—such as

trust—responsible for human behavior Ilvllrld wnamlcal Mﬂdel

during automated driving [1],

Low complexity is city driving with low traffic; high complexity is
navigating through construction zones with workers (Figure 3).

Participants navigate through a pre-defined route in an ego-vehicle with SAE Level 3 automation during a single, continuous drive.
When available, participants are free to engage or disengage the automation at their discretion.
Self-reports (y) for cognitive states are solicited at intersections (circled in Figure 2) on a scale from 0 to 100, in increments of 5.

comparatively less research has been In prior work [2], we modeled the evolution of the cognitive states (x = 1
done to estimate these states in real [T R]" € R?) and reliance (q € {0,1}) during changes in task complexity ggo
time. Estimates of these states could be (d) using a hybrid dynamic model, given by 0.8/ 1
leveraged by the automation to respond x(k+1) = Ax(k) + Bd(k) + c + w, ¥k = 0, N dSoi Pariicir?ant
and adapt to the human to improve 1, ifxes, Decision Regions 06/ oo X
safety and performance outcomes. q(k) = {0, if x € S, } —— 5. - Peridont reles
04+ the automation
In this work, we leverage a hybrid « The proposed model structure is low-dimensional and can be used to
modeling framework [2] to build a set- identify participant-level models, capturing individual-specific behaviors 0.2
valued state estimator for human » Self-reports (y) are quantized, intermittent measurements of the cognitive
cognitive factors, such as trust (T') and states, such that 0 0.2 04 06 0.8 ]
risk perception (R). Conventional state z(k) = x(k) + v,k € Kep T
estimation methods, such as Kalman ( A | A: Quantization step size Figure 4: Decision regions in POO3’s cognitive
filtering, use a probabilistic 0, 1le(k) <75 e {1,2}: Denotes the it" entry of y state space, identified using a decision tree
characterization of uncerta.inty which i) =1y, if2,(k) € [Y' 3 ] Y;: Possible values of y; (0,5,--,100)
poses a challenge when using human J ' J 2 Ksg: Set of k for which self-reports are 1 s
data with highly intermittent . available =)
observationf. Ir:/stead, we use a set- \100' 1f2(k) > 100 + E B(X): Axis-aligned bounding box of X | 0.8| =12(00)
based approach to handle information
obtained using quantized measurements _ H 0.6¢
(cognitive factors intermittently self- set “allled smle Es“malor = Feasible initial set
reported by the user), and a binary « We assume bounded process and measurement noise, i.e., |w| < 8%, |v| < §V. 4 ,  |based on initial SR
behavioral measurement (human * Given a self-report (SR) y, the feasible measurement set is the set of all states x 0ol
reliance on the automation). This work that are compatible with y, denoted by Xg. |
represents the first effort in estimating ‘ ‘ ‘ ‘
cognitive states in an experiment that is Initialization Using Self-Report 0.2 o4 00 08 1
hot event- or trial-based; the human X(0]0) = Xs5z(0) Figure 5: Set-valued estimator is initialized
engages .continuously with the using a self-report
automation.
/ Fea;ible sgt blgsed 1S
on observed rellance DSl
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Figure 6: Estimate is updated using self-reports

when available, and observed reliance on

automation
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