

Optimal Sensor Placement for State of Charge Estimation in Thermal Energy Storage Device

Research Assistant: Joseph Broniszewski (jbronisz@purdue.edu)

Principal Investigator: Dr. Neera Jain (neerajain@purdue.edu)

Motivation

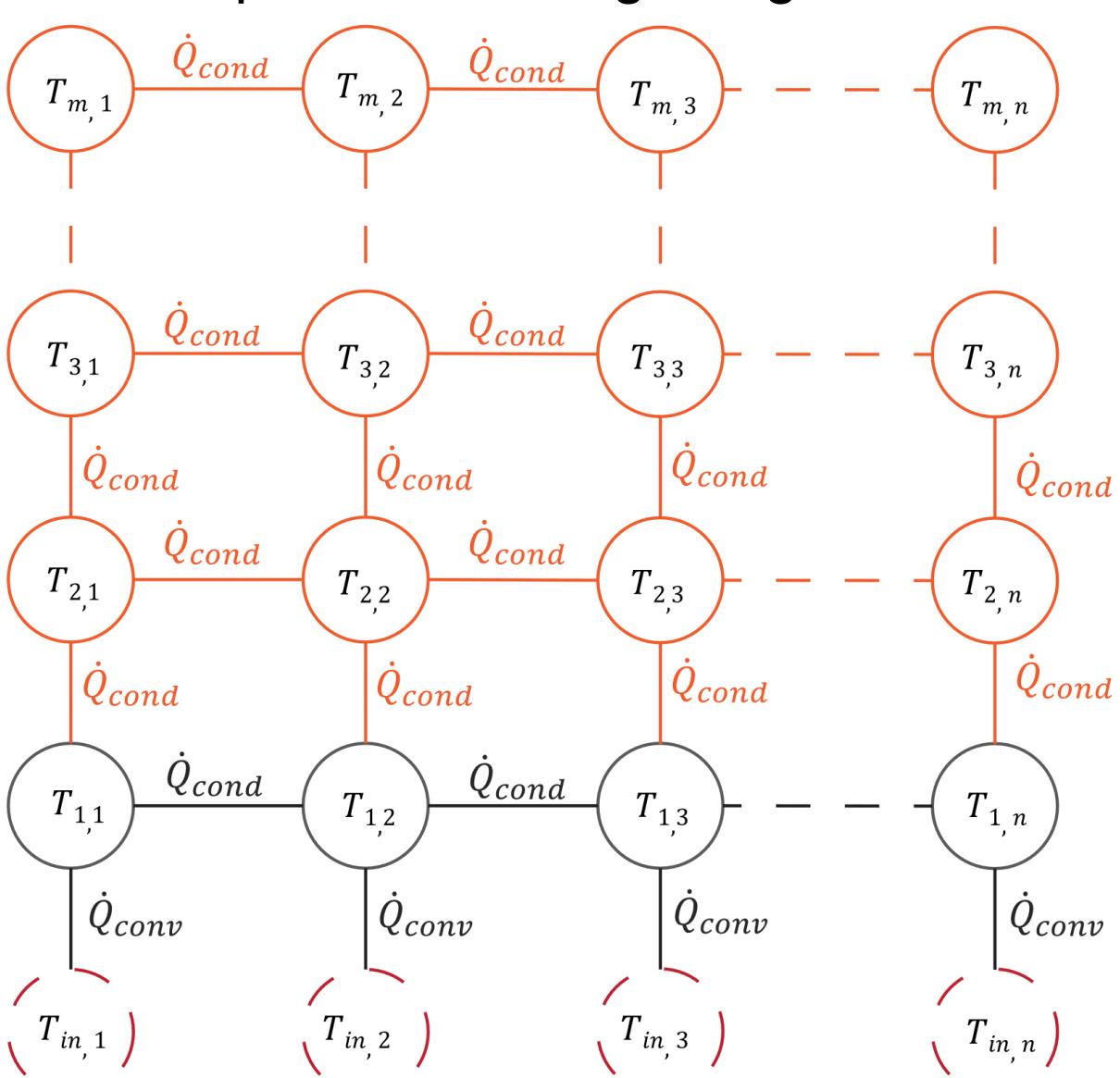
- Thermal energy storage (TES) can help manage misalignment between the supply and demand of power on the electrical grid through **load shifting** energy used to power HVAC systems
- To best utilize TES, an accurate estimate for the **state of charge (SOC)** is required. To achieve an improved estimate for SOC within a **composite phase-change material (CPCM)** based TES, dynamic modeling and **state estimation theory** can be applied
- For commercial viability of such a system, there is interest in **minimizing the number**, and **optimizing the location** of thermocouples in the TES to maximize SOC estimation accuracy

Dynamic Modeling

- Dynamics of CPCM are **nonlinear and state dependent**, changing as the CPCM undergoes phase change
- A dynamic **graph-based model** [1] predicts the temperatures, x , of each CPCM control volume, and may be written as

$$C(x)\dot{x} = A(x)x + B(x)u$$

where $C(x)$ represents the **state dependent capacitance** of each vertex, $A(x)$ represents **thermal resistances** between vertices, and $B(x)$ accounts for thermal resistance between vertices and inputs, u , which are temperatures along refrigerant channel



Above: Dynamic graph-based model of TES heat exchanger, with **state-dependent dynamics**

- Objective is to place **sensors optimally** such that the error between estimated and true SOC is minimized
- This **non-linear mixed integer problem** is solved using a **genetic algorithm (GA)**
- Cost function J is defined as the weighted sum of S , mean squared error between the true ($s_k(x)$) and estimated ($\hat{s}_k(x)$) SOC over the duration of the simulation, and p , the number of sensors, with variable weighting coefficient α
- Constraints enforce integer decision variables, maximum number of allowable sensors, p_{max} , and maximum allowable error, e_{max}

Minimize

$$J = \alpha S + (1 - \alpha)p,$$

$$S = \frac{\sum_{k=1}^N \|s_k(x) - \hat{s}_k(\hat{x})\|^2}{N},$$

subject to

$$\dot{x} = f(x, u)$$

$$\dot{\hat{x}} = g(\hat{x}, y, u)$$

$$C \in \mathbb{R}^{p \times n}$$

$$c_{i,j} = \begin{cases} 1 & \text{if } y_{k,i} = x_{k,j} \\ 0 & \text{otherwise} \end{cases}$$

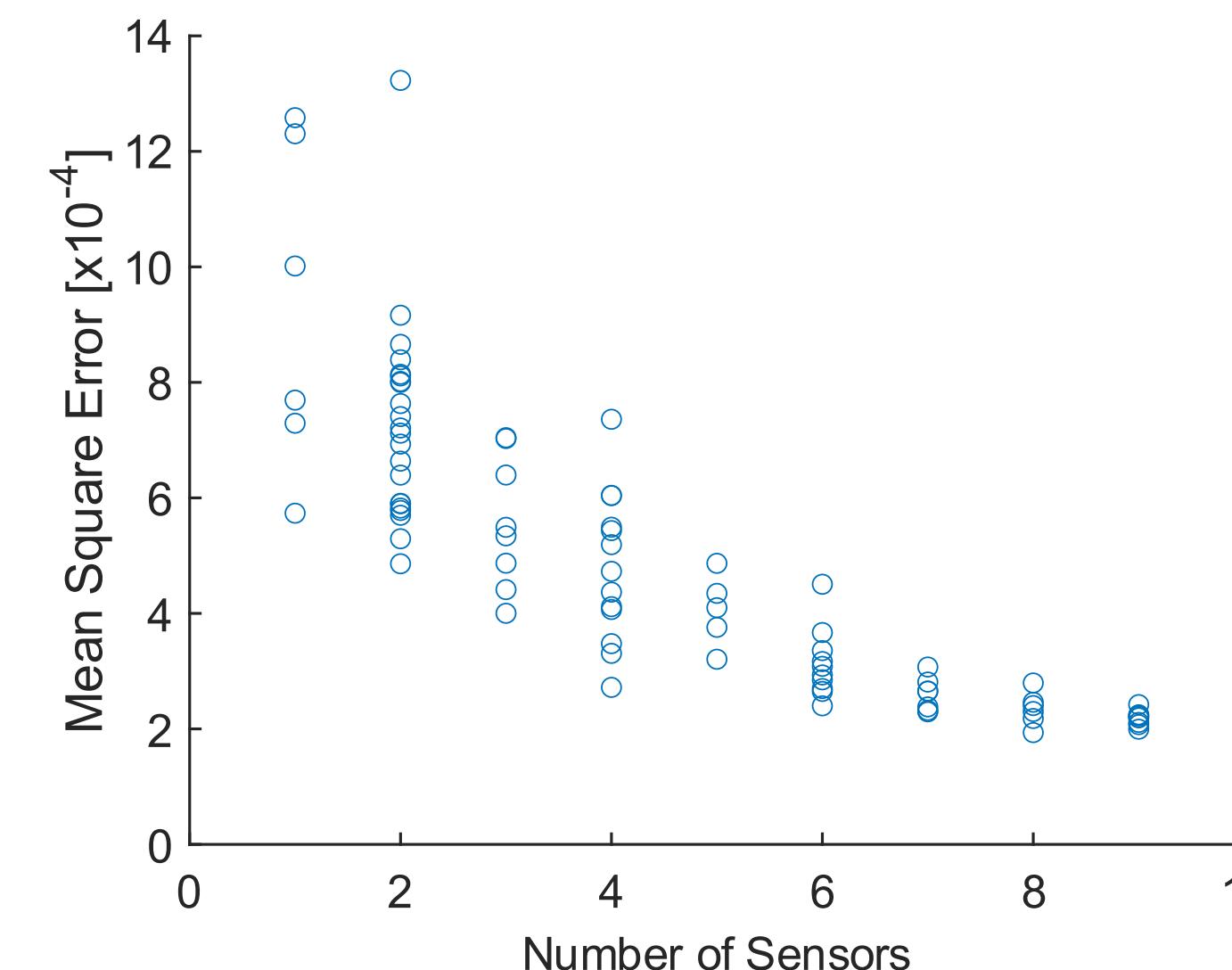
$$\sum_{i=1}^p c_{i,j} \leq 1, \forall j = 1, 2, \dots, n$$

$$p \leq p_{max}$$

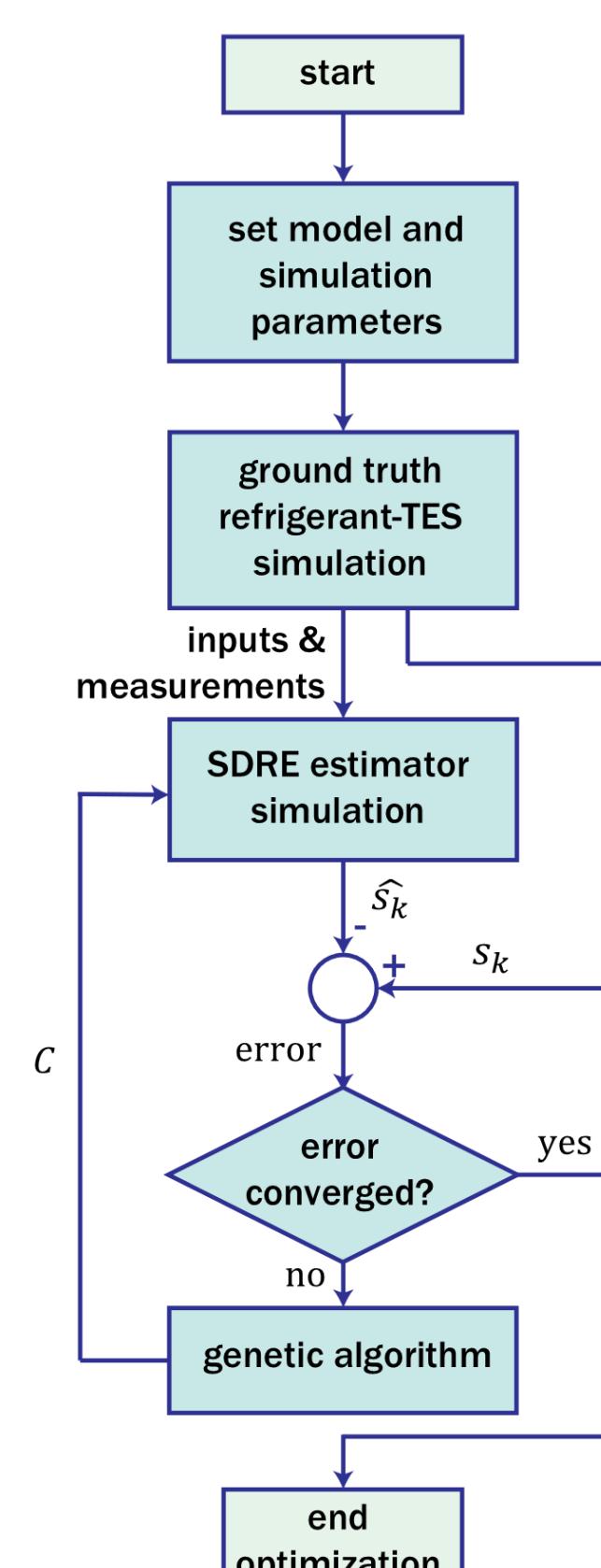
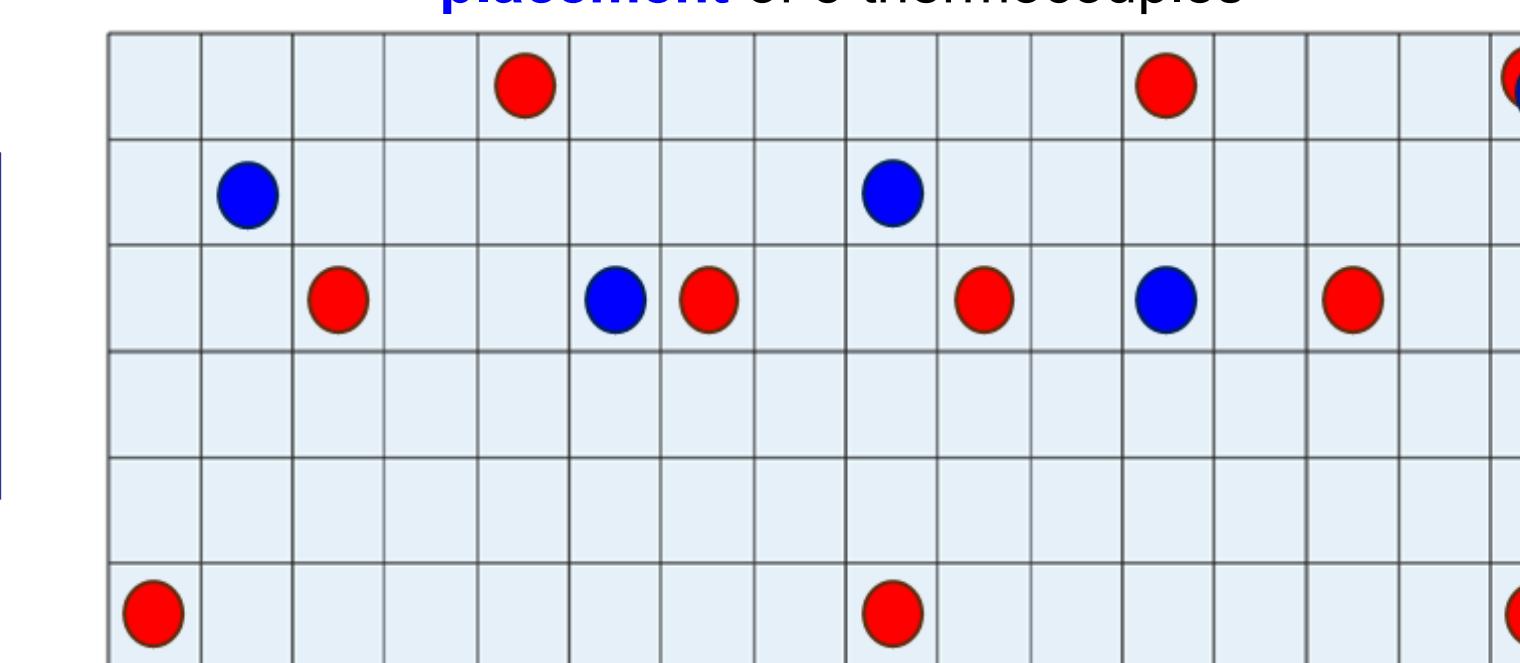
$$e_{max} \leq 0.08$$

- Model with a fine discretization is parametrized and simulated; values from this simulation are used as **“ground truth”** values in the genetic algorithm
- Coarser discretization is used for solving the optimal sensor placement problem
- Model iterated upon using different sensor locations
- Optimization concludes once **error values converge** within specified tolerances

Optimal Sensor Placement



Above: Pareto front, generated by varying α , showing cost **tradeoff** between estimation error and number of sensors



Below: Discretized TES heat exchanger, showing location of **baseline sensor placement** and **optimal sensor placement** of 5 thermocouples

- From Pareto front, 5 sensors chosen as **ideal tradeoff** between minimizing error and minimizing number of sensors
- Using the GA, an optimal set of 5 sensors was generated and compared against a baseline set of 10 sensors

Conclusion

Key Contributions

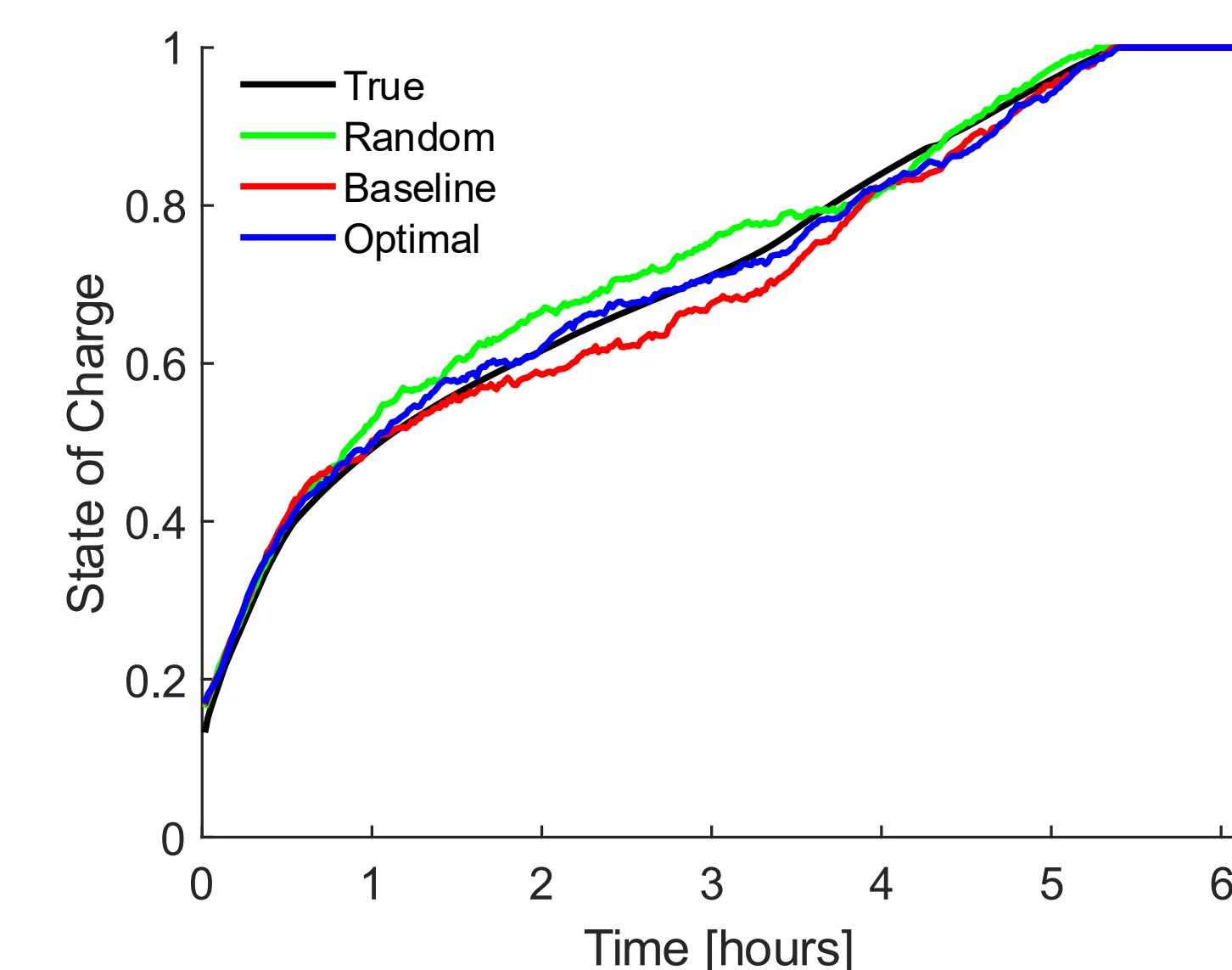
- Development of general approach to finding optimal placement of temperature sensors for SOC estimation with flexible cost function
- Demonstration of improved performance in simulation compared to baseline case, while using fewer sensors

Future Work

- Validate findings experimentally
- Explore different TES heat exchanger geometries

State Estimation

- Temperature **measurements are combined with predictions** from dynamic model to generate time-varying SOC estimate
- Estimation accomplished using state estimation theory, **state-dependent Riccati Equation** filter [2]



Above: Example of **SOC estimation** over duration of 6.5 hours of simulated time in condensing operation

Below: Example estimator performance in condensing mode - through choice of optimal sensor placements, **improved performance achieved with fewer sensors** than baseline case

Sensor Placement	Mean Square Error ($\times 10^{-4}$)
Randomly placed (10 sensors)	6.9
Baseline placement (10 sensors)	6.7
Optimal solution from GA (5 sensors)	2.1
Full measurements (ideal case)	1.8

Acknowledgements

The authors gratefully acknowledge the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy for supporting this research under contract number DE-FOA-0002788.

U.S. DEPARTMENT OF
ENERGY