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• Thermal energy storage (TES) can help manage 

misalignment between the supply and demand of power 

on the electrical grid through load shifting energy used to 

power HVAC systems

• To best utilize TES, an accurate estimate for the state of 

charge (SOC) is required. To achieve an improved 

estimate for SOC within a composite phase-change 

material (CPCM) based TES, dynamic modeling and 

state estimation theory can be applied

• For commercial viability of such a system, there is 

interested in minimizing the number, and optimizing 

the location of, thermocouples in the TES to maximize 

SOC estimation accuracy
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• Temperature measurements are combined 

with predictions from dynamic model to 

generate time-varying SOC estimate 

• Estimation accomplished using state estimation 

theory, state-dependent Riccati Equation 

filter [2]

• Dynamics of CPCM are nonlinear and state dependent, 

changing as the CPCM undergoes phase change 

• A dynamic graph-based model [1] predicts the 

temperatures, 𝑥, of each CPCM control volume, and may 

be written as 

 where 𝐶 𝑥  represents the state dependent 

capacitance of each vertex, 𝐴 𝑥  represents thermal 

resistances between vertices, and 𝐵 𝑥  accounts for 

thermal resistance between vertices and inputs, 𝑢, 

 which are temperatures along refrigerant channel 

𝐶 𝑥 ሶ𝑥 = 𝐴 𝑥 𝑥 + 𝐵 𝑥 𝑢

Above: Dynamic graph-based model of TES heat 

exchanger, with state-dependent dynamics
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Above: Example of SOC estimation over duration of 

6.5 hours of simulated time in condensing operation

• From Pareto front, 5 sensors chosen as  

ideal tradeoff between minimizing error and 

minimizing number of sensors

• Using the GA, an optimal set of 5 sensors 

was generated and compared against a 

baseline set of 10 sensors

• Model with a fine discretization is parametrized and 

simulated; values from this simulation are used as 

“ground truth” v l    i  th  g   tic  lg  ith 

• Coarser discretization is used for solving the optimal 

sensor placement problem 

• Model iterated upon using different sensor locations 

• Optimization concludes once error values converge 

within specified tolerances

Minimize

𝐽 = 𝛼𝑆 + 1 − 𝛼 𝑝,

𝑆 =
σ𝑘=1

𝑁  | 𝑠𝑘 𝑥 − Ƹ𝑠𝑘 ො𝑥 |2

𝑁
 ,

subject to

 ሶ𝑥 = 𝑓 𝑥, 𝑢

 ሶො𝑥 = 𝑔( ො𝑥, 𝑦, 𝑢)
 𝐶 ∈ ℝ𝑝×𝑛

 

 𝑝 ≤ 𝑝𝑚𝑎𝑥 

 𝑒𝑚𝑎𝑥 ≤ 0.08

෍

𝑖=1

𝑝

𝑐𝑖,𝑗 ≤ 1, ∀𝑗 = 1, 2, … 𝑛

𝑐𝑖,𝑗 = ቊ
1 if 𝑦𝑘,𝑖 = 𝑥𝑘,𝑗

0 otherwise 

Sensor Placement Mean Square Error

(×10-4)

Randomly placed

(10 sensors)

6.9

Baseline placement

(10 sensors)

6.7

Optimal solution from GA

(5 sensors)

2.1

Full measurements (ideal case) 1.8

• Objective is to place sensors optimally such that the 

error between estimated and true SOC is minimized

• This non-linear mixed integer problem is solved 

using a genetic algorithm (GA)

• Cost function 𝐽 is defined as the weighted sum of 𝑆, 

mean squared error between the true (𝑠𝑘 𝑥 ) and 

estimated ( Ƹ𝑠𝑘(𝑥)) SOC over the duration of the 

simulation, and 𝑝, the number of sensors, with 

variable weighting coefficient 𝛼 

• Constraints enforce integer decision variables, 

maximum number of allowable sensors, 𝑝𝑚𝑎𝑥, and 

maximum allowable error, 𝑒𝑚𝑎𝑥 

State Estimation

Above: Pareto front, generated by varying 𝛼, showing cost 

tradeoff between estimation error and number of sensors

Below: Discretized TES heat exchanger, showing location 

of baseline sensor placement and optimal sensor 

placement of 5 thermocouples

Below: Example estimator performance in condensing 

mode - through choice of optimal sensor placements, 

improved performance achieved with fewer 

sensors than baseline case

 Key Contributions

• Development of general approach to finding optimal 

placement of temperature sensors for SOC 

estimation with flexible cost function

• Demonstration of improved performance in 

simulation compared to baseline case, while using 

fewer sensors

 Future Work

• Validate findings experimentally

• Explore different TES heat exchanger geometries

Conclusion
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