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Optimal Sensor Placement

Motivation
. can help manage
misalignment between the supply and demand of power

on the electrical grid through energy used to
power HVAC systems

« To best utilize TES, an accurate estimate for the
IS required. To achieve an improved
estimate for SOC within a
based TES, dynamic modeling and
can be applied

« For commercial viability of such a system, there is
interested in . and
of, thermocouples in the TES to maximize
SOC estimation accuracy

ynamic Modeling

Dynamics of CPCM are ,
changing as the CPCM undergoes phase change
« Adynamic [1] predicts the
temperatures, x, of each CPCM control volume, and may
be written as
C(x)x = A(x)x + B(x)u

where C(x) represents the

of each vertex, A(x)

between vertices, and B(x) accounts for
thermal resistance between vertices and inputs, u,
which are temperatures along refrigerant channel
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Above: Dynamic graph-based model of TES heat
exchanger, with
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* Objective is to place
error between estimated and true SOC is minimized

« This IS solved
using a

« Cost function J is defined as the weighted sum of S,
mean squared error between the true (s, (x)) and
estimated (5, (x)) SOC over the duration of the
simulation, and p, the number of sensors, with
variable weighting coefficient a

« Constraints enforce integer decision variables,
maximum number of allowable sensors, p,,,,,, and
maximum allowable error, e,
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* Model with a fine discretization is parametrized and
simulated; values from this simulation are used as
¢ " values in the genetic algorithm
« Coarser discretization is used for solving the optimal
sensor placement problem
 Model iterated upon using different sensor locations
« Optimization concludes once
within specified tolerances
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Number of Sensors

Above: Pareto front, generated by varying a, showing cost
between estimation error and number of sensors

Below: Discretized TES heat exchanger, showing location
of baseline sensor placement and optimal sensor
placement of 5 thermocouples

* From Pareto front, 5 sensors chosen as
between minimizing error and
minimizing number of sensors
« Using the GA, an optimal set of 5 sensors
was generated and compared against a
baseline set of 10 sensors

Conclusion

Key Contributions
« Development of general approach to finding optimal
placement of temperature sensors for SOC
estimation with flexible cost function
 Demonstration of improved performance in
simulation compared to baseline case, while using
fewer sensors
Future Work
« Validate findings experimentally
« Explore different TES heat exchanger geometries

State Estimation

 Temperature
from dynamic model to
generate time-varying SOC estimate
« Estimation accomplished using state estimation

theory,
filter [2]
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Above: Example of over duration of
6.5 hours of simulated time in condensing operation

Below: Example estimator performance in condensing
mode - through choice of optimal sensor placements,
achieved
than baseline case

Sensor Placement Mean Square Error

(x10%)

Randomly placed 6.9
(10 sensors)

Baseline placement 6.7
(10 sensors)

Optimal solution from GA 2.1
(5 sensors)

Full measurements (ideal case) 1.8
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