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A 4 Battery Battery Evaporator | Two-Phase HX Counter-flow plate HX
VvCC Electronics

Radiator Radiator O« | Cabin Evaporator Cross-flow MPET HX

[ o | Mesn| (e, 22ty | [vcc Radiator Cross-flow MPET HX

Motor é » o ) l l Electronics Radiator | Single-Phase HX Cross-flow MPET HX

P l | RD l l E % X X S Cabin HX Cross-flow MPET HX

T

Compressor Efficiency-based Isentropic compressor

APM ' i
3 Ref tion Cycle (R134 P [ i
efrigeration Cyc e (R134a) 9 ump Valve Expansion Valve Isenthalpic valve
PI l ‘ ’ I : It I lII Y T ————3 Electronics Cooling Cycle (Water Glycol) O Compressor

o e _>gigfn“éf;z"(ﬁafﬁﬂerG'm” D’.‘Q \,:::’e Battery RC-network equivalent | Second-order Thevenin model.
Ray W. Herrick Laboratories e cecsonts oo o e sk e [T [Smolrimp e bt p
Component Modelin
. u Single-state graph-model representation, Cx = —MT:
Heat loads in Battery Electric 'T.np PRSI mF-C”’fF- ey p T
Vehicles (BEV) are known to be I ""*’*e’G“’“‘ - apAsp(Tyw — Tr)
highly transient during operation. Re \ S ~. | > ‘MpCy F 0 0 TF 1 -1 0 =1 0 0 0 :rnACp,ATA
However, traditional TMS design \ Walt ! 0 mycw 0 ||Ty|==]0 1 0 0 -1 0 1| MrCrling
approaches rely on evolving known @ a (T = Tw) 0 0 MaCallT,] o010 1 =10 “AASA(TAT_ Tiy)
pre-existing design with no up- ’TmA N TacpaTing 0 m’*_"”p'f‘*_ QmACpAQ A
front consideration of controls o
and transient operations. Figure 2: S/ngle-phase HX graph-based modelmg for one control volume.
A e pTin e i Cp, Ty i_ _ : o .

The objective is to develop novel ’T:,,; watermyml L Multi-state graph-model representation [4], Cx = —(M + g‘r)r.
modeling methods to be used for Zig
closed-loop transient system AR RNV N o o N o 1ty
analysis that enable up-front Sool - 0 Ky 0 o A |__ 1 21 -11 0 00 1 1 -1 0 Qm?gm_l
definition of optimal TMS design b o), % o g g i mFOCP,F ?Ij o 0 0 0 101 0 0 0 -1 rﬁcz,@
concepts for BEV. "hifpi:\ 'Remgeram I S ’\_ ": O,
1. Capture of transient and Figure 3: Two-phase HX graph-based modeling for one control volume. m;ncrpq?rl%;p

steady state dynamics of the | Y@rification and Validation
TMS  accurately  at  the | high Fidelity Model: Dymola with TIL 3.15.1 TLK Thermo GMBH Library [5].
component, cycle and system  Model utilizes finite volume method, each containing a differential state.

level. * Key Similarities: Number of control volumes, state initial conditions, boundary conditions, effective geometries
2. Evaluation of closed-loop * Key Differences: Heat transfer coefficient, geometry discretization, mass flow rate discretization, conduction model
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Graph-based modeling [2]: Figure 5: Python graph-based model e e bl

Model a general vapor compression representation of a Refrigeration Cycle. VCC Radiator/Condenser

system (VCS) of a BEV. Compressor Cabin Evap. ~ Battery Evap | | | N left: Dynamic
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Figure 6: Dymola representation of a Refrigeration Cycle.
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