A Heuristic Strategy for Cognitive State-based **Feedback Control to Accelerate Human Learning**

Research Assistant: Madeleine Yuh Principal Investigator: Dr. Neera Jain Contact Email: myuh@purdue.edu, neerajain@purdue.edu

Project Objective

- •Autonomous systems are used to help humans attain new skills [1]. Existing systems use human performance feedback to predict decision making behavior [2].
- •Cognitive factors are integral to designing effective human machine interaction [3]. Current intelligent tutoring systems utilize strategies to meet individual student needs, e.g., improving self-confidence [4]
- The same strategies are applicable to learning *outside of the classroom*. Goal: Propose and validate a heuristic strategy that calibrates selfconfidence to skill using strategic automation assistance allocation

Experimental Setup and Methodology

User Study: Participants practice landing quadrotor in training module in 20 trials Heuristic Strategy Design: Manual mode M_1 or shared **control** M_2 mode is assigned to trials based on the heuristic strategy (Table 1) or benchmark strategy (Table 2).

Figure 1: Experimental Platform

Heuristic strategy designed to calibrate self-confidence to skill.

• M_2 - user assisted by static control law u_a augmenting user input u_h . Quadrotor input $u(n) = 0.9u_h(n) + 0.1u_a(n)$.

> Table 1. Heuristic strategy using performance metrics and self-confidence cognitive feedback

Results

- Participants randomly placed into two groups. Group 1 used heuristic strategy while group 2 used benchmark.
- 40 participants completed the user study (17 male, 22 female). Participants ages ranged between 18-57 years (mean = 24 years). Each participant was compensated at a rate of \$20/hr.

Figure 2: Flowchart of sequence of events for 20 trials

Acknowledgements

This material is based upon work supported by the National Science Foundation under Award No.183690. Any opinions, findings, and material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Ray W. Herrick Laboratories

Figure 4: Bar plot showing unsuccessful, unsafe, and safe landings over 20 trials

	• • • • •		0	•	
Note: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$					Group 1
Regressor	Group 1		Group 2	2	participants
Intercept	0.750		0.387		focused on
Trial <i>k</i>	0.349		0.900		advanced metrics
Previous self-confidence SC_{k-1}	< 2 <i>e</i> – 16	***	< 2 <i>e</i> – 16	***	like t_k and v_k to
Shared Control mode M_2	0.008	**	0.465		achieve higher
RMS	0.075		0.045	*	scores.
Safe Landing	1.210 <i>e</i> – 05	***	0.001	**	
Unsafe Landing	2.690 <i>e</i> – 04	***	7.750 <i>e –</i> 05	* * *	Group 2
Score S_k	0.011	*	0144		participants
			0.144		
Landing x position x_k	0.205		0.144		focused on <i>flying</i>
Landing x position x_k Landing y position y_k	0.205 0.512		0.144 0.313 6.140 <i>e</i> - 05	***	focused on <i>flying</i> <i>the quadrotor to</i>
Landing x position x_k Landing y position y_k Landing velocity v_k	0.205 0.512 0.059		0.144 0.313 6.140 <i>e</i> - 05 0.331	***	focused on <i>flying</i> <i>the quadrotor to</i> <i>landing pad, <u>not</u></i>
Landing x position x_k Landing y position y_k Landing velocity v_k Landing attitude θ_k	0.205 0.512 0.059 0.402		0.144 0.313 6.140 <i>e</i> - 05 0.331 0.337	***	focused on <i>flying</i> the quadrotor to landing pad, <u>not</u> safe landings. y_k
Landing x position x_k Landing y position y_k Landing velocity v_k Landing attitude θ_k Landing time t_k	0.205 0.512 0.059 0.402 0.036	*	0.144 0.313 6.140 <i>e</i> – 05 0.331 0.337 0.383	***	focused on <i>flying</i> <i>the quadrotor to</i> <i>landing pad, <u>not</u> <i>safe landings</i>. <i>y</i>_k and <i>RMS</i> more</i>
Landing x position x_k Landing y position y_k Landing velocity v_k Landing attitude θ_k Landing time t_k Multiple R^2	0.205 0.512 0.059 0.402 0.036 0.8479	*	0.144 0.313 $6.140e - 05$ 0.331 0.337 0.383 0.8497	***	focused on <i>flying</i> <i>the quadrotor to</i> <i>landing pad, <u>not</u> <i>safe landings</i>. <i>y</i>_k and <i>RMS</i> more significant</i>

Conclusions and Future Work

- Participants using heuristic strategy for self-confidence calibration demonstrated accelerated learning compared to benchmark group.
- Future work will identify differences in how novices and experts transition through learning stages and developing a probabilistic dynamic model of human cognitive states to predict self-confidence

1] D. Manzey, M. Luz, S. Mueller, A. Dietz, J. Meixensberger, and G. Strauss, "Automation in Surgery: The Impact of Navigated-Control Assistance o Awareness, and Acquisition of Surgical Skills," Hum Factors, vol. 53, no. 6, pp. 584–599, Dec. 2011 automation interaction for multiple robot control: the effect of varving autom ics, vol. 61, no. 8, pp. 1033–1045, Aug. 2018.[3] B. P. Woolf, Building intelligen es for revolutionizing e-Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.. 2008 ng the decision field theory to model operators' reliance on automation in supervisory control situations," IEEE ons on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 36, no. 5, pp. 943–959, Sep. 2006 [4] B. P. Woolf, Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-Learning. San Francisco, CA, USA: Morgar Kaufmann Publishers Inc., 2008