# **Powering What's Next in Freight Transportation**

Research Assistant: Ana Guerrero de la Peña, guerrer2@purdue.edu

Research Scientists: Navin Davendralingam, Ali Raz

Principle Investigators: Dr. Neera Jain, Dr. Greg Shaver, Dr. Dan DeLaurentis

Sponsor: Cummins, Inc.

### **Problem Statement**

Develop a simulation framework to enable manufacturers and policymakers to incentivize adoption of low and zero emission powertrains and vehicle autonomy for Class 8 vehicles



### **Results**

Vehicle architectures introduced to the network for adoption:

Diesel, CNG, LNG, hybrid electric diesel (HEVD), battery electric (BEV), and hydrogen fuel cell (HFC)

| Vehicle | Vehicle   | Eff. (mi/EN) | Range | e Capacity Maint. Cost Reliability Emission |         | Emissions <sup>g</sup> | s <sup>g</sup> (kg CO <sub>2</sub> /EN) |                       |
|---------|-----------|--------------|-------|---------------------------------------------|---------|------------------------|-----------------------------------------|-----------------------|
| Type    | Cost (\$) | (@55 mph)    | (mi)  | (ton)                                       | (\$/mi) | (%  trips/year)        | $Well\-to\-tank$                        | ${\it Tank-to-wheel}$ |
| Diesel  | 145,000   | 6            | 1000  | 25                                          | 0.15    | 1                      | 9.45                                    | 10.16                 |
| CNG     | 172,000   | 5.1          | 600   | 23                                          | 0.165   | 2                      | 2.23                                    | 7.11                  |
| LNG     | 190,000   | 5.25         | 1000  | 23                                          | 0.165   | 2                      | 2.56                                    | 7.73                  |
| HEVD    | 175,000   | 6.3          | 1100  | 24                                          | 0.158   | 5                      | 9.45                                    | 10.16                 |
| BEV     | 210,000   | 0.39         | 300   | 23                                          | 0.175   | 5                      | 0.63                                    | 0                     |
| HFC-    | 250,000   | 11           | 450   | 24                                          | 0.175   | 5                      | 17.6                                    | 0                     |

**Projecting multi-fleet adoption over a small regional network** 

- Fleet characteristics
- Cost of energy
- Fuel tax incentives GHG Phase 2 standards



## **Approach and/or Methodology**

Use the System-of-Systems (SoS) engineering methodology to model the Freight Transportation System (FTS)



The future technology composition of the FTS is modeled as a function of purchasing and operations decisions made by independent fleets operating in a U.S. line-haul network

- Available fueling, charging stations 
   <u>i</u> 60
- Charging and fueling times

#### **Results demonstrate:**

- Rapid reduction in  $CO_2$  in 2021, 2024, 2027 due to fuel efficiency impacts of GHG Phase 2
- Reduction of 30% in CO<sub>2</sub> emissions in 2028 given 80% CNG adoption

#### Sensitivity analysis to understand variation in adoption trends given uncertainty in SoS factors



### Autonomous technology features are introduced

|                  | Project fo           |                       | Project focus             |                    |                    |  |
|------------------|----------------------|-----------------------|---------------------------|--------------------|--------------------|--|
| Level 0          | Level 1              | Level 2               | Level 3                   | Level 4            | Level 5            |  |
| No<br>Automation | Driver<br>Assistance | Partial<br>Automation | Conditional<br>Automation | High<br>Automation | Full<br>Automation |  |
|                  |                      |                       | /                         |                    |                    |  |

#### Adoption of powertrains and vehicle automation is projected given:

•Upcharge costs •Vehicle reliability •Allocation of platooning

- The FTS SoS is represented by parametrized, time-varying components
- A Total Cost of Ownership (TCO) optimization model, formulated as a mixed-integer linear program, represents fleet adoption and vehicle utilization behaviors
- Fleets adopt certain technologies and optimize vehicle allocation on the network to minimize TCO
- TCO is a function of purchasing and operational costs: ullet
  - Technology upcharge costs
  - Fuel consumption
  - **Driver costs**

TCO

Maintenance and reliability

$$= \gamma \sum_{q} \sum_{(i,j)\in A} x_{q,ij} \left[ d_{ij} \left( \xi_{q,ij} C_{e,q} + C_{driver} + C_{M,q} \right) + B_q T_{d,q} C_{delay,c} \right]$$
$$+ \gamma \Phi_{BS} \left( x_{q,n} S_f - \sum_{(i,j)\in A} x_{q,ij} d_{ij} \xi_{q,ij} C_{e,q} \right) + \gamma \Phi_{CR} T_{CR} \sum_{(i,j)\in G} x_{q,ij}$$
$$\sum_{q,new} C_{p,q} - \sum_{q,r} x_{q,r} C_{r,q} + x_{q,new} \left( \Phi_{CR} U_{CR} - B_{cap} C_{kWh} \Phi_{BS} \right)$$

The FTS SoS Model is used to determine vehicle and policy • design parameters that increase adoption of low and zero emission powertrains and reduce CO<sub>2</sub> emissions



• Availability of fueling/charging stations

2035

2040

On-road charging tolls

- •Fuel efficiency gains •Extension of hours of •Reduced driver costs service
  - vehicles on routes



### **Select Publications**

1) A. Guerrero de la Peña, N. Davendralingam, A. Raz, G. Shaver, D. DeLaurentis, V. Sujan, and N. Jain, "Projecting Line-Haul Truck Technology Adoption: How Heterogeneity Among Fleets Impacts System-Wide Adoption." Transportation Research Part E: Logistics and Transportation Review, vol. 124, pp. 108-127, April 2019 2) A. Guerrero de la Peña, N. Davendralingam, A. Raz, G. Shaver, D. DeLaurentis, V. Sujan, and N. Jain, "Modeling the Combined Effect of Powertrain Options and Autonomous Technology on Vehicle Adoption and Utilization by Line-haul

