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Approach and Methodology
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The single-phase cooling loop considered in this work is shown 
on the right. The cold plate and heat exchanger solid and liquid 
masses are each modeled as a lumped parameter system. In 
addition, the tank is modeled as a single state, assuming total 
mixing. 

The hybrid TMS may be modeled as a graph, where the 
temperature of each control volume corresponds to a node in the 
associated graph. This allows for flexible and computationally 
efficient modeling of the hybrid system.

Key Contributions
• Real-time control with a nonlinear model predictive controller of a 

hybrid TES system.

Future Work
• Improve low level controllers.
• Utilize a more sophisticated power consumption cost function.
• Use control co-design approaches to fully optimize the system.

• Thermal management systems (TMSs) integrated with phase-change thermal energy storage (TES) devices, to provide 
robustness against highly transient heat loads produced by electrical systems, are called hybrid TMSs.

• The TES is designed to provide additional heat rejection via latent heat capacity with a phase change material (PCM) only 
when needed, so its operation must be actively controlled.

• To fully utilize the benefits of hybrid TMS, a nonlinear finite-horizon model predictive controller (NMPC) may be synthesized..
• To accurately predict TES state of charge (SOC) during transient operation, a fine discretization of the PCM melt front is needed.
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Summary & Future Work

NMPC parameters

Results
• Simulated and experimental data was collected using 

the disturbance profile on the right, for the proposed 
closed loop system both with and without a TES.

𝑸̇𝑸𝑪𝑪𝑪𝑪: Unknown heat generation 
into the cold plate solid mass

𝑸̇𝑸𝑯𝑯𝑯𝑯: State-dependent heat transfer 
to a secondary cooling loop.

Parameter Selected Value Unit Description

𝑁𝑁 25 steps Steps in NMPC Horizon

∆𝑡𝑡 1 s Control action update rate

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 0.0005 𝑘𝑘𝑘𝑘 � 𝑠𝑠−1 Min allowed flow rate

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 0.1 𝑘𝑘𝑘𝑘 � 𝑠𝑠−1 Max allowed flow data

∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 0.02 𝑘𝑘𝑘𝑘 � 𝑠𝑠−1 Max allowed change in flow rate

𝑇𝑇𝐶𝐶𝐶𝐶,𝑊𝑊,𝑚𝑚𝑚𝑚𝑚𝑚 45 °𝐶𝐶 Soft constraint max cold plate 
temperature

𝑇𝑇𝐶𝐶𝐶𝐶,𝐹𝐹 8 °𝐶𝐶 Chiller inlet temperature

Above: pseudo barrier function

A non-linear model predictive 
controller (NMPC) is synthesized to 
control the hybrid TMS. 
• Prediction model: 77 states, 2 

control actions (primary and TES 
branch mass flow rates).

• The multi-objective function 𝐽𝐽 is 
comprised of 3 objectives.

𝐽𝐽 𝑛𝑛 = �
𝑘𝑘=𝑛𝑛

𝑁𝑁+𝑛𝑛

(𝐽𝐽𝐶𝐶𝐶𝐶[𝑘𝑘] + 𝐽𝐽𝑇𝑇𝑇𝑇𝑇𝑇[𝑘𝑘] + 𝐽𝐽𝑢𝑢[𝑘𝑘])
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Right: The spatial domain of each 
TES device is discretized to 
transform the PDE into a system 
of ODEs. The PCM and fins are 
tightly packed, such that they can 
be modeled as a composite.
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Right: The latent 
melting zone of the 
PCM is modeled as a 
continuous, sharp 
increase in the 
specific heat around 
the melting point of 
the PCM. 

Main Takeaways:
• The NMPC is effectively able to coordinate TES usage
• Experimental results match well with simulated results
• Controller update rate: 1s

Maximum controller execution time: 0.4sFluidMetalPCM

• The system dynamics may be written as in Eq. 1.

• To implement the predictive step in the NMPC, the 
system dynamics are linearized at each point in the 
finite horizon and integrated using the implicit 
trapezoidal integration rule.

• Linearization is done by assuming M and C are 
constant over one step in the NMPC horizon.

• Approximate gradients are obtained for the linearized 
system to accelerate computation time.

𝑀𝑀 𝑥𝑥 𝑥̇𝑥 = 𝐶𝐶(𝑥𝑥,𝑢𝑢,𝑑𝑑)𝑥𝑥 + 𝐵𝐵𝐵𝐵 (1)

Left: Cold plate temperature 
with and without TES 

• TES can keep the cold 
plate 7℃ cooler during 
peak loads

• Despite NMPC, the 
system without the TES 
is unable to keep the 
temperature below the 
barrier temperature.

• 𝑱𝑱𝑪𝑪𝑪𝑪: Cold Plate temperature is to be regulated below 
some threshold 𝑇𝑇𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 if it is possible to do so within the 
horizon of the NMPC. This is achieved using a pseudo 
barrier function. While a true barrier function is 
asymptotic at the threshold, this function is not, allowing 
the cost function to be defined above the soft constraint.

• 𝑱𝑱𝑻𝑻𝑻𝑻𝑻𝑻: TES device temperature is penalized by a 
quadratic function to compensate for the limited time 
horizon.

• 𝑱𝑱𝒖𝒖: Mass flow rate is penalized to ensure power 
efficient solutions, and the change in mass flow rate is 
also penalized to minimize actuator wear.

Right: Ratio between heat 
transfer to TES and heat 
transfer through HX.
• TES is placed 

downstream of the HX to 
maximize heat rejection; 
This results in relatively 
less heat transfer through 
the TES compared to the 
HX.

• Decreasing load to 
demonstrate NMPC solution 
near soft constraint boundary

• Sustained loading to show 
significant TES usage.

Left: Cold plate disturbance 
profile

• The proposed NMPC was implemented on an 
experimental test system. Type-T thermocouples are 
used to measure twelve of the total seventy-two 
states. An observer is used to estimate the 
remaining states. 

• NMPC determines mass flow rate setpoints, and 
individual lower-level controllers are used to track 
these setpoints. 

Left: Front side of hybrid 
TMS experimental system

Right: Rear side of hybrid 
TMS experimental system

Left: Simulated closed loop response
Right: Measured closed loop response
Below: Measured TES state of charge


	Slide Number 1

