Motivation

Thermal management systems (TMSs) integrated with phase-change thermal energy storage (TES) devices, to provide

robustness against highly transient heat loads produced by electrical systems, are called hybrid TMSs.

when needed, so its operation must be actively controlled.

The TES is designed to provide additional heat rejection via latent heat capacity with a phase change material (PCM) only

« To fully utilize the benefits of hybrid TMS, a nonlinear finite-horizon model predictive controller (NMPC) may be synthesized..
» To accurately predict TES state of charge (SOC) during transient operation, a fine discretization of the PCM melt front is needed.

The single-phase cooling loop considered in this work is shown
on the right. The cold plate and heat exchanger solid and liquid
masses are each modeled as a lumped parameter system. In
addition, the tank is modeled as a single state, assuming total
mixing.

Right: The spatial domain of each
TES device is discretized to
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transform the PDE into a system
of ODEs. The PCM and fins are
tightly packed, such that they can
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be modeled as a composite.

The hybrid TMS may be modeled as a graph, where the
temperature of each control volume corresponds to a node in the
associated graph. This allows for flexible and computationally
efficient modeling of the hybrid system.

A non-linear model predictive
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Above: pseudo barrier function

* Jcp: Cold Plate temperature is to be regulated below
some threshold T,, .4 if it is possible to do so within the
horizon of the NMPC. This is achieved using a pseudo
barrier function. While a true barrier function is
asymptotic at the threshold, this function is not, allowing
the cost function to be defined above the soft constraint.

 Jres: TES device temperature is penalized by a
quadratic function to compensate for the limited time

horizon.

* J..: Mass flow rate is penalized to ensure power
efficient solutions, and the change in mass flow rate is
also penalized to minimize actuator wear.
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controller (NMPC) is synthesized to

Jnl = > Ueplkl + Jresllel +Julk])
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QHX: State-dependent heat transfer
to a secondary cooling loop.
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control actions (primary and TES

* The system dynamics may be written as in Eq. 1.
M(x)x = C(x,u,d)x + Bd (1)

« To implement the predictive step in the NMPC, the
system dynamics are linearized at each point in the
finite horizon and integrated using the implicit
trapezoidal integration rule.

* Linearization is done by assuming M and C are
constant over one step in the NMPC horizon.

« Approximate gradients are obtained for the linearized
system to accelerate computation time.

NMPC parameters
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Parameter Selected Value  Unit Description
N 25 steps Steps in NMPC Horizon
At 1 S Control action update rate
Unmin 0.0005 kg -s™1 Min allowed flow rate
U g 0.1 kg s 1 Max allowed flow data
AU, gx 0.02 kg-s?1 Max allowed change in flow rate
Tcpw max 45 °C Soft constraint max cold plate
temperature
TcuF 8 °C Chiller inlet temperature

IAIAE

i N

RESEARCH LAB

e
"

Experimental System
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The proposed NMPC was implemented on an A e
experimental test system. Type-T thermocouples are
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used to measure twelve of the total seventy-two
states. An observer is used to estimate the

remaining states.
NMPC determines mass flow rate setpoints, and

Individual lower-level controllers are used to track
these setpoints.

Cold Plate
From Pump

6000 Left: Cold plate disturbance
» Simulated and experimental data was collected using 5000 | protile
the disturbance profile on the right, for the proposed < 4000 | / * Decreasing load to
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. 23000 - I
Main Takeaways: s near spft constraint boundary
- The NMPC is effectively able to coordinate TES usage £ 2000 <=+ Sustained loading to show
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Key Contributions

Future Work
Improve low level controllers.
Utilize a more sophisticated power consumption cost function.

Use control co-design approaches to fully optimize the system.

Summary & Future Work

Real-time control with a nonlinear model predictive controller of a
hybrid TES system.
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