Transient Design Optimization of Hybrid Thermal Management Systems

[ Problem Statement } {

The performance requirements of Thermal
Management Systems (TMSs) are growing
Increasingly stringent as a result of
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Robust Analysis of Thermal Management System }
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¢ System components must be designed
to guarantee safe operation of the TMS
for uncertain loading

initial temperatures T € T

 Reachable sets of the closed-
loop switched system may be
found quickly and exactly using
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{ Design Optimization Future Work }

Optimization problem formulated to choose the
mass of the TES and Heat Exchanger, the mass of
fluid within the Tank, and the primary and secondary
mass flow rates

1. Simultaneously design
plant parameters p
and control strategy c
to vary fluid flow rates
Introduce an outer
loop with design
validation against a
high-fidelity model

Check feasiblility of high-fidelity
model with controller and identify
new lumped parameters
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Robustness constraint
results in critical
temperatures are

never violated by the 2.
optimal system
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temperatures 7 used to guarantee robustness to
set of possible heat loads @,
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