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Abstract— We consider the problem of periodic disturbances
in the thickness profile of a strip produced using the twin-
roll casting process. In twin-roll casting, a strip is produced
by pouring molten metal on the surface of two casting rolls
that simultaneously cool and compress the strip as they rotate.
This rotational motion can produce periodic disturbances in
the thickness profile due to angular variations in the shape
and thermodynamic characteristics of the rolls. Compensating
for these disturbances is further complicated by the fact that
there exist large measurement delays between the initial casting
and the thickness profile measurement. This paper explores the
use of an iterative learning control (ILC) algorithm to reduce
the influence of these disturbances on a per-revolution basis.
Further consideration is given to managing the measurement
delay within the ILC framework. Simulation results show that
the proposed controller is able to minimize the effect of the
periodic disturbance on the strip thickness profile.

I. INTRODUCTION

Motivation and Problem Definition: Twin-roll casting
(TRC) is a near-net shape manufacturing process that is
used to produce strips of steel and other metals. During
the process, molten metal is poured onto the surface of
two casting rolls that simultaneously cool and compress the
metal into a strip at close to its final thickness. As the rolls
rotate, angular variations in the shape and thermodynamic
characteristics of the rolls can create periodic disturbances in
the strip’s thickness profile. One example of this is when one
side of the strip is inadvertently cast thicker than the other
due to a change in the relative gap distance between the rolls’
edges. This disturbance is called a wedge, and its presence
compromises the quality of the final strip. Compensating
for this kind of disturbance, however, is complicated by
the presence of large delays between the actuation and
the measurement of the strip. Fortunately, advanced control
techniques offer the ability to improve the quality of the strip
by improving the process’s disturbance rejection.

Gaps in Literature: Multiple researchers have focused
on the stability of the TRC process as well as improving
its overall performance [1], [2], [3], [4], [5], [6], [7], [8].
Specifically, many researchers [1], [5], [6], [7] have analyzed
the interactions between various process parameters as well
as how those interactions affect the steady-state behavior of
the process. However, little to no work has been done to
reject the disturbances that occur on a per-revolution basis
which in turn affect the final thickness profile of the strip.
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Interestingly, due to the rotational nature of TRC, the
most prominent dynamics of the roll are periodic. This
observation, coupled with the large measurement delays that
exist in the process, makes learning-based control algorithms
an ideal method for addressing the per-revolution distur-
bances. Iterative learning control (ILC) is a popular control
technique for eliminating periodic disturbances that occur in
repetitive processes [9], [10], [11]. Originally proposed in
the 1980s [12], ILC has been used to improve the tracking
performance of a wide variety of systems in the areas of
robotics, chemical processing, and manufacturing. An ILC
algorithm uses the error signal(s) from the previous trials -
or roll revolutions in this case - to generate modifications
to the input signal that will be applied during the next trial.
Prior work has been conducted to analyze the effects of ILC
on the stability of systems with time-varying disturbances
[13], [14], and time-delays [15], [16], [17]. Other research
has focused on constructing higher-order ILC algorithms that
consider trial-to-trial variations [18], [19]. Existing literature,
however, does not adequately address the case in which the
measurement delay is longer than the period of one trial.

Contribution: In this paper we propose an ILC frame-
work that compensates for the periodic wedge disturbance
that occurs on a per-revolution basis in twin-roll casting.
We also propose a modification to the ILC framework
to accommodate measurement delays longer than a single
iteration. We show that the proposed ILC algorithm reduces
the wedge by a factor of 2800 in the case of a purely periodic
disturbance. We also show that in the case of a slightly
aperiodic disturbance, the use of an ILC algorithm with a
forgetting factor on the input signal can reduce the wedge
by approximately a factor of 2.

Outline: This paper is organized as follows: Sec. II dis-
cusses the problem formulation, Sec. III describes the control
design, and Sec. IV demonstrates the performance of the
proposed controller in simulation. Section V then discusses
our conclusions and future work.

II. PROBLEM FORMULATION

A. Wedge Definition

In twin-roll casting, molten metal is poured onto the
surface of the two rolls where it is simultaneously cooled
and compressed to form an initial strip. That strip then
enters a hot box, as shown in Fig. 1, where it continues to
passively cool before entering a hot roll stand that reduces
the thickness to its final gauge. Before the strip enters the
hot roll stand, the transverse thickness profile is obtained. It
is in this location that the wedge is measured by subtracting
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the thickness measurement of one side from the other. To
distinguish these sides from one another, we will designate
them as the drive side (DS) and the operator side (OS). Then
the wedge can be thought of as the DS thickness minus the
OS thickness.

Fig. 1. The steel strip leaves the casting rolls and enters a hotbox where it
passively cools before final compression at the hot rolling stand. The wedge
measurement is obtained as the strip moves along the table rolls leading to
the hot rolling stand.

In a typical cast, the wedge varies as a function of the
roll’s angular position. As the roll rotates, the changes in the
eccentricity of the roll coupled with the thermal variations
on the roll’s surface can cause the wedge to shift from being
biased toward one side to biased toward the other. Then,
as the next roll revolution begins, the wedge signal reverts
back to being biased toward the first side and the cycle
continues. An example of this type of periodic signal is
shown in Fig. 2 where the rotational period is approximately
1.5 seconds. Notice that this signal displays behavior that
is periodic at both the rotational frequency and twice the
rotational frequency. Although the wedge signal is not purely
periodic, as can be seen by low frequency variations in the
amplitude of the signal, it clearly exhibits strong periodic
behavior.

B. Plant Model

The main actuation variable for regulating the thickness
profile is the gap created as a result of positioning the casting
rolls [20]. As such, we require a plant model that maps how
a gap reference signal affects the wedge measurement at the
exit of the hot box. We introduce a variable, the tilt, which
denotes the difference between the gap distances as measured
on the drive side and operator side, respectively.

To identify a system model, we apply a square wave tilt
signal, denoted as u and shown in Fig. 3, to the system and
measure the resulting wedge signal. The measured wedge

Fig. 2. An example of the measured wedge signal for a TRC process
operating with a rotational period of approximately 1.5 seconds.

signal, XW , is shown in Fig. 4. It is the sum of the input
signal, measurement noise, and a periodic disturbance signal,
as shown schematically in Fig. 5.

Fig. 3. The input signal used for system identification is a square wave
applied to the tilt of the casting rolls. A positive value signifies that the
drive side of the casting roll gap is wider than the operator side gap, and
vice versa.

The effect of the square wave is apparent in Fig. 4, but
the dynamic response is masked by the presence of the
disturbance and noise signals. The magnitude plot of the fast
Fourier transform of the measured signal is shown in Fig. 6.
There are large periodic disturbances at both the rotational
frequency (0.68 Hz) and twice the rotational frequency (1.36
Hz). Significant measurement noise also exists above 1.5 Hz,
which can hinder the plant identification process. To reduce
the effect of these signals, we filter the measured signals
using a set of band-stop and low pass filters. The two periodic
disturbances are removed in MATLAB using the filtfilt
command with two third-order, Butterworth band-stop filters:
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Fig. 4. The magnitude of the measured wedge signal changes in response
to the input signal shown in Fig. 3. Positive measurements signify that the
drive side of the strip is thicker than the operator side of the strip; negative
values mean the operator side is thicker.

Fig. 5. The measured wedge signal is composed of the plant’s response
summed with a periodic disturbance and measurement noise.

one with cutoff frequencies at 3 rad/sec and 6 rad/sec and
another with cutoff frequencies at 6 rad/sec and 10 rad/sec.
The high frequency noise is then removed in a similar fashion
using a sixth-order, low pass Butterworth filter with a cutoff
frequency of 9 rad/sec. The resulting filtered signal is shown
in Fig. 7.

In addition to the noise, the plant identification is further
complicated by the presence of a substantial delay between
the tilt dynamics and the wedge measurement. As shown in
Fig. 1, the strip leaves the casting rolls and enters the hot box
where it forms a loop before being fed into the hot rolling
stand. The wedge measurement location is downstream of the
loop, on the table rolls that feed the strip into the hot roll
stand. The amount of time between when the strip leaves the
casting rolls and when the wedge is measured can be long
enough such that multiple roll revolutions occur. To identify
a plant model to be used for designing an ILC controller, the
wedge signal is shifted by approximately 5 roll revolutions
to compensate for the measured delay.

The filtered wedge measurement signal, XW,f , can then

Fig. 6. The fast Fourier transform of the measured wedge signal shows
large peaks at the rotational frequency and twice the rotational frequency.

Fig. 7. The filtered wedge signal reflects the steps in the input signal. The
solid line is the filtered wedge signal and the dashed line is the input signal
from Fig. 3.

be used to identify the plant model. This is accomplished by
assuming that the plant can be described by a polynomial of
the form

A(z)XW,f (k) = B(z)u(k) , (1)

where k is the sample index and A and B are polynomials
in terms of z, which is the forward shift operator in the k
(sample) domain.

Using the SysID Toolbox in MATLAB, we found that a
polynomial model given by

XW,f (k) = 0.186z−671u(k) (2)

is able to achieve a normalized root mean square error fit
percentage of 81.65% as shown in Fig. 8.

III. CONTROL DESIGN

The measurement delay discussed in Sec. II introduces a
phase lag of ωT = 57.3 radians which makes traditional
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Fig. 8. A comparison of the estimated plant dynamics to the filtered wedge
dynamics.

feedback controllers practically infeasible. The identified
plant model described in Sec. II can be used to synthesize
an iterative learning controller that can overcome the phase
lag introduced by the delay. A standard ILC algorithm [9] is
given by

uj+1(k) = uj(k) + Lej(k) , (3)

where u is the control input at sample k within roll revolution
j and e is the error which we define to be the negative of
the wedge signal,

ej(k) = −XW (k) = −(XW,f (k) +D(k)) , (4)

where D is the periodic disturbance signal. Based on the
plant model given in Eqn. (1), the error can be rewritten as

ej(k) = −(B(z)/A(z)uj(k) +D(k)) . (5)

This results in a control law given by

uj+1(k) = (1− LB(z)/A(z))uj(k)− LD(k) . (6)

Then the convergence condition for the contractive map-
ping of uj(z) to uj+1(z) is given by

||1− LB(z)/A(z)||∞ < 1 , (7)

where || · (z)||∞ = max−π≤ω<π | · (eiω)|. This mapping
ensures that uj(z) converges to a value that minimizes the
tracking error. The condition is satisfied as long as

0 ≤ L ≤ 10.75 .

A. Delay Compensation

Equation (3) applies if there is no measurement delay.
However, as discussed in Sec. II, there does exist a significant
measurement delay equal to multiple roll revolutions. To
compensate for this, we modify the controller to the form

uj+nk+1(k) = uj(k) + Lqnkej(k) , (8)

where q is the forward shift operator in the j domain and
nk ∈ N is the number of roll revolutions that occur during
the delay, rounded up to the nearest natural number. This
modification does not affect the gain bounds because the
convergence condition becomes

||1− LqnkB(z)/A(z)||∞ < 1 , (9)

which results in the same bounds for L.
This type of controller can also be thought of as an ILC

algorithm where the iteration period is every nk revolutions
instead of on a per-revolution basis.

IV. RESULTS

To test the performance of the controller designed in Sec.
III, we will simulate its performance on the plant model
identified in Sec. II with a disturbance signal applied to
the plant output as shown in Fig. 5. First, we construct
the disturbance signal by subtracting the band-stop filtered
wedge signal from the unfiltered wedge signal. The resulting
signal is shown in Fig. 9 with a zoomed-in view in Fig. 10.
The signal shows some repeatability, but there is also some
aperiodic behavior. We first consider a strictly periodic dis-
turbance signal by constructing such a sinusoidal disturbance
with frequencies at 0.68 and 1.36 Hz, as shown in Fig. 11.

Fig. 9. The disturbance signal affecting the plant.

Then, using the controller outlined in Sec. III, with L = 5
results in the the reduction of the wedge signal by a factor of
2800 (in a 2-norm sense) after 25 roll revolutions as shown
in Fig. 12. The ILC control input signal quickly converges
to its optimal value, and the error signal converges to zero.

Even if we do not compensate explicitly for the aperiodic
behavior, a controller with L = 5 can still achieve a
significant reduction in the error signal as shown in Fig. 13.
By combining it with a forgetting factor we can achieve even
larger reductions, as shown in Fig. 14. In this example, we
modify Eqn. (10) to be

uj+1(k) = 0.8uj(k) + Lqnkej(k) , (10)
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Fig. 10. A zoomed in view of the disturbance signal.

Fig. 11. The wedge signal during the period of one roll revolution.

Fig. 12. The norm of the wedge signal after the ILC algorithm is applied
to the plant with a strictly periodic disturbance.

where 0.8 is a forgetting factor applied to the previous input
signal. On average, this modified algorithm achieves better
performance than the previous case that did not include a
forgetting factor. In summary, the ILC algorithm is able to
reduce the 2-norm of the wedge by approximately a factor
of 2, even in the presence of an aperiodic disturbance signal.

Fig. 13. The norm of the wedge signal after the ILC algorithm is applied to
a system where D has some aperiodic behavior similar to the real process.

Fig. 14. The norm of the wedge signal after the ILC algorithm with a
forgetting factor is applied to a system where D has some aperiodic behavior
similar to the real process.

V. CONCLUSION

In this paper we considered the problem of periodic
disturbance rejection with measurement delay in twin-roll
casting. The proposed control strategy was able to reduce the
influence of the wedge disturbance in simulation. We show
that the proposed ILC algorithm, in the case of a strictly
periodic disturbance, reduces the wedge by a factor of 2800
after 25 roll revolutions. We also show that in the case of a
slightly aperiodic disturbance, the use of a forgetting factor
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on the input signal in the proposed ILC algorithm adds more
robustness to the algorithm and reduces the wedge by a factor
of about 2 after 20 revolutions.
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