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a b s t r a c t

This paper introduces an exergy-based objective function for the steady-state optimization and control of
integrated energy systems (IESs). The use of exergy destruction as the metric for minimization enables
the objective function to be scalable with respect to (1) subsystem configuration and (2) subsystem
capacity, thereby rendering the approach generalizable to a wide class of IESs. More specifically, exergy
destruction can be used to characterize irreversibilities across multiple energy domains (chemical,
electrical, mechanical, thermal) which makes it very suitable for the types of energy subsystems which
comprise IESs. The approach presented in this paper couples the exergy-based optimization with
a feedforward control framework which uses static models to estimate the control inputs required to
achieve the optimal setpoints. It is shown that the physical significance obtained using an objective
function derived from first-principles makes the objective modular and therefore easily generalizable to
complex IESs.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

Integrated energy systems (IESs) combine prime-mover tech-
nologies, such as internal combustion (IC) engines, and/or fuel cells,
with other technologies which directly utilize the power produced
by the prime-mover and/or utilize the thermal energy otherwise
wasted in the production of power. IESs can be thought of as
complex systems comprised of many interconnected heterogenous
subsystems such as the prime-movers listed above, thermally-
activated heating systems, desiccant dehumidifiers, vapor-
compression refrigeration systems, and/or energy storage systems
[1]. A key feature of the IES heterogeneity is that it typically spans
multiple energy domains e chemical, electrical, mechanical, and
thermal e as evidenced by the examples of subsystems which
comprise IESs.

IESs are becoming more prevalent because of their environ-
mental, reliability, economic, and efficiency benefits [1e3]. Many
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researchers have conducted thermodynamic analyses of IESs to
optimize design parameters and production costs in these systems.
Specifically, exergy-based analysis has beenwidely used to evaluate
and optimize IESs at the design stage because of its ability to
accurately capture the effect of irreversibilities and produce results
which respect the physical limitations imposed by both the first
and second laws of thermodynamics [4e7]. However, to fully
realize the benefits of IESs, effective control of these systems is
required. Through online optimization and control, systems can
effectively respond to disturbances such as weather or varying
loads that cannot be accounted for at the design stage [8e12].

The critical component of any optimization problem is the
definition of the objective function. A common minimization
metric for IESs is operational cost (in dollars) [12e15]; however,
this metric does not explicitly consider the efficiency of the IES
which is heavily dependent on the level of irreversibility in the
system (which in turn also has environmental implications).
Moreover, economic metrics do not accurately capture the under-
lying physics which govern the behavior of the system, particularly
because these metrics are typically empirically-derived. In [9], the
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Nomenclature

a heat transfer coefficient
a aperture
A area
C cooling capacity
d displacement
E energy
F fraction of coil surface covered by fins
q angle
h specific enthalpy
k coeff. of conductivity
K flow coefficient
_m mass flow rate
h efficiency
p percent of total power
P pressure
_Q heat transfer rate
r density
s specific entropy
S entropy
T temperature
u specific internal energy
u vector of control inputs
UA overall heat transfer coefficient
v vector of optimization variables
V volume
_W work transfer rate

u rotational speed
X exergy

Subscript
0 reference (dead) state
1e4 VCC transition points
1

0
e4

0
Otto cycle transition points

a air
adb adiabatic
AF airefuel mixture
c condenser
dest destroyed
e evaporator
eng engine
f fan
gen generated
H high-temperature reservoir
i interior
k compressor
L low-temperature reservoir
o outer
r refrigerant
sat saturated
sys system
tp throttle plate
v electronic expansion valve
vol volumetric
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authors advocate the consideration of different minimization
metrics, but the proposed objective functions for energy and CO2
emissions are empirically-based modifications of an objective
function again based on electricity and fuel costs. [8] proposes an
objective function which also minimizes the daily operation cost of
a micro combined heat and power (mCHP) system but is general-
izable for various systems within the class of mCHP systems.
However, the optimization variables are only the electrical and
thermal inputs/outputs of various subsystems such as the input to
a thermal storage device; the operation of the thermal storage
device itself is not optimized with respect to the amount of heat it
must store.

What is lacking among these examples is an objective function
with the following 3 key properties:

1. Generalizability with respect to overall IES subsystem
configuration,

2. Scalability with respect to system capacity,
3. Control-oriented.

The focus of this paper is the design of a physics-based objective
function for the optimization of IES operation which embodies
these 3 properties.

1. Scalability with architecture

IESs are often comprised of a diversity of subsystems arranged in
different architectures or configurations [1,8]. Therefore, we seek
an objective function which is modular so that it can be revised
appropriately for different systems in a systematic way.

A major challenge in designing a modular objective function
comes from the fact that the individual subsystems which comprise
IESs are heterogenous and typically characterized using different
efficiency metrics. For example, IC engines are often characterized
in terms of their fuel efficiency whereas heat and cooling systems
are typically characterized in terms coefficient of performance
(COP). It is difficult to combine these metrics in a meaningful way
that preserves the physics of the system.

This paper addresses this challenge by evaluating the operation
setpoints and control inputs needed to minimize the total exergy
destruction throughout the system while satisfying specified
performance criteria and constraints. The exergy destruction
minimization objectivewill be constructed as the sum of the exergy
destruction in each subsystem of the IES. This will provide
a common and modular metric for evaluating the efficiency of the
complete system since exergy can be used to characterize irre-
versibilities across multiple energy domains (chemical, electrical,
mechanical, thermal). The use of exergy is also motivated by its
widespread use for the analysis and design of IESs cited earlier
[4e7].

2. Scalability with size

In addition to diversity with respect to architecture, IESs are
designed across a large range of capacities (to produce power,
cooling, etc.) [1]. Consider a diesel engine. The model parameters
for a small diesel engine will necessarily be different than those for
a much larger horsepower engine, but the dynamics of both
systems will be governed by the Diesel cycle. This is a feature of
most energy systems. Therefore, the objective function design will
be based on thermodynamic cycles which describe the behavior of
the various energy subsystems rather than on specific component
design parameters.

3. Control-oriented

Our goal is to optimize system behavior during operation.
Therefore the optimization and control framework must be



Fig. 2. Schematic of engine-driven VCC system.
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designed so that the system setpoints and control inputs can be
optimized online. The approach presented here will be to couple
the exergy-based objective function with a feedforward control
framework which uses nonlinear static models to estimate the
control inputs required to achieve the optimal setpoints (Fig. 1).

In the following sections, we present a framework for devel-
oping a generalizable, control-oriented, exergy-based objective
function. The objective function will be developed for an engine-
driven vapor-compression (refrigeration) cycle (VCC) system
depicted schematically in Fig. 2. These systems are used in a variety
of applications and at different scales; common examples include
(in order of increasing size) automotive air-conditioning systems,
transport refrigeration systems [16], and engine-driven chillers [1].
Nevertheless, the dynamics of spark-ignited IC engines and vapor-
compression systems are governed by the Otto cycle and vapor-
compression cycle (VCC), respectively, in all of these applications.
Therefore, the exergy-based approach will be effective in devel-
oping an optimization and control framework that satisfies the
three criteria discussed earlier.

This paper is organized as follows. The vapor-compression cycle
(VCC), Otto cycle, and the concept of exergy, are briefly reviewed in
Sec. 2. In Sec. 3, the main development of the exergy-based
objective function is presented. In Sec. 4, static model equations
are used to define design constraints for the optimization problem,
and a case study is presented which compares the exergy-based
objective function to subsystem-specific efficiency metrics. The
feedforward control framework is presented in Sec. 5 along with
a robustness analysis to model uncertainty and assumptions.
Finally, conclusions of this work are summarized in Sec. 6.

2. Background

2.1. Thermodynamic cycles

In this paper we consider a VCC system driven by a spark-ignited
internal combustion (SIeIC) engine. The thermodynamic cycles
governing the behavior of these two-subsystems are the vapor-
compression cycle (VCC) and the Otto cycle, respectively.

2.1.1. Vapor-compression cycle
The standard VCC consists of four processes of the refrigerant:

compression (1e2), condensation (2e3), expansion (3e4), and
evaporation (4e1), where 1, 2, 3, and 4 refer to the transition points
of the cycle pictured on a pressure-enthalpy (Peh) diagram shown
in Fig. 3(a). The VCC assumes the following:

i. Isobaric condensation and evaporation
ii. Isenthalpic expansion
iii. Isentropic compression
iv. Evaporation of refrigerant to a saturated or superheated

vapor state, and
v Condensation of refrigerant to a saturated or subcooled liquid

state.

Based on the constitutive relationships between pressure,
temperature, entropy, etc. [17], the VCC has four thermodynamic
degrees of freedom (DOFs). The three specific enthalpies of the
cycle, {h1, h2, h3¼ h4}, and any one of the following three quantities,
Fig. 1. Schematic of optimization and feedforward control framework.
{P1, P2, or T1}, uniquely define the remaining thermodynamic states
at each of the transition points given the assumptions outlined
above. However, to actually compute critical quantities of interest,
such as the amount of cooling that is achieved Equation (1), or the
amount of power consumed Equation (2), there is an additional
DOF which must be considered: the refrigerant mass flow rate, _mr .
This DOF is a fluid dynamic variable, rather than a thermodynamic
variable, and is not captured in the Peh diagram of the VCC.

_QL ¼ _mrðh1 � h4Þ (1)

_WVCC ¼ _mrðh2 � h1Þ (2)

2.1.2. Otto cycle
The Otto cycle describes the dynamics of a spark-ignited internal

combustion (SIeIC) engine. We do not consider the intake stroke
and instead begin the analysis at point 10 in Fig. 3(b) where we
assume that the working fluid is a stoichiometric airefuel mixture
(i.e. the equivalence ratio, 4, equals 1) [18]. We also model the
exhaust stroke as heat rejection to the ambient environment.
Therefore, we can characterize the Otto cycle as the sequence of
four processes of the airefuel mixture: compression (1

0
e2

0
),

combustion (2
0
e3

0
), expansion (3

0
e4

0
), and heat rejection (4

0
e1

0
),

where 1
0
, 2

0
, 3

0
, and 4

0
refer to the transition points of the cycle

pictured on a pressureevolume (PeV) diagram shown in Fig. 3(b).
The ideal Otto cycle assumes the following:

i. Isentropic compression
ii. Isochoric and adiabatic combustion
iii. Isentropic expansion
iv. Isochoric heat rejection

In addition to the assumptions outlined above, we assume that
the combustion reaction is stoichiometric, and that the combustion
reactants and products are gaseous and form ideal gas mixtures.
Therefore, once T10 , P10 , and r ¼ V10=V20 (the compression ratio of the
engine) are specified, the thermodynamic properties at each of the
states in the Otto cycle are determined [18]. The only optimization
variable is themassflowrate of the airefuelmixture, _mAF. (Note that
in turbo-charged SIeIC engines, P10 is a DOF that can be optimized.)

2.2. Exergy

The first law of thermodynamics is a statement of energy
conservation. The second law introduces the notion of entropy
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Fig. 3. (a) Peh diagram of the standard vapor-compression cycle, (b) PeV diagram of the ideal Otto cycle.
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and connects it to the irreversibility that is observed in natural
phenomena by postulating that a process can only proceed in
“the direction that causes the total entropy of the system plus
surroundings to increase” [17]. It is the combination of the first
and second laws of thermodynamics that is particularly power-
ful. Exergy (also referred to as “availability”) is defined as the
maximum reversible work that can be extracted from
a substance at a given state during its interaction with a given
environment.

Whereas energy is always conserved, exergy is not. Similarly to
energy, exergy can be transferred in three ways: by heat transfer,
work, or through mass exchange with the environment. However,
contrary to energy, exergy is destroyed during irreversible
phenomena such as chemical reaction, mixing, and viscous dissi-
pation. The amount of exergy destroyed in a system or through
a process is a measure of the loss of potential to do work.

Equation (3) is the total exergy balance for a closed system, i.e.,
a system that does not exchange mass with its surroundings.
Therefore, it contains terms characterizing the rate at which exergy
is transferred only by heat transfer and work transfer. The quanti-
ties T0 and P0 are the temperature and pressure, respectively, of the
reference environment. The reference environment is typically
chosen as an infinite reservoir with which the system is interacting,
such as the ambient environment. The use of a reference environ-
ment for defining exergy is consistent with the way in which all
forms of potential energy are defined.
X
j

 
1� T0

Tj

!
_Qj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

rate of exergy transfer

accompanying heat transfer

�
�

_W � P0
dVsys

dt

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

rate of exergy transfer

accompanying work transfer

� T0 _Sgen|fflfflffl{zfflfflffl}
rate of exergy

destruction

þ _X
ch|{z}

rate at which

chemical exergy is

added to system

¼ dXsys

dt|fflffl{zfflffl}
total rate of

exergy transfer

(3)
A feature of exergy is that in addition to characterizing thermal
and mechanical potential, it can also characterize chemical poten-
tial. This is represented by the term _X

ch
in Equation (3), the rate at

which chemical exergy is added to the system. For example, in the
case of combustion, the chemical exergy is themaximum reversible
work that can be extracted through the reaction of the fuel with
environmental components [17].
X
j

 
1� T0

Tj

!
_Qj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

rate of exergy transfer

accompanying heat transfer

�
�

_W � P0
dVsys

dt

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rate of exergy transfer

accompanying work

� T0 _Sgen|fflfflffl{zfflfflffl}
rate of exergy

destruction

¼

to

exe
3. Objective function development

Integrated energy systems (IESs) are characterized by two
primary objectives: 1) meet specified performance demand, and 2)
maximize systemefficiency. It is necessary to define amathematical
function that captures these objectives for each subsystemof a given
IES and canbeminimizedormaximized to yield anoptimal solution.

We seek an objective function in which the exergy destruction
in the overall system is minimized during operation. In general, this
can be expressed in a modular additive form as

J ¼ l1Jsubsystem;1 þ l2Jsubsystem;2 þ/þ lnJsubsystem;n (4)

where Jsubsystem,i is the rate of exergy destruction in subsystem i, li
is a weighting factor on Jsubsystem,i, and J is the total rate of exergy
destruction throughout the IES. In the following subsections we
derive the objective function for an engine-driven VCC system,
which can be expressed as

J ¼ l$JOtto þ JVCC (5)

where J is the total objective function. We consider a single
weighting factor, l, for this two-subsystem case. Both JOtto and JVCC
can be derived using the exergy balance for a closed system
Equation (3). In the case of the VCC, only thermo-mechanical
exergy exists. In the case of the Otto cycle, chemical exergy must
also be accounted for.
3.1. Vapor-compression cycle

Since the VCC is closed and cyclic, we consider only exergy
transferred by heat and work transfer and apply the exergy balance
(without chemical exergy) in rate form as shown in Equation (6)
where Tj is the boundary temperature at which the heat transfer
_Qj occurs.
dXsys

dt|fflffl{zfflffl}
tal rate of

rgy transfer

(6)
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During steady-state operation, Equation (6) reduces to� �

_Xdest;VCC ¼ TH _Sgen;VCC ¼ ��� _WVCC

�þ 1� TH
TL

_QL (7)

where T0 has been replaced by TH and Tj has been replaced by TL
[19]. Equation (7) is evaluated with TH and TL in degrees Kelvin.
Applying the first law of thermodynamics to the VCC yields

_WVCC ¼ _QH � _QL ¼ _mrðh2 � h3Þ � _mrðh1 � h4Þ: (8)

Substituting Equation (8) into Equation (7) yields

JVCC ¼ _Xdest;VCC ¼ _mrðh1�h4Þ
�
1�TH

TL

�
þ _mrðh2�h1Þ�0 (9)

which is solely a function of h1, h2, h4, and _mr; the assumption of
isenthalpic expansion implies h3 ¼ h4. By virtue of the physical
nature of these thermodynamic variables, the following inequal-
ities hold:

�1 <

�
1� TH

TL

�
� 0 (10)

_mrðh2 � h1Þ>0 (11)

_mrðh1 � h4Þ>0: (12)

If the cycle was operated without any losses due to irrevers-
ibility, or equivalently, _Xdest;VCC ¼ 0, then the following equality
must hold:���� _mrðh1 � h4Þ

�
1� TH

TL

����� ¼ _mrðh2 � h1Þ: (13)

However, in reality,���� _mrðh1 � h4Þ
�
1� TH

TL

����� < _mrðh2 � h1Þ: (14)

Therefore, JVCC is nonnegative and its theoretical minimum value is
zero.

The minimization of JVCC is subject to the following thermody-
namic constraints:

i: h1 < h2;

ii: h4 < h1;

iii: T1 � TL;

iv: T3 � TH;

v: T1 � T4 � 0;

vi: T3;sat � T3 � 0

where T3,sat is the saturated temperature at P2. The first two
constraints ensure that compression and evaporation, respectively,
occur. The third and fourth constraints impose the correct
temperature gradients during evaporation and condensation,
respectively. The fifth constraint ensures that only refrigerant vapor
is compressed. Finally, the sixth constraint ensures that only
refrigerant liquid is expanded. The performance constraint is given
as����Cdesired � Cachieved

Cdesired

���� � g; 0 � g � 1 (15)

where Cdesired and g are inputs to the optimization problem and
Cachieved ¼ _QL ¼ _mrðh1 � h4Þ. The parameter g allows the user to
relax the constraint on Cdesired for applications in which a small
deviation from the desired cooling capacity is allowable.

3.2. Otto cycle

We consider the Otto cycle as a closed system in which the
control mass is the airefuel mixture in the engine cylinder. For the
Otto cycle, Equation (3) in non-rate form simplifies to

Xdest;Otto ¼ THSgen;Otto ¼ Xch �Wnet

¼ Xch � �Wexpansion �Wcompression
�

(16)

which can be further expanded as

Xdest;Otto ¼ Xch � ððu30 � u40 Þ � ðu20 � u10 ÞÞ (17)

where u is specific internal energy, 10 , 2
0
, 3

0
, and 4

0
refer to the

transition points of the cycle shown in Fig. 3, and Xch is equal to
5.413 kJ/mol for octane (C8H18) at the standard reference state. The
value for Xch varies with temperature, but the variation is suffi-
ciently small that Xch is often approximated as constant [17]. If
a fuel other than octane is used, Xch can be easily modified.

Equation (17) is the amount of exergy destroyed in a single Otto
cycle per unit mass of airefuel mixture. In order to express Equa-
tion (17) in units of power, we multiply Equation (17) by the mass
flow rate of the airefuel mixture.

JOtto ¼ _Xdest;Otto ¼ _mAF

h
Xch�ððu30 �u40 Þ�ðu20 �u10 ÞÞ

i
�0 (18)

Theminimization of JOtto is subject to the following performance
constraint:

_Wachieved ¼ _mAFðu30 � u40 Þ � _Wdesired: (19)

3.3. Complete objective function

The complete objective function is

J ¼ l
�
_mAF

h
Xch � ððu30 � u40 Þ � ðu20 � u10 ÞÞ

i	
þ
�

_mrðh1 � h4Þ
�
1� TH

TL

�
þ _mrðh2 � h1Þ

�
ð20Þ

and the inputs to the optimization problem are:

i. Desired cooling capacity, Cdesired
ii. Performance deviation tolerance, g
iii. Weighting factor, l
iv. Low-temperature reservoir temperature, TL
v. High-temperature reservoir temperature, TH
vi. Engine compression ratio, r
vii. Temperature of airefuel mixture at transition point 10, T10

viii. Pressure of airefuel mixture at transition point 10, P10

ix. Chemical exergy of fuel, Xch

The complete vector of optimization variables is

v ¼ ð vVCC vOtto ÞT˛<6 (21)

where

vVCC ¼ �
h1 h2 h4 P1 _mr

�
˛<5 (22)

and

vOtto ¼ �
_mAF

�
˛<: (23)
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The solution to the optimization problem is� �
Table 1
VCC System control inputs.

Input Description

ay Electronic expansion valve (EEV) aperture (percent open)
uk Compressor speed (rpm)
pf,e Evaporator fan power (percent of maximum)
pf,c Condenser fan power (percent of maximum)
v� ¼ argmin
v

ðJÞ ¼ h�1 h�2 h�4 P�1 _m�
r _m�

AF
T˛<6: (24)

and is subject to the thermodynamic constraints described above.
While JVCC and JOtto can be derived independently of one another, it
is the solution of the coupled problem that is of interest. Specifi-
cally, the power required to achieve the desired cooling capacity in
the VCC is the desired power input to the Otto cycle:
_Wdesired ¼ _WVCC ¼ _mrðh2 � h1Þ. At this point, we have only
considered thermodynamic and fluid dynamic constraints. In the
next section, we will define design constraints which must be
considered in the optimization problem for this particular IES.

4. Case study

The objective function developed in the previous section was
derived based on first-principles in order to maintain generaliz-
ability. However, the hardware in a particular IES constrains the
performance and efficiency achievable by that system when it is
operated. In this section, we define a set of design constraints to
impose on the optimization problem. We will then present a case
study which demonstrates the advantages of the exergy-based
optimization over an optimization with respect to subsystem-
specific efficiency metrics.

4.1. Design constraints

The design constraints developed here necessarily require some
level of empiricism due to the performance maps and correlations
which are widely used to model many thermodynamic systems.
Nevertheless, in the framework proposed in this paper, empiricism
is limited to the design constraints; the objective itself remains
unchanged for different engine-driven VCC systems.

4.1.1. VCC system
The steady-state behavior of a standard VCC system is described

by the following 9 equations:

K̂v ¼ f1ðav; P1; P2Þ (25)

ĥvol;k ¼ f2ðuk; P1; P2Þ (26)

_̂mr;v ¼ K̂v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3ðP2 � P1Þ

p
(27)

_̂mr;k ¼ ĥvol;kdkukr1 (28)

_̂mr;v ¼ _̂mr;k (29)

dðUAÞL ¼ f3
�
pf ;e; P1; h4; _mr; _ma;e

	
(30)

dðUAÞH ¼ f4
�
pf ;c; P2; _mr; _ma;c

	
(31)

_̂QL ¼ dðUAÞLðTL � T4Þ ¼ _mrðh1 � h4Þ (32)

_̂QH ¼ dðUAÞHðT3 � THÞ ¼ _mrðh2 � h4Þ (33)

where K̂v is the valve flow coefficient, ĥvol is the compressor
volumetric efficiency, and dðUAÞL and dðUAÞH are the overall heat
transfer coefficients [20] at the low and high-temperature
reservoirs, respectively. The functions f1, f2, f3, and f4 are
empirically-derived nonlinear relationships provided in
Appendix A for the particular VCC systemwhich will be considered
in the subsequent case study.

We define the vector of control inputs (described in Table 1) to
the VCC system as

uVCC ¼ �
av uk pf ;e pf ;c

�
: (34)

Each component in the VCC system must be considered when
defining the design constraints to be imposed on the optimization
problem. First we consider the two heat exchangers (condenser and
evaporator) as well as their corresponding fans. The design
constraints imposed by these components are defined in Equations
(35) and (36) where (UA)L,max and (UA)H,max are described in
Appendix A.

_QL;max � _QL5ðUAÞL;maxðTL � T4Þ � _mrðh1 � h4Þ (35)

_QH;max � _QH5ðUAÞH;maxðT3 � THÞ � _mrðh2 � h4Þ (36)

Next we consider the EEV and compressor. The design
constraints imposed by these components, Equations (37) and (38)
respectively, are expressed in terms of their individual control
inputs. Equations (25)e(29) are solved at each iteration for ay and
uk to ensure that the values are feasible.

0% < ay � 100% (37)

0 rpm < uk � 1800 rpm (38)

4.1.2. Spark-ignited internal combustion (SIeIC) engine
The steady-state behavior of an SIeIC engine is described by the

following equations:

ŝfriction ¼ b̂enguk (39)

ŝload ¼
_WVCC
uk

(40)

ŝtotal ¼ ŝfriction þ ŝload (41)

_̂Wdesired;total ¼ ŝtotaluk (42)

q̂tp ¼ f5
�
_mAF
�

(43)

ĥvol;eng ¼ f6ðukÞ (44)

where ŝfriction is the torque applied to the engine due to friction
(b̂eng is an engine parameter) and ŝload is the torque applied to the
engine by virtue of the compressor in the VCC system. The input to
the SIeIC engine is the throttle angle, qtp, which is a nonlinear
function of _mAF. The volumetric efficiency of the engine is described
by f6. The functions f5 and f6 are given in Appendix A for the specific



Table 2
Comparison of Cases 1 and 2.

Optimization variable Units Case 1 Case 2

h1 kJ/kg 257 257
h2 kJ/kg 281 281
h4 kJ/kg 104 105
P1 kPa 288 288
_mr kg/hr 18.8 18.9
_mAF kg/hr 1.06 2.58
JCase 1 kW 0.664 e

JCase 2 N/A e 0.156
Cachieved kW 0.800 0.800

Table 3
Comparison of weighted and unweighted Case 2.

Optimization
variable

Units Case 2
with l2 ¼ 1

Case 2 with
l2 ¼ 3600

h1 kJ/kg 257 257
h2 kJ/kg 281 281
h4 kJ/kg 105 104
P1 kPa 288 288
_mr kg/hr 18.9 18.9
_mAF kg/hr 2.58 1.09
Cachieved kW 0.800 0.800
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SIeIC engine model considered here. The design constraints
imposed by the engine are

_Wachieved � _Wdesired;total

hvol;eng _mAFðu30 � u40 Þ �
�
sfriction þ sload

	
uk (45)

and

13:3
� � qtp � 80

�
: (46)

Equation (45) replaces the original performance constraint on
the Otto cycle, Equation (19).

4.2. Case study

The optimization problem consists of the nonlinear objective
function, J, as well as multiple nonlinear constraints, and is there-
fore solved using the function fmincon in the MATLAB Optimization
Toolbox [21]. Details regarding the convergence of the solution are
provided in Appendix B.

In this case study we compare the exergy-based objective
function against an alternative objective function. The two cases are
described below.

Case 1: The optimization of the IES with respect to the exergy-
based objective function, J, which we will redefine as JCase 1 below.

JCase 1 ¼ J ¼ l$JOtto þ JVCC (47)

Case 2: The optimization of the IES with respect to an efficiency
objective in which standard efficiency metrics for each of the
subsystems are added together. The VCC system is optimized with
respect to the coefficient of performance (COP) [22] and the SIeIC
engine is optimized with respect to the rate of fuel consumption
[23e25]. A higher COP corresponds to more efficient performance,
so in order to maximize COP, its inverse is minimized [26] as shown
in Equation (48).

JCase 2 ¼ 1
COP

þ _mfuel ¼
h2 � h1
h1 � h4

þ _mfuel (48)

where

_mfuel ¼
_mAF
15:7

(49)

by virtue of the following two relationships:

_mAF ¼ _mfuel þ _mair (50)

_mair
_mfuel

¼ 14:7: (51)

In each case, the optimization problem was solved for the same
set of optimization variables with identical constraints and the
following input parameters:

Cdesired ¼ 0:8 kW TL ¼ 15
�
C

g ¼ 0 r ¼ 8
l ¼ 1 T10 ¼ TH

TH ¼ 27
�
C P10 ¼ 101:3 kPa

Remark. g ¼ 0 indicates that the optimization was constrained
to provide exactly the desired cooling capacity, Cdesired.

The results are shown in Table 2. We make the following
observations:

1. Both objective functions achieve very similar performancewith
respect to the VCC optimization variables.
2. In Case 2, the optimal value of _mAF is significantly higher than
the optimal value achieved in Case 1.

The primary disadvantage of JCase 2 is its lack of physical
significance due to its mixed dimensions. The rate of fuel
consumption term in JCase 2 is in units of kg/s whereas COP is
dimensionless. When the objective function is not physics-based,
as is the case for JCase 2, the various terms may not be appropri-
ately balanced, potentially resulting in an inefficient solution. This
is highlighted in Case 2 where the optimal value of _mAF is very large
compared to the optimal value achieved in Case 1.

From the derivation of _Xdest;Otto in Sec. 3, we see that the rate of
exergy destruction in the Otto cycle is directly proportional to _mAF.
Therefore the solution to the exergy-based optimization, Case 1,
results in a significantly lower rate of exergy destruction than
operating with the setpoints achieved in Case 2. This is due in large
part to the fact that in the exergy-based objective function, JOtto and
JVCC represent the same physical quantity, rate of exergy destruc-
tion. Consequently, their relative magnitudes are such that one
term is not inappropriately weighted significantly more than the
other.

For this two-subsystem IES, we can introduce a weighting
coefficient into JCase 2 Equation (52) so that the two efficiency terms
are more equally weighted. The weighting coefficient, l2, was
chosen to be 3600 which is equivalent to optimizing _mfuel in kg/hr
rather than kg/s. The results are shown in Table 3.

JCase 2 ¼ 1
COP

þ l2$ _mfuel (52)

As expected, the weighted Case 2 produces a more efficient
solution than in the unweighted Case 2. Despite the improvement
in efficiency, this highlights a fundamental flaw of JCase 2, namely its
sensitivity to weighting parameters that inherently must be
heuristically chosen. More importantly, when summing different
efficiency metrics, each potentially expressed in different units,
choosing appropriate weighting coefficients will become increas-
ingly difficult as the number of subsystems increases.

In contrast, exergy obeys the law of superposition so with each
additional subsystem in a particular IES, the complete objective
function, Equation (4), can be easily augmented with an additive



Fig. 4. Schematic describing optimization and feedforward control framework.

Table 5
Modeling uncertainty perturbation cases.

hyol,eng, þ10% be, �10%

hyol,k, þ10% þ10% Case 1 Case 5
Ky, �10% �10% Case 2 Case 6
ar,e, þ10% þ10% Case 3 Case 7
aa,c, �10% �10% Case 4 Case 8
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term representing the same quantity, rate of exergy destruction.
This property is critical to satisfying our goal of developing
a generalizable objective function for IESs.

5. Control and robustness

In order to operate a given system at its optimal setpoints, we
propose a feedforward control framework in which the steady-
state control inputs, û�, are determined by solving the static
model equations of the system. We will then demonstrate the
robustness of this approach to model uncertainty in a simulation
environment using a validated system model.

5.1. Feedforward control framework

Once v� has been determined, û� can be determined by solving
Equations (25)e(33) and (43). The hat notation is used to denote
that û� is obtained based on the functions f1ef6 which have some
associated uncertainty. For example, for f1 the uncertainty is
defined as

jKv � K̂vj ¼ ~Kv � 0: (53)

The elements of û� are analogous to model-based feedforward
control input signals (Fig. 4). Typically the model uncertainty is
nonzero, and therefore,

ju� � û�j ¼ ~u � 0: (54)

and

jv� � vj ¼ e � 0: (55)

The robustness of e to ~u will be demonstrated in the next
section.

5.2. Robustness to model uncertainty

Now we demonstrate the robustness of the optimization
approach to modeling uncertainty and assumptions used to esti-
mate the feedforward control inputs û� ¼ uFF.

The feedforward control inputs needed to achieve the optimal
setpoints generated by solving J in Sec. 4 are shown in Table 4.
These input values were used in the system simulation model
[27,28]. Eight perturbation cases were considered (Table 5). In each
case, two different parameters were perturbed by either þ10%
or �10%, thereby introducing uncertainty into f1ef6. Additionally,
there are three modeling assumptions which are made at the
Table 4
Model-based feedforward control inputs.

Control input Units Value

ay % 10.5
pf,e % 58.0
pf,c % 83.4
qtp deg 40.6
optimization and control stage which do not hold in the system
model. As will be seen, results of the approach are suitably robust
despite these simplifying assumptions:

1. No pressure or heat losses between components in the VCC system.
The system simulation model contains pipe models which
characterize pressure losses and heat transfer which occur as
the refrigerant travels between components in the VCC system.

2. The refrigerant in each heat exchanger is entirely a two-phase
fluid. The lumped-parameter moving boundary modeling
approach [27] which is used to model each heat exchanger
accurately captures the presence of multiple fluid regions if
necessary and calculates the heat transfer through each region
using the appropriate heat transfer coefficients.

3. TH and TL are constant throughout the condenser and evaporator,
respectively. In each heat exchanger model, the lumped air
temperature (for heat transfer calculations) is taken to be
a weighted sum of the inlet and outlet air temperatures.

The validity of these assumptions affects the accuracy of f3
Equation (30) and f4 Equation (31) in each of the eight perturbation
cases.

The comparison between the optimal setpoints and simulated
setpoints for four of the optimization variablese h1, h2, h4, and P1 e
is shown on a Peh diagram in Fig. 5 with more detailed views
shown in Fig. 6 and Fig. 7. We can see that the variation is very
small, and the average deviation of any one variable is within 6% of
the optimal value (Table 6).
0 40 80 120 160 200 240 280 320
10

h [kJ/kg]

Fig. 5. Peh diagram comparing optimal setpoints for thermodynamic DOFs of the VCC
system with the setpoints achieved in simulation under various cases of model
uncertainty.
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Fig. 7. Close up of VCC transition points 3 and 4 from Fig. 5.
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Fig. 6. Close up of VCC transition points 1 and 2 from Fig. 5.
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The optimization variables _mr and _mAF cannot be depicted on
a Peh diagram. Therefore, we evaluated the value of the objective
function, J, as well as the achieved cooling capacity, Cachieved, for
each of the eight cases and compared it to J* (Fig. 8) and C�

achieved,
(Fig. 9) respectively. The values of J and Cachieved in all eight cases
were well within 10% of the optimal values, J* and C�

achieved,
demonstrating the robustness of the feedforward control approach
to model uncertainty. In Cases 1 and 5, the cooling capacity slightly
exceeded the optimal value while the cost was below J*. However,
in these cases, the perturbations on the systemwere such that both
the compressor and engine were more efficient than in the optimal
case. Therefore, we expect to see J< J* despite CachievedzC�

achieved in
those two cases.

We see from Table 6 that for 10% variations in system
parameters, the system operation remained within approximately
6% of the optimal operation setpoints. As a result, it can be said
with some confidence that the approach of optimizing opera-
tional setpoints using the advocated exergy-based approach will
be relatively robust to practical uncertainties in the system
models.
Table 6
Average deviation from optimal operation.

Optimization variable Units Optimized value Average deviation (%)

h1 kJ/kg 257.1 0.78
h2 kJ/kg 280.9 0.88
h4 kJ/kg 104.4 5.91
P1 kPa 288.0 2.98
_mr kg/hr 18.7 6.76
_mAF kg/hr 1.06 0.003
6. Conclusion

This paper introduced an exergy-based objective function for
the steady-state optimization and control of integrated energy
systems (IESs). The use of exergy destruction as the metric for
minimizationwas motivated by the desire for an objective function
which is generalizable to a wide class of IESs. More specifically,
exergy destruction can be used to characterize irreversibilities
across multiple energy domains (chemical, electrical, mechanical,
thermal), making it very suitable for the types of energy subsys-
tems which comprise IESs.

The optimization framework was demonstrated on an engine-
driven VCC system. This system provided a suitable platform due
to the fact that it spans multiple energy domains and is used
commercially at multiple scales (smaller automotive systems to
large building chillers). The objective function was derived entirely
from first-principles. Nonlinear static model equations were used
to define design constraints as well as to compute a set of feedfo-
ward control inputs for achieving the optimal operation setpoints.

It was shown that the primary advantage of the use of an
exergy-based objective function is its physical significance and
modularity. An alternative objective function, constructed using
system-specific efficiency metrics, was very sensitive to weightings
on each term given that the quantity being optimized was not
physically relevant.

Finally, robustness of the estimated control inputs to modeling
uncertainty and assumptions present in the static model equations
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was successfully demonstrated. The achieved operation setpoints
in eight different perturbation cases remained within approxi-
mately 6% of the optimal setpoint values.

In future work, the authors will explore the dynamic analog of
this problem for real-time optimization in the presence of
disturbances such as variation in ambient temperature as well as
varying load profiles. Additionally, other types of subsystems
spanning multiple energy domains will be added to determine the
effectiveness and scalability of the proposed exergy-based
approach.
Appendix A. Nonlinear parameter models

Appendix A.1. Fluid-mechanical VCC components

The models for valve flow coefficient (A.1) and compressor
volumetric efficiency (A.2) for the particular IES considered in this
paper were developed in [29] and are shown here for the reader’s
reference. While the coefficients of f1 and f2 are specific to
a particular VCC system, the functional relationships described by f1
and f2 are typical of most electronic expansion valves (EEVs) and
reciprocating compressors, respectively.

K̂y ¼ f1ðay; P1; P2Þ ¼
�
�9:5984� 10�6

	
þ
�
2:0481� 10�6

	
ay

þ
�
5:4106� 10�9

	
ðP2 � P1Þ þ

�
�7:4909� 10�10

	
ay

� ðP2 � P1Þ þ
�
�3:7775� 10�8

	
a2y ðA:1Þ
Fig. A.10. Flow coefficient map for an EEV [29]. Black points represent experimental
data.

ĥyol;k ¼ f2ðuk; P1; P2Þ ¼ ð0:65127Þ þ ð0:00027681Þuk

þ ð�0:031338Þ P2
P1

þ
�
3:0221� 10�5

	
uk

P2
P1

þ
�
�1:1905� 10�7

	
u2
k þ ð�0:0081256Þ

�
P2
P1

�2

ðA:2Þ
Fig. A.11. Volumetric efficiency map for a semi-hermetic reciprocating compressor
[29]. Black points represent experimental data.

Appendix A.2. Thermal-fluidic VCC components

In general, the overall heat transfer coefficients of an evaporator
and condenser, dðUAÞL and dðUAÞH respectively, can be computed
using heat transfer correlations and a thermal resistance circuit
(Fig. A.12) [20]. In order to estimate the UA-value for each heat
exchanger, the following assumptions are made:

� The refrigerant in each heat exchanger is entirely a two-phase
fluid,

� TH and TL are constant throughout the condenser and evapo-
rator, respectively, and

� Fin heat transfer is one-dimensional.

Resistance to
refrigerant-side

convective heat transfer

Resistance to conductive
heat transfer through

heat exchanger wall and
surface fins

Resistance to air-
side convective

heat transfer

refrigerant air

Fig. A.12. Thermal circuit used to compute overall heat transfer coefficient for
condenser and evaporator.

1
UA

¼ 1
arAi

þ t
kAoð1� FaÞ þ

1
aaAo

(A.3)

The correlations used to compute aa,e and aa,c for the specific
evaporator and condenser considered in this paper are described in
[29]. The correlations used to compute ar,e and ar,c are described in
[30] and [31], respectively.

In order to estimate dðUAÞL;max and dðUAÞH;max, it is assumed that
the mass flow rates of air across the evaporator and condenser,
respectively, are at their maximum.

Appendix A.3. SIeIC engine

The models for throttle plate angle Equation (43) and engine
volumetric efficiency Equation (44) for the particular IES consid-
ered in this paper are described in [32] and shown here for the
reader’s reference:
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q̂tp ¼ f5
�
_mAF
� ¼ cos�1�1� 1016:1 _mAF

�þ 1:06+
(A.4)
1:14459

ĥyol;eng ¼ f6ðukÞ ¼
�
8:10� 10�4

	
uk þ 0:352 (A.5)

Appendix B. Convergence of optimization solution

The optimization problem consists of the nonlinear objective
function, J, as well as multiple nonlinear constraints. Therefore,
existence of a global optimum cannot be shown. Nevertheless, the
optimality of the solution is demonstrated in Fig. B.13 where the
identical optimization problemwas gridded and solved over a span
of different initial conditions.
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Fig. B.13. Demonstration of convergence of solution over constrained space for
Cdesired ¼ 0.5 kW, g ¼ 0.05, l ¼ 0.1, TL ¼ 15

�
C, TH ¼ 27

�
C, r ¼ 8, T10 ¼ TH ,

P10 ¼ 101:3 kPa.

For the domain of interest chosen, the solution converges to
approximately the same minimum value, validating that the solu-
tion is a minimum in the constrained space. The mean value of the
minimum cost across the 12 trials is 0.093 kW and the variance is
1.39 � 10�4 kW.
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