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c,100 = 25 using Algorithm  3 . Exact reachable set
Rr

100 is shown in blue and it’s over-approximation R̃r
100 in red. . . . . . . . . .  156 

6.16 Projections of the over-approximated reachable set R̃r
100 with ñr
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ABSTRACT

Set-based methods have been leveraged in many engineering applications from robust

control and global optimization, to probabilistic planning and estimation. While useful, these

methods have most widely been applied to analysis over sets that are convex, due to their

ease in both representation and calculation. The representation and analysis of nonconvex

sets is inherently complex. When nonconvexity arises in design and control applications, the

nonconvex set is often over-approximated by a convex set to provide conservative results.

However, the level of conservatism may be large and difficult to quantify, often leading to

trivial results and requiring repetitive analysis by the engineer. Nonconvexity is inherent

and unavoidable in many applications, such as the analysis of hybrid systems and robust

safety constraints.

In this dissertation, I present a new nonconvex set representation named the hybrid zono-

tope. The hybrid zonotope builds upon a combination of recent advances in the compact

representation of convex sets in the controls literature with methods leveraged in solving

mixed-integer programming problems. It is shown that the hybrid zonotope is equivalent to

the union of an exponential number of convex sets while using a linear number of continuous

and binary variables in the set’s representation. I provide identities for, and derivations of,

the set operations of hybrid zonotopes for linear mappings, Minkowski sums, generalized

intersections, halfspace intersections, Cartesian products, unions, complements, point con-

tainment, set containment, support functions, and convex enclosures. I also provide methods

for redundancy removal and order reduction to improve the compactness and computational

efficiency of the represented sets. Therefore proving the hybrid zonotopes expressive power

and applicability to many nonconvex set-theoretic methods. Beyond basic set operations, I

specifically show how the exact forward and backward reachable sets of linear hybrid systems

may be found using identities that are calculated algebraically and scale linearly. Numerical

examples show the scalability of the proposed methods and how they may be used to verify

the safety and performance of complex systems. These exact methods may also be used

to evaluate the level of conservatism of the existing approximate methods provided in the

literature.
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1. INTRODUCTION

The use of sets is ubiquitous in modern control theory. While present in the majority of

robust and optimal control formulations, set based methods have found further use for eval-

uation of reachable sets, safety verification, parameter estimation, global optimization, and

fault detection [ 1 ]. Deployment of set-based approaches is necessary when certain proper-

ties, such as safety or performance, of a system must be guaranteed. Multiple set repre-

sentations have been developed to perform these tasks; those with the most mature theory

and widespread use in controls are ellipsoids, halfspace and vertex representation polytopes,

and zonotopes [ 1 ]. While suitable for many applications, these set representations share a

common disadvantage in their convexity. Nonconvexity is inherent in many applications,

such as reachability of nonlinear [ 2 ] and hybrid systems [ 3 ], active fault diagnostics [ 4 ], and

safety constraints in optimal and robust control [ 5 ].

1.1 Representing Nonconvex Sets

When admissible, nonconvex sets are often represented as the implicit union of a col-

lection of convex sets [ 6 ]. Thus, the number of sets required to accurately represent the

true nonconvex set is proportional to the number of nonconvex features. When set op-

erations are performed on the nonconvex set, the number of features grow, as does the

number of convex sets used in the implicit representation. A worst-case exponential growth

in complexity, in both the representation and computation, may incur as set operations are

iteratively performed. This sharp increase in complexity often leads to the analysis becom-

ing computationally intractable. To stifle this growth, many algorithms employ merging and

approximation techniques to reduce computational burden at the cost of accuracy [ 7 ]–[ 12 ].

These methods are often used in safety verification (reachability analysis) when satisfaction

of an outer (inner) approximation guarantees that the performance criteria is met by the

true set [  10 ], albeit only in a conservative sense. However, in the case of safety constraints,

e.g. obstacle avoidance and multi-agent control, nonconvexity is inherent and unavoidable,

and requires the explicit representation of the nonconvex set [ 13 ].
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Convex polytopes given by their half-space and vertex representation, denoted by H-

and V-rep respectively, have been a primary tool for many set theoretic methods. Their

construction is intuitive, and the ability to convert between H- and V-rep leads to closure

under all set operations that maintain convexity. When convexity is not maintained, such

as with complement and union operations, the resulting nonconvex set may be defined as a

collection of convex polytopes [ 6 ]. These collections of convex polytopes may then be used

in optimization algorithms by enforcing their explicit union as hyperplane arrangements

through introducing binary variables and mixed-integer constraints [ 13 ]. This flexibility has

led to algorithms for solving many set-theoretic controls problems [  12 ], [  14 ].

While useful, the computational burden and complexity of H- and V-rep polytopes has

a worst-case exponential growth for basic set operations [ 15 ]. Furthermore, the necessity

to convert between H- and V-rep is cumbersome and involves computationally expensive

vertex and facet enumeration [ 16 ], thus limiting their use to problems with small dimension

(generally no greater than five) and few features. Given this, zonotopes have found increased

popularity due to their ability to compactly represent high dimensional sets with many fea-

tures, albeit with the limitation that the sets be centrally symmetric [  17 ]. The introduction

of constrained zonotopes has overcome the zonotopes’ inherent symmetry to establish a

set capable of representing arbitrary convex polytopes with closure under linear mappings,

Minkowski sums, and generalized intersections [ 18 ]. A major benefit of constrained zonotopes

is that their set operations are determined by identities that are computed algebraically and

scale linearly, thus remaining numerically stable for large problems. Similar to zonotopes

[ 19 ], the constrained zonotope representation lends itself to efficient order reduction tech-

niques for over-approximations [ 18 ] while inner-approximations may be performed through

methods at the cost of a higher computational effort [ 20 ]. Constrained zonotopes may be

used in place of H- and V-rep polytopes in many applications involving convex sets and

boast improvements in computation time and complexity [  18 ], [ 21 ]–[ 24 ]; however, the ability

to represent nonconvex polytopes has been limited to the implicit union of a collection of

constrained zonotopes.
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1.2 Reachable Sets of Hybrid Systems

Hybrid system theory has found increased use for modeling and control synthesis due

to its ability to capture the mixed continuous and discrete dynamics exhibited by many

engineered systems [ 25 ]. While providing a powerful tool, the analysis and control of hybrid

systems is inherently complex. Even in the case of linear hybrid systems, basic properties

such as stability and controllability may not be easily determined from the system model

[ 26 ]–[ 28 ]. Thus, hybrid systems under closed-loop control may not not exhibit the intended

behavior under certain operating conditions. Set-based methods for reachability analysis

and safety verification are often deployed when certain properties of a system, such as safety

or performance, must be guaranteed. These methods are well established for linear time-

invariant systems using convex sets [  1 ], [  12 ]. However, the application of set-based methods

to nonlinear and hybrid systems often result in nonconvex sets [ 29 ]. The reader is directed

to the review papers [ 10 ] on set propagation techniques, [ 2 ] on Taylor approximations, and

[ 30 ] on Hamilton Jacobi techniques, and the references therein for detailed discussion on the

state of the art.

In the case of linear hybrid systems, nonconvexity arises in reachable sets due to discrete

inputs, switching of dynamic subsystems, and reset maps. The exact reachable set may be

determined by partitioning the state space into a set of closed convex sets, often referred

to as guard sets. The reachable set of hybrid systems may then be found using techniques

developed for linear systems using a finite number of convex sets and iteratively propagating

the appropriate dynamics within each partition [ 11 ]. However, when an intersection with a

guard set occurs or an uncertain discrete input is applied, the reach set branches, resulting

in a worst-case exponential growth in the number of convex sets required to represent the

reachable space as their implicit union [ 31 ]. This analysis may be performed in either the

forward or backward sense [ 14 ], [ 32 ], [ 33 ]. However, this growth in complexity is often

compounded when considering backwards reachable sets with disturbances, as analysis relies

on computing or approximating Minkowski differences [  34 ], [ 35 ]. This approach becomes

computationally intractable for large time horizons.
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To avoid this exponential growth in set representation complexity, researchers often ap-

proximate the true reachable set, given by the implicit union of a finite number of convex

sets, by a reduced number of convex sets. One such method propagates the dynamics of the

system by branching along each guard set, then uses clustering methods to over-approximate

groups of convex sets by fewer convex sets [ 8 ], [  9 ]. This approach provides computational

efficiency at the cost of conservatism in the reachable set itself, although the specific trade-

off is application-dependent. Another approach is to search each region of the partitioned

state space individually and then over-approximate transitions along the guard sets [ 11 ],

[ 31 ]. This approach is computationally efficient as it only deals with one convex set at a

time and avoids unnecessary error by only over-approximating nonconvex sets along guard

set intersections. However, it is not guaranteed to converge when the reach set intersects a

guard partially, without fully transitioning into another partition. [  34 ]

Several nonconvex set representations have been developed that leverage higher order

mappings to provide a tighter enclosure of the reachable sets of nonlinear systems. The

most notable of these nonconvex set representations are polynomial models with set remain-

ders, e.g. Taylor models [ 36 ] and polynomial zonotopes [ 37 ]. Although offering a closer

approximation of the true set, these polynomial approaches have a case-specific trade-off

between convergence, accuracy, and computational cost. Such sets may provide tighter en-

closures of the nonconvex reachable sets of hybrid systems, thus requiring fewer branches

in the analysis [ 37 ]. However, these sets are generally not closed under intersection oper-

ations and require ad hoc routines to detect guard set intersections [ 31 ], [ 36 ]. The recent

work of Kochdumper and Althoff introduces the constrained polynomial zonotope [  38 ], a

hybrid of polynomial zonotopes [ 37 ] and constrained zonotopes [ 18 ]. By adding equality

constraints to the set definition of the polynomial zonotope, this class of polynomial models

are closed under intersection set operations, thus increasing their usefulness in the analysis of

hybrid systems. However, handling the worst-case exponential growth in set representation

complexity still requires over-approximations that are difficult to compute.

Alternatively, implicit methods for performing reach set analysis of hybrid systems lever-

age optimal control theory. The level set method poses the reach set problem as the level

sets of the solution to the Hamilton Jacobi equations [  39 ]. Although well suited for the
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analysis of general nonlinear and hybrid systems, the level set method scales exponentially

with respect to the state dimension and becomes intractable for higher dimensional systems

(generally no more than four) [ 30 ]. For systems with a specific structure, techniques have

been proposed that reduce this exponential growth by decomposing the system into sub-

systems [ 40 ]. Another implicit method is to find counter examples posed as optimization

problems. This approach seeks to verify the existence of any trajectory from an initial set to

a specified target set by solving a series of optimization programs [ 26 ], [ 41 ], [ 42 ]. However

these methods only provide safety certificates when a counter example is found and are not

well suited to complexity reduction.

Table 1.1. Summary table of existing methods for reachability analysis of
hybrid systems.

Author(s) Efficient High
Dimension Exact Outer-

Approximation
Forward/
Backward

Mitchel et al. [ 39 ] (2005) × × F/B
Herceg et al. [ 12 ] (2013) × × F/B

Guernic et al. [ 43 ] (2009) × × F
Fan et al. [ 44 ] (2016) × × F

Frehse et al. [ 8 ] (2011) × × × F
Chen et al. [ 45 ] (2013) × × × F

Althoff [ 46 ] (2015) × × × F
Schupp et al. [ 47 ] (2017) × × × F

Bogomolov et al. [ 48 ] (2019) × × × F

A summary of the discussed methods is provided in Table  1.1 . While useful, existing

approaches either become computationally intractable or rely on over-approximations with

case-specific trade-offs in accuracy and computational effort. Over-approximations are only

valid for safety verification and avoiding unsafe regions in robust control. Furthermore, the

error associated with such over-approximations may be large and difficult to quantify, thus

resulting in conservative results at best, and trivial solutions at worst [ 49 ]. In all of these

set-based approaches, detecting guard set intersections and avoiding exponential growth in

the set representation complexity remains the primary challenge [ 10 ].
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1.3 Dissertation Objective

Motivated by the above discussion, the contribution of this dissertation is two fold.

• Hybrid zonotopes: to deliver a mixed-integer set representation applicable to a

broad class of nonconvex set-theoretic methods.

• Exact reachability: to develop a framework for the propagation of reachable sets of

linear hybrid systems that exhibit linear growth in set representation complexity.

In this dissertation, I derive a new mixed-integer set representation named the hybrid zono-

tope that is able to compactly represent nonconvex sets with an exponential number of

features using a linear number of continuous and discrete variables. I show that the hy-

brid zonotope is equivalent to the union of 2N constrained zonotopes—convex polytopes—

through the addition of N binary zonotope factors. I show how the hybrid zonotope may

be converted into this collection of constrained zonotopes for visualization and analysis. I

prove the hybrid zonotope’s closure under linear mappings, Minkowski sums, generalized

intersections, halfspace intersections, Cartesian products, unions, and complements. Finally,

to improve computational efficiency, I provide methods for reducing the complexity of the

set representation through redundancy removal and order reduction. Thus providing a non-

convex set representation applicable to a broad class of set-theoretic methods.

Beyond the derivations of basic set operations, I show how the forward, and backward,

reachable sets of linear hybrid systems may be represented exactly, and propagated, as hybrid

zonotopes. I derive identities for reachable sets of linear hybrid systems modeled as both

mixed logical dynamical systems as well as linear systems closed-loop under model predictive

control, in both the forward and backward sense. I show through multiple examples how

these methods may be used to verify the safety and performance of the considered classes

of systems, with reduced conservatism and better scalability when compared to previous

methods in the literature. I also show how the hybrid zonotope may be used to solve general

multiparametric quadratic programs and compactly represent the set of optimal solutions.

Numerical experiments show the scalability of the proposed approach and compare it to

existing methods.
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1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. In Chapter  2 I provide the

necessary background on basic set operations, several existing set representations, and reach-

ability analysis. In Chapter  3 I formally define the hybrid zonotope set representation, prove

several of its properties, and derive identities for basic set operations. In Chapter  4 I present

closed-form solutions for the exact forward reachable sets of linear hybrid systems and closed-

loop MPC. In Chapter  5 I develop closed-form solutions for the exact backward reachable

sets of linear hybrid systems and closed-loop MPC. In Chapter  6 I present methods for re-

ducing the complexity of hybrid zonotopes to generate over-approximations. Finally, some

concluding remarks and suggestions for future areas of research are made in Chapter  7 .
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2. BACKGROUND

In this chapter I provide the necessary background on existing work that will be leveraged

in the remainder of the dissertation. First, notation is provided in Section  2.1 followed

by the definitions of basic set operations in Section  2.2 . I then discuss the existing set

representations related to the presented work in Section  2.3 . Finally, I finish the chapter by

discussing the reachability analysis of discrete-time systems in Section  2.4 .

2.1 Notation

Sets are denoted by uppercase calligraphic letters, e.g., Z ⊂ IRn. The topological bound-

ary of a set is denoted by ∂Z and its interior by Z◦. The closure of a set is denoted by Z

such that Z includes both the interior and boundary of Z. Commas in subscripts are used to

distinguish between properties that are defined for multiple sets; e.g., ng,z describes the com-

plexity of the representation of Z while ng,w describes the complexity of the representation

of W . The n-dimensional unit hypercube is denoted by

Bn
∞ = {x ∈ IRn | ∥x∥∞ ≤ 1} ,

and the n-dimensional constrained unit hypercube is denoted by

Bn
∞(A, b) = {x ∈ IRn | ∥x∥∞ ≤ 1 , Ax = b} .

The set of all n-dimensional binary vectors is denoted by {−1, 1}n, e.g.,

{−1, 1}2 =


1

1

 ,

 1

−1

 ,

−1

1

 ,

−1

−1


 .

The cardinality of the discrete set T is denoted by |T |; e.g., |T | = 8 for T = {−1, 1}3.

The concatenation of two column vectors to a single column vector is denoted by (ξ1 ξ2) =

[ξT
1 ξT

2 ]T . The bold 1 and 0 denote matrices of all 1 and 0 elements, respectively, and I denotes
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the identity matrix with dimensions indicated by subscripts when not easily deduced from

context.

2.2 Set Operations

Given the sets Z, W , X ⊂ IRn, Y ⊂ IRm, and matrix R ∈ IRm×n, the linear mapping of

Z by R is given by (  2.1a ), the Minkowski sum of Z andW is given by (  2.1b ), the Minkowski

difference, also referred to as the Pontryagin difference, of W from Z is given by ( 2.1c ), the

generalized intersection of Z and Y under R is given by ( 2.1d ), the standard intersection

for R = I is denoted by ∩, the union of Z and W is given by ( 2.1e ), the closure of the

complement of Z is given by ( 2.1f ), the closure of the complement of Z defined over the set

X is given by ( 2.1g ), the support function of Z in a direction l ∈ IRn is given by ( 2.1h ), the

supporting halfspace in a direction l ∈ IRn is given by (  2.1i ) such that Z ⊆ H−
l , the convex

hull of Z is given by ( 2.1j ), and the Cartesian product of Z and Y is given by (  2.1k ). The

reader is directed to [ 50 ] and [ 51 ] for detailed discussions on these basic set operations.

RZ = {Rz | z ∈ Z} (2.1a)

Z ⊕W = {z + w | z ∈ Z, w ∈ W} (2.1b)

Z ⊖W = {x ∈ IRn | x + w ∈ Z ∀ w ∈ W} (2.1c)

Z ∩R Y = {z ∈ Z | Rz ∈ Y} (2.1d)

Z ∪W = {x ∈ IRn | x ∈ Z ∨ x ∈ W} (2.1e)

Zc = {x ∈ IRn | x ̸∈ Z◦} (2.1f)

CX (Z) = {x ∈ X | x ̸∈ Z◦} (2.1g)

ρZ(l) = sup
z∈Z

lT z (2.1h)

H−
l =

{
z ∈ IRn

∣∣∣ lT z ≤ ρZ(l)
}

(2.1i)

CH(Z) =
{

n∑
i=1

λizi

∣∣∣∣∣
n∑

i=1
λi = 1, λi ≥ 0, zi ∈ Z, ∀ i ∈ {1, . . . , n}, n ∈ N

}
(2.1j)

Z × Y = {(z y) | z ∈ Z, y ∈ Y} (2.1k)
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2.3 Set Representations

In this section I provide a review of the existing set representations related to the pre-

sented work. I begin with a discussion on convex polytopes in their vertex and halfspace

representations in Section  2.3.1 and the nonconvex representation of collections of convex

polytopes as hyperplane arrangements in Section  2.3.2 . I then discuss the representation

of symmetric convex polytopes as zonotopes in Section  2.3.3 and their extension to the

representation of arbitrary convex polytopes as constrained zonotopes in Section  2.3.4 .

2.3.1 Convex Polytopes

A polytopic set is one with a topological boundary consisting of faces that may be defined

by hyperplanes. Convex polytopes are compact sets that may be defined by the intersection

of a collection of halfspaces, each one describing a face of the set.

Definition 2.3.1 (H-rep Polytope). The set P ⊂ IRn is a convex polytope if there exists

H ∈ IRn×nh and f ∈ IRnh such that

P = {x ∈ IRn | Hx ≤ f} . (2.2)

The convex polytope is given in its halfspace representation (H-rep) in Definition  2.3.1 and

is equivalent to the intersection of a finite number of halfspaces as P = ⋂nh
i=1H−

i , where

H−
i = {x ∈ IRn | hT

i x ≤ fi} is the ith half space defined by the ith row of the matrix H

and vector f . Convex polytopes may also be represented by the collection of vertices at the

intersections of the nh halfspaces.

Definition 2.3.2 (V-rep Polytope). The set P ⊂ IRn is a convex polytope if there exists

vi ∈ IRn for i = 1, . . . , nv such that

P =
{

x =
nv∑
i=1

αivi

∣∣∣∣∣ αi ≥ 0,
nv∑
i=1

αi = 1
}

. (2.3)

The convex polytope is given in its vertex representation (V-rep) in Definition  2.3.2 and is

equivalent to the convex hull of the discrete set of vertices vi ∈ IRn for i = 1, . . . , nv. The
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representation of a 2-dimensional polytope in both H- and V-rep is depicted in Figure  2.1 .

Convex polytopes given by their H- and V-representations are closed under linear mappings,

Minkowski sums, and generalized intersections. In H-rep, the computation of generalized

intersections and linear mappings is efficient if R is square and invertible [ 15 ] with time

complexity scaling as O(n3), and standard intersections scaling as O(1) [ 52 ]. However, the

computational and representation complexity growth of Minkowski sums is exponential [ 15 ]

with time complexity scaling as O(2n) [  52 ]. In V-rep, the computation of linear mappings

and Minkowski sums is exponential with time complexity scaling as O(mn2n) and O(n22n)

respectively [ 52 ]. The computation of generalized intersections in V-rep is NP-hard [ 16 ]. The

use of convex polytopes over these basic set operations requires converting between H- and

V-rep. Such conversions are cumbersome and involve computationally expensive vertex and

facet enumeration [  16 ], further limiting their use to problems with relatively small dimension

(generally no greater than 5) and over short time horizons.

Figure 2.1. Example of representing a convex polytope in H- and V-rep.

2.3.2 Hyperplane Arrangements

The unions and complements of a collection of H-rep polytopes may be defined by intro-

ducing binary variables and linear mixed-integer inequality constraints. The general form of

such nonconvex mixed-integer polyhedral sets is given by a hyperplane arrangement.
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Definition 2.3.3 (Hyperplane Arrangement). [ 13 ] The set A ⊆ IRn is a hyperplane arrange-

ment if there exists a collection of sign tuples Σ ⊆ {−, +}nh such that

A =
⋃

σ∈Σ
P(σ) , (2.4)

where P(σ) = ⋂nh
i=1H

σ(i)
i , H−

i = {x ∈ IRn | hT
i x ≤ fi}, and H+

i = {x ∈ IRn | hT
i x ≥ fi}. If

Σ = {σ ∈ {−, +}nh | P(σ) ̸= ∅}, then A = IRn and P(σ) is a collection of convex, disjoint

polytopes partitioning the space.

By considering the two halfspaces that are divided by the ith hyperplane, H−
i and H+

i , the

hyperplane arrangement partitions the state space into a finite collection of disjoint cells [  13 ].

Choosing sign tuples Σ ⊆ {−, +}nh then allows the hyperplane arrangement to represent

the union of a collection of H-rep polytopes by only enforcing specific combinations of the

halfspace constraints to be active for each entry σ of the discrete set [  13 ]. This approach

may be used to define the closure of the complement of an H-rep polytope defined over a

region of interest X as

CX (P) =
{

x ∈ IRn

∣∣∣∣∣ Hx ≥ f −Mα , α ∈ {0, 1}nh ,
nh∑
i=1

αi ≤ nh − 1
}

, (2.5)

where M is the so called Big-M constant [ 53 ] chosen sufficiently large such that

M ≥ max
x∈X

f −Hx . (2.6)

The mixed-integer formulation given by ( 2.5 ) enforces that only one of the halfspace con-

straints is active at a time and leads to a unique set of sign tuples Σ, thus there exists a

hyperplane arrangement such that CX (P) = A [ 13 ]. This approach may be extended to

collections of polytopes as described in [  54 ]. An example of the hyperplane arrangement

representing the complement (  2.5 ) of an H-rep polytope is depicted in Figure  2.2 .
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Figure 2.2. Example of the hyperplane arrangement representing the com-
plement of a convex polytope given by ( 2.5 ).

2.3.3 Zonotopes

A zonotope is a centrally symmetric, convex polytope that may be represented as the

affine image of a unit hypercube.

Definition 2.3.4 (G-rep Zonotope). [ 17 ] The set Z ⊂ IRn is a zonotope if there exists

G ∈ IRn×ng and c ∈ IRn such that

Z = {Gξ + c | ξ ∈ Bng
∞ } . (2.7)

The zonotope is given in Generator-representation (G-rep), and the shorthand notation of

Z = ⟨G, c⟩ ⊂ IRn is used to denote the set given by ( 2.7 ). A zonotope is the set of points

given by all linear combinations of the center c with the weighted generators—the columns

of G =
[
g(1) · · · g(ng)

]
—such that their weights ξ = (ξ1 · · · ξng), called factors, lie within

the unit hypercube Bng
∞ = {ξ ∈ IRng | ∥ξ∥∞ ≤ 1}. A zonotope is therefore equivalent to the

Minkowski sum of a collection of closed line segments, the g(i) generators in G, shifted by

the center, c. An example of a two-dimensional zonotope represented by three generators

is depicted in Figure  2.3 . The zonotope Z ⊂ IRn is n dimensional for any ng ≥ n number

of generators such that the rank of G is equal to n; in other words, the column space of G

spans IRn. The complexity of the set is reflected by the number of generators, ng, and the

order of the zonotope is defined as o = ng/n. When the dimension of G is unrestricted, the
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center and generator matrix can be constructed to represent any compact polytope that is

both convex and centrally symmetric.

-2 0 2 4
-2

-1

0

1

2

Figure 2.3. Example of representing a symmetric, convex polytope as a
zonotope in G-rep.

Zonotopes are able to compactly represent convex polytopes because of their combina-

torial nature resulting in the representation of sets with up to 2
(

ng

n

)
features [ 55 ]. The

conversion from a zonotope in G-rep to an H-rep polytope is therefore a computationally

expensive enumeration problem [ 11 ]. Another beneficial attribute is that the linear mappings

and Minkowski sums of the zonotopes Z = ⟨Gz, cz⟩ ⊂ IRn and W = ⟨Gw, cw⟩ ⊂ IRn may be

computed efficiently through the identities:

RZ = ⟨RGz, Rcz⟩ , (2.8a)

Z ⊕W = ⟨[Gz Gw], cz + cx⟩ . (2.8b)

The time complexity of linear mappings given by ( 2.8a ) scales as O(mn2) for matrix R ∈

IRm×n, and that of Minkowski sums given by ( 2.8b ) scales as O(n) [ 10 ]. These computa-

tionally efficient set operations allow zonotopes to be used for high dimensional problems;

however, the complexity of the set grows as ng = ng,z + ng,w for Minkowski sums.
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2.3.4 Constrained Zonotopes

The utility of the zonotope may be extended by adding a set of linear equality constraints

to the mapped unit hypercube.

Definition 2.3.5 (CG-rep Constrained Zonotope). [ 18 ] The set Zc ⊂ IRn is a constrained

zonotope if there exists G ∈ IRn×ng , c ∈ IRn, A ∈ IRnc×ng , and b ∈ IRnc such that

Zc = {Gξ + c | ξ ∈ Bng
∞ , Aξ = b} . (2.9)

The constrained zonotope is given in Constrained Generator-representation (CG-rep), and

the shorthand notation of Zc = ⟨G, c, A, b⟩ ⊂ IRn is used to denote the set given by ( 2.9 ).

Through the addition of the linear equality constraints Aξ = b, the affine image of the

constrained constrained unit hypercube Bng
∞ (A, b) = {ξ ∈ IRng | ∥ξ∥∞ ≤ 1, Aξ = b} is no

longer restricted to be symmetric. Indeed when the number of generators ng and constraints

nc are unrestricted, a constrained zonotope may be constructed to represent any convex

polytope [ 18 ]. Consider the example constrained zonotope Zc = ⟨Gz, cz, Az, bz⟩ ⊂ IR2 given

by [ 18 ]

Zc =
〈1.5 −1.5 0.5

1 0.5 −1

 ,

0

0

 ,
[
1 1 1

]
, 1
〉

. (2.10)

From the definition of the constrained zonotope, the zonotope defined by Z = ⟨Gz, cz⟩ will

satisfy Zc ⊆ Z as Zc and Z share the same generators; however, Zc has fewer degrees of

freedom due to the additional equality constraints. This relationship between zonotopes and

constrained zonotopes is depicted in Fig  2.4 . The degree of freedom order of a constrained

zonotope is defined as od = (ng − nc)/n. When the G and A matrices are full rank, a

necessary condition that a constrained zonotope will form an n dimensional subset of IRn is

given by od ≥ 1.

Constrained zonotopes are closed under linear mappings, Minkowski sums, and intersec-

tions, so that performing these operations on constrained zonotopes results in yet another

constrained zonotope. Linear mappings and Minkowski sums follow directly from the iden-

tities for zonotopes ( 2.8 ), while generalized intersections add an additional k constraints.
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Figure 2.4. Example of a constrained zonotope given by (  2.10 ). ( 2.4a )
Constrained unit hypercube B3

∞(A, b). ( 2.4b ) Constrained zonotope Zc =
⟨Gz, cz, Az, bz⟩ generated as the affine image of the constrained unit hyper-
cube plotted over Z = ⟨Gz, cz⟩ taken as the affine image of the entire unit
hypercube.

For Z = ⟨Gz, cz, Az, bz⟩ , W = ⟨Gw, cw, Aw, bw⟩ ⊂ IRn, Y = ⟨Gy, cy, Ay, by⟩ ⊂ IRm, and

R ∈ IRm×n, these basic set operations are determined through the following identities [ 18 ]:

RZ = ⟨RGz, Rcz, Az, bz⟩ , (2.11a)

Z ⊕W =
〈[

Gz Gw

]
, cz + cw,

Az 0

0 Aw

 ,

bz

bw

〉 , (2.11b)

Z ∩R Y =
〈[

Gz 0
]

, cz,


Az 0

0 Ay

RGz −Gy

 ,


bz

by

cy −Rcz


〉

. (2.11c)

The time complexity of linear mappings given by ( 2.11a ) scales asO(mn2), that of Minkowski

sums given by (  2.11b ) scales as O(n), that of generalized intersections given by ( 2.11c ) scales

as O(mn2) and reduces to O(n) for standard intersections when R = I [ 10 ]. Similar to

zonotopes, these basic set operations of constrained zonotopes are efficient and scale well to

high dimensional problems; however, the representation complexity includes growth in both

the number of generators and constraints. The representation complexity of Minkowski sums
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grows as ng = ng,z + ng,w and nc = nc,z + nc,w. The representation complexity of generalized

intersections grows as ng = ng,z + ng,y and nc = nc,z + nc,y + m.

2.4 Reachability Analysis

Reachability analysis consists of computing the set of states reachable by a dynamic

system from a specified set for all admissible inputs and disturbances to the system [ 1 ]. The

reachability problem may be formulated in either the forward or backward sense, that is:

• Forward reachability answers the question “Given a set of states Rk at time k, find the

set of all states that may be reached from Rk at time k + T .”

• Backward reachability answers the question “Given a set of states RT +k at time T +k,

find the set of all states at time k that the set is reachable by.”

Forward reachability is most often deployed for safety verification and may be used to pro-

vide a posteriori certificates of a system’s robustness [ 56 ], while backward reachability is

often used in dynamic games [ 39 ], synchronizing layers of hierarchical controllers [ 21 ], and

generating controlled invariant sets [ 14 ]. Both the forward and backward propagation of sets

may be considered in the open or closed-loop case and is well established in the literature

for linear time-invariant systems using convex sets.

Consider the discrete-time dynamic system modeled by the difference equation

x+ = f(x, u, v) , (2.12)

where x ∈ IRnx is the state of the system, u ∈ IRnu is the controllable input to the system

belonging to the compact set of all admissible inputs U ⊂ IRnu , and v ∈ IRnv is a disturbance

belonging to the compact set V ⊂ IRnv . Beginning from a set of initial states X0, the set of

states reachable by the dynamic system (  2.12 ) in one discrete time step is then given by the

forward reachable set

R+ = {x+ ∈ IRnx | ∃ x ∈ X0, u ∈ U , v ∈ V , s.t. x+ = f(x, u, v)} . (2.13)
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The set R+ given by ( 2.13 ) is the set of all states such that there exists a trajectory given by

the solution of ( 2.12 ) from an initial state x ∈ X0 under an admissible control input u ∈ U

and possible disturbance v ∈ V [ 1 ], [  10 ], [  14 ]. Given a set of states X , the set of states that

X is reachable from for all possible disturbances through the dynamic system ( 2.12 ) in one

discrete time step is then given by the backward reachable set

R− = {x− ∈ IRnx | ∃u ∈ U , s.t. f(x−, u, v) ⊆ X ∀ v ∈ V} . (2.14)

The set R− given by ( 2.14 ) is the set of all states that can be driven to X by some admissible

control input u ∈ U despite any possible disturbance v ∈ V [ 1 ], [  14 ].

When ( 2.12 ) is given by the discrete-time linear time-invariant system x+ = Ax+Bu+Wv

with X0, U , and V given by convex polytopes, the forward reachable set (  2.13 ) may be found

using basic set operations as [ 14 ]

R+ = AX0 ⊕BU ⊕WV . (2.15)

Similarly, when the state transition matrix A is invertible and the target set X is given by a

convex polytope, the backward reachable set ( 2.14 ) may be found using basic set operations

as [  14 ]

R− = A−1((X ⊖WV)⊕ (−BU)) . (2.16)

The methods given by ( 2.15 ) and ( 2.16 ) are classified as set propagation techniques for

reachability analysis and may be applied iteratively to find the set of states reachable in k

time steps, denoted by Rk [ 10 ].
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3. HYBRID ZONOTOPES

This chapter introduces the hybrid zonotope set definition, as presented in the two

manuscripts by Trevor J. Bird, Herschel C. Pangborn, Neera Jain, and Justin P. Koeln in

[ 57 ], provisionally accepted by Automatica, and Trevor J. Bird and Neera Jain in the IEEE

Control Systems Letters [ 58 ], and is included here with minor modifications. In Section  3.1 

I formally define the hybrid zonotope, discuss its relation to constrained zonotopes, and

provide two illustrative examples. In Section  3.2 I prove the hybrid zonotopes’ closure under

linear mappings, Minkowski sums, generalized intersections, halfspace intersections, Carte-

sian products, unions, and complements. Beyond set operations, Section  3.2 demonstrates

how the point and set containment of hybrid zonotopes may be determined by evaluating

the feasibility of a mixed-integer linear program, as well as how to determine bounds and

convex enclosures. In Section  3.3 I describe how the hybrid zonotope forms a binary tree that

may be leveraged to reduce the complexity of converting the hybrid zonotope into a collec-

tion of convex subsets. Finally, in Section  3.4 I provide a numerical example demonstrating

how the complements of hybrid zonotopes may be used as safety constraints in an obstacle

avoidance problem. All technical contributions of this chapter were made by Trevor J. Bird

while being advised by Professor Neera Jain at Purdue University, as well as Professor Justin

P. Koeln (University of Texas Dallas) and Professor Herschel Pangborn (The Pennsylvania

State University).

3.1 Set Definition

This section introduces the definition of hybrid zonotopes as an extension of the con-

strained zonotope through the addition of a vector of binary factors.

Definition 3.1.1 (HCG-rep Hybrid Zonotope). The set Zh ⊂ IRn is a hybrid zonotope if

there exists Gc ∈ IRn×ng , Gb ∈ IRn×nb, c ∈ IRn, Ac ∈ IRnc×ng , Ab ∈ IRnc×nb, and b ∈ IRnc

such that

Zh =


[
Gc Gb

] [
ξc

ξb

]
+ c

∣∣∣∣∣∣∣
[

ξc

ξb

]
∈ Bng

∞ × {−1, 1}nb ,[
Ac Ab

] [
ξc

ξb

]
= b

 . (3.1)
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The hybrid zonotope is given in Hybrid Constrained Generator-representation (HCG-

rep), and the shorthand notation of Zh = ⟨Gc, Gb, c, Ac, Ab, b⟩ ⊂ IRn is used to denote the

set given by ( 3.1 ). When nb = 0, the hybrid zonotope set representation is equivalent to

the constrained zonotope given by Def.  2.3.5 . When nb ̸= 0, the vector of binary factors

may take on values from the discrete set {−1, 1}nb containing 2nb elements. The hybrid

zonotope therefore consists of a mapping of a continuous space shifted by contributions from

a discrete, finite set. This shifting in equality constraints and centers is depicted in Fig.  3.1 

where a single binary factor having Gb = 1 and Ab = 1 is added to the example constrained

zonotope (  2.10 ) resulting in

Zh =
〈1.5 −1.5 0.5

1 0.5 −1

 ,

1

1

 ,

0

0

 ,
[
1 1 1

]
, 1, 1

〉
. (3.2)

Given that ∥ξb∥∞ = 1 for all ξb ∈ {−1, 1}nb , the hybrid zonotope is a more general

class than the zonotope and constrained zonotope set representations. That is, the hybrid

zonotope definition includes one additional constraint on the space of factors being projected

– namely, that some of them must be binary.

Lemma 3.1.1. Given any hybrid zonotope Zh = ⟨Gc, Gb, c, Ac, Ab, b⟩ ⊂ IRn, the zonotope

Z = ⟨[Gc Gb], c⟩ ⊂ IRn and constrained zonotope Zc = ⟨[Gc Gb], c, [Ac Ab], b⟩ ⊂ IRn satisfy

Zh ⊆ Zc ⊆ Z.

Proof. For any z ∈ Zh there exists some ∥ξc∥∞ ≤ 1 and ξb ∈ {−1, 1}nb such that Acξc +

Abξb = b and z = Gcξc +Gbξb +c. Letting ξ = (ξc ξb) implies that ∥ξ∥∞ ≤ 1, z = [Gc Gb]ξ+c,

and [Ac Ab]ξ = b, thus z ∈ Zc and Zh ⊆ Zc. Furthermore, for any z ∈ Zc there exists some

ξ such that ∥ξ∥∞ ≤ 1, [Ac Ab]ξ = b, and z = [Gc Gb]ξ + c, thus z ∈ Z, Zc ⊆ Z, and therefore

Zh ⊆ Zc ⊆ Z.

The equivalence of the hybrid zonotope with a finite collection of constrained zonotopes

is established through the following theorem relying on the closure of hybrid zonotopes under

union operations as proven in Section  3.2.2 .
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Figure 3.1. Example hybrid zonotope ( 3.2 ) generated by adding one binary
factor to the constrained zonotope ( 2.10 ). ( 3.1a ) Constrained unit hypercube
B3

∞(Ac, b). ( 3.1b ) Constrained zonotope taken as the affine image of ( 3.1a ),
Zc = GcB3

∞(Ac, b)⊕ c. ( 3.1c ) Adding one binary factor to the constrained unit
hypercube results in two possible shifts in the hyperplane, Acξc = b − Abξb

1
and Acξc = b − Abξb

2, one for each entry of the discrete set ξb
i ∈ {−1, 1}.

( 3.1d ) Hybrid zonotope taken as the affine image of ( 3.1c ) with shifted centers,
Zh = GcB3

∞(Ac, b− Abξb
1)⊕ (c + Gbξb

1) ∪GcB3
∞(Ac, b− Abξb

2)⊕ (c + Gbξb
2).

Theorem 3.1.1. The set Zh ⊂ IRn is a hybrid zonotope if and only if it is the union of a

finite number of constrained zonotopes.

Proof. Let ξb
i be an entry of the discrete set {−1, 1}nb containing 2nb elements. Define the

constrained zonotope

Zc,i =
〈
Gc, c + Gbξb

i , Ac, b− Abξb
i

〉
. (3.3)

37



For any z ∈ Zc,i there exists some ξc ∈ Bng
∞ such that z = Gcξc +Gbξb

i +c and Acξc +Abξb
i = b.

Thus z ∈ Zh. Given that the choice of z is arbitrary and the set {−1, 1}nb is finite,

2nb⋃
i=1
Zc,i ⊆ Zh .

For any z ∈ Zh, there exists some ξc ∈ Bng
∞ and ξb ∈ {−1, 1}nb such that z = Gcξc + Gbξb + c

and Acξc + Abξb = b. Also, for ξb = ξb
i ⇒ z ∈ Zc,i, thus

Zh ⊆
2nb⋃
i=1
Zc,i ,

and Zh = ⋃2nb

i=1Zc,i.

Conversely, given any finite collection of constrained zonotopes Zc,i ⊂ IRn for i =

1, . . . , N , the hybrid zonotope generated by successive union operations as Zh = Zc,1 ∪

(Zc,2 ∪ (· · · ∪ Zc,N)) is an exact representation of the union of the N constrained zonotopes

by Proposition  3.2.6 , therefore ⋃N
i=1Zc,i = Zh.

The hybrid zonotope exhibits the same combinatorial properties as zonotopes, where a

symmetric polytope with up to 2
(

ng

n

)
features may be represented with ng continuous factors

[ 55 ]. Introducing nb binary factors, the hybrid zonotope may represent 2nb zonotopes each

having potentially 2
(

ng

n

)
features. This concept is further explored through the following

example.

Example 3.1.1. Let the set Zc = ⟨Gz, cz, Az, bz⟩ ⊂ IR2 be the example constrained zonotope

given in [ 18 ], where

Zc =
〈1.5 −1.5 0.5

1 0.5 −1

 ,

0

0

 ,
[
1 1 1

]
, 1
〉

,

and define a hybrid zonotope with continuous generators Gc = Gz, binary generators Gb =

2Gz, and center cz giving

Zh,1 = ⟨Gz, 2Gz, cz, ∅, ∅, ∅⟩ . (3.4)
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By adding nb = 3 binary factors, Zh,1 is equivalent to 2nb = 8 copies of the zonotope Z =

⟨Gz, cz⟩ with centers shifted by 2Gzξb ∀ ξb ∈ {−1, 1}3, as depicted in Fig.  3.2a . Defining

another hybrid zonotope that includes linear equality constraints on the continuous factors

as Ac = Az, Ab = 0, and b = bz giving

Zh,2 = ⟨Gz, 2Gz, cz, Az, 0, bz⟩ , (3.5)

results in a hybrid zonotope equivalent to eight copies of the constrained zonotope Zc, again

with centers shifted by the contribution of the binary generators as shown in Fig.  3.2b .

Including the binary factors in the equality constraints by defining another hybrid zonotope

with Ab = Az gives

Zh,3 = ⟨Gz, 2Gz, cz, Az, Az, bz⟩ , (3.6)

as shown in Fig.  3.2c . In contrast to the previous hybrid zonotopes, Zh,3 does not represent

identical copies. Instead, the linear equality constraints on the continuous factors are also

shifted by each of the eight discrete values of the binary factors. When doing so, it is possible

that these shifted equality constraints may be infeasible and thus map to empty constrained

zonotopes, which happens exactly once in the given example.

The result of Theorem  3.1.1 provides a method of converting from a hybrid zonotope

to a collection of constrained zonotopes, and vice versa, allowing methods developed for

the analysis and visualization of other set representations to be applied to hybrid zonotopes.

However, the conversion from HCG-rep to a collection of CG-reps, Zc,i∀i ∈ {1, . . . , 2nb} given

by ( 3.3 ), is an enumeration problem that grows exponentially with respect to the number

of binary factors. Use of the hybrid zonotope is therefore most advantageous when these

conversions are not necessary and the set may be used directly for the analysis and control

of complex dynamical systems, as discussed in the remainder of this dissertation.

3.2 Set Operations

This section proves the hybrid zonotopes closure under linear mappings, Minkowski sums,

generalized intersections, halfspace intersections, Cartesian products, unions, and comple-
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(a) (b)

(c)

Figure 3.2. Hybrid zonotopes given in Ex.  3.1.1 . Note that the convex
hull of the eight discrete points given by Gbξb is equivalent to the zonotope
Z = ⟨Gb, 0⟩ as depicted by the dashed lines. ( 3.2a ) Without linear equality
constraints, the hybrid zonotope Zh,1, given by ( 3.4 ), represents eight copies of
a continuous zonotope with centers shifted by the contribution of the binary
factors and generators. (  3.2b ) Including constraints on only the continuous
factors results in Zh,2, given by ( 3.5 ), and is equivalent to eight copies of the
constrained zonotope Zc. ( 3.2c ) When the equality constraints include terms
for the binary factors in Zh,3, given by (  3.6 ), the shifted constrained zonotopes
are no longer identical. Also note that in this final case, the discrete value of
the binary factors depicted by the red • results in an infeasible set of continuous
constraints and thus maps to an empty constrained zonotope.

ments. The derivation of the identities for linear mappings, Minkowski sums, generalized

intersections, halfspace intersections, and Cartesian Products are provided in Section  3.2.1 
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and follow closely from those derived for constrained zonotopes. The union and complement

operations require the embedding of mixed-integer constraints, as discussed in Section  3.2.2 

and  3.2.3 . The time complexity and specific growth in set representation complexity for each

set operation is discussed at the end of the respective section. In Section  3.2.4 it is shown

how the point and set containment of hybrid zonotopes may be verified by evaluating the

feasibility of a mixed-integer linear program. In Section  3.2.5 it is shown how the bounds of

a hybrid zonotope in a given direction may be determined by evaluating the set’s support

function, and that these bounds can be used to define tight convex enclosures.

3.2.1 Linear Mappings, Minkowski Sums, Generalized Intersections, Halfspace
Intersections, and Cartesian Products

The identities for linear mappings, Minkowski sums, generalized intersections

[ 18 , Prop. 1], and halfspace intersections [ 20 , Thm. 1] of constrained zonotopes may be

extended to hybrid zonotopes by including the additional binary constraint as follows. The

Cartesian product is also defined similar to those of zonotopes and constrained zonotopes.

Proposition 3.2.1 (Linear Mapping). For any hybrid zonotope

Zh =
〈
Gc

z, Gb
z, cz, Ac

z, Ab
z, bz

〉
⊂ IRn ,

and matrix R ∈ IRm×n, the linear mapping of Zh by R is given by

RZh =
〈
RGc

z, RGb
z, Rcz, Ac

z, Ab
z, bz

〉
. (3.7)

Proof. For ease of readability, let ξz = (ξc
z ξb

z), Gz = [Gc
z Gb

z], and Az = [Ac
z Ab

z]. Let ZR

denote the hybrid zonotope given by the right-hand side of ( 3.7 ). For any point z ∈ Zh there

exists some ξz ∈ Bng,z
∞ ×{−1, 1}nb,z such that Azξz = bz and z = Gzξz + cz. Multiplying both

sides of z by R gives Rz = RGzξz + Rcz and Rz ∈ ZR, thus RZh ⊆ ZR.

Conversely, for any point r ∈ ZR there exists some ξr ∈ Bng,z
∞ × {−1, 1}nb,z such that

Azξr = bz and r = RGzξr +Rcz. Thus there exists some z ∈ Zh such that Rz = r. Therefore

ZR ⊆ RZh and RZh = ZR.
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Proposition 3.2.2 (Minkowski Sum). For any hybrid zonotopes

Zh =
〈
Gc

z, Gb
z, cz, Ac

z, Ab
z, bz

〉
⊂ IRn ,

Wh =
〈
Gc

w, Gb
w, cw, Ac

w, Ab
w, bw

〉
⊂ IRn ,

the Minkowski sum of Zh and Wh is given by

Zh ⊕Wh =
〈[

Gc
z Gc

w

]
,
[
Gb

z Gb
w

]
, cz + cw,

Ac
z 0

0 Ac
w

 ,

Ab
z 0

0 Ab
w

 ,

bz

bw

〉 . (3.8)

Proof. For ease of readability, let ξi = (ξc
i ξb

i ), Gi = [Gc
i Gb

i ], and Ai = [Ac
i Ab

i ] for i = z, w.

Let X denote the hybrid zonotope given by the right-hand side of (  3.8 ). For any z ∈ Zh there

exists some ξz ∈ Bng,z
∞ ×{−1, 1}nb,z such that Azξz = bz and z = Gzξz + cz. Similarly for any

w ∈ Wh there exists some ξw ∈ Bng,w
∞ ×{−1, 1}nb,w such that Awξw = bw and w = Gwξw + cw.

Let ξc
x = (ξc

z ξc
w) and ξb

x = (ξb
z ξb

w). Then ξx ∈ Bng,z+ng,w
∞ × {−1, 1}nb,z+nb,w and

Ac
z 0

0 Ac
w

 ξc
x +

Ab
z 0

0 Ab
w

 ξb
x =

bb
z

bb
w

 . (3.9)

Adding z and w together gives

z + w = [Gc
z Gc

w]ξc
x + [Gb

z Gb
w]ξb

x + (cz + cw) , (3.10)

thus z + w ∈ X and Zh ⊕Wh ⊆ X .

Conversely, for any x ∈ X there exists some ξx ∈ Bng,z+ng,w
∞ × {−1, 1}nb,z+nb,w such that

( 3.9 ) holds and x = z + w as defined by ( 3.10 ). Letting ξc
x = (ξc

z ξc
w) and ξb

x = (ξb
z ξb

w) gives

x ∈ Zh ⊕Wh and X ⊆ Zh ⊕Wh, therefore Zh ⊕Wh = X .

Proposition 3.2.3 (Generalized Intersection). For any hybrid zonotopes

Zh =
〈
Gc

z, Gb
z, cz, Ac

z, Ab
z, bz

〉
⊂ IRn ,

Yh =
〈
Gc

y, Gb
y, cy, Ac

y, Ab
y, by

〉
⊂ IRm ,

42



and matrix R ∈ IRm×n, the generalized intersection of Zh and Yh under R is given by

Zh ∩R Yh =
〈[

Gc
z 0

]
,
[
Gb

z 0
]

, cz,


Ac

z 0

0 Ac
y

RGc
z −Gc

y

 ,


Ab

z 0

0 Ab
y

RGb
z −Gb

y

 ,


bz

by

cy −Rcz


〉

. (3.11)

Proof. For ease of readability, let ξi = (ξc
i ξb

i ), Gi = [Gc
i Gb

i ], and Ai = [Ac
i Ab

i ] for i = z, y.

Let S denote the hybrid zonotope given by the right-hand side of ( 3.11 ). For any s ∈ S

there exists some ξs ∈ Bng,z+ng,y
∞ × {−1, 1}nb,z+nb,y such that


Ac

z 0

0 Ac
y

RGc
z −Gc

y

 ξc
s +


Ab

z 0

0 Ab
y

RGb
z −Gb

y

 ξb
s =


bz

by

cy −Rcz

 , (3.12)

and s = [Gc
z 0]ξc

s + [Gb
z 0]ξb

s + cz. Letting ξc
s = (ξc

z ξc
y) and ξb

s = (ξb
z ξb

y) gives s = Gzξz + cz

and Azξz = bz, thus s ∈ Zh. From the final two rows of the equality constraints, Ayξy = by

and Rx = Gyξy + cy giving Rx ∈ Yh. Therefore s ∈ Zh ∩R Yh and S ⊆ Zh ∩R Yh.

Conversely, for any z ∈ Zh ∩R Yh there exists some ξz ∈ Bng,z
∞ × {−1, 1}nb,z such that

Azξz = bz and z = Gzξz+cz. Furthermore, there exists some y ∈ Yh such that y = Gyξy+cy =

Rz, where ξy ∈ Bng,y
∞ × {−1, 1}nb,y and Ayξy = by. Letting ξc

s = (ξc
z ξc

y) and ξb
s = (ξb

z ξb
y)

implies that ξs ∈ Bng,z+ng,y
∞ ×{−1, 1}nb,z+nb,y satisfies ( 3.12 ), and z = [Gc

z 0]ξc
s +[Gb

z 0]ξb
s + cz.

Therefore, z ∈ S, Zh ∩R Yh ⊆ S, and Zh ∩R Yh = S.

Proposition 3.2.4 (Generalized Halfspace Intersection). For any hybrid zonotope Zh =〈
Gc

z, Gb
z, cz, Ac

z, Ab
z, bz

〉
⊂ IRn and halfspace H− = {x ∈ IRn | hT x ≤ f} ⊂ IRm, and matrix

R ∈ IRm×n, the generalized intersection of Zh and H− under R is given by

Zh ∩R H− =
〈[

Gc
z 0

]
, Gb

z, cz,

 Ac
z 0

hT RGc
z

dm

2

 ,

 Ab
z

hT RGb
z

 ,

 bz

f − hT Rcz − dm

2

〉 ,

dm = f − hT Rcz +
ng,z∑
i=1
|hT Rg(c,i)

z |+
nb,z∑
i=1
|hT Rg(b,i)

z | .

(3.13)
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Proof. For ease of readability, let ξz = (ξc
z ξb

z), Gz = [Gc
z Gb

z], and Az = [Ac
z Ab

z]. Let Q

denote the hybrid zonotope given by the right-hand side of ( 3.13 ). For any q ∈ Q there

exists some ξq ∈ Bng,z+1
∞ × {−1, 1}nb,z such that

 Ac
z 0

hT RGc
z

dm

2

 ξc
q +

 Ab
z

hT RGb
z

 ξb
q =

 bz

f − hT Rcz − dm

2

 , (3.14)

and q = [Gc
z 0]ξc

q + Gb
zξb

q + cz. Let ξc
q = (ξc

z ξh) and ξb
q = ξb

z for ξc
z ∈ IRng,z , ξh ∈ IR, and

ξb
z ∈ {−1, 1}nb,z . Then q = Gzξz + cz giving q ∈ Zh. Expanding the second row of ( 3.14 )

gives hT R(Gzξz + cz) = f − (dm

2 ξh + dm

2 ). From the definition of dm and that ∥ξh∥∞ ≤ 1 it

follows that

hT Rq ∈
[
hT Rcz −

ng,z∑
i=1
|hT Rg(c,i)

z | −
nb,z∑
i=1
|hT Rg(b,i)

z |, f

]
, (3.15)

therefore Rq ∈ H− and Q ⊆ Zh ∩R H−.

Conversely, for any point z ∈ Zh ∩R H− there exists some ξz ∈ Bng,z
∞ × {−1, 1}nb,z such

that Azξz = bz, z = Gzξz + cz, and hT Rz ≤ f . Thus hT Rz ∈ [α, f ] for some α ≤ hT Rz

for all z ∈ Zh ∩R H−. Choose α = hT Rcz −
∑ng,z

i=1 |hT Rg(c,i)
z | − ∑nb,z

i=1 |hT Rg(b,i)
z | and let

β = hT Rcz +∑ng,z

i=1 |hT Rg(c,i)
z | +∑nb,z

i=1 |hT Rg(b,i)
z |, then by Lemma  3.1.1 hT RZh ⊆ [α, β] [ 59 ].

Let ξc
q = (ξc

z ξh) and ξb
q = ξb

z. The above then implies that ξq ∈ Bng,z+1
∞ × {−1, 1}nb,z satisfies

( 3.14 ), and z = [Gc
z 0]ξc

q + Gb
zξb

q + cz ∈ Q. Therefore Zh ∩RH− ⊆ Q and Zh ∩RH− = Q.

Proposition 3.2.5 (Cartesian Product). For any hybrid zonotopes

Zh =
〈
Gc

z, Gb
z, cz, Ac

z, Ab
z, bz

〉
⊂ IRn ,

Yh =
〈
Gc

y, Gb
y, cy, Ac

y, Ab
y, by

〉
⊂ IRm ,

their Cartesian product is given by

Zh × Yh =
〈Gc

z 0

0 Gc
y

 ,

Gb
z 0

0 Gb
y

 ,

cz

cy

 ,

Ac
z 0

0 Ac
y

 ,

Ab
z 0

0 Ab
y

 ,

bz

by

〉 ⊂ IRn+m . (3.16)
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Proof. For ease of readability, let ξi = (ξc
i ξb

i ), Gi = [Gc
i Gb

i ], and Ai = [Ac
i Ab

i ] for i = z, y, d.

Let D ⊂ IRn+m be the hybrid zonotope given by the right-hand side of (  3.16 ). For any d ∈ D

there exists some ξd ∈ Bng,z+ng,y
∞ × {−1, 1}nb,z+nb,y such that

d =

Gz 0

0 Gy

 ξd +

cz

cy

 , (3.17)

and Az 0

0 Ay

 ξd =

bz

by

 . (3.18)

Therefore [In 0m]d ∈ Zh and [0n Im]d ∈ Yh and D ⊆ Zh × Yh.

Conversely, for any δ ∈ Zh × Yh there exists some ξz ∈ Bng,z
∞ × {−1, 1}nb,z and ξy ∈

Bng,y
∞ × {−1, 1}nb,y such that

δ =

Gz

0

 ξz +

 0

Gy

 ξy +

cz

cy

 , (3.19)

and Az

0

 ξc
z +

 0

Ay

 ξc
y =

bz

by

 . (3.20)

Therefore δ ∈ D, Zh × Yh ⊆ D and D = Zh × Yh.

The set representation complexity of hybrid zonotopes grow linearly for each of the

identities defined for the above set operations. The specific growth for Minkowski sums,

generalized intersections, halfspace intersections, and Cartesian products are given in Table

 3.1 , while no growth in complexity is exhibited by linear mappings. The time complexity for

each of the basic set operations of hybrid zonotopes is also given in Table  3.1 . Note that the

time complexities of the generalized intersections are dominated by the linear mapping by

R and reduce to O(n1) for regular intersections and O(n1(ng,1 + nb,1)) for regular halfspace

intersections, i.e. when R = I.
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Table 3.1. Set representation complexity growth for Minkowski sums, gen-
eralized intersections, halfspace intersections, and Cartesian products given
by hybrid zonotopes Zh = Zh,1 ⊙ Zh,2 of appropriate dimension and matrix
R ∈ IRn2×n1 .
Set Operation Zh Representation Complexity Time Complexity

ng nb nc O(·)
RZh,1 ng,1 nb,1 nc,1 O(n1n2(ng,1 + nb,1))

Zh,1 ⊕Zh,2 ng,1 + ng,2 nb,1 + nb,2 nc,1 + nc,2 O(n1)
Zh,1 ∩R Zh,2 ng,1 + ng,2 nb,1 + nb,2 nc,1 + nc,2 + n2 O(n1n2(ng,1 + nb,1))
Zh,1 ∩R H− ng,1 + 1 nb,1 nc,1 + 1 O(n1n2(ng,1 + nb,1))
Zh,1 ×Zh,2 ng,1 + ng,2 nb,1 + nb,2 nc,1 + nc,2 O(1)

3.2.2 Unions

In this section, the closure of hybrid zonotopes under union operations is proven. This

is achieved by including the generators and constraints of both operating sets within the

resulting hybrid zonotope. By introducing one additional binary factor, the union switches

between which of two sets are active by constraining the factors of the inactive set to a fixed

value. The proposition and technical proof will be followed by a discussion of its underlying

principles and how the growth of set representation complexity may be reduced.

Proposition 3.2.6 (Union). For any two hybrid zonotopes Zh = ⟨Gc
z, Gb

z, cz, Ac
z, Ab

z, bz⟩ ⊂

IRn and Wh = ⟨Gc
w, Gb

w, cw, Ac
w, Ab

w, bw⟩ ⊂ IRn, define the vectors Ĝb ∈ IRn, ĉ ∈ IRn, Âb
z ∈

IRnc,z , b̂z ∈ IRnc,z , Âb
w ∈ IRnc,w , and b̂w ∈ IRnc,w , such that

 I I

−I I


Ĝb

ĉ

 =

Gb
w1 + cz

Gb
z1 + cw

 ,

−I I

I I


Âb

z

b̂z

 =

 bz

−Ab
z1

 ,

−I I

I I


Âb

w

b̂w

 =

−Ab
w1

bw

 .
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Then the union of Zh andWh is the hybrid zonotope Zh∪Wh = ⟨Gc
u, Gb

u, cu, Ac
u, Ab

u, bu⟩ ⊂ IRn

where

Gc
u =

[
Gc

z Gc
w 0

]
, Gb

u =
[
Gb

z Gb
w Ĝb

]
, cu = ĉ,

Ac
u =


Ac

z 0 0

0 Ac
w 0

Ac
3 I

 , Ab
u =


Ab

z 0 Âb
z

0 Ab
w Âb

w

Ab
3

 , bu =


b̂z

b̂w

b3

 ,

Ac
3 =



I 0

−I 0

0 I

0 −I

0 0

0 0

0 0

0 0



, Ab
3 =



0 0 1
21

0 0 1
21

0 0 −1
21

0 0 −1
21

1
2I 0 1

21

−1
2I 0 1

21

0 1
2I −1

21

0 −1
2I −1

21



, b3 =



1
21
1
21
1
21
1
21

0

1

0

1



.

(3.21)

Proof. Let X = ⟨Gc
u, Gb

u, cu, Ac
u, Ab

u, bu⟩ denote the hybrid zonotope given by ( 3.21 ). For

any x ∈ X there exists some ξc
x ∈ Bng,x

∞ and ξb
x ∈ {−1, 1}nb,x such that Ac

uξc
x + Ab

uξb
x = bu

and x = Gc
uξc

x + Gb
uξb

x + cu. Let ξc
x = (ξc

z ξc
w ξc

u), where ξc
z ∈ IRng,z , ξc

w ∈ IRng,w , and

ξc
u ∈ IR2(ng,z+ng,w+nb,z+nb,w), and ξb

x = (ξb
z ξb

w ξb
u), where ξb

z ∈ {−1, 1}nb,z , ξb
w ∈ {−1, 1}nb,w , and

ξb
u ∈ {−1, 1}. To prove that X ⊆ Zh ∪ Wh, it is first shown that when ξb

u = 1 the factors

ξc
w and ξb

w are constrained to 0 and −1, respectively. Then by construction the remaining

generators and constraints give the exact definition of the set Zh. It is then shown that the

set Wh is similarly recovered when ξb
u = −1.
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Expanding the third row of the equality constraints Ac
uξc

x + Ab
uξb

x = bu gives

ξc
z = 1

21− 1
2ξb

u − ξc
u,1 = −1

21 + 1
2ξb

u + ξc
u,2 , (3.22a)

ξc
w = 1

21 + 1
2ξb

u − ξc
u,3 = −1

21− 1
2ξb

u + ξc
u,4 , (3.22b)

1
2ξb

z = −1
2ξb

u − ξc
u,5 = −1 + 1

2ξb
u + ξc

u,6 , (3.22c)
1
2ξb

w = 1
2ξb

u − ξc
u,7 = −1− 1

2ξb
u + ξc

u,8 , (3.22d)

where ξc
u = (ξc

u,1 · · · ξc
u,8). Letting ξb

u = 1, ( 3.22 ) reduces to

ξc
z = −ξc

u,1 = ξc
u,2 , (3.23a)

ξc
w = 1− ξc

u,3 = −1 + ξc
u,4 , (3.23b)

ξb
z = −1− 2ξc

u,5 = −1 + 2ξc
u,6 , (3.23c)

ξb
w = 1− 2ξc

u,7 = −31 + 2ξc
u,8 . (3.23d)

Given that ∥ξc
u∥∞ ≤ 1, ( 3.23b ) and ( 3.23d ) are only satisfied for ξc

w = 0 and ξb
w = −1

respectively, while ( 3.23a ) and ( 3.23c ) are satisfied for any ∥ξc
z∥∞ ≤ 1 and ξb

z ∈ {−1, 1}nb,z .

Let ξc
x = (ξc

z 0 ξc
u) and ξb

x = (ξb
z −1 1). Expanding x = Gc

uξc
x + Gb

uξb
x + cu gives

x = Gc
zξc

z + Gc
w0 + 0ξc

u + Gb
zξb

z −Gb
w1 + Ĝb + ĉ , (3.24)

and, after substituting −Gb
w1 + Ĝb + ĉ = cz, reduces to x = Gc

zξc
z + Gb

zξb
z + cz. Expanding

the first two rows of the equality constraints Ac
uξc

x + Ab
uξb

x = bu results in

Ac
zξc

z + Ab
zξb

z + Âb
z = b̂z ,

Ac
w0− Ab

w1 + Âb
w = b̂w ,

(3.25)

which, after substituting b̂z − Âb
z = bz and b̂w − Âb

w = −Ab
w1, gives Ac

zξc
z + Ab

zξb
z = bz and

−Ab
w1 = −Ab

w1. Combining (  3.23 )-( 3.25 ) results in x ∈ Zh for ξb
u = 1.
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Now let ξb
u = −1 and ( 3.22 ) reduce to

ξc
z = 1− ξc

u,1 = −1 + ξc
u,2 , (3.26a)

ξc
w = −ξc

u,3 = ξc
u,4 , (3.26b)

ξb
z = 1− 2ξc

u,5 = −31 + 2ξc
u,6 , (3.26c)

ξb
w = −1− 2ξc

u,7 = −1 + 2ξc
u,8 . (3.26d)

Given that ∥ξc
u∥∞ ≤ 1, ( 3.26a ) and ( 3.26c ) are only satisfied for ξc

z = 0 and ξb
z = −1

respectively, while ( 3.26b ) and ( 3.26d ) are satisfied for any ∥ξc
w∥∞ ≤ 1 and ξb

w ∈ {−1, 1}nb,w .

Let ξc
x = (0 ξc

w ξc
u) and ξb

x = (−1 ξb
w − 1). Expanding x = Gc

uξc
x + Gb

uξb
x + cu gives

x = Gc
z0 + Gc

wξc
w + 0ξc

u −Gb
z1 + Gb

wξb
w − Ĝb + ĉ (3.27)

and, after substituting −Gb
z1− Ĝb + ĉ = cw, reduces to x = Gc

wξc
w + Gb

wξb
w + cw. Expanding

the first two rows of the equality constraints Ac
uξc

x + Ab
uξb

x = bu results in

Ac
z0− Ab

z1− Âb
z = b̂z

Ac
wξc

z + Ab
wξb

w − Âb
w = b̂w

(3.28)

which, after substituting b̂z + Âb
z = −Ab

z1 and b̂w + Âb
w = bw, gives −Ab

z1 = −Ab
z1 and

Ac
wξc

w + Ab
wξb

w = bw. Combining ( 3.26 )-( 3.28 ) results in x ∈ Wh for ξb
u = −1. Given that

ξb
u ∈ {−1, 1} and that the choice of x ∈ X is arbitrary, X ⊆ Zh ∪Wh.

Conversely, for any z ∈ Zh there exists some ξc
z ∈ Bng,z

∞ and ξb
z ∈ {−1, 1}nb,z such that

Ac
zξc

z +Ab
zξb

z = bz and z = Gc
zξc

z +Gb
zξb

z + cz. Letting ξc
x = (ξc

z 0 ξc
u) and ξb

x = (ξb
z −1 1), ( 3.25 )

is satisfied and (  3.23 ) implies that ∥ξc
u∥∞ ≤ 1. Applying ( 3.24 ) then gives z ∈ X . For any

w ∈ Wh there exists some ξc
w ∈ Bng,w

∞ and ξb
w ∈ {−1, 1}nb,w such that Ac

wξc
w + Ab

wξb
w = bw and

w = Gc
wξc

w + Gb
wξb

w + cw. Letting ξc
x = (0 ξc

w ξc
u) and ξb

x = (−1 ξb
w − 1), (  3.28 ) is satisfied and

( 3.26 ) implies that ∥ξc
u∥∞ ≤ 1. Applying ( 3.27 ) then gives w ∈ X . Given that the choice of

z ∈ Zh and w ∈ Wh is arbitrary, Zh ∪Wh ⊆ X and therefore Zh ∪Wh = X .
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The union set operation given by Proposition  3.2.6 introduces 2(ng,z + ng,w + nb,z + nb,w)

“slack” continuous factors, ξc
u, and one switching binary factor, ξb

u. The additional 2(ng,z +

ng,w + nb,z + nb,w) linear equality constraints, Ac
3(ξc

z ξc
w) + Iξc

u + Ab
3(ξb

z ξb
w ξb

u) = b3, implement

the switch between which of the two sets are active as

ξb
u = 1 =⇒

(ξc
z ξb

z) ∈ Bng,z
∞ × {−1, 1}nb,z

(ξc
w ξb

w) = (0 −1)
,

ξb
u = −1 =⇒

(ξc
z ξb

z) = (0 −1)

(ξc
w ξb

w) ∈ Bng,w
∞ × {−1, 1}nb,w

.

(3.29)

The hatted constants, Ĝb, ĉ, Âb
z, b̂z, Âb

w, and b̂w, multiplied by the binary switch, ξb
u, then

account for the binary factors being constrained to −1 instead of 0, the change of centers,

and the feasibility of the constraints of the inactive set to represent the exact union of two

hybrid zonotopes by a single hybrid zonotope.

For ease of understanding, Proposition  3.2.6 applies these constraints to all continuous

and binary factors; however, in practice it is only necessary, and beneficial, to apply these

constraints to factors that map through non-zero generators. This fact stems from the

observation that the factors and generator matrices may be parsed, for the example of x ∈ Z

in the proof of Proposition  3.2.6 , such that ξw = (ξw,̸=0 ξw,=0) and Gw = [Gw,̸=0 0]. Using

this partition, the equation for x then reduces to

x = Gzξz + Gw,̸=0ξw,̸=0 + Ĝb + ĉ , (3.30)

and only the factors ξw,̸=0 must be constrained to cancel their contribution to x. Feasibility

is maintained in the remaining equality constraints since the feasible values of ξc
w,=0 = 0 and

ξb
w,=0 = −1 still exist, although not strictly enforced. This modification is accomplished by

replacing the identity matrices in Ac
3 and Ab

3 with staircase matrices having a single one in
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each row located in the ith column corresponding to the index of each non-zero generator.

For example, the union of hybrid zonotopes Z and W with generator matrices given by

Gc
z =

[
gc(1)

z 0 0 gc(4)
z

]
, Gb

z =
[
gb(1)

z 0 0
]

,

Gc
w =

[
gc(1)

w gc(2)
w

]
, Gb

w =
[
gb(1)

w 0 gb(3)
w 0

]
,

may be represented using the staircase matrices

Sc
z =

1 0 0 0

0 0 0 1

 , Sb
z =

[
1 0 0

]
,

Sc
w =

1 0

0 1

 , Sb
w =

1 0 0 0

0 0 1 0

 .

The matrices in the third row of the equality constraints of (  3.21 ) then become

Ac
3 =



Sc
z 0

−Sc
z 0

0 Sc
w

0 −Sc
w

0 0

0 0

0 0

0 0



, Ab
3 =



0 0 1
21

0 0 1
21

0 0 −1
21

0 0 −1
21

1
2Sb

z 0 1
21

−1
2Sb

z 0 1
21

0 1
2Sb

w −1
21

0 −1
2Sb

w −1
21



. (3.31)

Making this substitution reduces the growth in the set representation complexity by intro-

ducing fewer “slack” factors and equality constraints. This is especially useful when factors

appear in the constraints and not the generator matrices, for example, when applying Propo-

sition  3.2.6 multiple times. Let nr
g,z and nr

b,z denote the number of nonzero continuous and
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binary generators in the representation of Zh and nr
g,w and nr

b,w for Wh, then the set repre-

sentation complexity growth of the union operation is given by

ng =ng,z + ng,w + 2(nr
g,z + nr

b,z + nr
g,w + nr

b,w) , (3.32a)

nb =nb,z + nb,w + 1 , (3.32b)

nc =nc,z + nc,w + 2(nr
c,z + nr

c,z + nr
c,w + nr

c,w) . (3.32c)

3.2.3 Complements

This section provides an identity for the representation of the complements of constrained

zonotopes as hybrid zonotopes over a bounded region of interest. It is then shown how this

identity implies the closure of hybrid zonotopes under complement set operations.

The point containment problem for the constrained zonotope Zc = ⟨G, c, A, b⟩ ⊂ IRn may

be determined by solving the Linear Program (LP) [ 18 , Proposition 2]

z ∈ Zc ⇐⇒ min

∥ξ∥∞

∣∣∣∣∣∣∣
G

A

 ξ =

z − c

b


 ≤ 1 . (3.33)

The complement of a constrained zonotope may then be defined by modifying the result in

[ 4 ] using the constrained zonotope’s lifted zonotope representation [  18 ].

Lemma 3.2.1. [ 4 , Lemma 2] Given a constrained zonotope Zc = ⟨G, c, A, b⟩ ⊂ IRn with

od ≥ 1 and x ∈ IRn, let

δ∗(x) = min
δ,ξ

δ

s.t.

x

0

 =

G

A

 ξ +

 c

−b

 ,

∥ξ∥∞ ≤ 1 + δ .

(3.34)

Then x ̸∈ Zc ⇐⇒ δ∗(x) > 0.

The condition given in Lemma  3.2.1 may be relaxed to give the closure of the complement

by using non-strict inequalities, i.e. x ∈ Zc
c ⇐⇒ δ∗(x) ≥ 0, noting that δ∗(x) = 0 occurs
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when x ∈ ∂Zc [ 60 ]. When an upper bound on the minimum infinity norm is defined such

that X ⊆ {Gξ + c | ∥ξ∥∞ ≤ 1 + δm, Aξ = b}, then x ∈ CX (Zc) =⇒ δ∗(x) ∈ [0, δm].

Inspired by the use of complements of zonotopes in [ 61 ], the closure of the complement of a

constrained zonotope is now defined as a hybrid zonotope.

Proposition 3.2.7 (Complement). Given any full dimensional, nonempty constrained zono-

tope Zc = ⟨G, c, A, b⟩ ⊂ IRn and a convex, bounded region of interest X ⊇ Zc, define

positive scalars δm and λm such that X ⊆ {Gξ + c | ∥ξ∥∞ ≤ 1 + δm, Aξ = b} and

λm ≥ max
{
∥λ∥∞ | |[GT AT ]λ| ≤ 1

}
, and let m = δm + 1. Define the interval sets

{Gf,1ξf,1 + cf,1 | ∥ξf,1∥∞ ≤ 1} =
[
−
(
m + δm

2

)
12ng,z ,

(
1 + δm

2

)
12ng,z

]
,

{Gf,2ξf,2 + cf,2 | ∥ξf,2∥∞ ≤ 1} =

−
(
m + 3δm

2 + 1
)

12ng,z , δm

2 12ng,z

−212ng,z , 02ng,z

 .

Then the closure of the complement of Zc within the region of interest X is given by the

hybrid zonotope CX (Zc) = ⟨Gc
c, Gb

c, cc, Ac
c, Ab

c, bc⟩ ⊂ IRn where,

Gc
c =

[
mG 0

]
, Gb

c = 0 , cc = c,

Ac
c =



mA 0 0 0

Ac
P F Gf,1 0

Ac
DF 0 0

Ac
CS 0 Gf,2


, Ab

c =



0

0

0

Ab
CS


, bc =



b

cf,1

bDF

cf,2


,

Ac
P F =

 mI − δm

2 0 0 0

−mI − δm

2 0 0 0

 ,

Ac
DF =

0 0 λm

[
GT AT

]
1
2I −1

2I

0 0 0 1
21 1

21

 , bDF =

 0

1− ng

 ,

Ac
CS =



−mI δm

2 0 0 0

mI δm

2 0 0 0

0 0 0 I 0

0 0 0 0 I


, Ab

CS =



mI 0

0 mI

−I 0

0 −I


.

(3.35)
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Proof. Let Wh = ⟨Gc
c, Gb

c, cc, Ac
c, Ab

c, bc⟩ ⊂ IRn denote the hybrid zonotope given by ( 3.35 ).

For any w ∈ Wh there exists some ξc
w ∈ Bng,w

∞ and ξb
w ∈ {−1, 1}nb,w such that Ac

cξ
c
w+Ab

cξ
b
w = bc

and w = Gc
cξ

c
w + Gb

cξ
b
w + cc. Let ξc

w = (ξc
c ξc

δ ξc
λ ξc

µ,1 ξc
µ,2 ξc

f,1 ξc
f,2), where ξc

c ∈ IRng,z , ξc
δ ∈ IR,

ξc
λ ∈ IRn+nc,z , ξc

µ,1,2 ∈ IRng,z , ξc
f,1 ∈ IR2ng,z , and ξc

f,2 ∈ IR4ng,z , and ξb
w = (ξb

1 ξb
2), where

ξb
1,2 ∈ {−1, 1}ng,z . Then w = mGξc

c + c and the first row of Ac
cξ

c + Ab
cξ

b = bc gives mAξc
c = b.

Expanding the second row of Ac
cξ

c
w + Ab

cξ
b
w = bc gives

 mξc
c

−mξc
c

+

− δm

2 ξc
δ

− δm

2 ξc
δ

 = −Gf,1ξ
c
f,1 + cf,1 , (3.36)

which implies that mξc
c − δm

2 ξc
δ ≤ (1 + δm

2 )1 and −mξc
c − δm

2 ξc
δ ≤ (1 + δm

2 )1. Expanding the

third row of Ac
cξ

c
w + Ab

cξ
b
w = bc gives

λm

[
GT AT

]
ξc

λ + 1
2ξc

µ,1 −
1
2ξc

µ,2 = 0 ,

1
2
(
ξc

µ,1 + ξc
µ,2

)T
1 = 1− ng,z .

(3.37)

Expanding the fourth row of Ac
cξ

c
w + Ab

cξ
b
w = bc gives



−mξc
c + δm

2 ξc
δ + (1 + δm)ξb

1

mξc
c + δm

2 ξc
δ + (1 + δm)ξb

2

ξc
µ,1 − ξb

1

ξc
µ,2 − ξb

2


= −Gf,2ξ

c
f,2 + cf,2 , (3.38)

which implies that −mξc
c + δm

2 ξc
δ +(1+δm)ξb

1 ≤ δm

2 1, mξc
c + δm

2 ξc
δ +(1+δm)ξb

1 ≤ δm

2 1, ξc
µ,1 ≤ ξb

1,

and ξc
µ,2 ≤ ξb

2. Define the change of variables

ξ = mξc
c , δ = δm

2 ξc
δ + δm

2 , λ = λmξc
λ

µ1,2 = 1
2ξc

µ,1,2 + 1
2 , p1,2 = 1

2ξb
1,2 + 1

2 .

(3.39)
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Carrying these change of variables through the above constraints results in

w = Gξ + c, Aξ = b, ∥ξ∥∞ ≤ 1 + δ, (3.40a)[
GT AT

]
λ + µ1 − µ2 = 0, (µ1 + µ2)T 1 = 1, (3.40b)

−2(1 + δm)(1− p1) ≤ ξ − δ−1, µ1 ≤ p1,

−2(1 + δm)(1− p2) ≤ −ξ − δ−1, µ1 ≤ p1,
(3.40c)

δ ∈ [0, δm], µ1,2 ∈ [0, 1]ng,z , p1,2 ∈ {0, 1}ng,z , (3.40d)

where ( 3.40a ) is the primal feasibility, resulting from ( 3.36 ), (  3.40b ) is the dual feasibility,

resulting from (  3.37 ), and (  3.40c ) is the complementary slackness, resulting from (  3.38 ),

KKT conditions of the LP (  3.34 ) [ 61 ]. Given that the LP is convex, the KKT conditions are

necessary and sufficient; thus δ = δ∗(w). Recalling Lemma  3.2.1 , the constraint δ ∈ [0, δm]

in ( 3.40d ) results in w ∈ Zc
c . Given that the choice of w ∈ Wh is arbitrary Wh ⊆ Zc

c .

Conversely, for any z ∈ CX (Zc), there exists some ξ such that z = Gξ + c, Aξ = b, and

δ∗(z) ∈ [0, δm]. Since δ∗(z) is the minimum of the convex LP ( 3.34 ), there exists some λ,

µ1,2 ≥ 0, and p1,2 ∈ {−1, 1}ng,z such that (  3.40 ) holds. Letting ξc
w = (ξc

c ξc
δ ξc

λ ξc
µ,1 ξc

µ,2 ξc
f,1 ξc

f,2),

ξb
w = (ξb

1 ξb
2), and applying the change of variables ( 3.39 ), the above implies that ξc

w ∈ Bng,w
∞ ,

ξb
w ∈ {−1, 1}nb,w , Ac

cξ
c
w + Ab

cξ
b
w = bc, and z = Gc

cξ
c
w + Gb

cξ
b
w + cc; thus z ∈ Wh. Given that the

choice of z ∈ CX (Zc) is arbitrary, CX (Zc) ⊆ Wh and Wh ∩ X = CX (Zc).

The complement set operation given by Proposition  3.2.7 embeds the mixed integer

formulation of the KKT conditions of the LP ( 3.34 ) directly within the equality constraints

of the hybrid zonotope set definition. The limitation that the proposed identity is only valid

over the bounded region X is due to the so called “big-M” constant, δm, that appears in

the complementary slackness condition ( 3.40c ) [ 53 ]. The representation complexity of the

hybrid zonotope CX (Zc) ⊂ IRn defined by Proposition  3.2.7 is given by

ng,c = 9ng,z + nc,z + n + 1 , (3.41a)

nb,c = 2ng,z , (3.41b)

nc,c = 7ng,z + nc,z + 1 , (3.41c)
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where n is the dimension, ng,z is the number of generators, and nc,z is the number of con-

straints of Zc = ⟨G, c, A, b⟩ ⊂ IRn.

Theorem 3.2.1. Hybrid zonotopes are closed under complement set operations.

Proof. As proven in Theorem  3.1.1 , a set is a hybrid zonotope if and only if it is the union

of the finite collection of constrained zonotopes Zc,i given by ( 3.3 ). Thus given any hybrid

zonotope Zh, by De Morgan’s law, the closure of the complement of Zh is given by

Zc
h =

 ⋃
ξb

i ∈T
Zc,i


c

=
⋂

ξb
i ∈T
Zc

c,i . (3.42)

Furthermore, given the representation of Zc
c,i by Proposition  3.2.7 as a hybrid zonotope and

the closure of hybrid zonotopes under intersections, it follows that Zc
h is a hybrid zonotope.

Remark 3.2.1. The KKT conditions are necessary but no longer sufficient for the nonconvex

point containment problem of the hybrid zonotope (see Proposition  3.2.8 ). To avoid this

issue, the result of Theorem  3.2.1 ensures that all |T | local minima satisfying ( 3.34 ) are

enforced over the region of interest X . Although the growth in the set representation given by

( 3.41 ) is increased proportional to the number of nonempty constrained zonotopes |T |, this

trend is similar to that encountered when representing the complements of nonconvex sets as

hyperplane arrangements [ 13 ].

Remark 3.2.2. Note that the representations of constrained and hybrid zonotopes are not

unique. For example, given the hybrid zonotope Zh = CX (Zc), it holds that CX (Zh) =

Zc for any X ⊇ Zc. While the points represented by these two sets are equivalent, their

representations are not.

3.2.4 Point and Set Containment

Following the evaluation of point containment of constrained zonotopes by solving linear

programs [ 18 , Prop. 2], the point containment of a hybrid zonotope requires the evaluation

of the feasibility of an Mixed-Integer Linear Program (MILP).
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Proposition 3.2.8 (Point Containment). For any Zh =
〈
Gc, Gb, c, Ac, Ab, b

〉
⊂ IRn,

Zh ̸= ∅ ⇐⇒
{
∥ξc∥∞ ≤ 1 , ξb ∈ {−1, 1}nb

∣∣∣ Acξc + Abξb = b
}
̸= ∅ , (3.43)

z ∈ Zh ⇐⇒

∥ξc∥∞ ≤ 1 , ξb ∈ {−1, 1}nb

∣∣∣∣∣∣∣
Gc Gb

Ac Ab


ξc

ξb

 =

z − c

b


 ̸= ∅ . (3.44)

Proof. Following the proof of [ 18 , Prop. 2]. By Def.  3.1.1 , z ∈ Zh if and only if there exists

some ξc and ξb such that ∥ξc∥∞ ≤ 1, ξb ∈ {−1, 1}nb , Acξc +Abξb = b, and z = Gcξc +Gbξb +c.

Choosing (ξc ξb) to be any factors such that the right-hand side of ( 3.44 ) is feasible, z ∈ Zh

if and only if ( 3.44 ) holds. When ( 3.43 ) is satisfied, the point z = Gcξc + Gbξb + c, where

(ξc ξb) are any factors such that the right-hand side of ( 3.43 ) is feasible, belongs to Zh by

Def.  3.1.1 and therefore Zh ̸= ∅. If no such point exists, ( 3.43 ) will not be satisfied.

Note that the right-hand sides of ( 3.43 ) and ( 3.44 ) are the feasible space of a MILP with

the constraints

ξc ∈ Bng
∞ , ξb ∈ {−1, 1}nb , Acξc + Abξb = b , (3.45a)

z = Gcξc + Gbξb + c . (3.45b)

Given a point z ∈ IRn, by Proposition  3.2.8 , z ∈ Zh if the mixed-integer constraints ( 3.45a )-

( 3.45b ) are feasible. If the constraints ( 3.45a ) are infeasible then Zh = ∅.

The set containment of two hybrid zonotopes may be determined by evaluating if the

intersection of the closure of the complement of one of the sets with the other is empty

leveraging Theorem  3.2.1 and Proposition  3.2.8 .

Proposition 3.2.9 (Set Containment). For any two hybrid zonotopes Zh ⊂ IRn and Wh ⊂

IRn, define CX (Zh) by Proposition  3.2.7 for a region of interest X such that X ⊇ Wh, then

Wh ⊂ Zh ⇐⇒ Wh ∩ CX (Zh) = ∅ . (3.46)

Proof. Let Wh ⊂ Zh. Then for any w ∈ Wh it holds that w ∈ Z◦
h and thus w ̸∈ Zc. Given

that the choice of w is arbitrary and X is chosen such that X ⊇ Wh implies that w ∈ X
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and therefore Wh ∩ CX (Zh) = ∅. Conversely, let Wh ∩ CX (Zh) = ∅. Then for any w ∈ Wh it

holds that w ∈ Z◦
h ∩ X . Given that the choice of w is arbitrary and X is chosen such that

X ⊇ Wh implies that w ∈ X and therefore Wh ⊂ Zh.

Remark 3.2.3. A tight region of interest X satisfying X ⊇ Wh may always be found as

the interval hull of Wh by solving 2n MILPs, as discussed in Section  3.2.5 . Alternatively, a

sufficient enclosure X may be found algebraically (see [ 59 ] for interval hulls of zonotopes) as

the interval hull of the zonotope Z = ⟨[Gc Gb], c⟩ satisfying Zh ⊆ Z ⊆ X by Lemma  3.1.1 .

The set containment of two zonotopes is a difficult problem. Indeed necessary and suffi-

cient conditions have yet to be obtained [ 62 ]. In [  60 ] it is proven that numerically verifying

the set containment of two zonotopes is co-NP-complete and propose solving the problem

either by enumerating the vertices of the subset Wh or through solving a nonconvex opti-

mization problem. The method proposed here extends this type of verification to nonconvex

sets and amounts to a search of the hybrid zonotopes integer feasible space to find if any

solution exists, which is NP-complete. Although set containment may be verified leverag-

ing Propositions  3.2.8 and  3.2.9 , the problem remains numerically challenging. Nonetheless,

Proposition  3.2.9 offers a promising mixed-integer approach, especially when the superset

Zh is a constrained zonotope in CG-rep and Proposition  3.2.7 may be directly applied to

represent its complement.

3.2.5 Support Functions and Convex Enclosures

While solving MILPs to obtain a global optimum is NP-hard, determining their feasibility

is NP-complete and may often be decided quickly compared to performing optimization [  63 ].

The intersection of a hybrid zonotope and a given halfspace may be detected by determining if

Zh∩H− = ∅ through Propositions  3.2.4 and  3.2.8 through such a feasibility check. However,

it is often desirable to determine the bounds of a hybrid zonotope in a given direction l ∈ IRn,

e.g. to discover the maximum possible constraint violation of a system when its reachable

set is given in HCG-rep. To find these tight bounds, the notion of support functions are now

extended to hybrid zonotopes.
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Definition 3.2.1 (Support Function). The support function of a hybrid zonotope Zh ⊂ IRn

is

ρZh
(l) = max

{
lT z

∣∣∣ z ∈ Zh

}
, (3.47)

and it holds that Zh ⊂ H−
l for the supporting halfspace

H−
l =

{
z ∈ IRn

∣∣∣ lT z ≤ ρZh
(l)
}

. (3.48)

When ( 3.47 ) is solved to obtain a global optimum, the supporting halfspace ( 3.48 ) is

tight in the sense that the corresponding hyperplane intersects the set Zh and Zh ⊂ H−
l [ 43 ].

The containment constraint that z ∈ Zh in ( 3.47 ) follows from Proposition  3.2.9 , and ρZh
(l)

can be found by solving the single MILP

ρZh
(l) = max

lT (Gcξc + Gbξb + c)

∣∣∣∣∣∣∣
Acξc + Abξb = b ,

∥ξc∥∞ ≤ 1 , ξb ∈ {−1, 1}nb

 . (3.49)

In the analysis of convex sets, support functions are often used to provide tight polytopic

enclosures of the set in H-rep as the intersection of multiple supporting halfspaces [ 8 ], [ 15 ],

[ 43 ], [  59 ], [  64 ], [  65 ]. Sampling the support function of a convex set over the collection of

directions L ⊆ IRn generates the over-approximating template polyhedron in H-rep

⌈X⌉L =
⋂
l∈L

{
x ∈ IRn

∣∣∣ lT x ≤ ρX (l)
}

, (3.50)

such that ⌈X⌉L ⊇ X . The accuracy of the over-approximating H-rep polytope increases with

the number of directions sampled and indeed for convex sets it holds that ⌈X⌉L = X for

L = IRn [ 59 ], [  64 ].

Proposition 3.2.10 (Convex Enclosure). Given any hybrid zonotope Zh ⊂ IRn, its convex

hull CH(Zh), and collection of directions L ⊆ IRn, it holds that the template polyhedron

⌈Zh⌉L defined by ( 3.50 ) satisfies

Zh ⊆ CH(Zh) ⊆ ⌈Zh⌉L , (3.51)
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and CH(Zh) = ⌈Zh⌉L for L = IRn.

Proof. Let l ∈ L ⊆ IRn. By Theorem  3.1.1 , every hybrid zonotope is equivalent to the union

of a finite number of constrained zonotopes Zh = ⋃2nb

i=1Zc,i, where Zc,i is given by ( 3.3 ). Based

on the definition of convex hulls, Zh ⊆ CH(Zh) and therefore Zh ⊆ CH(⋃2nb

i=1Zc,i). Sampling

the support function of Zh for l then gives ρZh
(l) ≥ ρZc,i(l) ∀ i ∈ {1, . . . , 2nb}. Furthermore

the support function of a convex hull is given by ρCH(⋃Zc,i)(l) = max{ρZc,1(l), . . . , ρZc,2nb
(l)}

[ 59 ]. Thus ρZh
(l) = ρCH(⋃Zc,i)(l). Applying Definition  3.2.1 gives Zh ⊆ CH(Zh) ⊂ H−

l and

iterating over all l ∈ L concludes the proof.

Proposition  3.2.10 provides a method of generating tight convex enclosures of hybrid

zonotopes by solving a series of MILPs. The simplest compact enclosure is given by sampling

the support function in the n cardinal directions, i.e. L = {e1, . . . , en,−e1, . . . ,−en} ⊂ IRn

where ei is the standard ith unit vector, and is referred to as the hybrid zonotope’s interval

hull. The interval hull is the tightest axis oriented box containing the set and is given by

the n-dimensional interval

B(Zh) =


ρZh

(−e1) , ρZh
(e1)

... ,
...

ρZh
(−en) , ρZh

(en)

 . (3.52)

Convex enclosures generated by Proposition  3.2.10 of the hybrid zonotope ( 3.6 ) from Exam-

ple  3.1.1 with varying number of directions sampled evenly from the unit circle are depicted

in Figure  3.3 .

3.3 Binary Trees

As proven in Theorem  3.1.1 , a hybrid zonotope with nb binary factors is equivalent to

the union of the 2nb constrained zonotopes Zc,i given by ( 3.3 ). When it is necessary to

decompose a hybrid zonotope into a collection of constrained zonotopes, enumeration of the

set {−1, 1}nb may become intractable for large nb. However, it is possible that some of the

elements ξb
i ∈ {−1, 1}nb map to empty constrained zonotopes and therefore do not contribute
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Figure 3.3. Example of generating tight convex enclosures of a hybrid zono-
tope by sampling the set’s support function. The collection of directions L1
and L2 are evenly spaced around the unit circle in 8 and 100 directions, re-
spectively.

points to the hybrid zonotope. In this section it is shown how the enumeration problem of

decomposing hybrid zonotopes may be reduced by iteratively growing binary trees in parallel

with set operations.

For a hybrid zonotope Zh, let T ⊆ {−1, 1}nb be the set of discrete elements that map

to nonempty constrained zonotopes, that is T = {ξb
i ∈ {−1, 1}nb | Zc,i ̸= ∅}. Leveraging

Theorem  3.1.1 and Zh ∪ ∅ = Zh, it follows that

Zh =
⋃

ξb
i ∈T
Zc,i . (3.53)

The enumeration problem in decomposing hybrid zonotopes may therefore be reduced by

only considering the values of the binary factors belonging to T . The discrete set T also gives

a measure of how efficient the set is—ideally a hybrid zonotope representing 2N constrained

zonotopes would only have N binary factors.

The hybrid zonotope is a mixed integer set representation [ 66 ] and may be described by

a rooted binary tree [ 67 ]. The root of the binary tree is the hybrid zonotope Zh and the

nonempty leaves are the constrained zonotopes Zc,i ∀ ξb
i ∈ T . The binary tree consists of nb
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layers, where the jth layer branches on the value of the jth binary factor. Each layer of the

tree between the root and leaves consists of branch nodes given by hybrid zonotopes

Z j
h,i =

〈
Gc, Gb

d, c + Gb
aξb

i , Ac, Ab
d, b− Ab

aξb
i

〉
, (3.54)

where the binary generator and constraint matrices are partitioned such that Gb = [Gb
a Gb

d],

where Gb
a are the j columns for the ancestor nodes multiplied by ξb

i ∈ {−1, 1}j for the ith

branch node of the layer, and Gb
d the remaining columns for the binary factors that are

branched on by the descendants. The binary tree and relation between each node for a

hybrid zonotope with nb/ log2(|T |) = 1.5 is depicted in Fig.  3.4 .

Figure 3.4. Example of the binary tree for a hybrid zonotope Zh with three
binary factors. The set T is depicted by the bold black lines and empty
nodes are grey with dashed borders. In this example, the relations between
layers of the binary tree are given by Zh = Z1

h,1 ∪ Z1
h,2, Z1

h,1 = Z2
h,2 = Zc,3,

Z1
h,2 = Z2

h,3 ∪ Z2
h,4, Z2

h,3 = Zc,5 ∪ Zc,6, and Z2
h,4 = Zc,8.

The set T may be found with any MILP algorithm that explores the constrained space of

factors given by ( 3.45a ), e.g., branch and cut [ 53 ], and is referred to as the integer feasible set

of the MILP. Although many algorithms exist that may be used to find T , the computational

burden grows as the number of variables increases. Through all set operations of hybrid

zonotopes, the constraints on the factors of the operating sets are imposed directly in the

resulting hybrid zonotope. Thus the hybrid zonotope generated through set operations with

additional binary factors may only branch from the nonempty leaves of the operating sets.

Given a hybrid zonotope Zh,1 with integer feasible set T1 ⊆ {−1, 1}nb,1 , let Zh,2 be

a hybrid zonotope found through set operations applied to Zh,1 introducing k additional

binary factors. Rather than finding T2 ⊆ {−1, 1}nb,1+k by solving the MILP ( 3.45a ) for Zh,2
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directly, it is possible to leverage the fact that the leaves of Zh,2 are the descendants of Zh,1,

where T1 is already known. Thus an alternative approach is to solve the MILP ( 3.45a ) for

the |T1| branch nodes given by ( 3.54 ) at layer nb,1, each having only k binary factors. The

new integer feasible set T2 is then given by the union of the results from these |T1| MILPs

appended to the values of T1. This approach is described in Algorithm  1 .

Algorithm 1 Branching the binary tree of Zh,2 on the descendants of Zh,1.
Input: Zh,2 = ⟨Gc, Gb, c, Ac, Ab, b⟩, T1 ⊆ {−1, 1}nb,1

Output: T2 ⊆ {−1, 1}nb,2

1: for ξb
i ∈ T1 do

2: Znb,1
h,i ← ( 3.54 ) for ξb

i
3: Solve MILP to find integer feasible set T of Znb,1

h,i
4: Append entries of T to ξb

i and store in T2
5: end for

Since finding T amounts to an exhaustive search of the integer feasible space of the

MILP ( 3.45a ), Algorithm  1 aims to reduce the number of branches that must be searched

at each iteration by solving more, smaller MILPs. Each of these smaller MILPs search the

subtrees branching on the binary factors added since the last search has been performed.

Thus leveraging information stored in the set T1 prevents searching nodes that have already

been determined as infeasible during previous iterations. Note that Algorithm  1 is NP-hard

with worst-case exponential run time. Nevertheless, this approach may allow the decompo-

sition of complex hybrid zonotopes into a collection of constrained zonotopes when many set

operations are applied iteratively.

3.4 Numerical Example: Obstacle Avoidance

This example considers the problem of formulating a model predictive controller (MPC)

for an agent moving from an initial condition to a target point while avoiding collision with

multiple obstacles. In [ 5 ] it is shown that over-approximating polytopic obstacles using zono-

topes sharing a common structure leads to considerable improvements in the computation

time of the MPC. However, once the over-approximation is found, the zonotope must be

converted back to an H-rep polytope [ 5 ] to represent its complement as hyperplane arrange-
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ments [  13 ]. Here it is shown how the same safety constraint may be formulated directly as

a hybrid zonotope representing the complements of the obstacles.

This example considers a single agent in 2D space with continuous dynamics given by

ẋ =

0 I2

0 − µ
M

I2

x +

 0
1

M
I2

u , (3.55)

where x1,2 is the position and x3,4 the velocity of the agent, the control actions are the

acceleration in the 1, 2 coordinates, and the model parameters are µ = 3 and M = 60 [ 5 ].

The obstacles are over-approximated by a zonotope denoted by Zi, and their union is given

by the hybrid zonotope Zh,O = ⋃Zi. The optimal action of the agent at each time step

under the proposed MPC is given by the solution to the mixed-integer quadratic program

min
u

xT
NPxN +

N−1∑
k=0

xT
k Qxk + uT

k Ruk

s.t. ∀ k ∈ [0, N − 1] , xk+1 = Axk + Buk ,

uk ∈ U , xk+1 ∈ CX (Zh,O)× IR2 ,

(3.56)

where x0 is fixed to the sampled state of the system, U = {u ∈ IR2 | ∥u∥∞ ≤ 1} is the set

of all admissible control inputs, and the states are constrained to the nonconvex safe set

CX (Zh,O) × IR2 for X = {x ∈ IR2 | ∥x∥∞ ≤ 2}. The A and B matrices used in the MPC

formulation are given by the zero-order hold transform of ( 3.55 ) with a discrete time step of

Ts = 0.5. The MPC parameters are set to Q = I4, P = 10I4, R = I2, and N = 10 [ 5 ]. The

safe set, CX (Zh,O) × IR2 generated through Theorem  3.2.1 and Proposition  3.2.7 with two

example trajectories of the simulated closed-loop plant are shown in Fig.  3.5 .

The MPC problem ( 3.56 ) is formulated using YALMIP [ 68 ] and solved using Gurobi [ 69 ]

with MATLAB on a desktop computer using one core of a 3.0 GHz Intel i7 processor with 32

GB of RAM. The computation time to formulate and solve the MPC ( 3.56 ), analyzed over

100 trials with randomly sampled initial conditions, is given in Table  3.2 . The computa-

tion time is compared to the equivalent problem formulated using hyperplane arrangements

to define the safety constraint CX (Zh,O) (see Section  2.3.2 and [ 13 , Sec. 2.1]). It is noted

64



-2 -1 0 1 2
-2

-1

0

1

2

Figure 3.5. Hybrid zonotope defined as the complement of the union of
the obstacles, CX (Zh,O), and trajectories of the simulated closed-loop system.
Black lines depict the decomposition of the hybrid zonotope CX (Zh,O) into
constrained zonotopes by Theorem  3.1.1 .

that additional methods exist to further reduce the complexity of hyperplane arrangements,

such as logarithmic formulations and merging adjacent cells [ 70 ], each introducing additional

overhead in the formulation of the problem. It is also noted that hyperplane arrangements

have a mature theory in obstacle avoidance, including methods to guarantee the constraint

satisfaction of the plant’s continuous dynamics [ 71 ]. Nevertheless, the use of hybrid zono-

topes shows a considerable improvement in the average solution time in this case, namely a

reduction by ∼ 47%.

Table 3.2. Computation times to formulate and solve the MPC problem
( 3.56 ) analyzed over 100 trials.

CX (Zh,O) Average (s) Maximum (s)
Hybrid Zonotope 0.10 0.24
Hyperplane Arrangement 0.19 0.25
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3.5 Chapter Summary

This chapter has presented a new mixed-integer set representation named the hybrid

zonotope. Hybrid zonotopes extend zonotopes and constrained zonotopes to represent the

nonconvex union of an exponential number of convex sets using a linear number of contin-

uous and discrete variables. I have shown how hybrid zonotopes may be decomposed into a

collection of constrained zonotopes for visualization and analysis. I have derived set opera-

tions for linear mappings, Minkowski sums, generalized intersections, halfspace intersections,

Cartesian productions, unions, and complements, thereby providing a nonconvex set repre-

sentation with applicability to a broad range of set-theoretic methods. I have shown how the

bounds of a hybrid zonotope may be found by solving a mixed-integer linear program, and

that doing so provides a method for generating tight convex enclosures. I have shown how

every hybrid zonotope has an underlying binary tree that may be leveraged to reduce the

complexity of converting them into a collection of a convex sets. Furthermore, I have devel-

oped an algorithm that leverages the propagation of this binary tree through set operations

to avoid repetitive calculations. A numerical example has shown the use of hybrid zonotopes

as safety constraints in an obstacle avoidance problem and showed improved computation

time over the conventional method using hyperplane arrangements.
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4. FORWARD REACHABLE SETS OF HYBRID SYSTEMS

In this chapter I present a closed-form solution to the exact reachable sets of linear hy-

brid systems as hybrid zonotopes. Identities are derived for both hybrid systems modeled

as Mixed Logical Dynamical (MLD) systems, as presented by Trevor J. Bird, Herschel C.

Pangborn, Neera Jain, and Justin P. Koeln in [  57 ], provisionally accepted by Automatica,

and closed-loop systems under Model Predictive Control (MPC), as presented by Trevor

J. Bird, Neera Jain, Herschel C. Pangborn, and Justin P. Koeln, in the Proceedings of the

2022 American Controls Conference [ 72 ], both are included here with minor modifications.

The presented methods are given by identities that don’t require solving any optimization

programs or taking set approximations. The proposed approach captures the worst-case ex-

ponential growth in the number of convex sets required to represent the nonconvex reachable

set of a hybrid system while exhibiting only linear growth in the complexity of the hybrid

zonotope set representation. All technical contributions of this chapter were made by Trevor

J. Bird while being advised by Professor Neera Jain at Purdue University, as well as Pro-

fessor Justin P. Koeln (University of Texas Dallas) and Professor Herschel Pangborn (The

Pennsylvania State University).

The remainder of this chapter is organized as follows. In Sec.  4.1 I derive an identity for

the forward propagation of hybrid system dynamics as hybrid zonotopes and provide two

numerical examples. In Sec.  4.2 I show how the optimality conditions of linear MPC may

be embedded within the hybrid zonotope set definition, resulting in the representation of

the explicit multiparametric solution. Using the set of explicit MPC solutions, I show how

the closed-loop dynamics of a linear time-invariant system under MPC may be propagated

using hybrid zonotopes.

4.1 Reachable Sets of MLD Systems

In this section I derive an identity for representing exact reachable sets of discrete-time

hybrid automata modeled as Mixed Logical Dynamical (MLD) systems [ 73 ] using hybrid

zonotopes. This identity contains all guard set intersections implicitly as properties of the

MLD model and avoids solving any optimization programs or using approximation techniques
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to determine guard crossings, changes in dynamics, or reset maps. This approach is desirable

as it is both computationally efficient and exact. Numerical examples show the hybrid

zonotope’s ability to compactly represent nonconvex reachable sets with an exponential

number of features. This section is organized as follows. First I describe the modeling of

hybrid systems as mixed logical dynamical systems in Sec.  4.1.1 . In Section  4.1.2 , I present

a closed-form solution to the forward reachable sets of MLD systems and a redundancy

removal technique is described in Section  4.1.3 . Finally, in Section  4.1.4 I provide two

numerical examples, one of which compares the proposed approach to two previous exact

methods.

4.1.1 Mixed Logical Dynamical (MLD) Systems

As first introduced in [ 73 ], the Mixed Logical Dynamical (MLD) system modeling frame-

work combines continuous and binary variables with logical relations in mixed-integer in-

equalities to express complex dynamic systems. It has been shown in [ 73 ], [ 74 ] that such a

framework can be used to model systems that have mixed continuous and discrete states and

inputs, piece-wise affine and bilinear dynamics, finite state machines, qualitative outputs,

and those with any combination of the former. An MLD system with linear discrete-time

dynamics may be expressed as

x+ = Ax + Buu + Bww + Baff , (4.1a)

s.t. Exx + Euu + Eww ≤ Eaff , (4.1b)

where x ∈ IRnxc×{0, 1}nxl are the system states, u ∈ IRnuc×{0, 1}nul are the control inputs,

and w ∈ IRnrc × {0, 1}nrl are auxiliary variables. The number of inequality constraints is

denoted by ne such that Eaff ∈ IRne . Given any fixed state x and input u, the trajectory

of the MLD system in a single time step is given by the difference equation ( 4.1a ) for any

auxiliary variable w that satisfy the inequality constraints ( 4.1b ).

When formulating an MLD model ( 4.1 ), the so-called “big-M” constants used in the

mixed-integer inequalities to relate continuous values to logical statements are chosen for a
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user-defined subset of the state space, X ⊂ IRnxc × {0, 1}nxl , and set of admissible control

inputs, U ⊂ IRnuc × {0, 1}nul [ 73 ]. It follows that for the bounded state-input domain

over which the MLD model is defined, the auxiliary variables will belong to a compact set

W ⊂ IRnrc × {0, 1}nrl . The MLD representation and set of possible auxiliary variables W of

linear discrete-time hybrid systems may be generated automatically using the modeling tool

Hybrid System DEscription Language (HYSDEL) [ 75 ].

4.1.2 Forward Reachable Sets of MLD Systems

A closed-form solution to the forward reachable sets of MLD systems as hybrid zonotopes

is now presented.

Theorem 4.1.1. Consider the MLD system described by ( 4.1 ) with x ∈ Rk ⊆ X ⊂ IRnxc ×

{0, 1}nxl, u ∈ U ⊂ IRnuc × {0, 1}nul, and w ∈ W ⊂ IRnrc × {0, 1}nrl given in HCG-rep. Let

V =

Bu

Eu

U ⊕
Bw

Ew

W ⊕
Baff

0

 ,

and define the polyhedron H = {s ∈ IRne | s ≤ Eaff} ⊂ IRne. Then the set of states reachable

in one time step is given by the hybrid zonotope

Rk+1 = [In 0]



A

Ex

Rk ⊕ V

 ∩[0 Ine ] H

 . (4.2)

Proof. Let R̃ denote the hybrid zonotope given by the right-hand side of ( 4.2 ) and Rk+1

denote the set of states reachable by the MLD system ( 4.1 ) in one time step. For any

r ∈ Rk+1 there exists some x ∈ Rk, u ∈ U , and w ∈ W such that Exx + Euu + Eww ≤ Eaff

and r = Ax + Buu + Bww + Baff . Let Γ = [AT ET
x ]T and

v =

Bu

Eu

u +

Bw

Ew

w +

Baff

0

 . (4.3)
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Then v ∈ V and (Γx+v) ∈ ΓRk⊕V . Furthermore, r = [In 0] (Γx+v) and [0 Ine ] (Γx+v) ∈ H.

Thus r ∈ R̃ and Rk+1 ⊆ R̃.

Conversely, for any r̃ ∈ R̃ there exists some x ∈ Rk and v ∈ V such that r̃ =

[In 0] (Γx + v) and [0 Ine ] (Γx + v) ∈ H. For any v ∈ V , there exists some u ∈ U and

w ∈ W such that v is given by ( 4.3 ). Then r̃ = Ax + Buu + Bww + Baff such that

Exx + Euu + Eww ∈ H ⇔ Exx + Euu + Eww ≤ Eaff . Therefore r̃ ∈ Rk+1, R̃ ⊆ Rk+1, and

R̃ = Rk+1.

Remark 4.1.1. Given that the MLD system ( 4.1 ) is only defined over the bounded subset

of the state space X chosen when formulating the MLD model, the set of states reachable

from Rk in one time step is given by Theorem  4.1.1 only when Rk ⊆ X . When applying

Theorem  4.1.1 iteratively to find the set of states reachable for k = 0, . . . , N time steps, RN

may be a subset of the true reachable set if Rj ̸⊆ X for some j ∈ {0, . . . , N}. This is due

to the implicit reduction of the feasible space of the MLD system’s mixed-integer inequality

constraints caused by introducing big-M constants [ 53 ]. The condition that Rj ⊆ X may be

verified by Proposition  3.2.9 .

By enforcing the MLD system’s mixed-integer inequality constraints as halfspace inter-

sections with hybrid zonotopes, Theorem  4.1.1 provides a method of determining the exact

set of states reachable by MLD systems defined by ( 4.1 ). This approach is desirable as the

propagation of the system dynamics is given by an identity and is computed algebraically.

In contrast with existing approaches [ 9 ]–[ 11 ], the intersections with guard sets are handled

implicitly as properties of the MLD system and require no iterative approximations or op-

timization programs. Furthermore, the growth in complexity of the set is a linear function

of the number of iterative applications of Theorem  4.1.1 . Specifically, given an initial set of

states R0 ⊂ IRnxc × {0, 1}nxl and set of admissible control inputs U ⊂ IRnuc × {0, 1}nul in
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HCG-rep, the set of states reachable by the MLD system ( 4.1 ) in k time steps is a hybrid

zonotope Rk with representation complexity given by

ng,r(k) = (ng,u + nrc + ne)k + ng,0 , (4.4a)

nb,r(k) = (nb,u + nrl)k + nb,0 , (4.4b)

nc,r(k) = (nc,u + ne)k + nc,0 . (4.4c)

The time complexity of ( 4.2 ) is dominated by the linear mapping ofR0 and scales as O(n(n+

ne)(ng,0 +nb,0)), where n = nxc +nxl. Given that a1ng,0 = a2nb,0 = a3ne = n for some ai ∈ IR,

the time complexity of k iterations of ( 4.2 ) scales as O(n3k).

4.1.3 Redundant Inequality Constraints

It is possible that some of the inequality constraints of the MLD system ( 4.1b ) are always

satisfied by the elements of Rk and U and therefore do not need to be enforced within the

hybrid zonotope Rk+1. That is, ei
xx + ei

uu + ei
ww < ei

aff ∀ x ∈ Rk, u ∈ U , and w ∈ W ,

where ei is the ith row of the matrix E. In this case, including the ith inequality constraint

in Rk+1 is unnecessary and its removal reduces both nc,r and ng,r because the slack factor

enforcing the inequality constraint is also unnecessary. This redundancy may be detected

by evaluating the feasibility of an MILP with constraints

[
Ac

r Ab
r

] [
ξc

r

ξb
r

]
= b , ξb

r ∈ {−1, 1}nb,r

∥(ξc
x ξc

u ξc
w ξh,j ̸=i)∥∞ ≤ 1 , 1 ≤ ξh,i ,

(4.5)

where ξc
r = (ξc

x ξc
u ξc

w ξh), and the ith slack factor, ξh,i, is removed from the infinity norm

constraint and instead constrained to be greater than or equal to 1. If the MILP is infeasible,

then the ith inequality constraint may be removed.
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4.1.4 Numerical Examples

This section presents the forward reachable sets of two linear MLD systems in the form of

( 4.1 ). In both examples, the reachable set is found through iterative application of Theorem

 4.1.1 and redundant inequality constraints and binary factors are removed using the methods

described in Sections  4.1.3 and  6.1.3 , respectively. MLD representations of the presented

hybrid systems are obtained using HYSDEL 3.0 [ 75 ]. Optimization problems are solved using

Gurobi [  69 ]. Figures are generated by decomposing the hybrid zonotope into a collection of

constrained zonotopes by Theorem  3.1.1 and converting them to H-rep polytopes. If the order

of the constrained zonotopes are below 50, they are converted to an H-rep polytope using

the Multi-Parametric Toolbox (MPT) [ 12 ], otherwise tight over-approximations are found

by sampling the support function ( 3.47 ) in 250 uniformly-distributed directions. Numerical

results are generated with MATLAB on a desktop computer using four cores of a 3.0 GHz

Intel i7 processor with 32 GB of RAM.

Piece-Wise Affine System with Two Equilibrium Points

Consider the discrete-time Piece-Wise Affine (PWA) system given by

x[k + 1] =



 0.75 0.25

−0.25 0.75

x[k] +

−0.25

−0.25

 , if x1 ≤ 0 ,

0.75 −0.25

0.25 0.75

x[k] +

 0.25

−0.25

 , otherwise .

(4.6)

This hybrid system consists of two stable, autonomous subsystems, each having an equi-

librium point at x = ±[1 0]T . The PWA system can be represented as an MLD system

by introducing two continuous auxiliary variables, nrc = 2, one binary auxiliary variable,

nrl = 1, and ten inequality constraints, ne = 10. The states reachable by (  4.6 ) in N = 15

time steps are shown in Fig.  4.1 . The set representation dimensions and computation times

are given in Table  4.1 for the reachable sets with and without redundancy removal.
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Table 4.1. Results of reachability analysis for ( 4.6 ) with redundancy removal,
Rr

15, and without, R15. Reported computation times include all steps from
initializing R0 to generating the set with shown dimensions.

Set ng,r nc,r nb,r |T | Time (sec)
R15 182 150 15 2 0.02
Rr

15 142 110 1 2 0.36

-2 -1 0 1 2

0

1

2

3

Figure 4.1. Reachable set of PWA system ( 4.6 ) with two subsystems, each
having an equilibrium point depicted by • and autonomous dynamics with
vector fields depicted by →.

The auxiliary binary variable in the MLD representation of this PWA system indicates

which side of the guard a state is located. If the reachable set is fully contained on one side

of the guard, then only one value of the binary auxiliary variable is feasible. When a guard

crossing occurs at k = 3, the introduced binary variable has a feasible value of −1 ∨ 1 and

branches the reachable set. No additional guard crossings occur in all following time steps.

Thus the feasible value of the subsequent binary variables are dependent on that of the one

introduced at k = 3—i.e. a state can only be on the right-hand side of the guard if it is

a trajectory from a state crossing the guard at k = 3. The redundancy removal techniques

given in Section  6.1.3 capture these dependencies to reduce the reachable set having fifteen

binary factors and a full binary tree with 215 = 32, 768 leaves to one with two leaves from

a single binary factor. In this example, 40 of the inequality constraints are identified as

redundant and removed using the method described in Section  4.1.3 .
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Thermostat-Controlled Heated Rooms

This example extends the heated room scenario given in [ 11 ], where the thermostatic

control and heat exchange among adjacent rooms is modeled as a hybrid system. The

continuous temperature dynamic of the ith room is modeled as

ẋi = c · hi + bi(u− xi) +
∑
i ̸=j

aij(xj − xi) , (4.7)

where the heat transfer coefficient aij is 1 between adjacent rooms and 0 otherwise, the heat

transfer coefficient between the room and the outside environment is bi = 0.08q where q is the

number of exposed walls, the heating power is c = 15 with hi ∈ {0, 1} for rooms with heaters

and hi = 0 otherwise, and the outside temperature may take on any value within the interval

u ∈ [0, 0.1] [ 11 ]. Heaters located in select rooms are controlled by discrete-time thermostats

that turn on when the sampled temperature in the room decreases below 22◦C and turn off

when it increases above 24◦C. The closed-loop temperature dynamics of the building may be

modeled as an MLD system by introducing one binary state, three auxiliary binary variables,

and nine inequality constraints for each heater.

Figure 4.2. Room layout and heater locations for a varying number of rooms.
The pattern shown is repeated for Case(12, 4).

Four cases are considered with nxc = 3p continuous and nxl = 1p discrete states for

p = 1, . . . , 4. Each case is coded as Case(nxc, nxl) to denote the varying building layout
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shown in Fig.  4.2 . Heaters are located in every third room such that hj ∈ {0, 1} for j = 3p

as depicted in Fig.  4.2 . Using a discrete time step of Ts = 0.01 and a zero-order-hold

discrete transform of the continuous dynamics (  4.7 ), the reachable set of the four MLD

systems for a time interval of t = [0, 1] is generated as hybrid zonotopes with dimensions

reported in Table  4.2 . The set of initial temperatures are given by xc[0] = (x0 x0) ± 0.1

where x0 = [23 23.5 23.5 22.5 23 22.5]T . All heaters begin on such that xl[0] = 1. The

computation time of each step of the proposed method is provided in Table  4.3 . Four 2D

projections of the reachable set for Case(6, 2) are plotted in Fig.  4.3 .

Figure 4.3. Projections of the reachable set of the heated room MLD system
Case(6, 2). Supporting halfspaces in each state dimension at the final time step
shown by black boxes. Zoomed in plots of the final reachable set shown with
104 randomly sampled, simulated trajectories given by green dots.

In Table  4.2 it is shown how hybrid zonotopes are able to capture possible exponential

growth in the complexity of the nonconvex reachable set through linear growth in set rep-

resentation complexity. In Case(3, 1), the hybrid zonotope R100 is equivalent to the union

of 39 convex subsets using 1003 continuous and 300 binary factors. As the complexity of

the system is increased through the other three cases, more guard crossings occur over the

100 step horizon and the resulting reachable set is increasingly nonconvex. In Case(12, 4),

the hybrid zonotope R100 is equivalent to the union of over 410× 103 convex subsets using

3712 continuous and 1200 binary factors. After applying the proposed redundancy removal
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techniques, the reduced hybrid zonotope Rr
100 represents the nonconvex reachable set using

only 484 continuous factors, 58 binary factors, and 372 constraints.

Table 4.2. Set dimensions of reachability analysis for the heated rooms with
redundancy removal, Rr

100, and without, R100.
R100 Rr

100

Case ng,r nb,r nc,r ng,r nb,r nc,r |T |
(3, 1) 1003 300 900 261 19 113 39
(6, 2) 1906 600 1800 283 29 177 657
(9, 3) 2809 900 2700 445 64 336 66523
(12, 4) 3712 1200 3600 484 58 372 410605

The scalability of the proposed approach can be seen in Table  4.3 . The computational

complexity of Theorem  4.1.1 to find the unreduced set R100 scales as O(n3) and is reflected

in the reported computation times. On the other hand, the use of Algorithm  1 to explore

the hybrid zonotope’s binary tree is NP-hard. However, the complexity of the binary tree

is a direct consequence of the number of discrete changes in the hybrid dynamics of the

system. In Case(3, 1) the number of nonempty leaves of the binary tree is relatively small,

and Algorithm  1 contributes only 4% of the total computation time. In Case(12, 4), the

time spent on Algorithm  1 jumps to nearly 92% of the total computation time. However

when comparing this value to |T |, the average time spent per nonempty leaf explored only

ranges from 2.2− 7.3ms across all cases. The computational burden of detecting redundant

inequality constraints grows with the representation complexity of the hybrid zonotope;

however, the number of evaluations of the NP-complete problem is finitely given by the

number of constraints.

Table’s  4.4 and  4.5 compare the use of hybrid zonotopes to represent the reachable set

of the thermostat-controlled heated rooms to two existing exact methods:

M1 represent the reachable set as a collection of constrained zonotopes generated using the

algorithm described in [ 43 , Algorithm 1],
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Table 4.3. Computation times in seconds for all operations within the read-
ability analysis. The total time to find the reduced set Rr

100 is given by the
sum of the individual operations.

Case Theorem  4.1.1 Alg.  1 Redundancy Total
(3, 1) 0.20 0.11 2.17 2.49
(6, 2) 0.84 1.43 8.15 10.41
(9, 3) 2.24 168.91 51.33 222.49
(12, 4) 3.87 3001.54 264.30 3269.71

M2 implicitly represent the reachable set by iterating over the mixed-integer constraints of

the MLD system given by ( 4.1 ) as described in [ 76 ] and implemented using YALMIP

[ 68 ].

While both of these methods provide the same reachable set as the proposed method using

hybrid zonotopes, there are distinctions. Computing reachable sets using M1 results in a

worst-case exponential growth in representation complexity, as shown in Table  4.4 . This

growth in complexity resulted in the final Case(12, 4) being terminated on the 86th time

step after 20 hours of computation time. Furthermore, the resulting set consists of multiple

convex sets, thus requiring each set to be analyzed to verify properties of the nonconvex

reachable set. The reachable set given by M2, on the other hand, is compact and fast to

generate, as shown in Table  4.5 . Similar to the results of Theorem  4.1.1 , the use of the MLD

system model results in only linear growth in representation complexity. However, this set

is given implicitly as mixed continuous and binary variables with inequality constraints.

While defining the same reachable set, this representation does not have closure under set

operations and is therefore only suitable for verifying the existence of trajectories by solving

optimization programs.

The time to detect halfspace intersections and evaluate support functions ( 3.47 ) using

hybrid zonotopes with and without redundancy removal, denoted by HCG-r and HCG respec-

tively, is compared to the same operations using methods M1 and M2 in Fig.  4.4 . In these

results, the direction vector li ∈ IRnxc is randomly sampled 100 times and the support func-

tion ρR100(li) solved to find a global optimum. To provide a realistic comparison of halfspace

detection, the 100 halfspaces are split into 50 true—H−
i =

{
x ∈ IRnxc

∣∣∣ lT
i x ≤ ρR100(li)

}
—

77



Table 4.4. Computation time and representation complexity for method M1.
The total number of generators and constraints summed over the collection of
constrained zonotopes is reported by ng and nc respectively.

Case ng nc Sets Time (s)
(3, 1) 1833 82 17 7.99
(6, 2) 32807 2597 285 118.95
(9, 3) 1710990 229680 13590 10015.69
(12, 4) DNF DNF DNF > 72× 103

Table 4.5. Computation time and representation complexity for method M2.
The number of continuous variables is given by ng, the number of binary vari-
able is given by nb, and the number of inequality constraints is given by nc.

Case ng nb nc Time (s)
(3, 1) 403 401 2315 0.71
(6, 2) 706 802 4430 0.72
(9, 3) 1009 1203 6545 0.71
(12, 4) 1312 1604 8660 0.74

and 50 false—H+
i =

{
x ∈ IRnxc

∣∣∣ lT
i x ≥ 1.1ρR100(li)

}
—results such that R100 ∩ H−

i ̸= ∅ and

R100 ∩H+
i = ∅.

Figure 4.4. Average time to compute support functions and to detect halfs-
pace intersections with the reachable sets.

In Fig.  4.4 , the average computation times are similar between HCG and M2. The

computation time of M1 grows sharply in Case(9, 3), where the number of convex sets, and
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linear programs to be solved, jumps by two orders of magnitude. The reachable set given

by the reduced hybrid zonotope, HCG-r, has the lowest computation times. However, this

increased efficiency is at the cost of additional overhead in the generation of the set as shown

in Table  4.3 .

4.2 Reachable Sets of Closed-Loop MPC

In this section I present a closed-form solution to the exact reachable sets of closed-

loop systems under linear model predictive control (MPC) using hybrid zonotopes. This is

accomplished by directly embedding the Karush Kuhn Tucker conditions of a parametric

quadratic program within the hybrid zonotope set definition as mixed-integer constraints,

and thus representing the set of all optimizers over a set of parameters. Using the set of

explicit MPC solutions, I show how the plant’s closed-loop dynamics may be propagated

through an identity that is calculated algebraically. Beyond reachability analysis, I show

that the set of optimizers represented by a hybrid zonotope may be decomposed to give the

explicit solution of general multi-parametric quadratic programs as a collection of constrained

zonotopes.

The remainder of this section is organized as follows. In Section  4.2.1 I provide some

background on the lack of existing work in the reachability analysis of closed-loop systems

under MPC to motivate the approach. Then in Section  4.2.2 I discuss multiparametric

quadratic programming. In Section  4.2.3 I show how the set of all optimizers of a parametric

quadratic program may be defined as a hybrid zonotope. In Section  4.2.4 I show that

the hybrid zonotope containing all optimizers of an MPC formulated as a multiparametric

quadratic program may be used to propagate the reachable set of the closed-loop system.

Finally, an illustrative example is provided in Section  4.2.5 .

4.2.1 Motivation

Model Predictive Control (MPC) has found considerable success in both academia and

industry due to its performance, robustness, and versatility [ 77 ]. The most common MPC im-

plementation recursively solves for the sequence of control inputs that minimizes a quadratic
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cost based on future operation of the open-loop plant as predicted by a linear, discrete-time

model. Robustness and stability may be guaranteed a priori through strategic use of con-

vex constraint sets and terminal objectives determined offline [ 14 ], [  78 ]. While guaranteeing

robustness, these methods are rarely exact and introduce an application-dependent level of

conservatism to the controller design. Such conservatism may lead to performance degrada-

tion or unnecessarily limit the operating regime of the closed-loop system [ 79 ]. Furthermore,

the resulting controllers are often complex, hindering their real-time implementation for sys-

tems with fast update rates [ 80 ]. An alternative approach is to verify that robustness and

performance specifications are met by a nominal controller a posteriori through reachability

analysis and safety verification of the closed-loop plant [ 10 ].

Despite the plethora of research on MPC, reachability analysis of the closed-loop system

is widely absent from the literature. It has been shown that a closed-loop system under linear

MPC may be modeled as a hybrid system by embedding the Karush Kuhn Tucker (KKT)

conditions of the quadratic program within the governing equations [ 81 ]. Reachability may

then be verified via optimization to determine if any trajectory from an initial set, to a

specified target set, exists by solving a series of mixed-integer linear programs [ 41 ].

Alternatively, set-based reachability may be performed by determining the explicit MPC

law and modeling the closed-loop plant as a piecewise affine system [ 42 ], [ 81 ]. However,

finding the explicit control law is in itself a computationally intensive operation and results

in a worst-case exponential number of critical regions with respect to the prediction horizon,

state dimension, and number of constraints [ 14 ]. When the explicit control law may be

determined, the resulting hybrid system, having guard sets determined by the critical regions

of the explicit MPC, is often overly complex. Set-based reachability of such hybrid systems

results in a worst-case exponential growth in the number of convex sets required to represent

the nonconvex reachable set [ 10 ]. To stifle this growth, current algorithms for reachability

of hybrid systems employ over approximation techniques [ 8 ], [ 10 ]. While useful for verifying

safety, solutions leveraging over-approximations are not capable of guaranteeing performance

criteria [ 10 ]. Scalable set-based methods for the reachability analysis of closed-loop MPC

are still needed to fill this gap.
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4.2.2 Multiparametric Quadratic Programming

Consider the bounded, strictly convex multiparametric Quadratic Program (mp-QP)

given by

min
z

1
2zT Qz + qT z

s.t. Hz + Sx ≤ f , x ∈ X ,

(4.8)

where the parameters belong to a compact set X ⊂ IRnx , Q ∈ IRnz×nz , Q ≻ 0, q ∈ IRnz ,

H ∈ IRnh×nz , S ∈ IRnh×nx , and f ∈ IRnh . Note that objective functions with an additional

term xT Pz may be brought to the standard form ( 4.8 ) through the change of variables

z = z̃ + Q−1P T x [ 82 ]. The set of feasible parameters Xfeas ⊆ X satisfying the constraints

of ( 4.8 ) may be partitioned into a collection of non-overlapping critical regions such that

Xfeas = ⋃ CRi. Each critical region is a convex polytope where a unique combination of

the inequality constraints are active at the solution of the QP. Within each of these critical

regions, the optimizer of ( 4.8 ) is an affine function of the parameter given by z∗(x) = Fix+gi

for all x ∈ CRi. The set of all optimizers within the ith critical region may be expressed as

Z∗
i = {Fix + gi | x ∈ CRi} ⊂ IRnz . (4.9)

The set of all optimizers over the entire parameter set Xfeas ⊆ X is then given by Z∗(X) =⋃Z∗
i . This result is a direct consequence of the KKT conditions of optimality; the reader is

directed to [ 14 ], [  82 ] and the references therein for derivations and detailed discussion.

4.2.3 Zonotopic Representation and Explicit Solution of mp-QPs

It is now proven that if the mp-QP ( 4.8 ) is bounded, then the set of all optimizers

may be represented as a hybrid zonotope. It is then shown how the decomposition of the

hybrid zonotope by Theorem  3.1.1 gives the explicit solution of the mp-QP as a collection

of constrained zonotopes.
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Assumption 4.2.1. The set of feasible optimizers of the mp-QP ( 4.8 ) is given by the compact

set Z ⊂ IRnz .

When the mp-QP ( 4.8 ) satisfies Assumption  4.2.1 , there exists a zonotope Z = {Gzξz +

cz | ∥ξz∥∞ ≤ 1} ⊂ IRnz such that Gz ∈ IRnz×nz is full rank and Z ⊆ Z. Let the parameter

set be given by the hybrid zonotope X = ⟨Gc
x, Gb

x, cx, Ac
x, Ab

x, bx⟩ ⊂ IRnx . Then x ∈ X if

there exists some ξc
x ∈ Bng,x

∞ and ξb
x ∈ {−1, 1}nb,x satisfying Ac

xξc
x + Ab

xξb
x = bx such that

x = Gc
xξc

x + Gb
xξb

x + cx. Substituting z = Gzξz + cz and x = Gc
xξc

x + Gb
xξb

x + cx into ( 4.8 ), the

optimizer is given as a function of ξx = (ξc
x ξb

x) to obtain

z∗(ξx) = Gzξ∗
z (ξx) + cz , (4.10a)

ξ∗
z (ξx) = arg min

ξz

1
2ξT

z Qξz + qT ξz

s.t. Hξz + S
c
ξc

x + S
b
ξb

x ≤ f ,

(4.10b)

where Q = GT
z QGz, qT = cT

z QGz + qT Gz, H = HGz, S
c = SGc

x, S
b = SGb

x, and f =

f − (Hcz + Scx). Given that the columns of Gz are chosen such that they are linearly

independent, Q ≻ 0 and the QP (  4.10b ) is strictly convex. Thus for any fixed ξx, the KKT

conditions of optimality are both necessary and sufficient such that

Hξz + S
c
ξc

x + S
b
ξb

x ≤ f , (4.11a)

Qξz + H
T
µ = −q , (4.11b)

µT
(
Hξz + S

c
ξc

x + S
b
ξb

x − f
)

= 0 , µ ≥ 0 , (4.11c)

holds for some µ ∈ IRnh if and only if ξz = arg min ( 4.10b ).

Now define positive scalars m and mµ such that

m ≥ max
∥∥∥Hξz + S

c
ξc

x + S
b
ξb

x − f
∥∥∥

∞

s.t ( 4.11a ) , ∥(ξz ξc
x ξb

x)∥∞ ≤ 1 ,
(4.12a)

mµ1 ≥ µ s.t. ( 4.11 ) ∀ ∥(ξz ξc
x ξb

x)∥∞ ≤ 1 . (4.12b)
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Although the variables µ are not necessarily unique, an upper bound (  4.12b ) may be found

using the method described in [ 81 , Lemma 1] such that there exists some µ ∈ [0, mµ]nh

satisfying the KKT conditions ( 4.11 ) for all ∥(ξz ξc
x ξb

x)∥∞ ≤ 1. These constants may be found

for a specific parameter set X or, when the analysis is to be performed for N parameter sets

Xi, for a single over-approximative set Xp such that Xi ⊆ Xp for all i = 1, . . . , N . The KKT

conditions may then be enforced as linear mixed-integer constraints by introducing nh binary

auxiliary variables p ∈ {0, 1}nh . Applying this approach to the considered optimization

problem, ξz = arg min ( 4.10b ) if and only if the following Mixed-Integer Linear Program

(MILP) is feasible:

Hξz + S
c
ξc

x + S
b
ξb

x ≤ f , (4.13a)

Qξz + H
T
µ = −q , (4.13b)

−m(1− p) ≤ Hξz + S
c
ξc

x + S
b
ξb

x − f ,

0 ≤ µ ≤ mµp , p ∈ {0, 1}nh ,
(4.13c)

where ( 4.13a ) is the primal feasibility, ( 4.13b ) is the dual feasibility, and ( 4.13c ) is the

complementary slackness KKT conditions of (  4.10b ) [ 83 ]. While any constants satisfying

( 4.12 ) will suffice, tight upper bounds provide computational benefits [ 53 ].

Theorem 4.2.1. Let positive scalars m and mµ be given by ( 4.12 ) and define the interval

set

{Gsξs + cs | ∥ξs∥∞ ≤ 1} =


α , f

f − m
2 1 , β

−21nh
, 0

 ,

where α ≤ Hξz + S
c
ξc

x + S
b
ξb

x and Hξz + S
c
ξc

x + S
b
ξb

x + m
2 1 ≤ β for all ξz ∈ Bnz

∞ , ξc
x ∈

Bng,x
∞ , and ξb

x ∈ {−1, 1}nb,x. Then the set of all optimizers of the QP ( 4.10 ) defined over

the parameter set X = ⟨Gc
x, Gb

x, cx, Ac
x, Ab

x, bx⟩ ⊂ IRnx is the hybrid zonotope Z∗(X) =

⟨Gc
∗, Gb

∗, c∗, Ac
∗, Ab

∗, b∗⟩ ⊂ IRnz where
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Gc
∗ =

[
0nz×ng,x Gz 0

]
, Gb

∗ = 0, c∗ = cz,

Ac
∗ =



Ac
x 0 0 0

0 Q
mµ

2 H
T 0

S
c

H 0

GsS
c

H 0

0 0 I


, Ab

∗ =



Ab
x 0

0 0

S
b 0

S
b −m

2 I

0 −I


,

b∗ =


bx

−q − mµ

2 H
T 1

cs

 .

(4.14)

Proof. Let Zh = ⟨Gc
∗, Gb

∗, c∗, Ac
∗, Ab

∗, b∗⟩ ⊂ IRnz denote the hybrid zonotope given by ( 4.14 ).

For any z ∈ Zh there exists some ξc ∈ Bng,∗
∞ and ξb ∈ {−1, 1}nb,∗ such that Ac

∗ξ
c + Ab

∗ξ
b = b∗

and z = Gc
∗ξ

c +Gb
∗ξ

b +c∗. Let ξc = (ξc
x ξc

z ξc
µ ξc

s) and ξb = (ξb
x ξb

p), where ξc
x ∈ IRng,x , ξc

z ∈ IRnz ,

ξc
µ ∈ IRnh , ξc

s ∈ IR3nh , ξb
x ∈ {−1, 1}nb,x , and ξb

p ∈ {−1, 1}nh . Then z = Gzξc
z + cz. Expanding

the first row of the constraints gives Ac
xξc

x + Ab
xξb

x = bx, so that x = Gc
xξc

x + Gb
xξb

x + cx ∈ X .

Expanding the second row of constraints gives

Qξc
z + H

T
(

mµ

2 ξc
µ + mµ

2

)
= −q . (4.15)

Expanding the final three rows of constraints results in


S

c
ξc

x + S
b
ξb

x + Hξc
z

S
c
ξc

x + S
b
ξb

x + Hξc
z − m

2 ξb
p

ξc
µ − ξb

p

 = −Gsξ
c
s + cs . (4.16)

Given that ∥ξc
s∥∞ ≤ 1, (  4.16 ) implies that Hξc

z + S
c
ξc

x + S
b
ξb

x ≤ f , −m(1
2 −

1
2ξb

p) ≤ Hξc
z +

S
c
ξc

x + S
b
ξb

x − f , and ξc
µ ≤ ξb

p. Define the change of variables

µ = mµ

2 ξc
µ + mµ

2 1 , p = 1
2ξb

p + 1
21 , (4.17)
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giving µ ∈ [0, mµ]nh and p ∈ {0, 1}nh . Carrying these change of variables through the above

constraints results in (  4.15 ) being equivalent to the dual feasibility condition ( 4.13b ), and

( 4.16 ) being equivalent to the primal feasibility ( 4.13a ) and complementary slackness (  4.13c )

KKT conditions. Thus ξc
z = arg min ( 4.10b ), z ∈ Z∗(X), and Zh ⊆ Z∗(X).

Conversely, for any z∗ ∈ Z∗(X) there exists some ξc
z ∈ Bnz

∞ , ξc
x ∈ Bng,x

∞ , ξb
x ∈ {−1, 1}nb,x ,

µ ∈ [0, mµ]nh , and p ∈ {0, 1}nh such that z∗ = Gzξc
z + cz, Ac

xξc
x + Ab

xξb
x = bx, and ( 4.13 )

holds. Again let ξc = (ξc
z ξc

x ξc
µ ξc

s) and ξb = (ξb
x ξb

p). Applying the change of variables ( 4.17 )

implies that ∥ξc
µ∥∞ ≤ 1 and ξb

p ∈ {−1, 1}nh . Then ( 4.15 ) is satisfied, and ( 4.16 ) implies that

∥ξs∥∞ ≤ 1. Thus ξc ∈ Bng,∗
∞ , ξb ∈ {−1, 1}nb,∗ , Ac

∗ξ
c + Ab

∗ξ
b = b∗, z∗ = Gc

∗ξ
c + c∗, and z∗ ∈ Zh.

Therefore Z∗(X) ⊆ Zh and Zh = Z∗(X).

Corollary 4.2.1. The decomposition of Z∗(X) ⊂ IRnz as defined by Theorem  4.2.1 into its

equivalent collection of constrained zonotopes is the explicit multiparametric solution of the

QP ( 4.10 ).

Proof. Let Z∗(X) = ⟨Gc
∗, Gb

∗, c∗, Ac
∗, Ab

∗, b∗⟩ ⊂ IRnz denote the hybrid zonotope given by

( 4.14 ). The set Z∗(X) is equivalent to the collection of |T | constrained zonotopes

Z∗(X) =
⋃

ξb
i ∈T
Z∗

c,i ,

Z∗
c,i =

〈
Gc

∗, c∗, Ac
∗, b∗ − Ab

∗ξ
b
i

〉
,

(4.18)

for T =
{
ξb

i ∈ {−1, 1}nb

∣∣∣ Z∗
c,i ̸= ∅

}
by Theorem  3.1.1 . The hybrid zonotope

Xfeas =
〈[

Gc
x 0

]
,
[
Gb

x 0
]

, cx, Ac
∗, Ab

∗, b∗

〉
⊆ X , (4.19)

is then the set of all feasible parameters and is equivalent to the collection of constrained

zonotopes

Xfeas =
⋃

ξb
i ∈T
CRi ,

CRi =
〈
[Gc

x 0], cx + [Gb
x 0]ξb

i , Ac
∗, b∗ − Ab

∗ξ
b
i

〉
.

(4.20)
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For any x ∈ CRi there exists some ξc ∈ Bng,∗
∞ such that Ac

∗ξ
c + Ab

∗ξ
b
i = b∗ and x = [Gx 0] ξc +[

Gb
x 0

]
ξb

i + cx. Letting z∗ = Gc
∗ξ

c + c∗ then gives z∗ ∈ Z∗
c,i. Given that the QP ( 4.10 ) is

strictly convex, for any fixed x ∈ CRi there exists a unique z∗ ∈ Z∗
c,i such that the KKT

conditions hold. The fact that constrained zonotopes are convex polytopes [ 18 ] concludes

the proof.

By embedding the KKT conditions as mixed-integer constraints within the space of

factors, the optimality of the QP is enforced over the parameter set X . Without loss of

generality, consider the case when the parameter set X has no binary factors and thus

represents a convex polytope. In doing so, the set of optimizers Z∗(X) only contains binary

factors corresponding to the mixed-integer form of the KKT conditions, where a value of

1 in the ith entry of ξb indicates that the ith inequality constraint is active. The discrete

set of feasible combinations of binary factors T then contains the collection of active sets

such that ξz = arg min ( 4.10b ) over the set of feasible parameters Xfeas. This result follows

closely from mp-QP critical region exploration methods where the binary tree of enumerated

combinations of active constraints is explored by evaluating the feasibility of a series of

linear programs [ 84 ]. In Corollary  4.2.1 , this same binary tree is explored when finding the

set T through a search of the integer feasible space of the hybrid zonotope, which may be

performed efficiently using existing MILP solvers as discussed in Section  3.3 . Once T is

known, the decomposition of Xfeas into critical regions and Z∗(X) into the corresponding

sets of optimizers with nx degrees of freedom is easily accomplished.

Remark 4.2.1. In Theorem  4.2.1 it is only required that the parameter set X is compact. In

the case that the hybrid zonotope X over which the mp-QP is defined is disjoint, the resulting

collection of constrained zonotopes ( 4.18 ) giving the explicit multiparametric solution of the

QP are no longer required to be continuous. However, when the parameter set is chosen as the

constrained zonotope (convex polytope) X = ⟨Gc
x, ∅, cx, Ac

x, ∅, bx⟩, Corollary  4.2.1 generalizes

to previous mp-QP results [ 14 ], [ 82 ].

Remark 4.2.2. The discrete set of feasible binary factors T =
{
ξb

i ∈ {−1, 1}nb

∣∣∣Z∗
c,i ̸= ∅

}
is determined based on which of the convex subsets of Z∗(X) are nonempty by Theorem

 3.1.1 . When the quadratic program is degenerate for some combination of active constraints
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corresponding to ξb
i ∈ T , the resulting critical region CRi ⊂ IRnx by ( 4.20 ) may not be full

dimensional [  14 ]. This can be detected by maximizing a scalar ρ ∈ IR such that there exists

some cb ∈ IRnx and ρBnx
∞ ⊕ cb ⊆ CRi by solving a linear program [ 20 , Sec. 5.2]. When

ρ = 0, the ith critical region CRi is not full dimensional and therefore Z∗
c,i is redundant [ 14 ].

The decomposition of the set Z∗(X) by ( 4.18 ) is then equivalently given over the discrete set

Tr = T \ {ξb
i }.

Remark 4.2.3. Certain “dual” factors ξc
µ may be constant when a constraint is never ac-

tivated by the complementary slackness condition ( 4.13c ). Such redundant factors may be

detected and removed when their corresponding values of ξb
p in T are constant. Additionally,

the “slack” factors ξc
s introduced in Theorem  4.2.1 to enforce inequality constraints may be

redundant for certain parameter sets X . These redundant factors and constraints may be

detected and removed using the method described in Section  4.1.3 . Redundant binary fac-

tors may be detected and removed based on the discrete set T using the method described in

Section  6.1.3 .

4.2.4 Forward Reachable Sets of Linear MPC

Consider the discrete-time Linear Time-Invariant (LTI) system

xk+1 = Axk + Buk , (4.21)

where xk ∈ IRnx is the vector of states and uk ∈ IRnu is the vector of inputs at time k, and

the linear dynamics (  4.21 ) with matrices A ∈ IRnx×nx and B ∈ IRnx×nu are referred to in

short by the tuple (A, B). The control input of the nominal LTI system ( 4.21 ) under MPC

is determined by solving the optimization program

min
u,x

xT
NQNxN +

N−1∑
k=0

xT
k Qxk + uT

k Ruk

s.t. xk+1 = Axk + Buk , uk ∈ U ∀ k ∈ [0, N − 1] ,

xk ∈ X ∀ k ∈ [1, N − 1] , xN ∈ XN ,

(4.22)
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where x0 is fixed to the sampled state of the system, U ⊂ IRnu is the set of all admissible

control inputs, the predicted trajectories of the system are constrained to belong to the set

X ⊆ IRnx , the final state is constrained to belong to the terminal set XN ⊆ X , and the states

and inputs have weights Q, QN ⪰ 0 and R ≻ 0, respectively [ 14 ]. For ease of readability, the

MPC formulation is provided as a regulator problem; however, the following results may be

modified to handle reference tracking, soft constraints, and disturbance preview information

as described in [ 82 ].

The trajectory of the LTI system ( 4.21 ) over the prediction horizon X̂ = (x1 · · · xN)

as a function of the control inputs Û = (u0 · · · uN−1) and initial state x0 is given by

X̂ = Âx0 + B̂Û where

Â =



A

A2

...

AN


, B̂ =



B 0 · · · 0 0

AB B 0 . . . 0
... ... . . . ... ...

AN−1B AN−2B · · · AB B


. (4.23)

The optimal sequence of control inputs Û∗(x0) under the MPC (  4.22 ) is then given by

Û∗(x0) = arg min
Û

1
2 ÛT (B̂T Q̂B̂ + R̂)Û + xT

0 ÂT Q̂B̂Û

s.t. Û ∈ U × · · · × U ,

Âx0 + B̂Û ∈ X × · · · × X × XN ,

(4.24)

where Q̂ = diag(Q, · · · , Q, QN), and R̂ = diag(R, · · · , R). Once the optimization program

( 4.24 ) has been solved, the control input u∗
0(x0) = [Inu 0] Û∗(x0) is applied to the plant, a

new state is sampled, and the process is repeated.

88



Assumption 4.2.2. The constraint sets of the MPC are compact, full dimensional H-rep

polytopes given by

U = {u ∈ IRnu | Huu ≤ fu} ⊂ IRnu , (4.25a)

X = {x ∈ IRnx | Hxx ≤ fx} ⊂ IRnx , (4.25b)

XN = {x ∈ IRnx | HNx ≤ fN} ⊂ IRnx , (4.25c)

where Hu ∈ IRnhu×nu, Hx ∈ IRnhx×nx, and HN ∈ IRnhn×nx.

Define the change of variables

z∗(x0) = Û∗(x0) + Px0 ,

P = (B̂T Q̂B̂ + R̂)−1B̂T Q̂T Â .
(4.26)

The optimization problem ( 4.24 ) may then be expressed in terms of z as

z∗(x0) = arg min
z

1
2zT (B̂T Q̂B̂ + R̂)z

s.t.

 Ĥu

ĤxB̂

 z +

 −ĤuP

Ĥx(Â− B̂P )

x0 ≤

f̂u

f̂x

 ,
(4.27)

where Ĥu = diag(Hu, · · · , Hu), f̂u = (fu · · · fu), Ĥx = diag(Hx, · · · , Hx, HN), and f̂x =

(fx · · · fx fN). Assumption  4.2.2 assures that the mp-QP ( 4.27 ) is bounded and therefore

satisfies Assumption  4.2.1 . Following the same procedures in Section  4.2.3 , let Z denote

the compact set of optimizers of the mp-QP ( 4.27 ). Then there exists some zonotope Z =

{Gzξz + cz | ∥ξz∥∞ ≤ 1} such that Z ⊆ Z and Gz ∈ IRNnu×Nnu is full rank. Let the set of

initial conditions be given in HCG-rep as X0 = ⟨Gc
x, Gb

x, cx, Ac
x, Ab

x, bx⟩ ⊂ IRnx . Substituting
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z = Gzξz + cz ∈ Z and x0 = Gc
xξc

x + Gb
xξb

x + cx ∈ X0, ( 4.27 ) is a strictly convex mp-QP over

the parameter set X0 in the standard form of ( 4.10 ) defined by the matrices

Q ≡ GT
z (B̂T Q̂B̂ + R̂)Gz, qT ≡ cT

z (B̂T Q̂B̂ + R̂)Gz,

H ≡

 ĤuGz

ĤxB̂Gz

 , f ≡

 f̂u − Ĥucz + ĤuPcx

f̂x − ĤxB̂cz − Ĥx(Â− B̂P )cx

 ,

S
c ≡

 −ĤuPGc
x

Ĥx(Â− B̂P )Gc
x

 , S
b ≡

 −ĤuPGb
x

Ĥx(Â− B̂P )Gb
x

 .

(4.28)

Theorem 4.2.2. Define the set of all optimizers of the mp-QP ( 4.28 ) as Z∗(X0) =

⟨Gc
∗, Gb

∗, c∗, Ac
∗, Ab

∗, b∗⟩ ⊂ IRNnu over the set of initial states X0 = ⟨Gc
x, Gb

x, cx, Ac
x, Ab

x, bx⟩ ⊆

Xfeas by Theorem  4.2.1 . Then the set of states reachable by the plant (Ap, Bp) under MPC

( 4.22 ) in one time step is given by the hybrid zonotope R+ = ⟨Gc
r, Gb

r, cr, Ac
r, Ab

r, br⟩ ⊂ IRnx

where
Gc

r =
[
(Ap −Bp [Inu 0] P )Gc

x 0
]

+ Bp [Inu 0] Gc
∗ ,

Gb
r =

[
(Ap −Bp [Inu 0] P )Gb

x 0
]

,

cr = (Ap −Bp [Inu 0] P )cx + Bp [Inu 0] c∗ ,

Ac
r = Ac

∗ , Ab
r = Ab

∗ , br = b∗ .

(4.29)

Proof. Let Rh = ⟨Gc
r, Gb

r, cr, Ac
r, Ab

r, br⟩ ⊂ IRnx denote the hybrid zonotope given by (  4.29 ).

For any r̃ ∈ Rh there exists some ξc
r ∈ Bng,r

∞ and ξb
r ∈ {−1, 1}nb,r such that Ac

∗ξ
c
r + Ab

∗ξ
b
r = b∗

and r̃ = Gc
rξ

c
r + Gb

rξ
b
r + cr. Let ξc

r = (ξc
x ξc

z ξc
s) and ξb

r = (ξb
x ξb

p), where ξc
x ∈ IRng,x , ξc

z ∈ IRNnu ,

ξc
s ∈ IR4nh , ξb

x ∈ {−1, 1}nb,x , and ξb
p ∈ {−1, 1}nh . Letting x0 = Gc

xξc
x + Gb

xξb
x + cx then results

in x0 ∈ X0 and z∗(x0) = Gc
∗ξ

c
r + c∗ gives z∗(x0) ∈ Z∗(X0). Expanding r̃ = Gc

rξ
c
r + Gb

rξ
b
r + cr

then gives r̃ = Apx0 + Bp [Inu 0] (z∗(x0) − Px0) and substituting z∗(x0) = Û∗(x0) + Px0

results in r̃ = Apx0 + Bpu∗
0(x0). Thus r̃ ∈ R+ and Rh ⊆ R+.

Conversely, for any r ∈ R+ there exists some x0 ∈ X0 and a unique z∗(x0) ∈ Z∗(X0) such

that u∗
0(x0) = [Inu 0] (z∗(x0)−Px0) and r = Apx0 +Bpu∗

0(x0). For any z∗(x0) ∈ Z∗(X0) there

exists some ξc
r ∈ Bng,r

∞ and ξb
r ∈ {−1, 1}nb,r such that Ac

∗ξ
c
r + Ab

∗ξ
b
r = b∗, z∗(x0) = Gc

∗ξ
c
r + c∗,
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and x0 =
[
Gc

x 0
]

ξc
r +

[
Gb

x 0
]

ξb
r + cx. Then r = Gc

rξ
c
r + Gb

rξ
b
r + cr ∈ Rh, R+ ⊆ Rh and

Rh = R+.

The set of all optimizers defined by Theorem  4.2.1 contains both the constraints enforcing

the KKT conditions of the QP and the parameter set X0. Thus for any z∗(x0) ∈ Z∗(X0) there

exists some x0 ∈ X0. The requirement that the set of initial conditions is a subset of the set of

feasible states, X0 ⊆ Xfeas, guarantees that the converse is also true, i.e. for any x0 ∈ X0 there

exists a unique z∗(x0) ∈ Z∗(X0). Theorem  4.2.2 then maps the feasible factors of Z∗(X0) to

generate the reachable set asR+ = {x ∈ IRnx | x = Apx0+Bp [Inu 0] (z∗(x0)−Px0), x0 ∈ X0},

where the plant (Ap, Bp) is not necessarily the same as the prediction model used in the

MPC. Given that hybrid zonotopes are closed under Minkowski sums, the effects of additive,

bounded disturbances described by the hybrid zonotope V ⊂ IRnx may be accounted for

efficiently as R+ ⊕ V . The set of states reachable from X0 ⊆ Xfeas in k time steps may

be found through iterative applications of Theorem  4.2.2 . If during the iterative analysis

Rj ̸⊆ Xfeas for some 1 ≤ j ≤ k, then recursive feasibility is not maintained by the system

for all X0. In such cases, the states outside Xfeas become infeasible and are excluded in the

next step of the analysis. The set representation complexity grows as a function of k:

ng,r(k) = (Nnu + 4nh)k + ng,x , (4.30a)

nb,r(k) = nhk + nb,x , (4.30b)

nc,r(k) = (Nnu + 3nh)k + nc,x , (4.30c)

where nh = Nnhu + (N − 1)nhx + nhn is the number of inequality constraints of ( 4.27 ). Note

that the same redundancy removal techniques described in Remark  4.2.3 may be applied to

the hybrid zonotope R+ given by ( 4.29 ).

4.2.5 Numerical Example

This section presents an illustrative example of representing the set of optimizers and

reachable sets of a linear MPC as hybrid zonotopes. For clarity of exposition, the sys-

tem considered has two states and a single input, though the same approach and analysis
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technique may be applied to discrete-time systems with higher dimensions and will exhibit

the linear growth in complexity given by ( 4.30 ). Comparisons of the explicit solution are

made to results generated using the Multi-Parametric Toolbox (MPT) [ 12 ]. All optimization

problems are solved using Gurobi [  69 ]. Numerical results are generated with MATLAB on

a desktop computer using one core of a 3.0 GHz intel i7 processor and 32 GB of RAM.

This example considers the MPC of the discrete-time double integrator

xk+1 =

1 1

0 1

xk +

 1

0.5

uk , (4.31)

with state and input constraints given by the H-rep polytopes X = [−5, 5]2 and U = [−1, 1].

An MPC is designed with weight matrices Q = I and R = 1. The terminal weight and

state constraint set are chosen to guarantee stability and recursive feasibility of the nominal

closed-loop system as QN = P LQR
∞ and XN = OLQR

∞ , where P LQR
∞ and OLQR

∞ are the cost

and maximal invariant set, respectively, of the infinite-horizon LQR problem with weights

Q and R [ 14 ], and are found using the MPT [  12 ].

Following the process described in Section  4.2.4 , define the parameter set Xp as a hybrid

zonotope such that X ⊆ Xp. In the presented case, the parameter set is given in HCG-rep

by Xp = ⟨Gc
x, ∅, cx∅, ∅, ∅⟩ for Gc

x = 5I2 and cx = 0. The set of admissible control inputs may

similarly be represented exactly by the zonotope U = {Guξu + cu | ∥ξu∥∞ ≤ 1} for Gu = 1

and cu = 0. When the constraint sets are arbitrary convex polytopes, Xp and U may be taken

as any over-approximative zonotopes such that X ⊆ Xp and U ⊆ U ; tight approximations

may be found using the methods described in [ 11 ]. Under the change of variables ( 4.26 ), the

set of feasible optimizers of the mp-QP ( 4.27 ) is then over-approximated by the zonotope

Z = {Gzξz + cz | ∥ξz∥∞ ≤ 1} for

Gz = diag(∆) , cz = (cu · · · cu) + Pcx ,

∆ =
ng,u∑
i=1

∣∣∣(g(i)
u · · · g(i)

u

)∣∣∣+ ng,x∑
i=1

∣∣∣Pg(i)
x

∣∣∣ ,
(4.32)
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where Gu = [g(1)
u . . . g(ng,u)

u ], Gx = [g(1)
x . . . g(ng,x)

x ], and g(i)
u for all i = 1, . . . , ng,u and cu are

repeated N times in their respective column vectors. Once the prediction horizon N is fixed

and Z is chosen, the mp-QP ( 4.28 ) of the MPC is fully defined over the constrained state

space X ⊂ IR2.

Representation and Explicit Solution of the MPC Inputs

Applying Theorem  4.2.1 , the set of all feasible optimizers is given by the hybrid zonotope

Z∗(Xp) = ⟨Gc
∗, Gb

∗, c∗, Ac
∗, Ab

∗, b∗⟩ and may be transformed by the change of variables ( 4.26 )

to give the set of MPC inputs and feasible initial states over the prediction horizon as

Xfeas = ⟨[Gc
x 0 0], 0, cx, Ac

∗, Ab
∗, b∗⟩ , (4.33a)

U∗(Xp) = ⟨[− PGc
x Gz 0], 0, cz − Pcx, Ac

∗, Ab
∗, b∗⟩. (4.33b)

The explicit control law is visualized as a function of the state by the hybrid zonotope

X ◦ U∗
0 = ⟨Gc

xu, 0, cxu, Ac
∗, Ab

∗, b∗⟩ ⊂ IRnx+nu by concatenating the continuous generators and

centers of ( 4.33a ) with the first nu rows of the continuous generators and centers of ( 4.33b )

as

Gc
xu = [Iq 0]

 Gc
x 0 0

−PGc
x Gz 0

 , cxu = [Iq 0]

 cx

cz − Pcx

 ,

where q = nx + nu = 3. As discussed in Corollary  4.2.1 , the hybrid zonotope X ◦ U∗
0 may

be decomposed by enumerating the feasible combinations of the binary factors to give the

explicit control law as a collection of constrained zonotopes as shown in Fig.  4.5 . The

set representation complexities of U∗(Xp) and Xfeas, after applying the redundancy removal

techniques described in Remarks  4.2.2 and  4.2.3 , are given in Table  4.6 for varying prediction

horizons. The complexity of the representation of the critical regions as minimal H-rep

polytopes found using the MPT is provided for comparison.

Reachability Analysis

Now the reachability analysis of the closed-loop plant under the designed MPC with a

prediction horizon of N = 5 is presented for two scenarios, (1) nominal: plant is equivalent
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Figure 4.5. Explicit control law (x u∗
0(x)) ∈ X ◦ U∗

0 for a prediction horizon
of N = 5 as a hybrid zonotope. Decomposition of the hybrid zonotope into
its equivalent collection of 25 constrained zonotopes is depicted by solid black
lines.

Table 4.6. Set representation complexity of the hybrid zonotopes U∗(Xp) and
Xfeas compared to the total number of nx-dimensional halfspaces required to
represent the critical regions as a collection of H-rep polytopes for varying
prediction horizons.

Prediction Hybrid Zonotope MPT CRi
N ng,∗ nc,∗ nb,∗ H-rep Regions
3 37 27 8 74 19
5 53 41 10 104 25
7 73 57 14 124 29
9 97 77 18 144 33
11 105 83 20 150 35
13 107 85 20 150 35

to the prediction model with no disturbances, and (2) perturbed: plant is modeled with a

slight perturbation from the nominal prediction model and the closed-loop system is subject

to additive disturbances.

Nominal: The states reachable by the plant (Ap, Bp) = (A, B) from the set of all feasible

initial conditions Xfeas in five discrete updates of the MPC is generated through iterative

applications of Theorem  4.2.2 and is depicted in Fig.  4.6 . The set representation complexity

and computation time for the final set R5 is given in Table  4.7 with and without redundancy

removal. After removing redundant factors and constraints, the set of states reachable by

the system in five time steps is given by a hybrid zonotope equivalent to the union of 403
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constrained zonotopes using only 195 continuous generators, 38 binary generators, and 155

linear equality constraints.

As expected from the formulation of the state constraints and the definition of Xfeas,

recursive feasibility of the MPC is verified from the first step of the reachability analysis as

R1 ⊆ Xfeas. From observation, it is also possible to deduce some insight into the performance

of the closed-loop system. Although not strictly enforced by the formulation of the MPC,

all trajectories of the nominal closed-loop system lie within the maximal LQR invariant set

after five updates of the MPC. Furthermore, it can be observed that initial conditions in

the top right and bottom left quadrants have a higher potential to violate state constraints

when the closed-loop system encounters disturbances due to the reachable set intersecting

the boundary of Xfeas for multiple updates.

Figure 4.6. Reachable sets of the nominal MPC for five discrete time steps
from the set of initial conditions given by X0 = Xfeas. Maximal LQR invariant
set depicted by dashed lines.

Perturbed: Now consider the case when the plant dynamics do not match the nominal

prediction model ( 4.31 ) and the closed-loop system is subject to a bounded disturbance.
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From the set of initial conditions X0 = {x ∈ IR2 | ∥x(1)∥∞ ≤ 5, x(2) = 0}, it is to be verified

that the open-loop unstable plant (Ap, Bp) given by

Ap =

1.1 1

0 1

 , Bp =

 1

0.5

 , (4.34)

retains feasibility over ten updates of the nominal MPC while subject to additive disturbances

xk+1 = Apxk + Bpu∗
k + vk, for all vk belonging to the bounded set

V =
{
v ∈ IR2 : ∥v∥∞ ≤ 0.25

}
.

Disturbances are accounted for in the iterative applications of Theorem  4.2.2 by performing

the Minkowski sum Rk = R+⊕V and introducing an additional two generators at each time

step. The resulting reachable set is provided in Fig.  4.7 . The complexity and computation

time for the final reachable set R10 is given in Table  4.7 . After removing redundant factors

and constraints, the set of states reachable by the system in ten time steps is given by a hybrid

zonotope equivalent to the union of 2315 constrained zonotopes using only 279 continuous

generators, 45 binary generators, and 200 linear equality constraints. This exact reachability

analysis verifies that the perturbed closed-loop system maintains feasibility over ten discrete

time steps, as Ri ⊆ Xfeas for i = 1, . . . , 10, although there is no a priori guarantee that this

will occur.

Table 4.7. Hybrid zonotope set representation complexity for the reachable
sets of the closed-loop MPC at k time steps with redundancy removal, Rr

k, and
without, Rk.

Case Set ng,r nc,r nb,r |T | Time (sec)

Nominal R5 265 213 50 403 0.02
Rr

5 195 155 38 403 12.20

Perturbed R10 531 410 100 2315 0.03
Rr

10 279 200 45 2315 50.71
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Figure 4.7. Reachable sets of the closed-loop perturbed system ( 4.34 ) with
additive disturbances for ten discrete time steps. Decomposition of Xfeas into
critical regions given in cyan.

4.3 Chapter Summary

In this chapter I have derived closed-form solutions for the exact reachable sets of linear

hybrid systems modeled as MLD systems and linear systems closed-loop under linear MPC.

These identities contain all guard set intersections, changes in dynamics, and reset maps

implicitly as properties of the MLD model and multiparametric solution. The resulting

reachable set is represented as a single hybrid zonotope equivalent to the union an exponential

number of convex sets while exhibiting linear growth in set representation complexity. These

methods show how well suited the hybrid zonotope is to the reachability analysis of hybrid

systems, in which discrete changes in dynamics can cause branching of sets.

Two MLD systems were used to demonstrate the use of the proposed method for forward

reachable sets. The first example in which only one guard crossing occurred was used to

provide intuition into the given identity and use of the MLD system framework. The second

example showed the scalability of the approach by extending an existing benchmark example

to consider state dimensions ranging from three continuous states with one binary state to

twelve continuous states with four binary states. In this extended example, methods for the

removal of redundant continuous factors, binary factors, and linear equality constraints of
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such reachable sets substantially reduced the set representation complexity. These reductions

provided substantial improvements in computational efficiency when compared to existing

exact methods.

The proposed method for representing the forward reachable sets of systems closed-loop

under MPC was applied to an MPC designed for a discrete-time double integrator in two

scenarios: the nominal plant from the set of all feasible initial conditions and a perturbed

plant with additive disturbances. The perturbed case verified that when beginning from

rest, the closed loop system was robust to model mismatch and bounded disturbances with

no a priori guarantees being made. Beyond safety verification, this method for reachability

analysis may be used to evaluate the trade-offs in performance, conservatism, and complexity

among various MPC formulations and designs.

98



5. BACKWARD REACHABLE SETS OF HYBRID SYSTEMS

In this chapter I present a closed-form solution to the exact backwards reachable sets of

linear hybrid systems as hybrid zonotopes, as previously published by Jacob A. Siefert,

Trevor J. Bird, Justin P. Koeln, Neera Jain, and Herschel C. Pangborn in the IEEE Control

Systems Letters [ 85 ] and is included here with minor modifications. This approach relies

on generating a set containing all possible state transitions of a dynamic system over a

region of interest named the state-update set, a novel contribution of my colleague Jacob A.

Siefert. Using the state-update set, both forward and backward reachability analysis may

be performed using only projection and intersection set operations. The reachable sets may

be made robust to bounded disturbances when the set of possible values are represented

by a zonotope through Minkowski sums and differences. The technical contributions of this

chapter are as follows: Jacob A. Siefert is responsible for the concept of the state-update set

and its use in determining successor and precursor operators; Trevor J. Bird is responsible

for deriving the identities for representing the state-update sets as hybrid zonotopes for

MLD systems and closed-loop systems under linear MPC, as well as the derivation of the

Minkowski differences of hybrid zonotopes; the results presented in the numerical examples

were an equal contribution of both Jacob and Trevor. Trevor J. Bird was advised by Professor

Neera Jain at Purdue University, as well as Professor Justin P. Koeln (University of Texas

Dallas) and Professor Herschel Pangborn (The Pennsylvania State University).

This chapter is organized as follows. In Section  5.1 I provide an alternative definition

for reachable sets and extend the Minkowski differences of constrained zonotopes to hybrid

zonotopes. In Section  5.2 I define state-update sets and derive identities for the robust

successor and precursor sets leveraging the state-update set. In Section  5.3 I show how

the state-update sets of MLD systems and linear systems closed-loop under MPC may be

constructed as hybrid zonotopes. In Section  5.4 I provide examples of the forward and

backward reachable sets of several hybrid systems, including the calculation of the closed-

loop maximal positive invariant set for MPC.
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5.1 Background

This section describes a different definition for the forward and backward reachable sets of

a dynamic system as the output from successor and precursor operators. These operators are

defined as explicit functions of the state, input, and disturbance sets, and provide additional

flexibility that will be leveraged in the following derivations.

Consider the discrete-time, dynamic system described by the difference equation

x+ = f(x, u) + v , (5.1)

where x ∈ IRnx is the vector of initial states, u ∈ IRnu is the vector of controllable inputs to

the system, v ∈ IRnx is the vector of additive disturbances, and x+ ∈ IRnx is the vector of

trajectories after one discrete-time step. The states, inputs, and disturbances of the dynamic

system ( 5.1 ) are constrained to belong to the sets X ⊆ IRnx , U ⊆ IRnu , and V ⊆ IRnx

respectively. The forward and backward reachable sets when no disturbances are present is

first considered, i.e. V = ∅.

Assumption 5.1.1. The function f(x, u) for the discrete-time, dynamic system ( 5.1 ) is

well-defined such that for a fixed x and u there is a unique x+ satisfying the dynamics ( 5.1 ).

Definition 5.1.1. [ 14 , Ch. 10] For the dynamic system ( 5.1 ) and a given set of states

Rk ⊆ X ⊂ IRnx, the successor set for all admissible inputs belonging to the set U ⊂ IRnu is

given by

Suc(Rk,U) = {x+ ∈ IRnx | ∃x ∈ Rk, u ∈ U , s.t. x+ = f(x, u)} . (5.2)

Definition 5.1.2. [ 14 , Ch. 10] For the dynamic system ( 5.1 ) and a given set of states

Rk ⊆ X ⊂ IRnx, the precursor set for all admissible inputs belonging to the set U ⊂ IRnu is

given by

Pre(Rk,U) = {x− ∈ IRnx | ∃u ∈ U , s.t. f(x−, u) ∈ Rk} . (5.3)

Given an initial set of states Rk ⊆ X , the set Suc(Rk,U) contains all possible trajectories

of the dynamics system ( 5.1 ) at time step k + 1 for some admissible control input U . Con-

versely, given a set of states Rk ⊆ X , the set all states at time step k−1 that may be driven
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to Rk by an admissible control input u ∈ U is given by Pre(Rk,U). Once the successor and

precursor operators have been defined, the kth forward and kth backward reachable sets, Rk

and R−k, from an initial set R0 can be found by k recursions of the operators, respectively.

That is Rk+1 = Suc(Rk,U) and Rk−1 = Pre(Rk,U) when Rk ⊆ X .

Now consider when the disturbance set V ⊂ IRnx is nonempty, and these sets must be

robust to all possible disturbances.

Definition 5.1.3. [ 14 , Ch. 10] For the dynamic system ( 5.1 ) and a given set of states

Rk ⊆ X ⊂ IRnx, the robust successor set for all admissible control inputs belonging to the

set U ⊂ IRnu, and disturbances belonging to the set V ⊂ IRnx is given by

Suc(Rk,U ,V) = {x+ ∈ IRnx | ∃x ∈ Rk, u ∈ U , v ∈ V , s.t. x+ = f(x, u) + v} . (5.4)

Definition 5.1.4. [ 14 , Ch. 10] For the dynamic system ( 5.1 ) and a given set of states

Rk ⊆ X ⊂ IRnx, the robust precursor set for all admissible inputs belonging to the set

U ⊂ IRnu, and disturbances belonging to the set V ⊂ IRnx is given by

Pre(Rk,U ,V) = {x− ∈ IRnx | ∃u ∈ U , s.t. f(x−, u) + v ∈ Rk ∀ v ∈ V} . (5.5)

Now that additive disturbances are considered, the robust successor set is the set of

all points that could be driven from an initial state at time k for some combination of a

controllable input and unknown disturbance. Thus the robust successor set has additional

possibilities, i.e. Suc(Rk,U) ⊆ Suc(Rk,U ,V). On the other hand, the robust precursor set

is the set of all points that could be driven to Rk despite the possible disturbances. Thus

the robust precursor set has fewer possibilities, i.e. Pre(Rk,U ,V) ⊆ Pre(Rk,U). Given that

the considered disturbances are additive, the difference between the successor and robust

successor sets is that of a Minkowski addition such that

Suc(Rk,U ,V) = Suc(Rk,U)⊕ V . (5.6)
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Similarly, the difference between the precursor and robust precursor sets is that of a Minkowski

difference such that

Pre(Rk,U ,V) = Pre(Rk ⊖ V ,U) . (5.7)

These properties follow directly from the definitions of Minkowski sums and differences, and

those of successor and precursor sets (see Section  2.2 as well as detailed discussion on robust

successor and precursor sets in [ 14 , Ch. 10]). The Minkowski difference of a hybrid zonotope

by a zonotope may be calculated using the following extension of the same operation for

zonotopes and constrained zonotopes [  20 ], [  34 ].

Proposition 5.1.1 (Minkowski Difference). For any hybrid zonotope Zh =

⟨Gc
z, Gb

z, cz, Ac
z, Ab

z, bz⟩ ⊂ IRn and zonotope V = ⟨Gv, cv⟩ ⊂ IRn, where Gv =
[
g(1)

v . . . g(ng,v)
v

]
,

the Minkowski difference Zd = Zh ⊖ V is a hybrid zonotope computed by the recursion:

Z(0)
int = Zh − cv , (5.8a)

Z(i)
int =

(
Z(i−1)

int + g(i)
v

)
∩
(
Z(i−1)

int − g(i)
v

)
, (5.8b)

Zd = Z(ng,v)
int . (5.8c)

Proof. The proof mirrors that for the Minkowski difference of two zonotopes [ 34 , Thm. 1].

The Minkowski difference of an arbitrary set and a zonotope given by the above recursion only

requires that the subtrahend is the Minkowski sum of the generators g(i)
v ∀ i ∈ {1, . . . , ng,v}

shifted by the center cv. The minuend Zh is an arbitrary set. It follows that the hybrid

zonotope’s closure under Minkowski sums and intersections allows the recursion ( 5.8 ) to be

generated through a finite number of set operations to give the Minkowski difference as the

hybrid zonotope Zd.

Time complexity of Minkowski differences given by Proposition  5.1.1 is O(nng,v). Com-

plexity of the resulting set representation, Zd, is ng,d = 2ng,vng,z, nb,d = 2nb,vnb,z, and

nc,d = 2nc,vnc,z +nnc,v. These can be derived by applying the Minkowski sum and intersection

operation results from Section  3.2 .
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5.2 Reachability via State-Update Sets

This section introduces a new concept named the state-update set that encodes all possi-

ble state transitions satisfying the discrete-time dynamics ( 5.1 ) in one time step into a single

2nx-dimensional set. It is then shown how the state-update set may be used to define the

successor and predecessor operators for finding forward and backward reachable sets.

Definition 5.2.1. Given any discrete-time dynamic system ( 5.1 ) with a successor operator

over a domain D(Φ) and set of admissible control inputs U ⊂ IRnu, the system’s state-update

set Φ ⊆ IR2nx is given by

Φ =


 xk

xk+1


∣∣∣∣∣∣∣

xk+1 ∈ Suc({xk},U),

xk ∈ D(Φ)

 . (5.9)

The domain of the state-update set Φ is denoted by D(Φ) ⊆ X , and is typically chosen as

some region of interest for analysis. A simple choice is to set D(Φ) = X for a system with state

constraints. The range of the state-update set Φ, on the other hand, is the set of all points

output by the successor operator over the chosen domain and admissible control inputs, and

is denoted by R(Φ). Thus given a domain D(Φ) ⊆ X and set U , R(Φ) = Suc(D(Φ),U). Also

note that the domain and range of the state-update set Φ are its projections onto the first

nx and last nx dimensions, respectively, as

D(Φ) =
[
Inx 0nx

]
Φ , (5.10a)

R(Φ) =
[
0nx Inx

]
Φ . (5.10b)

Theorem 5.2.1. Given a set of states Rk ⊆ IRnx and state-update set Φ ⊆ IR2nx, if Rk ⊆

D(Φ) then

Suc(Rk,U ,V) =
[
0nx Inx

] (
Φ ∩[Inx 0nx ] Rk

)
⊕ V . (5.11)
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Proof. By the definition of generalized intersections ( 2.1d ) and Definition  5.2.1 ,

Φ ∩[Inx 0nx ] Rk =


 xk

xk+1


∣∣∣∣∣∣∣

xk+1 ∈ Suc({xk},U),

xk ∈ Rk ∩D(Φ)

 .

If Rk ⊆ D(Φ), then Rk ∩D(Φ) = Rk. Thus the right hand side of (  5.11 ) yields

{xk+1 | xk+1 ∈ Suc({xk},U), xk ∈ Rk} ⊕ V , (5.12)

giving the desired result by Definition  5.1.3 .

The containment condition in Theorem  5.2.1 , Rk ⊆ D(Φ), is in general not restrictive

as modeled dynamics are often only valid over some region of interest, which the user may

specify as D(Φ) when constructing the state-update set. If Rk ̸⊆ D(Φ), it can be shown that

the right side of (  5.11 ) gives Suc(Rk ∩ D(Φ),U ,V) due to the intersection with the domain

of the state-update set.

Remark 5.2.1. The result of Theorem  5.2.1 gives cause for healthy skepticism. That is, if

the robust successor operator is already defined, what is the advantage of going through the

additional steps to achieve the same result as that of applying the robust successor operator?

The advantage is that the state-update set given by Φ is a set of points, and the successor

operator only needs to be applied once when finding Φ. Thus the only restrictions imposed

by Theorem  5.2.1 is that the set representation used to represent Φ is closed under general-

ized intersections and may have Minkowski sums applied for the additive disturbance set V.

Furthermore, Φ can be manipulated using set operations prior to performing any analysis,

which is unique to the proposed approach.

It is now shown how the robust precursor set may also be defined using the state-update

set.
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Lemma 5.2.1. The state-update set ( 5.9 ) is equivalently defined in terms of the precursor

set as

Φ =


xk−1

xk


∣∣∣∣∣∣∣

xk−1 ∈ Pre({xk},U),

xk−1 ∈ D(Φ)

 . (5.13)

Proof. Let Φ be given by Definition  5.2.1 . For any ϕ ∈ Φ ⊆ IR2nx , let (xk−1 xk) = ϕ. Then for

all xk there exists some xk−1 ∈ D(Φ) such that xk ∈ Suc({xk−1},U), and from Definition  5.1.1 

it holds that xk = f(xk−1, u) for some u ∈ U . Thus it follows that xk−1 ∈ Pre({xk},U).

Theorem 5.2.2. Given a set of states Rk ⊆ IRn and state-update set Φ, if Rk ⊖V ⊆ R(Φ),

then

Pre(Rk,U ,V) ∩ D(Φ) =
[
Inx 0nx

] (
Φ ∩[0nx Inx ] (Rk ⊖ V)

)
. (5.14)

Proof. Let K = Rk ⊖ V , then for any xk ∈ K it holds that xk + v ∈ Rk ∀ v ∈ V . By the

definition of generalized intersections and Lemma  5.2.1 ,

Φ ∩[0nx Inx ] K =


xk−1

xk


∣∣∣∣∣∣∣

xk−1 ∈ Pre({xk},U) ,

xk−1 ∈ D(Φ) , xk ∈ K

 .

Thus the right-hand side of ( 5.14 ) yields

{xk−1 | xk−1 ∈ Pre({xk},U) ∩D(Φ) , xk + v ∈ Rk ∀ v ∈ V} , (5.15)

giving the desired result by Definition  5.1.4 .

When Φ is generated for a domain D(Φ) corresponding to a region of interest for analysis,

the condition Pre(Rk,U ,V) ∩ D(Φ) of Theorem  5.2.2 is not restrictive. For the use case of

systems with state constraints, when the domain is chosen as D(Φ) = X , robust backwards

reachable sets and invariant sets can be determined using the proposed precursor operator.

In general, suitable choice of D(Φ) will result in Pre(Rk,U ,V) ⊆ D(Φ) =⇒ Pre(Rk,U ,V)∩

D(Φ) = Pre(Rk,U ,V). The condition Rk⊖V ⊆ R(Φ) requires that the set to be operated on
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is fully contained within the range of the state-update set. If this condition does not hold, i.e.

Rk ⊖ V ̸⊆ R(Φ), then information is lost during the intersection with the state-update set.

Specifically, there exists some xk ∈ Rk that can be reached, but for which no combination

of xk−1 ∈ D(Φ), u ∈ U , and v ∈ V can account.

5.3 Reachability using Hybrid Zonotope State-Update Sets

It is now shown how state-update sets can be generated for MLD systems and linear

systems under closed-loop MPC using hybrid zonotopes and the forward reachability results

from Chapter  4 .

Assumption 5.3.1. Note that the Minkowski difference required in the robust successor set

given by Theorem  5.2.2 may only be performed using the identity given in Proposition  5.1.1 

when the possible disturbances are represented by a zonotope in G-rep such that

V = ⟨Gc
v, cv⟩ ⊂ IRnx . (5.16)

It is assumed that all disturbance sets in this chapter are given by the zonotope ( 5.16 ).

Using hybrid zonotopes, the proposed state-update set method has reduced time com-

plexity for forward reachable sets when compared to the proposed methods in Chapter  4 .

Specifically, the time complexity of the successor set given by ( 5.11 ) is O(n), as the lin-

ear mappings [Inx 0nx ] and [0nx Inx ] are projections that amount to matrix concatenation.

The time complexity of the precursor set given by ( 5.14 ) is O(nng,v) due to the Minkowski

difference. Set complexity growth of the successor set is given by

ng,Suc = ng,r + ng,ϕ + ng,v , (5.17a)

nb,Suc = nb,r + nb,ϕ , (5.17b)

nc,Suc = nc,r + nc,ϕ + n , (5.17c)
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and that of the precursor set is given by

ng,Pre = 2ng,vng,r + ng,ϕ , (5.18a)

nb,Pre = 2ng,vnb,r + nb,ϕ , (5.18b)

nc,Pre = 2ng,vnc,r + 2ng,vn + nc,ϕ , (5.18c)

where n·,r is the set representation complexity of the hybrid zonotope Rk, n·,ϕ is the set

representation complexity of the state-update set in HCG-rep, and ng,v is the number of

generators used to represent the possible disturbances in G-rep. Iterative calculation of

successor sets ( 5.11 ) results in linear complexity growth dependent on the complexity of Φ

and V . Due to the difficulty of computing Minkowski differences, iterative calculations of the

precursor sets ( 5.11 ) results in exponential complexity growth. If ng,v = 0, time complexity

of precursor sets (  5.14 ) reduces to O(n) and iterative applications of the precursor operator

give linear complexity growth.

Remark 5.3.1. Given that the state-update set is defined as a hybrid zonotope, all redun-

dancy removal and order reduction techniques described in Chapter  6 may be used to reduce

the the complexity growth of the resulting forward and backward reachable sets. When ap-

plied to the state-update set, these order reduction techniques only need to be applied once,

not iteratively.

5.3.1 State-Update Set: MLD Systems

This section shows how the identity for the forward reachable sets of MLD systems by

Theorem  4.1.1 may be used to generate a state-update set for the system. The complexity

of finding the state-update set is the same as finding the one-step forward reachable set.
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Proposition 5.3.1. Given a well-posed MLD system given by ( 4.1 ) and defined over X ⊂

IRnx, let

Q =


0

Bu

Eu

U ⊕


0

Bw

Ew

W ⊕


0

Baff

0

 , (5.19)

and define H = {s ∈ IRne | s ≤ Eaff}. Then a state-update set with D(Φ) = X for the MLD

system is given by

Φ = [I2nx 0ne ]
[(

[Inx AT ET
x ]TX ⊕Q

)
∩[02nx Ine ] H

]
. (5.20)

Proof. Let Φ̂ be the hybrid zonotope given by the right-hand side of ( 5.20 ) and Φ the

state-update set of the MLD system given by Definition  5.2.1 with D(Φ) = X . For any

p ∈ [Inx AT ET
x ]TX ⊕Q, there exists some x ∈ X , u ∈ U , and w ∈ W such that

p =


p1

p2

p3

 =


x

Ax + Buu + Bww + Baff

Exx + Euu + Eww

 .

For any ϕ̂ ∈ Φ̂, ϕ̂ = [I2nx 0ne ]p and [02nx Ine ]p ∈ H. By Theorem  4.1.1 , this implies that

[0nx Inx ]ϕ̂ ∈ Suc([Inx 0nx ]ϕ̂,U) and therefore ϕ̂ ∈ Φ. Given that the MLD is well-defined for

all x ∈ X , it holds that D(Φ̂) = X and therefore Φ̂ = Φ.

5.3.2 State-Update Set: Linear MPC

This section demonstrates the construction of a hybrid zonotope state-update set for a

discrete-time linear time-invariant system under MPC by leveraging Theorem  4.2.2 . It is

possible to construct an MLD system equivalent to a linear system under closed-loop MPC

[ 14 ], [  81 ] which can be used to construct a state-update set using the results of Section  5.3.1 .

Thus the proof of Proposition  5.3.1 holds. Instead, this section provides a direct method with
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no MLD conversion to generate the state-update set for the linear system under closed-loop

MPC.

Given the linear discrete-time system ( 4.21 ) and MPC formulation ( 4.22 ), consider the

augmented system

Â =

0 Inx

0 A

 , B̂ =

0

B

 , Q̂ =

0 0

0 Q

 , Q̂N =

0 0

0 QN

 ,

R̂ = R , X̂ = X × X , X̂n = X × Xn , Û = U . (5.21)

The augmented system ( 5.21 ) stacks a static system with the linear system of interest (A, B).

The static states are not penalized and have no effect on the optimal inputs. Leveraging

Theorem  4.2.2 to find the one-step forward reachable set of the augmented system ( 5.21 )

under closed-loop MPC from the initial set X̂0 = [0nx Inx ]TX yields the state-update set

with D(Φ) = X .

5.4 Numerical Examples

The following examples calculate forward and backward reachable sets and invariant sets

using the methods proposed in Section  5.2 with state-update sets calculated as in Section

 5.3 . MLD representations of the considered hybrid systems are obtained using HYSDEL 3.0

[ 75 ]. Results are generated with MATLAB on a desktop computer with a 3.0 GHz Intel i7

processor and 16 GB of RAM.

5.4.1 Piece-Wise Affine System with Two Equilibrium Points

This example extends the PWA system with two equilibrium points considered in Section

 4.1.4 by introducing a control input and additive disturbance as

x[k + 1] =


A1x[k] + B1 + u[k] + w[k] , if x1[k] ≤ 0 ,

A2x[k] + B2 + u[k] + w[k] , otherwise ,
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A1 =

 0.75 0.25

−0.25 0.75

 , B1 =

−0.25

−0.25

 , A2 = AT
1 , B2 =

 0.25

−0.25

 .

The inputs and disturbances are constrained to belong to scaled unit hypercubes such that

u[k] ∈ U = suB2
∞ and w[k] ∈ W = swB2

∞. Forward (R4,R5,R6) and backward (R0,R1,R2)

reachable sets are calculated from

R3 =
〈 0.15 0.05

−0.05 0.15

 ,

−0.0520

0.8465

〉 ,

and shown in Figure  5.1 for three cases of input and disturbance sets defined in Table  5.1 .

This example system and choice of R3 are chosen to facilitate comparison with forward

reachability results from Section  4.1.4 . The state-update set for Case 1 and Case 2 where no

inputs are applied is calculated and found to have complexity ng,ϕ = 16, nb,ϕ = 1, nc,ϕ = 10.

The state-update set for Case 3 has 2 additional continuous generators associated with the

input resulting in ng,ϕ = 18. Computation times and reachable set complexities are reported

in Table  5.1 .

Figure 5.1. Forward (R4,R5,R6) and backward (R0,R1,R2) reachable sets
from R3 for three cases of input and disturbance sets. Sets from the Case 1
subplot are also shown in wire frame in the Case 2 and 3 subplots for compar-
ison.

In Figure  5.1 , forward reachable sets are shown to split along the guard, while backward

reachable sets branch when their precursors set span both sides of the guard. Comparison

of Case 1 and Case 2 demonstrates that backward reachable sets are smaller when required

110



Table 5.1. Forward and backward reachable set complexities and computation
times for the two-equilibrium system.

Case Direction/Set ng,r nb,r nc,r Time [ms]

1) su = 0 , sw = 0 Forward: R6 50 3 36 0.13
Backward: R0 50 3 36 0.12

2) su = 0 , sw = 0.05 Forward: R6 56 3 36 0.23
Backward: R0 464 21 378 2.92

3) su = 0.10 , sw = 0.05 Forward: R6 62 3 36 0.24
Backward: R0 506 21 378 3.12

to be robust to a disturbance, while forward reachable sets become larger. Comparison of

Case 2 and Case 3 demonstrates that adding control authority causes forward and backward

reachable sets to become larger.

In Case 1, backward and forward reachable sets are calculated with similar computation

times and have identical complexity growth when there is no disturbance. The addition of a

disturbance in Case 2, and both a disturbance and an input in Case 3, has a small effect on

computation times and complexity growth of forward reachable sets. However, because the

robust precursor set relies on a Minkowski difference when a disturbance is present, the com-

putation time and complexity growth of the backward reachable sets increase significantly.

These results are consistent with the complexity equations in Section  5.3 and motivate fu-

ture work on approximation methods to reduce reachable set complexity through developing

methods for inner-approximations. Similar to how hybrid zonotopes are able to leverage

over-approximation methods developed for zonotopes (see Chapter  6 ), hybrid zonotopes

may be able to leverage approximation methods developed for the inner-approximations of

zonotopes and constrained zonotopes [  20 ], [  35 ].

Using the methods from Section  4.1 for exact redundancy removal, 5 continuous genera-

tors and 3 constraints are removed from the state-update set. The 6-step backward reachable

sets from R3 for Case 2 using the nominal (R−3) and reduced (Rred
−3 ) state-update sets are

shown in Table  5.2 . Computation time of the reduced set includes 0.5 seconds to reduce the

state-update set prior to iteration over precursor sets. This enables a 62% reduction in total
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computation time, 22% reduction in number of continuous generators, and 6% reduction in

number of constraints.

Table 5.2. Backward reachability with nominal (row 1) vs. reduced (row 2)
state-update set for the two-equilibrium system.

Case 2 Direction/Set ng,r nb,r nc,r Time [s]

su = 0 , sw = 0.05 Backward: R−3 30032 1365 24570 50
Backward: Rred

−3 23207 1365 23207 19

5.4.2 Thermostat-Controlled Heated Rooms

To demonstrate scalabality, backward reachability is performed for the benchmark room

heating example with 6 rooms and 2 heaters, given by Case(6, 2) in Section  4.1.4 assuming

a constant outdoor temperature of u = 0. The state-update set has complexity ng,ϕ =

24, nb,ϕ = 8, nc,ϕ = 18. Backward reachable sets are found beginning atR50 from the forward

reachability analysis performed in Section  4.1.4 , which has complexity ng,50 = 68, nb,50 =

13, nc,50 = 62. The 50-step backward reachable set R0 is calculated in 0.34 seconds with

complexity ng,0 = 1268, nb,0 = 413, nc,r0 = 1362.

An alternative to the proposed approach is to calculate the reachable set as a collection

of convex sets, as done for forward reachability in [ 86 ] and backward reachability in [  32 ].

This exhibits worst-case exponential growth in set complexity over time, while the proposed

approach has linear complexity growth. At every time step, each convex set in the collection

is propagated backward under the dynamics of each mode, and sets corresponding to inactive

modes are eliminated. For comparison to the proposed approach, R0 is calculated using [  32 ,

Section IV] and implemented using constrained zonotopes [  18 ]. This results in a collection of

1125 constrained zonotopes with 147,637 total generators and 28,387 total constraints and

takes 202 seconds to compute. This is nearly 600 times longer than the proposed approach

due to the large number of convex sets to be propagated and eliminated.
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Figure 5.2. Projections of backward reachable sets of the room heating ex-
ample. Backward reachable sets are calculated from R50 for 50 steps. Guards
determining heater logic (green dashed lines) and the region over which the
MLD is defined (black dashed lines) are also depicted. The initial set used to
find R50 is depicted by solid black box.

5.4.3 Model Predictive Control

The maximal positive invariant set OMP C
∞ of a closed-loop system under MPC consists

of all initial conditions that generate recursively feasible trajectories. This example shows

how the proposed methods enable computation of a less conservative OMP C
∞ as compared to

conventional methods.

Consider the double integrator from [ 14 , Example 12.1],

x[k + 1] =

1 1

0 1

x[k] +

0

1

u[k] ,

under MPC ( 4.22 ) with P = Q = I, R = 10, and N = 3. Input and state trajectories are

constrained by u[k] ∈ U = 1
2B

1
∞, x[k] ∈ X = 5B2

∞, ∀k ∈ [1, N − 1]. Two cases of terminal

state constraints are considered.

Case 1: For this case, we set XN = X . Algorithm 10.1 of [ 14 ] provides a general method

for calculating O∞ for autonomous dynamics using precursor and intersection calculations,

but its application to hybrid systems was previously limited due to the lack of a scalable

precursor set identity. However, this algorithm can be applied using hybrid zonotopes and

the precursor set identity in Theorem  5.2.2 to calculate OMP C
∞ , as plotted in Figure  5.3a .

113



Also plotted is Xfeas, the set of states for which the optimization program has a feasible

solution but are not necessarily recursively feasible trajectories.

Case 2: Absent efficient methods to compute OMP C
∞ under the PWA control laws, con-

ventional approaches ensure recursive feasibility by artificially constraining XN to a positively

invariant set associated with a simpler control law. This results in OMP C
∞ = Xfeas [ 14 , Chap-

ter 12.3.1]. A common choice is XN = OLQR
∞ , where OLQR

∞ is the maximal linear quadratic

regulator (LQR) invariant set [ 14 , Definition 11.1]. This set and the resulting Xfeas are

shown in Figure  5.3b .

Comparison of cases 1 and 2 in Figure  5.3 demonstrates that introducing the terminal

constraint XN = OLQR
∞ results in a smaller maximal region of recursive feasibility than when

XN = X . Thus the proposed methods enable reduced conservatism in the control design

by allowing OMP C
∞ to be computed for a less restrictive terminal constraint. The terminal

constraint in case 2 may also negatively affect performance [ 14 , Remark 12.2].

(a) (b)

Figure 5.3.  5.3a The maximal positive invariant set under MPC OMP C
∞ is

calculated using the scalable precursor set identity presented in this paper.  5.3b 

Conventional methods use an artificial terminal constraint to obtain OMP C
∞ ,

however this makes the set smaller.

5.5 Chapter Summary

In this chapter I have presented a closed-form solution for the exact backward reach-

able sets of linear hybrid systems as hybrid zonotopes. This approached leveraged a new
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construct named the state-update set that encodes all possible state transitions over one

discrete time step within a single set. Using the state-update set, identities were proven for

both the robust forward and robust backward reachable sets of general well-posed discrete-

time dynamic systems. When the considered system is modeled as an MLD or a linear

system in closed-loop under MPC, it was shown how the state-update sets may be generated

as hybrid zonotopes by leveraging the results in Chapter  4 . The reachable sets are then

propagated with linear growth in the number of zonotope factors when performing forward

reachability or backward reachability with no disturbances, and exponential growth when

performing backward reachability with disturbances due to the complexity growth associ-

ated with Minkowski differences. These methods show that finding the one step forward

reachable set of a system over a region of interest can be used to generate forward reachable,

backward reachable, and invariant sets. Numerical results demonstrate forward and back-

ward reachability of MLD systems and computation of a maximal positive invariant set for

a PWA control law of MPC.
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6. COMPLEXITY REDUCTION OF HYBRID ZONOTOPES

Many of the set operations I have proposed in this dissertation increase the complexity of

the set representation. Although having reduced memory and computational complexity

when compared to the exact methods existing in the literature, use of the hybrid zonotope

while maintaining exactness is inherently limited to a finite number of operations. To ad-

dress this challenge, in this chapter I present methods for reducing the complexity of hybrid

zonotopes by extending procedures developed for constrained zonotopes as well as through

general mathematical programming. The proposed methods provide an approach for con-

servatively reducing the complexity of the set representation such that additional operations

may be continually applied while remaining computationally tractable. The technical con-

tributions of this chapter are as follows: Trevor J. Bird is responsible for all derivations of

the proposed order reduction techniques, error metrics, and numerical examples; Jacob A.

Siefert is responsible for the volume estimation method by sampling random points. Trevor

J. Bird was advised by Professor Neera Jain at Purdue University, as well as Professor Justin

P. Koeln (University of Texas Dallas) and Professor Herschel Pangborn (The Pennsylvania

State University).

This chapter is organized as follows. First I provide methods for removing redundancy

from the hybrid zonotope set representation to reduce complexity of future operations with-

out altering the set in Section  6.1 . In Section  6.2 I develop algorithms for reducing the

number of continuous generators, binary generators, and equality constraints of the hybrid

zonotope to provide over-approximations. In Section  6.3 I derive error metrics for evaluating

the effectiveness of the proposed over-approximations. Finally in Section  6.4 I provide nu-

merical examples demonstrating the usefulness of the proposed techniques and apply them

to the reachability analysis of hybrid systems.

6.1 Redundancy Removal

In this section I provide methods for identifying and removing redundancy in the equal-

ity constraints, continuous generators, and binary generators of hybrid zonotopes. These

methods are advantageous as they can be used to avoid unnecessary growth in the set rep-
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resentation complexity without altering the set. In Section  6.1.1 I show how redundant

equality constraints may be identified and removed from the set representation. In Section

 6.1.2 I show how redundancy in the continuous generators may be identified and removed

while also reducing the number of equality constraints. Finally in Section  6.1.3 I show how

redundant binary factors may be identified and removed from the hybrid zonotope.

6.1.1 Redundant Equality Constraints

Given any hybrid zonotope Zh = ⟨Gc, Gb, c, Ac, Ab, b⟩ ⊂ IRn, the equality constraints

are given by the linear system of nc equations Acξc + Abξb = b. It is possible that some

rows of this system of equations are redundant. This redundancy may arise in reachable

sets of hybrid systems, using the identities discussed in Chapters  4 and  5 , when guard set

intersections do not occur and other constraints and variables have been removed through

various redundancy removal and order reduction techniques. Iterative applications of the

forward, and backward, reachable set operators may therefore result in redundant equality

constraints.

Some redundant equality constraints may be present in the form of linearly dependent

rows. This redundancy can be determined by evaluating the linear dependence of each of

the rows using rank revealing LU decomposition [ 87 ]. To do this, the constraint matrices

are concatenated such that

Â =
[
Ac Ab b

]
∈ IRnc×(ng+nb+1) . (6.1)

Performing QR decomposition on ( 6.1 ) results in ÂP = QR, where P ∈ IR(ng+nb+1)×(ng+nb+1)

is a permutation matrix, Q ∈ IRnc×nc is an orthogonal matrix, and R ∈ IRnc×(ng+nb+1) is an

upper triangular matrix [  88 ]. Linearly dependent rows may then be detected by the rows of

R that have elements less than a prescribed zero tolerance ϵ, i.e. Rj,· ≤ ϵ implies that row j

of the permuted matrix ÂP is linearly dependent. Given that their information is already

contained in another row of the matrix, these linearly dependent rows may then be removed

without altering the set.
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6.1.2 Redundant Continuous Generators

In all zonotopes, constrained zonotopes, and hybrid zonotopes, the continuous factors

are constrained to belong to the unit hypercube, Bng
∞ = {x ∈ IRng | ∥x∥∞ ≤ 1}. Within the

MILP formulation of the hybrid zonotope ( 3.44 ), this is equivalent to enforcing the constraint

that the continuous factors lie within the interval of [ − 1, 1] such that −1 ≤ ξc
j ≤ 1 for all

j ∈ {1, . . . , ng}. For the case of zonotopes, these bounds are absolute and the vertices of the

represented polytope are obtained when some combination of the factors lie on the vertices

or center of the unit hypercube, i.e. for any zonotope Z = ⟨Gc, c⟩ ⊂ IRn with an equivalent

V-rep Z = {∑nv
i=1 αivi | αi ≥ 0,

∑nv
i=1 αi = 1}, Gcξc + c = vi implies that ξc

j ∈ {−1, 0, 1}

for all j ∈ {1, . . . , ng} [ 65 ]. Once linear equality constraints are introduced into the set

definition, such as for constrained and hybrid zonotopes, the infinity norm constraints on

certain continuous factors may be unnecessary.

Similar to the approach used for rescaling the continuous generators of constrained zono-

topes [ 18 , Sec. 4.1], the implicit bounds on the continuous factors of a hybrid zonotope may

be found by solving the 2ng MILPs given by

ξc
L,i = min

{
ξc

i

∣∣∣ Acξc + Abξb = b , ∥ξc
j ̸=i∥∞ ≤ 1 , ξb ∈ {−1, 1}nb

}
, (6.2a)

ξc
U,i = max

{
ξc

i

∣∣∣ Acξc + Abξb = b , ∥ξc
j ̸=i∥∞ ≤ 1 , ξb ∈ {−1, 1}nb

}
, (6.2b)

where ξc
L,i is the lower bound and ξc

U,i the upper bound of the ith continuous generator

when its infinity norm constraint is relaxed. If the interval resulting from ( 6.2 ) satisfies

[ξc
L,i, ξc

U,i] ⊆ [ − 1, 1], then the linear inequality constraints −1 ≤ ξc
i ≤ 1 are redundant [  20 ].

This redundancy occurs because the value of the continuous factor is already constrained to a

tighter interval through the combination of the other equality, infinity norm, and integrality

constraints of the hybrid zonotope. Once an infinity norm constraint has been identified as

redundant, the variable is considered free and may be substituted out of the set representation

using a single equality constraint. Doing so, the information of the continuous factor is

maintained while reducing the number of continuous factors and equality constraints by

one. This result follows closely from reduction methods of constrained zonotopes [ 18 ], [  20 ]
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which are a special case of redundancy removal techniques used in presolve methods of linear

programs [ 89 ].

Proposition 6.1.1. For any Zh = ⟨Gc, Gb, c, Ac, Ab, b⟩ ⊂ IRn with implicit bounds on the

ith continuous generator given by ( 6.2 ) satisfying [ξc
L,i, ξc

U,i] ⊆ [ − 1, 1], Zh may be exactly

represented with ng− 1 continuous generators and nc− 1 constraints by the hybrid zonotope

Zr
h =

〈
Gc − ΛGAc, Gb − ΛGAb, c + ΛGb, Ac − ΛAAc, Ab − ΛAAb, b− ΛAb

〉
, (6.3)

where ΛG = GcEi,k(Ac
k,i)−1 ∈ IRn×nc, ΛA = AcEi,k(Ac

k,i)−1 ∈ IRnc×nc, Ei,k ∈ IRng×nc is a

matrix with zero entries except for a one in the (i, k) position, and k ∈ {1, . . . , nc} such that

Ac
k,i ̸= 0.

Proof. Following the procedures of [ 20 , Sec. 4], for any z ∈ Zh there exists some ξc ∈

Bng
∞ and ξb ∈ {−1, 1}nb such that z = Gcξc + Gbξb + c and Acξc + Abξb = b. Choose

some k ∈ {1, . . . , ng} such that Ac
k,i ̸= 0 and solve the kth equality constraint such that

ξc
i = (bk −

∑
j ̸=i Ac

k,jξ
c
j − Ab

k,·ξ
b)(Ac

k,i)−1. Substituting this expression for ξc
i in the remaining

equations results in

z = (Gc − ΛGAc)ξc + (Gb − ΛGAb)ξb + (c + ΛGb) , (6.4a)

(Ac − ΛAAc)ξc + (Ab − ΛAAb)ξb = b− ΛAb , (6.4b)

where ΛG = GcEi,k(Ac
k,i)−1 ∈ IRn×nc , ΛA = AcEi,k(Ac

k,i)−1 ∈ IRnc×nc , and Ei,k ∈ IRng×nc is

a matrix with zero entries except for a one in the (i, k) position. Making this substitution

results in the ith column of the continuous generator matrix and kth row of equality constraints

being equal to zero. While the information of the ith generator is still imposed in the hybrid

zonotope Zr
h, the ability to enforce its infinity norm constraint is lost. However, given that

the implicit bounds on the continuous factor satisfies ξc
i ∈ [ξc

L,i, ξc
U,i] ⊆ [ − 1, 1] when the

infinity norm constraint is relaxed, the constraint is redundant. Removing the kth zero row

of the equality constraints and ith zero column of the continuous generator and constraint

matrices results in a hybrid zonotope Zr
h = Zh with ng− 1 continuous generators and nc− 1

equality constraints.
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Remark 6.1.1. Proposition  6.1.1 provides a method of removing redundancy while reducing

the number of continuous factors and equality constraints by one without altering the set of

points represented by the hybrid zonotope. Performing this reduction requires that nc ̸= 0 and

that there exists some Ac
k,i ̸= 0. This will always be the case. If Ac

·,i = 0 then the ith factor

is not present in the constraints and will thus have implicit bounds of [ξc
L,i, ξc

U,i] = [−∞,∞].

For this case, solving the MILPs ( 6.2 ) to determine the implicit bounds is unnecessary.

6.1.3 Redundant Binary Generators

Given a hybrid zonotope with nb > log2(|T |), where |T | is the number of feasible leaves of

the hybrid zonotope’s binary tree (see Sec.  3.3 ), it is possible that the set may be represented

with a reduced number of binary factors. One case where the number of binary factors may

be reduced is when their values in the integer feasible set T are not linearly independent. In

this case, some of the binary factors may be equivalently represented as a linear combination

of the other factors. Another possibility is when all feasible values of a binary factor are the

same. In this case, the binary factor can be removed after shifting the hybrid zonotope’s

center and the right hand side of the linear equality constraints by a constant.

Once T is known, linearly dependent binary factors may be detected and removed as

follows. First, let T ∈ IRnb×|T | be a matrix with each column an element of T , thus T (i, j) =

±1 ∀ i, j. Letting nϕ = rank(T ), if nϕ < nb then there exists a linear mapping

M1T (Φ, ·) = T , (6.5)

where Φ ∈ Nnϕ

+ are the indices of the linearly independent rows of T . Thus the hybrid

zonotope Zh = ⟨Gc, Gb, c, Ac, Ab, b⟩ is equivalent to Zr
h = ⟨Gc, GbM1, c, Ac, AbM1, b⟩ where

Zr
h has nr

b = nϕ < nb binary factors. The integer feasible set of Zr
h is then given by

T r =
|T |⋃
i=1

T (Φ, i) . (6.6)
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If all feasible values of a binary factor are the same, it can be removed as follows. Let T (Φ)

be sorted such that the constant linearly independent row occurs first, i.e. T (Φ(1), ·) = 1 or

−1, and let

M2 = M1

01×nϕ−1

Inϕ−1

 , m2 = M1

T (Φ(1), 1)

0nϕ−1×1

 . (6.7)

Then Zh = ⟨Gc, Gb, c, Ac, Ab, b⟩ is equivalent to Zr
h = ⟨Gc, GbM2, c + Gbm2, Ac, AbM2, b −

Abm2⟩ where Zr
h has nr

b = nϕ − 1 < nb binary factors. The integer feasible set of Zr
h is then

given by

T r =
|T |⋃
i=1

T (Φ2, i) , (6.8)

where Φ2 = Φ(j) for j = 2, . . . , nϕ.

The linearly independent columns of the matrix T may be found through QR decompo-

sition, and the matrix M1 may be found using the Moore–Penrose inverse. The total time

complexity of these operations scales as O(nb|T |2). Although the number of binary factors,

and equivalently the number of layers in the binary tree, are reduced, the nonempty leaves of

the binary tree are not changed [ 67 ]. Thus detecting and removing redundancy in the binary

factors through the described approach reduces the complexity of the hybrid zonotope set

representation without altering the set.

Remark 6.1.2. The proposed method of removing redundant binary variables is an appli-

cation of aggregating implied free variables within MILPs. The method described here is

rigorous and exact; however, approximations may be used as done during the presolve stage

of commercial MILP solvers [ 63 ].

6.2 Over Approximations

Methods for generating over-approximations of hybrid zonotopes while reducing the num-

ber of continuous generators, binary generators, and constraints are now presented. Using

these methods allows for set operations to be performed continually while providing conser-

vative results. In Section  6.2.1 I show how the continuous generators may be rescaled to

reduce potential error introduced in the following over-approximation methods. In Section
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 6.2.2 I show how one continuous generator and equality constraint may be removed. In

Section  6.2.3 I show how order reduction techniques developed for zonotopes may be applied

to reduce the number of continuous generators in hybrid zonotopes. Finally in Section  6.2.4 

I show how binary generators may be relaxed to continuous generators, which may then be

removed using the previously presented methods.

6.2.1 Rescaling Continuous Generators

This section shows how the bounds on the continuous factors of hybrid zonotopes may

be tightened to reduce potential error introduced in the following over-approximation tech-

niques. This tightening leverages the possibility that the combination of equality, infinity

norm, and integrality constraints of the hybrid zonotope implicitly constrain the continuous

factors to lie within the unit hypercube. In Section  6.1.2 , the implicit bounds calculated us-

ing ( 6.2 ) satisfied [ξc
L,i, ξc

U,i] ⊆ [− 1, 1] and were therefore redundant. However, it is possible

that the implicit interval does not satisfy [ξc
L,i, ξc

U,i] ⊆ [ − 1, 1], but that one bound could

be tightened without altering the set, e.g. when ξc
L,i ≤ −1 and ξc

U,i ≤ 1, the infinity norm

constraint on the ith continuous factor could be replaced with ξc
i ∈ [ − 1, ξc

U,i]. Following

the procedure for rescaling the factors of constrained zonotopes [  18 , Sec. 4.1], the continu-

ous factors of the hybrid zonotope may be rescaled to embed the tightened constraints of

ξc ∈ [ max (ξc
L,i,−1), min (ξc

U,i, 1)] ⊆ [− 1, 1] for all i = 1, . . . , ng as follows.

Proposition 6.2.1. For any Zh = ⟨Gc, Gb, c, Ac, Ab, b⟩ ⊂ IRn with ξc
L and ξc

U given by ( 6.2 ),

Zh may be equivalently represented by

Zh = ⟨Gcdiag(ξc
r), Gb, c + Gcξc

m, Acdiag(ξc
r), Ab, b− Acξc

m⟩ , (6.9)

where

ξc
r,i =

min (ξc
U,i, 1)−max (ξc

L,i,−1)
2 , ξc

m,i =
min (ξc

U,i, 1) + max (ξc
L,i,−1)

2 , (6.10)

for all i = 1, . . . , ng.
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Proof. Following the procedure of [ 18 , Sec. 4.1], let

X = ⟨Gcdiag(ξc
r), Gb, c + Gcξc

m, Acdiag(ξc
r), Ab, b− Acξc

m⟩ ⊆ IRn , (6.11)

denote the hybrid zonotope given by the right hand side of ( 6.9 ). For any x ∈ X there

exists some ξc
x ∈ Bng

∞ and ξb
x ∈ {−1, 1}nb such that Acdiag(ξc

r)ξc
x + Abξb

x = b−Acξc
m, and x =

Gcdiag(ξc
r)ξc +Gbξb +c+Gcξc

m. For any z ∈ Zh there exists some ξc
z ∈ Bng

∞ and ξb
z ∈ {−1, 1}nb

such that Acξc
z + Abξb

z = b, z = Gcξc
z + Gbξb

z + c, and ξc
z,i ∈ [ max (ξc

L,i,−1), min (ξc
U,i, 1)] for

all i = 1, . . . , ng. Let γ = diag(ξc
r)ξc

x + ξc
m. Then γi ∈ [ max (ξc

L,i,−1), min (ξc
U,i, 1)] for all

i = 1, . . . , ng. Furthermore, x = Gcγ+Gbξb+c and Acγ+Abξb
x = b. Thus x ∈ Zh and X ⊆ Zh.

Conversely, given that ξc
z,i ∈ [ max (ξc

L,i,−1), min (ξc
U,i, 1)], letting ξc

z,i = diag(ξc
r)ξc

x+ξc
m implies

that ξc
x ∈ Bng

∞ . Thus z = Gc(diag(ξc
r)ξc

x + ξc
m) + Gbξb

z + c and Ac(diag(ξc
r)ξc

x + ξc
m) + Abξb = b.

Therefore z ∈ X , Zh ⊆ X and X = Zh.

The procedure for rescaling the continuous generators of a hybrid zonotope is desribed

in Algorithm  2 and requires solving 2ng MILPs to determine the tightest bounds on the

continuous factors induced by the other constraints.

Algorithm 2 Rescale the continuous generators to tighten the bounds on the infinity norm
constraints.
Input: Zh = ⟨Gc, Gb, c, Ac, Ab, b⟩ ⊂ IRn

Output: Z̃h = Zh such that [ max (ξc
L,i,−1), min (ξc

U,i, 1)] = [− 1, 1] ∀ i ∈ {1, . . . , ng}
1: procedure rescale(Zh)
2: for i = 1, . . . , ñg do
3: ξc

L,i ← min
{
ξc

i

∣∣∣ Acξc + Abξb = b , ∥ξc
j ̸=i∥∞ ≤ 1 , ξb ∈ {−1, 1}nb

}
4: ξc

U,i ← max
{
ξc

i

∣∣∣ Acξc + Abξb = b , ∥ξc
j ̸=i∥∞ ≤ 1 , ξb ∈ {−1, 1}nb

}
5: end for
6: Z̃h ← rescaled by Proposition  6.2.1 for ξc

L and ξc
U

7: end procedure

Remark 6.2.1. Tightening the bounds on continuous variables is a common procedure in

MILP presolve methods [ 63 ]. This approach is advantageous as it also tightens the linear

relaxation of the problem when integrality constraints are relaxed, i.e. in branch and bound

algorithms [ 53 ]. The method shown here differs from these approaches as it directly embeds
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the tightened bounds within the generator and constraint matrices while maintaining the

infinity norm constraints, ξc ∈ Bng
∞ , of the hybrid zonotope set definition. While the bounds

on the continuous factors are found exactly in ( 6.2 ), over-approximation methods exist which

rely on linear relaxations as described in [ 63 ].

6.2.2 Constraint Reduction

This section shows how over-approximations of hybrid zonotopes may be generated while

reducing the number of continuous generators and equality constraints by one. This proce-

dure follows closely from that of removing redundant continuous generators as described in

Section  6.1.2 ; however, it removes continuous generators that do not have redundant infinity

norm constraints. Thus when the ith continuous generator is substituted out of the set rep-

resentation, the continuous generators information in the generator and constraint matrices

is maintained, but the ability to enforce the constraints of ξc
i ∈ [−1, 1] is lost. Similar to the

procedure in [  18 , Sec. 4.2] for constraint reduction of constrained zonotopes, the constraints

of the hybrid zonotope may also be conservatively removed.

Proposition 6.2.2. For any Zh = ⟨Gc, Gb, c, Ac, Ab, b⟩ ⊂ IRn, the set Z̃h with ñg = ng − 1

and ñc = nc − 1 satisfies Zh ⊆ Z̃h for

Z̃h =
〈
Gc − ΛGAc, Gb − ΛGAb, c + ΛGb, Ac − ΛAAc, Ab − ΛAAb, b− ΛAb

〉
, (6.12)

where ΛG = GcEi,k(Ac
k,i)−1 ∈ IRn×nc, ΛA = AcEi,k(Ac

k,i)−1 ∈ IRnc×nc, Ei,k ∈ IRng×nc is a

matrix with zero entries except for a one in the (i, k) position, and k ∈ {1, . . . , nc} such that

Ac
k,i ̸= 0.

Proof. Following the procedures of [ 18 , Sec. 4.2], for any z ∈ Zh there exists some ξc ∈ Bng
∞

and ξb ∈ {−1, 1}nb such that z = Gcξc + Gbξb + c and Acξc + Abξb = b. Thus it holds that

z = Gcξc + Gbξb + c + ΛG(b − Acξc + Abξb) and Acξc + Abξb + ΛA(b − Acξc + Abξb) = b

because b − Acξc + Abξb = 0. Therefore z ∈ Z̃h and Zh ⊆ Z̃h. This result is independent

of the choice of ΛG and ΛA. The specific choice of ΛG = GcEi,k(Ac
k,i)−1 ∈ IRn×nc and

ΛA = AcEi,k(Ac
k,i)−1 ∈ IRnc×nc results in the ith continuous generator and kth row of equality
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constraints being equal to zero by substituting the kth equality constraint solved for the ith

continuous generator into the other equations. Removing the zero row and column results

in Zh ⊆ Z̃h with ñg = ng−1 continuous generators and ñc = nc−1 equality constraints.

Proposition  6.2.2 provides a method of reducing the number of equality constraints and

continuous generators by relaxing the infinity norm constraint on one of the continuous

factors. Thus the set representation is less strict and introduces additional points that

satisfy the HCG-rep. The given choice of ΛG and ΛA requires that ∃ k ∈ {1, . . . , nc} such

that Ac
k,i ̸= 0. Note that since the purpose is to reduce the number of constraints, this

condition is always true. The goal is then to relax the infinity norm constraint that will

introduce the fewest additional points to provide the tightest over-approximation. The level

of conservatism of the over-approximation may be evaluated using the error metrics discussed

in Section  6.3 for each of the continuous generators. Once the continuous generator has been

chosen, any row k ∈ {1, . . . , nc} such that Ac
k,i ̸= 0 may be used in the substitution. However,

numerical experiments have shown that choosing the row with the largest element has the

best numerical stability. The specific strategy is summarized in Algorithm  3 . Note that

the potential error introduced can be reduced by first rescaling the continuous generators

using the procedure described by Algorithm  2 , which only needs to be applied once. The

procedure in Algorithm  3 may then be applied to a hybrid zonotope until nc = 0, resulting

in the representation of the union of a collection of zonotopes that over-approximate the

original set.

Example 6.2.1. This example considers a randomly generated hybrid zonotope Zh ⊂ IR2

with ng = 8 continuous generators, nb = 2 binary generators, and nc = 3 equality constraints.

Algorithm  3 is applied iteratively using a volume ratio error metric as defined in Section  6.3 .

The resulting over-approximating hybrid zonotopes Z̃ i
h with i constraints removed are depicted

in Figure  6.1 . The final hybrid zonotope Z̃3
h has ñc = 0 constraints and is equivalent to 4

shifted zonotopes each having ñg = 5 continuous generators.
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Algorithm 3 Reduce the number of continuous generators and constraints.
Input: Zh ⊂ IRn, nr

c ∈ {0, . . . , nc − 1}
Output: Z̃h ⊇ Zh with ñc = nr

c and ñg = ng − nc + nr
c

1: procedure reduceConstraints(Zh,nr
c)

2: Z̃h ← Zh

3: while ñc > nr
c do

4: for i = 1, . . . , ñg s.t. ∃ k ∈ {1, . . . , ñc} and Ãc
k,i ̸= 0 do

5: Ẑh ← Proposition  6.2.2 for Z̃h and (i, k)
6: Ei ← errorMetric(Ẑh, Z̃h)
7: end for
8: i← index such that Ei = min (E)
9: Z̃h ← Proposition  6.2.2 for Z̃h and (i, k) such that Ac

k,i = max (Ac
·,i)

10: end while
11: end procedure

-2 0 2 4
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Figure 6.1. Example of iteratively removing one continuous generator and
constraint from the hybrid zonotope Zh using Algorithm  3 to generate the
over-approximations Z̃ i

h, where i is the number of constraints removed.

6.2.3 Continuous Generator Reduction

In Section  6.2.2 it is shown how one continuous generator and equality constraint pair may

be removed to generate an over-approximation. However, this requires that the continuous

generator appears in the constraints. This section shows how the number of continuous

generators may be reduced by applying order reduction techniques developed for zonotopes.
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To do so, it is first necessary to extend the notion of the lifted zonotope form of constrained

zonotopes [  18 ] to the hybrid zonotope.

Proposition 6.2.3. Any hybrid zonotope Zh = ⟨Gc, Gb, c, Ac, Ab, b⟩ ⊂ IRn may be lifted to

an n+ = n + nc dimensional hybrid zonotope given by

Z+
h =

〈Gc

Ac

 ,

Gb

Ab

 ,

 c

−b

 , ∅, ∅, ∅
〉

, (6.13)

such that z ∈ Zh if and only if (z 0) ∈ Z+
h .

Proof. For any z ∈ Zh there exists some ξc ∈ Bng
∞ and ξb ∈ {−1, 1}nb such that z =

Gcξc + Gbξb + c and Acξc + Abξb − b = 0. Thus it follows that

z

0

 =

Gc

Ac

 ξc +

Gb

Ab

 ξb +

 c

−b

 . (6.14)

Therefore (z 0) ∈ Z+
h . Conversely, for any z+ ∈ Z+

h there exists some ξc ∈ Bng
∞ and

ξb ∈ {−1, 1}nb such that

z+ =

Gc

Ac

 ξc +

Gb

Ab

 ξb +

 c

−b

 . (6.15)

Choosing any ξc and ξb satisfying Acξc + Abξb = b results in [Ing 0nc ]z+ ∈ Zh. If no such

point exists, then Zh = ∅.

The process of converting between the lifted and original representation of a hybrid

zonotope is depicted in Figure  6.2 . Lifting the hybrid zonotope to an n+ = n + nc hybrid

zonotope without constraints using Proposition  6.2.3 is advantageous as it allows for the

decoupling of the continuous and binary factors. Given any hybrid zonotope Zh, define Z+
h

by Proposition  6.2.3 . Then it follows that

Z+
h = Zc,+

h ⊕Zb,+
h , (6.16)
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where

Zc,+
h =

〈Gc

Ac

 , ∅,

 c

−b

 , ∅, ∅, ∅
〉

(6.17)

is a lifted constrained zonotope with order o+ = ng

n+nc
and

Zb,+
h =

〈
∅,

Gb

Ab

 ,

0

0

 , ∅, ∅, ∅
〉

, (6.18)

is a hybrid zonotope containing only discrete points. Given that Zc,+
h is a lifted constrained

zonotope, it can be reduced using any order reduction method developed for zonotopes such

that Zc,+
h ⊆ Z̃c,+

h [ 18 ]. Applying ( 6.16 ) with the reduced, lifted constrained zonotope then

results in

Z+
h ⊆ Z̃+

h = Z̃c,+
h ⊕Zb,+

h , (6.19)

where

Z̃+
h =

〈G̃c

Ãc

 ,

Gb

Ab

 ,

 c

−b

 , ∅, ∅, ∅
〉

. (6.20)

It then holds from Proposition  6.2.3 that the desired result of Zh ⊆ Z̃h is achieved for

Z̃h = ⟨G̃c, Gb, c, Ãc, Ab, b⟩ . (6.21)

The lifted constrained zonotope ( 6.17 ) may reduced until o+ = 1, thus the number of contin-

uous generators of the reduced hybrid zonotope is limited by ñg ≥ n + nc. To further reduce

the complexity, reduction of the number of equality constraints as described in Section  6.2.2 

is required.

Many order reduction methods exist for zonotopes and may all be applied to hybrid zono-

topes using this lifted strategy. The methods with the most wide spread use are described

and compared in [ 19 ] and [ 90 ]. From numerical experiments, the zonotope order reduction

method developed for lifted constrained zonotopes in [ 18 ] and [ 90 ] has resulted in the tight-

est over-approximations. The proposed method of lifting and reducing is advantageous as
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Figure 6.2. Visual depiction of the process of converting between the original
and lifted representation of the example two-dimensional hybrid zonotope ( 3.6 )
with a single equality constraint. Lifting the single constraint using Proposition

 6.2.3 results in a three-dimensional hybrid zonotope. This lifted representa-
tion may be converted back to the original HCG-rep by intersecting with the
zero plane in the lifted constraint dimension and projecting back down to the
original dimensions of the hybrid zonotope.

zonotope order reduction techniques are performed algebraically and do not require solving

any optimization problems.

Example 6.2.2. This example considers a randomly generated hybrid zonotope Zh ⊂ IR2

with ng = 8 continuous generators, nb = 2 binary generators, and nc = 3 equality constraints.

The number of continuous generators are reduced using the lifted hybrid zonotope approach

to find a hybrid zonotope Z̃ i
h given by ( 6.21 ) with i generators removed. The zonotope order

reduction method described in [ 18 ] and [ 90 ] is used to reduce the lifted hybrid zonotope. The

resulting over-approximating hybrid zonotopes are depicted in Figure  6.3 . The final hybrid
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zonotope Z̃3
h has ñg = 5 continuous generators and ñc = 3 constraints and can no longer be

reduced using this approach.

-4 -2 0 2 4
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3

Figure 6.3. Example of iteratively removing one continuous generator from
the hybrid zonotope Zh using Proposition  6.2.3 and zonotope order reduction
technique [ 90 ] to generate the over-approximations Z̃ i

h, where i is the number
of continuous generators removed.

6.2.4 Binary Generator Reduction

Iterative applications of set operations on hybrid zonotopes may increase the number

of binary generators present in the set. As this number increases, the number of possible

nonempty convex subsets of the decomposed set given by Theorem  3.1.1 increases exponen-

tially, as shown by the set’s binary tree as discussed in Section  3.3 . This number of nonempty

convex subsets may also increase the computational complexity of the MILP used to analyze

the resulting set through Propositions  3.2.8 and  3.2.9 , Definition  3.2.1 , and Theorem  3.2.1 .

To provide a more computationally efficient set representation, it is therefore imperative to

reduce the number of binary variables within the HCG-rep.

In Lemma  3.1.1 it was shown that the constrained zonotope Zc = ⟨[Gc Gb], c, [Ac Ab], b⟩ ⊂

IRn satisfies Zh ⊆ Zc. In the integer programming literature, this constrained zonotope

is referred to as the linear relaxation of the hybrid zonotope’s MILP formulation given by
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( 3.44 ). This linear relaxation is solved at the root node of the binary tree to provide an upper

bound on the possible optimal values of a MILP, and provides the first bound in branch and

bound algorithms [ 53 ]. This section shows how the number of binary generators may be

reduced by relaxing the integrality constraints of ξb
i ∈ {−1, 1} to ξb

i ∈ [− 1, 1] for only some

i ∈ {1, . . . , nb}; that is, only select binary generators are relaxed to be continuous.

Proposition 6.2.4. For any hybrid zonotope Zh = ⟨Gc, Gb, c, Ac, Ab, b⟩ ⊂ IRn with

ng continuous generators and nb binary generators, define the hybrid zonotope Z̃h =

⟨G̃c, G̃b, c, Ãc, Ãb, b⟩ with ng + 1 continuous generators and nb − 1 binary generators where

G̃c =
[
Gc g(b,i)

]
, Ãc =

[
Ac a(b,i)

]
, (6.22)

G̃b =
[
g(b,1) · · · g(b,i−1) g(b,i+1) · · · g(b,nb)

]
, (6.23)

Ãb =
[
a(b,1) · · · a(b,i−1) a(b,i+1) · · · a(b,nb)

]
. (6.24)

Then it holds that Zh ⊆ Z̃h.

Proof. The proof follows a generalization of Lemma  3.1.1 . For any z ∈ Zh there exists

some ξc ∈ Bng
∞ and ξb ∈ {−1, 1}nb such that Acξc + Abξb = b and z = Gcξc + Gbξb + c.

Let γ =
(
ξc ξ(b,i)

)
and α =

(
ξ(b,1) · · · ξ(b,i−1) ξ(b,i+1) · · · ξ(b,nb)

)
, thus γ ∈ Bng+1

∞ and α ∈

{−1, 1}nb−1. Then z = [Gc g(b,i)]γ + [g(b,1) · · · g(b,i−1) g(b,i+1) · · · g(b,nb)]α + c and z ∈ Z̃h.

Therefore Zh ⊆ Z̃h.

Proposition  6.2.4 provides a method of reducing the number of binary generators by

relaxing them to be continuous. Given that the constraints of the reduced HCG-rep are less

strict, that is {−1, 1} ⊂ [−1, 1], this approach provides an over-approximation. Making this

reduction will also reduce the total number of possible nonempty leaves in the set’s binary

tree, thus reducing the computational burden of decomposing the set into a collection of

convex sets for analysis and visualization. While any binary generator may be relaxed by

shifting it into the continuous generator matrix, the goal is to choose the binary factors that

will result in the tightest over-approximation. To do this, each binary generator is iteratively

relaxed and the resulting conservatism is evaluated using one of the error metrics discussed
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in Section  6.3 . This procedure is described by Algorithm  4 . Once the binary generator to

be relaxed has been chosen, Proposition  6.2.4 is applied. The new continuous generator

may then be removed using the methods described in Sections  6.2.2 and  6.2.3 to continue to

reduce the complexity of the hybrid zonotope while maintaining an over-approximation.

Algorithm 4 Reduce the number of binary generators by relaxing them to be continuous.
Input: Zh ⊂ IRn, nr

b ∈ {0, . . . , nb − 1}
Output: Z̃h ⊇ Zh with ñb = nr

b and ñg = ng + nr
b

1: procedure reduceBinary(Zh,nr
b)

2: Z̃h ← Zh

3: while ñb > nr
b do

4: for i = 1, . . . , ñb do
5: Ẑh ← Proposition  6.2.4 for Z̃h and i
6: Ei ← errorMetric(Ẑh, Z̃h)
7: end for
8: i← index such that Ei = min (E)
9: Z̃h ← Proposition  6.2.4 for Z̃h and i

10: end while
11: end procedure

Remark 6.2.2. Rather than reducing the number of binary variables to a desired value of

nr
b < nb, it is possible to reduce the binary variables until a desired limit on the number of

nonempty convex subsets of the hybrid zonotope given by Theorem  3.1.1 is achieved. This

modification to Algorithm  4 requires iteratively exploring the reduced hybrid zonotope’s binary

tree after line 9 using Algorithm  1 . This approach is advantageous when the goal is to

visualize the reachable set of the hybrid zonotope, where this possible exponential growth in

the decomposition is the limiting factor.

Example 6.2.3. This example considers a randomly generated hybrid zonotope Zh ⊂ IR2

with ng = 8 continuous generators, nb = 2 binary generators, and nc = 3 equality con-

straints. The number of binary generators is reduced using Algorithm  4 to generate the

over-approximating hybrid zonotope Z̃ i
h with i binary generators removed. The over- ap-

proximations are depicted in Figure  6.4 . The final hybrid zonotope Z̃2
h has ñb = 0 binary

generators and is equivalent to a constrained zonotope with ñg = 10 continuous generators

and ñc = 3 constraints.
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Figure 6.4. Example of iteratively relaxing one binary generator from the
hybrid zonotope Zh through Algorithm  4 to generate the over-approximations
Z̃ i

h, where i is the number of binary generators removed.

6.2.5 Combined Algorithm

An algorithm combining the redundancy removal and order reduction techniques for

reducing the complexity of hybrid zonotopes is now proposed. Specifically, given any hybrid

zonotope Zh ⊂ IRn with ng continuous generators, nb binary generators, and nc constraints,

the algorithm reduces the hybrid zonotope, in an over-approximative way, to one with nr
g

continuous generators, nr
b binary generators, and nr

c constraints, where nr
· are user specified

values. This approach is given by Algorithm  5 .

Algorithm  5 first finds the binary tree of the hybrid zonotope through Algorithm  1 . Using

the binary tree, redundancy is removed from the binary generators, continuous generators,

and equality constraints as described in Section  6.1 . The hybrid zonotope is then rescaled as

discussed in Section  6.2.1 to reduce potential error introduced in the over-approximations.

Following rescaling, the number of continuous generators is reduced using zonotope order
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Algorithm 5 Reduce the hybrid zonotope and return over-approximation.
Input: Zh ⊂ IRn, nr

c ∈ {0, . . . , nc}, nr
g ∈ {n + nr

c, . . . , ng}, nr
b ∈ {0, . . . , nb}

Output: Z̃h ⊇ Zh with ñb = nr
b and ñg = nr

g

1: T ← binary tree of Zh using Algorithm  1 

2: Z̃h ← remove redundancy from Zh

3: Z̃h ← rescale(Z̃h)
4: Z̃h ← lift then reduce continuous generators until o+ = (nr

g +nc−nr
c)/(n+ ñc) or o+ = 1

5: Z̃h ← reduceBinary(Z̃h, nr
b)

6: Z̃h ← reduceConstraints(Z̃h, nr
c)

7: if ñg > nr
g then

8: Z̃h ← lift then reduce continuous generators until o+ = nr
g/(n + ñc) or o+ = 1

9: end if

reduction methods on the lifted hybrid zonotope as described in Section  6.2.3 . The target

order for the lifted hybrid zonotope is set to

o+ = (nr
g + nc − nr

c)/(n + ñc) , (6.25)

to reduce the number of continuous generators to nr
g + nc − nr

c and to account for the

additional continuous generators that will be removed while reducing the number of equality

of constraints. If nr
g + nc − nr

c < 1, then the target order is set to o+ = 1. The algorithm

then reduces the number of binary variables as discussed in Section  6.2.4 by relaxing some

of them to be continuous. The number of constraints is reduced using the method described

in Section  6.2.2 . If the number of continuous generators is still above the desired number nr
g,

then the algorithm performs another iteration of lifting then reducing the hybrid zonotope.

This is necessary because it is possible that the lifted order could only be reduced to o+ = 1

in line 4 because there were too many constraints. It is possible to reduce the number of

constraints first to avoid this issue; however, it is advantageous to reduce as many continuous

generators as possible prior to performing constraint reduction since the number of error

metrics evaluated in this step is equal to the number of continuous generators.

To avoid unacceptably large growth in the hybrid zonotope, it is possible to intersect the

reduced set with the interval hull of the unreduced set through Proposition  3.2.10 after apply-

ing Algorithm  5 . This is advantageous as it guarantees that the resulting over-approximating
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set will be at least as good as the original set’s interval hull. This step requires solving

2n MILPs and introduces an additional n continuous generators and n constraints to the

over-approximating hybrid zonotope Z̃h ← Z̃h ∩ B(Zh). These additional generators and

constraints can be accounted for in the reduction of the hybrid zonotope when choosing

nr
g and nr

c. If the intersection with the interval hull is redundant, this redundancy will be

detected and removed at the next iteration of the analysis.

6.3 Error Metrics

In this section I derive and compare methods for evaluating the differences in hybrid

zonotopes. These methods provide error metrics used for finding tight over-approximations in

the algorithms described in Section  6.2 , as well as providing metrics for drawing comparisons.

The provided error metrics include approximations of the radius of the set as well as the

volume of hybrid zonotopes. In Section  6.3.1 I show how the radius of the hybrid zonotope

may be approximated to measure the set’s growth outward from it’s geometric center. In

Section  6.3.2 I show how the volume of the hybrid zonotope may be approximated to measure

the change in the set’s nonconvexity.

First it is important to note two challenges that arise in comparing hybrid zonotopes.

1. Depending on what the hybrid zonotope represents, each of the dimensions may have

different units. When using metrics such as radius and volume, it is important to

specify the possible range of values each of the dimensions may take. The hybrid

zonotope may then be scaled prior to applying the following methods as

Ẑh = diag(w)Zh , (6.26)

where w ∈ IRn is a vector of weights used to normalize the different dimensions and

diag(w) ∈ IRn×n is a diagonal matrix with entries diag(w)i,i = wi. It is assumed that

all hybrid zonotopes have been properly scaled prior to applying error metrics.

2. It is also possible for a hybrid zonotope to have dimensions that are fully discrete. In

this case, describing the volume of such a set is meaningless. To avoid this issue and still
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provide insight on the other dimensions, hybrid zonotopes with a mix of continuous,

hybrid, and fully discrete dimensions are projected onto the continuous and hybrid

parts. A discrete dimension i may be found using an ordinary sorting algorithm to find

the rows of the generator matrices such that ̸ ∃ Gc
i,· ̸= 0; if no continuous generators

exist, then the dimension is a constant or a collection of discrete points. The hybrid

zonotope may then be projected onto the dimensions containing continuous parts as

SZh, where S ∈ IRm×nz is a staircase matrix having a single one in each of the m rows

located in the ith column corresponding to the index of each dimension of Zh that is

continuous or hybrid.

6.3.1 Radius Ratio

The first metric considered to evaluate the difference of two hybrid zonotopes is the sets’

n-dimensional radii. Given any two hybrid zonotopes Zh,1 and Zh,2, their radius ratio is

defined as

ΘR = R(Zh,1)
R(Zh,2)

, (6.27)

where R(Zh) is the radius of Zh. The radius of a set is defined as the radius of the tightest

n-dimensional ball that encloses the set. This can be expressed as the solution to the

optimization problem

min
r,ĉ
{ r | ∥z − ĉ∥2 ≤ r ∀ z ∈ Zh} , (6.28)

where r is the radius of the enclosing ball and ĉ its center. Thus when r and ĉ are the

solution to ( 6.28 ), Zh ⊂ {x ∈ IRn | x + c ≤ r + ϵ} only if ϵ ≥ 0. This optimization problem

can be equivalently expressed as the bilevel program

min
ĉ

max
z∈Zh

∥z − ĉ∥2 . (6.29)

Even when the set to be enclosed by the ball is convex, this optimization problem is non-

convex and difficult to solve [ 91 ]. This issue is further exacerbated by the fact that the

containment condition of the hybrid zonotope z ∈ Zh (see Proposition  3.2.8 ) appearing

in both optimization problems requires mixed-integer constraints. Finding the radius of
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the set thus requires solving a nonconvex mixed-integer bilevel program, which poses many

computational challenges and is a major area of research [ 92 ],[ 93 ].

Instead of solving the complex optimization problems posed by ( 6.28 ) and (  6.29 ), the

radius of a hybrid zonotope is approximated by the radius of the set’s interval hull using

various norms. The interval hull of a hybrid zonotope B(Zh) = [ρL, ρU ] given by ( 3.52 ) is

the tightest axis oriented box that encloses the set. The vector of lengths of the box is given

by ρU − ρL. The radius of the hybrid zonotope is then approximated as

Rp(Zh) = ∥ρU − ρL∥p , (6.30)

where p is the chosen norm. Note that the true radius of the set is guaranteed to be below

that obtained by evaluating ( 6.30 ) for p = 2 as the resulting ball fully encloses the interval

hull of the set, while no guarantees can be made for norms p > 2. The approximated radii

of the hybrid zonotope (  3.6 ) from Example  3.1.1 for p = 2 and p =∞ are depicted in Figure

 6.5 . While the radius ratio gives a way to compare the relative sizes of two hybrid zonotopes,

it gives no insight into the differences of the sets’ nonconvexity.

(a) (b)

Figure 6.5. Example of approximating the radius of hybrid zonotopes based
on the length of the set’s interval hull.  6.5a Radius of the hybrid zonotope
approximated using p = 2 norm.  6.5b Radius of the hybrid zonotope approxi-
mated using p = ∞ norm. Note that only using p ≤ 2 norm is guaranteed to
give an over-approximation of the hybrid zonotope’s true radius.
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6.3.2 Volume Ratio

Given any two hybrid zonotopes Zh,1 ⊂ IRn and Zh,2 ⊂ IRn, their volume ratio is defined

as

ΘV =
(

v(Zh,1)
v(Zh,2)

) 1
n

, (6.31)

where v(Zh) is the volume of Zh. Determining the volume of sets is a difficult task. Even

finding the volumes of simple zonotopes is computationally expensive and requires calculating

the determinants of all combinations of sub-matrices of the generator matrix [ 94 ]. Due

to the limitations arising from the combinatorial nature of calculating the exact volume,

approximation methods using random sampling are often employed for complex zonotopes

(see [  95 ], [  96 ] and the references within). The volume of arbitrary convex sets may be

approximated using random walk algorithms that scale with the set dimension as O(n5)

[ 97 ], [ 98 ]. Exact methods for finding volumes of nonconvex sets in general do not exist,

and algorithms using sub-pavings are often employed to provide guaranteed bounds [ 99 ];

however, these algorithms grow exponentially with respect to the dimension of the set. In

Theorem  3.1.1 it was shown that the hybrid zonotope may be decomposed into a collection

of convex subsets, and it follows that the volume of each subset could be estimated using

any of the existing convex approaches. However, it is possible that these convex sets overlap

and therefore the volume estimation using this approach would only provide a, possibly very

large, over-approximation. Furthermore there is a potentially exponential number of convex

subsets that would need to be evaluated.

Instead, this section presents two methods for approximating the volume of a hybrid

zonotope, both of which require sampling N points, or hyperboxes, from the interval hull

and evaluating if pi ∈ Zh, or Bi ∩ Zh = ∅, by Proposition  3.2.8 . Given the interval hull of a

hybrid zonotope B(Zh) = [ρL, ρU ] by ( 3.52 ), the n-dimensional volume of the interval hull is

calculated as

v(B(Zh)) = v([ρL, ρU ]) =
n∏

i=1
(ρU(i)− ρL(i)) , (6.32)

where ρU(i)− ρL(i) is the length of the interval hull in the ith direction. The volume of the

hybrid zonotope is upper bounded by that of the interval hull; however, this value gives no
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insight beyond that obtained by the set’s radius. To provide a better approximation of the

hybrid zonotope’s volume, regions from within the interval hull are tested within a series of

trials. Given a total of N trials sampled from the interval hull B(Zh) and X of which are

successful, the volume of Zh may then be estimated as

v̂(Zh) = X

N
v (B(Zh)) . (6.33)

The trials used to determine v̂ are found in two ways, one that uses a collection of hyperboxes

that cover the set and another that samples random points from a uniform distribution over

the interval hull.

Collection of hyperboxes

Given any hybrid zonotope Zh ⊂ IRn, it is possible to partition the set’s intervall hull

into a collection of N smaller, disjoint hyperboxes Bi ⊂ IRn such that B(Zh) = ⋃N
i=1 Bi

and B◦
i ∩ B◦

j = ∅ for i ̸= j. Given that each hyperbox is defined as an n-dimensional

interval Bi = [ρL,i, ρU,i], its volume is trivially calculated as the product of the length of each

dimension by ( 6.32 ). Furthermore, each of the hyperboxes may be represented as a zonotope

in G-rep simply as

Bi =
〈

diag
(

ρU,i − ρL,i

2

)
,
ρU,i + ρL,i

2

〉
, (6.34)

such that the intersection of the hyperbox and the hybrid zonotope, Zh ∩ Bi, is given by

Proposition  3.2.3 . Whether or not this intersected region is empty may be determined by

evaluating the feasibility of a MILP by Proposition  3.2.8 . Let B∪ = {B1, . . . ,BN} be a

collection of disjoint hyperboxes such that Zh ⊆
⋃N

i=1 Bi and let I = {i ∈ {1, . . . , N} | Zh ∩

Bi ̸= ∅} be the set of indices of all hyperboxes that intersect the hybrid zonotope. Then it

follows that Zh ⊆
⋃

i∈I Bi and therefore,

v(Zh) ≤
∑
i∈I

v(Bi) . (6.35)
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Thus given any disjoint covering of Zh by a collection of hyperboxes, it is possible to deter-

mine an upper bound on the set’s volume.

A naive method for determining a partition of hyperboxes that covers the hybrid zonotope

is to grid the interval hull for some given tolerance on the lengths, ρU,i − ρL,i = ϵ. Given

that the interval hull of the hybrid zonotope is known, this tolerance can be decided based

on either the desired precision of the resulting volume estimate or the tolerable number of

optimization calls. Unfortunately, this approach scales exponentially with respect to the

dimension of the set. For example, partitioning each dimension of the interval hull into N

uniform lengths results in a total of nN hyperboxes that must be evaluated.

Another approach for finding a covering of Zh by hyperboxes is to employ a bisection

algorithm, where the interval hull is iteratively cut into smaller non-overlapping hyperboxes

until a prescribed precision is achieved [ 99 ]. This method is known as sub-paving and is often

used to approximate the inversion of sets by nonlinear functions [ 100 ], nonlinear set-based

state estimators [ 101 ], and parameter estimation [ 102 ].

Inspired by these methods, Algorithm  6 aims to find the tightest covering of Zh with

the fewest optimization calls. The conventional bisection algorithms [ 99 ] begin with a single

box giving some specified region of interest. Instead, Algorithm  6 samples the interval hull

and initializes the covering with its bisection in all n dimensions. Doing so, lines (3-6)

of Algorithm  6 creates an initial covering with 2n even bisections covering the interval hull.

Lines (7-19) iteratively identify the hyperbox from the covering with the greatest edge length,

bisect along that dimension, then tightens the interval that was bisected for the two newly

introduced hyperboxes. Given a hyperbox BM = [ρL, ρU ] with maximum edge length in the

ith dimension, line 10 splits BM into two equally sized hyperboxes

BL =



ρL(1) , ρU(1)
... ,

...

ρL(i) , ρU (i)+ρL(i)
2

... ,
...

ρL(n) , ρU(n)


, BR =



ρL(1) , ρU(1)
... ,

...
ρU (i)+ρL(i)

2 , ρU(i)
... ,

...

ρL(n) , ρU(n)


. (6.36)
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The ith intervals of the bisected boxes are tightened over the domains of Zh∩BL and Zh∩BR,

respectively, on lines (11-18) by solving the four MILPs

ρ̃L,L(i) = min


ei(Gcξc + Gbξb + c)

∣∣∣∣∣∣∣∣∣∣∣
Acξc + Abξb = b ,

∥ξc∥∞ ≤ 1 , ξb ∈ {−1, 1}nb ,

Gcξc + Gbξb + c ∈ BL


, (6.37a)

ρ̃U,L(i) = max


ei(Gcξc + Gbξb + c)

∣∣∣∣∣∣∣∣∣∣∣
Acξc + Abξb = b ,

∥ξc∥∞ ≤ 1 , ξb ∈ {−1, 1}nb ,

Gcξc + Gbξb + c ∈ BL


, (6.37b)

ρ̃L,R(i) = min


ei(Gcξc + Gbξb + c)

∣∣∣∣∣∣∣∣∣∣∣
Acξc + Abξb = b ,

∥ξc∥∞ ≤ 1 , ξb ∈ {−1, 1}nb ,

Gcξc + Gbξb + c ∈ BR


, (6.37c)

ρ̃U,R(i) = max


ei(Gcξc + Gbξb + c)

∣∣∣∣∣∣∣∣∣∣∣
Acξc + Abξb = b ,

∥ξc∥∞ ≤ 1 , ξb ∈ {−1, 1}nb ,

Gcξc + Gbξb + c ∈ BR


, (6.37d)

where ei is the standard ith unit vector. The new hyperboxes introduced to the list B∪ are

then given by

B̃L =



ρL(1) , ρU(1)
... ,

...

ρ̃L,L(i) , ρ̃U,L(i)
... ,

...

ρL(n) , ρU(n)


, B̃R =



ρL(1) , ρU(1)
... ,

...

ρ̃L,R(i) , ρ̃U,R(i)
... ,

...

ρL(n) , ρU(n)


. (6.38)

The tightened hyperboxes are then stored in the list B∪, which remains disjoint because of

the constraint that Gcξc + Gbξb + c ∈ BL in ( 6.37a ) and ( 6.37b ) and Gcξc + Gbξb + c ∈ BR

in ( 6.37c ) and ( 6.37d ). If during an iteration the intersection Zh ∩ BL or Zh ∩ BR is empty,

the hyperbox is discarded from the list since it does not contribute to the volume. Once the
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covering of hyperboxes B∪ is returned by the algorithm, the volume of the hybrid zonotope

is over-approximated by ( 6.35 ).

Algorithm 6 Bisection algorithm for covering of Zh by collection of disjoint hyperboxes Bi.
Input: Zh ⊂ IRn, ϵ ∈ IR
Output: B∪ = {B1, . . . ,BN} s.t. Zh ⊆

⋃N
i Bi, B◦

i ∩ B◦
j = ∅ for all i ̸= j, and v(Bi) ≤ ϵn

1: B(Zh)← interval hull of Zh

2: Initialize list of hyperboxes B∪ ← {B(Zh)}
3: for i = 1, . . . , n do
4: Bisect all hyperboxes in B∪ in ith dimension
5: Replace list B∪ with bisected boxes
6: end for
7: while Max edge length of all hyperboxes in B∪ is ≥ ϵ do
8: Remove hyperbox with max edge length BM from list B∪
9: i← dimension of max edge length of BM

10: Bisect BM in ith dimension such that BM = BL ∪ BR

11: if Zh ∩ BL ̸= ∅ then
12: B̃L ← bounds on ith interval tightened such that Zh ∩ BL ⊆ B̃L

13: Store B̃L in B∪
14: end if
15: if Zh ∩ BR ̸= ∅ then
16: B̃R ← bounds on ith interval tightened such that Zh ∩ BR ⊆ B̃R

17: Store B̃R in B∪
18: end if
19: end while

Uniform sampling

Algorithm  6 may provide tighter bounds on the volume of a hybrid zonotope with fewer

optimization calls than the naive approach of uniformly partitioning the interval hull into

uniform hyperboxes. However, the method still scales exponentially with respect to the

dimension of the set, as each direction needs to be iteratively split and tightened until the

specified precision is met. This section proposes an alternative sampling method to provide

estimates on the volume for higher dimensional sets with a fixed number of calls to the

optimization program. However, only statistical guarantees can be made on the resulting

estimate.
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Given any hybrid zonotope Zh ⊂ IRn, first find the interval hull B(Zh). Let p be a

collection of N ∈ Z points randomly sampled from a uniform distribution over the interval

hull such that pi ∈ B(Zh)∀i ∈ {1, . . . , N}. Whether each of these random points belong to the

hybrid zonotope may be determined by evaluating the feasibility of a MILP by Proposition

 3.2.8 . Let X ∈ Z be the number of random points found to satisfy pi ∈ Zh of the N total

trials. Then the volume of the hybrid zonotope may be approximated as

v̂(Zh) = X

N
v(B(Zh)) , (6.39)

where v(B(Zh)) is the volume of the interval hull calculated by ( 6.33 ).

Each point randomly sampled from the interval hull has two possibilities, pi ∈ Zh or

pi ̸∈ Zh. The proposed method of sampling, and testing, a uniform distribution of N

points is therefore a series of Bernoulli trials. The value to be estimated is the ratio of

points that belong to the hybrid zonotope compared to those that belong to the interval

hull, i.e. the probability that pi ∈ B(Zh) =⇒ pi ∈ Zh. As the number of sampled

points grows large, N → ∞, the estimate given by ( 6.39 ) converges to the true volume,

v̂(Zh)→ v(Zh). The probability that a point will belong to the hybrid zonotope is thus given

by a binomial distribution. For a specified confidence α ∈ [0, 1], the confidence intervals can

be determined based on the binomial distribution of the sampled data [  103 ]. While not

providing a guaranteed estimate, this approach provides bounds on the estimated volume

within a confidence interval of

v̂L ≤ v ≤ v̂U , (6.40)

in a more computationally tractable way.

Comparison of volume estimations

This section compares the three volume estimation techniques. Each method is coded as

V 1N : volume is over-approximated by partitioning the set’s interval hull into N uniform

hyperboxes,

V 2N : volume is over-approximated by Algorithm  6 with N/2 total bisections,

143



V 3N : volume is estimated by sampling N random points from the set’s interval hull.

To draw a comparison between these three approaches, methods V 1N and V 2N are formu-

lated based on the number of calls to the MILP solver rather than a user specified tolerance

on edge length of the covering hyperboxes. Thus all three methods have the same number of

MILPs evaluated and comparable computational effort. Note that methods V 1N and V 2N

guarantee an over-approximation of the volume while V 3N is only able to provide an esti-

mated range of volumes based on a user defined confidence interval α ∈ [0, 1]. The confidence

is chosen as α = 0.05 corresponding to a 95% confidence interval.

Consider the hybrid zonotope ( 3.6 ) from Example  3.1.1 . Decomposing the hybrid zono-

tope into its convex subsets Zh = ⋃
ξb

i ∈T Zc,i by Theorem  3.1.1 results in seven disjoint

constrained zonotopes. The volume of the hybrid zonotope is then given by the sum of the

volumes of the constrained zonotopes. This property of the considered set is advantageous as

the volume of each constrained zonotope can be found exactly using the Multi-Parametric

Toolbox (MPT) [ 12 ]. First, the constrained zonotope Zc,i is converted to an H-rep poly-

tope by defining B∞(Ac, b− Abξb
i ) as a polyhedron and performing one linear mapping and

Minkowski sum as

Pi = GcB∞(Ac, b− Abξb
i )⊕ (c + Gbξb

i ) . (6.41)

Thus by Definition  2.9 , Zc,i = Pi. The MPT volume routine is then used to find the exact

volume of each convex subset. The volume of the hybrid zonotope is then given by their

sum as

v(Zh) =
|T |∑
i=1

v(Pi) . (6.42)

Note that the computational complexity of linear mappings and volume computations of

polyhedron restricts this approach to hybrid zonotopes in low dimensions with relatively

few continuous factors, as discussed in Section  2.3.1 . The estimated volumes for a varying

number of calls to the MILP solver, denoted by N , is given in Figure  6.6 . The resulting

coverings of Zh and random points sampled are depicted in Figure  6.7 for N = 100 and in

Figure  6.8 for N = 400.
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Figure 6.6. Comparison of the proposed volume estimation techniques for
varying number of calls to the MILP solver for the 2-dimensional example
hybrid zonotope ( 3.6 ).  6.6a Comparison of the estimated volumes using the
proposed methods. Volumes are normalized with respect to the exact volume
calculated using MPT.  6.6b Computation time required to estimate the set
volume using the proposed methods.

This same comparison was performed on 100 randomly generated two dimensional hybrid

zonotopes. The hybrid zonotopes were generated with ng = 15 continuous generators, nb = 5

binary generators, and nc = 5 constraints. The specific matrices were generated following

the procedure for generating random zonotopes [ 90 ]. Specifically, the elements of Gc, Gb, c,

Ac, Ab, and b are sampled from a uniform distribution on [− 1, 1] then scaled by a random

value α ∈ [0, 60]. The baseline volume for comparison was found using routines in the MPT.

Given that the convex subsets of the hybrid zonotopes were not guaranteed to be disjoint,

a numerically expensive algorithm was used to separate the collection into non-overlapping

polyhedron. This approach was found to be intractable for hybrid zonotopes with additional

continuous and binary generators and in higher than two dimensions. The resulting volume

estimations averaged over the 100 sets is provided in Figure  6.9 .

The results from these numerical experiments confirm that methods V 1N and V 2N are

able to over-approximate the true volume of the hybrid zonotope. Method V 2N provides

a tighter over-approximation at the cost of additional computation time. This additional

computation time is due to Algorithm  6 performing optimization over the MILP rather
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Figure 6.7. Comparison of three volume estimation techniques for N = 100
calls to the MILP solver for example with v(Zh) = 60.5.  6.7a Depiction of
method V 1100 partitioning the interval hull into 100 uniform boxes. Resulting
in an over-approximated volume estimate of v̂(Zh) = 148.5.  6.7b Covering
B∪ of Zh after performing N/2 = 50 bisections of Algorithm  6 . Resulting in
an over-approximated volume estimate of v̂(Zh) = 132.70.  6.7c Depiction of
N = 100 randomly sampled points from the interval hull. Resulting in an over-
approximated volume estimate of v̂(Zh) = 65.25 with 95% confidence interval
of 45.80 ≤ v ≤ 87.58.

than checking feasibility, which is a more computationally demanding process. Method V 3N

sampling N random points on average provided the most accurate estimation of the hybrid

zonotopes volume. As the number of points sampled was increased, the confidence interval

tightened near the same rate as methods V 1N and V 2N .

146



(a) (b)
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Figure 6.8. Comparison of three volume estimation techniques for N = 400
calls to the MILP solver for example with v(Zh) = 60.5.  6.8a Depiction of
method V 1400 partitioning the interval hull into 400 uniform boxes. Resulting
in an over-approximated volume estimate of v̂(Zh) = 101.25.  6.8b Covering
B∪ of Zh after performing N/2 = 200 bisections of Algorithm  6 . Resulting
in an over-approximated volume estimate of v̂(Zh) = 79.56.  6.8c Depiction of
N = 400 randomly sampled points from the interval hull. Resulting in a volume
estimate of v̂(Zh) = 51.75 with 95% confidence interval of 42.67 ≤ v ≤ 61.74.

6.3.3 Heuristics

The previous sections provide estimates on the radial size and volume of the hybrid

zonotope. While both of these approaches give insight into the physical characteristics

of any given set, it is possible to leverage error metrics that are useful in the proposed
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Figure 6.9. Comparison of the proposed volume estimation techniques for
varying number of calls to the MILP solver averaged over 100 randomly gen-
erated 2-dimensional hybrid zonotopes.  6.6a Comparison of the estimated
volumes using the proposed methods. Volumes are normalized with respect to
the exact volume calculated using MPT.  6.6b Computation time required to
estimate the set volume using the proposed methods.

over-approximation techniques that are not rooted in these fundamental measures. This

section provides heuristics that aim to give a ranking of the candidate over-approximations

in Algorithms  3 and  4 by building off the radius and volume ratios developed in the previous

sections. Specifically, three heuristics are proposed: one that sums the radii of all the hybrid

zonotope’s convex subsets, one that uses the radius of the hybrid zonotope to determine

which candidates should be further explored using one of the other methods, and one that

combines the information from both the radius and the volume of the set.

Sum of radii: First, given any hybrid zonotope Zh ⊂ IRn, let ⋃ξb
i ∈T Zc,i be its collection

of decomposed constrained zonotopes by Theorem  3.1.1 . An error metric is then defined as

the sum of all the radii of the |T | constrained zonotopes as

Rp(Zh) =
∑

ξb
i ∈T

Rp(Zc,i) , (6.43)

where Rp(Zc,i) is the ith constrained zonotope’s radius defined by ( 6.30 ). This error metric is

valuable when comparing the order reduction of two sets because it: (1) penalizes the growth
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in each of the convex subsets, and (2) penalizes an increase in the number of nonempty convex

subsets. While two candidate over-approximating hybrid zonotopes using the methods given

in Algorithms  3 and  4 may have the same volume, it is beneficial to choose the one that has

the fewest convex subsets, both in decomposition for visualization as well as when evaluating

the set by solving MILPs. From numerical experiments, this heuristic has shown great

success in determining over-approximations with small growth in error. While providing

a useful metric, calculating ( 6.43 ) requires solving 2n|T | linear programs, which can be

computationally expensive as T grows, possibly exponentially, large. However, as discussed

in Remark  6.2.2 , T may be bounded by reducing the number of binary generators during

iterative set operations. It is also possible to only apply this expensive metric to the candidate

sets that have the least growth in radius of the hybrid zonotope as described next.

Radius ranking: Another possibility is to use the radius ratio to select which of the

potential approximations should be further evaluated using one of the more computationally

expensive metrics. Note that of the provided methods, the radius ratio is the least computa-

tionally expensive. Given a collection of N candidate hybrid zonotopes, let IR ⊂ {1, . . . , NR}

be the indices of the Nr hybrid zonotopes with the smallest radius by ( 6.30 ). Then the more

computationally expensive error metric may only be evaluated for the i ∈ IR hybrid zono-

topes as

ER = {Ei}i∈IR
, (6.44)

where Ei is calculated using one of the more computationally expensive error metrics.

Multiple metrics: The final approach described is to combine multiple error metrics.

For example, similar to the use of multiple objective functions in optimization problems

[ 104 ], it is possible to combine multiple error metrics as

Ẽ =
N∑

i=1
αiEi , (6.45)

where αi ∈ IR such that αi ≥ 0, and Ei is any of the defined error metrics. While this

combined error metric no longer gives a value representing the set’s physical characteristics,

it gives the engineer performing the analysis a method for reducing complexity by using
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multiple criteria. For example, estimating the volume of a high dimensional hybrid zonotope

by sampling few points may give poor estimates; however, this rough estimate of the volume

ratio may be useful when combined with the set’s radius ratio.

6.4 Numerical Examples

In this section I provide multiple numerical examples to evaluate the effectiveness of the

proposed order reduction techniques. In Section  6.4.1 the order reduction techniques are

applied to randomly generated hybrid zonotopes to compare the difference in the resulting

over-approximations and required computation times of the different error metrics. Then

the heated room hybrid system explored in the previous examples is reduced to display the

effectiveness of the order reduction techniques to reachable sets in Section  6.4.2 . Finally,

in Section  6.4.3 it is shown how order reduction may be applied iteratively to extend the

considered time horizon in forward reachability analysis and is applied to the closed-loop

MPC system.

6.4.1 Random Hybrid Zonotopes

This example evaluates the proposed methods for generating over-approximations of ran-

domly generated hybrid zonotopes with varying dimensions and sizes. These methods are

applied to each random hybrid zonotope using Algorithm  5 employing each of the error

metrics described in Section  6.3 . The matrices defining these random hybrid zonotopes are

generated following the procedure for producing random zonotopes in [ 90 ]. Specifically, the

elements of Gc, Gb, c, Ac, Ab, and b are sampled from a uniform distribution on [ − 1, 1]

then scaled by a random value α ∈ [0, 60]. The binary generators are then multiplied by 20

to avoid producing random sets with few nonconvex features. The respective volume error

metrics used in Algorithms  3 and  4 are all determined by evaluating N = 100n MILPs,

where n is the dimension of the random hybrid zonotope. The accuracy of the proposed

methods are evaluated by comparing the ratio of the reduced set’s volume with that of the

unreduced set by ( 6.31 ). Volumes are estimated for these comparisons using the sampling
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method described in Section  6.3.2 by solving 1000n MILPs. The error metrics used are coded

as

R: radius of the set by ( 6.30 ) with p = 2 norm,

RS: sum of the radii of all convex subsets by ( 6.30 ) with p = 2 norm,

RSs: sum of the radii of all convex subsets calculated for the nr
· /2 candidate hybrid zonotopes

with the best radii by ( 6.30 ) with p = 2 norm,

V S: volume estimated by sampling 100n random points from the set’s interval hull by

( 6.39 ),

V Su: volume estimated as the upper bound on the 95% confidence interval by sampling 100n

random points from the set’s interval hull by ( 6.40 ),

V B: volume over-approximated by Algorithm  6 with 100n/2 total bisections.

The volume ratios and computation times for the proposed methods are first evaluated

for hybrid zonotopes in two dimensions. Specifically, 20 random hybrid zonotopes are gen-

erated with n = 2, ng = 50 continuous generators, nb = 10 binary generators, and nc = 15

constraints. Algorithm  5 is applied to generate over-approximating hybrid zonotopes with

complexity nr
g = 40, nr

b = 8, and nr
c = 12. An example of one of the randomly gener-

ated hybrid zonotopes and it’s over-approximation is depicted in Figure  6.10 . The resulting

normalized volume ratios and computations times for computing the over-approximating

hybrid zonotopes are provided in Figure  6.11 . In this set of trials, using the sampling

method, V S, with a total of 100n = 200 randomly sampled points resulted in the worst

over-approximation. Using the upper bound on the 95% confidence interval on the sam-

pled approximation, V Su, performed slightly better. On the other hand, the method that

performed the best was computing the sum of the radii of all the hybrid zonotope’s convex

subsets, RS. However, the computational effort of this approach is a direct consequence of

the number of the hybrid zonotope’s nonempty leaves, which in this experiment, was the

result of randomly generated constraints. This variation in effort is reflected in the computa-

tion time of RS having the widest range in the box plot. The high computational complexity
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of RS is reduced in method RSs by first evaluating the growth in the radius of the candi-

date hybrid zonotopes, then summing the radii of all convex subsets for only the best half,

which had similar results in the increase in volume ratio caused by the over-approximation.

Of the volume estimation methods, method V B using the bisection approach to cover the

hybrid zonotope by hyperboxes as described in Algorithm  6 performed the best. However,

this approach had the greatest computation time when performing a total of 100n/2 = 100

bisections.

-4000 -2000 0 2000 4000
-4000

-2000

0

2000

4000

Figure 6.10. Example of a randomly generated two-dimensional hybrid zono-
tope and it’s over-approximation.

The same analysis is applied to random hybrid zonotopes in four dimensions, and the

results are provided in Figure  6.12 . Specifically, 20 random hybrid zonotopes are gener-

ated with n = 4, ng = 70 continuous generators, nb = 15 binary generators, and nc = 20

constraints. Algorithm  5 is applied to generate over-approximating hybrid zonotopes with

complexity nr
g = 56, nr

b = 12, and nr
c = 16. In this case, the randomly generated hybrid

zonotopes with nb = 15 had potentially |T | ≥ 32 × 103 nonempty leaves, resulting in vari-

ations of summing over the radii of the convex subsets, methods RS and RSs, becoming

too computationally expensive, and are therefore excluded from the analysis. Similar to the

results when reducing two dimensional hybrid zonotopes, in this case the error metric V B

using the bisection approach to cover the hybrid zonotope by hyperboxes as described in Al-

gorithm  6 performed the best. However, the computation time to perform all 100n/2 = 200
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(a) (b)

Figure 6.11. Comparison of the using the different error metrics in the order
reduction method given by Algorithm  5 for 20 randomly generated hybrid
zonotopes. The hybrid zonotopes are reduced from ones with ng = 50, nb = 10,
and nc = 15 to have complexity nr

g = 40, nr
b = 8, and nr

c = 12.  6.11a 

Comparison of the resulting volume ratios.  6.11b Comparison of the time
required to perform each of the reductions.

bisections required more than twice the computation time of the other methods. Surpris-

ingly, in this experiment using the radius metric R outperformed sampling the volume V S

with 100n = 400 randomly sampled points in both the volume ratio and computation time.

6.4.2 Thermostat-Controlled Heated Rooms

This example demonstrates the use of the proposed order reduction techniques on the for-

ward reachable sets of the hybrid system modeling the temperature dynamics of six adjacent

rooms with two thermostat-controlled heaters, as previously examined in Section  4.1.4 . The

goal of this example is to demonstrate that the complex reachable sets can be represented

more compactly as hybrid zonotopes for use in further analysis.

In Section  4.1.4 it was shown that the reachable set for Case(6, 2) at time step k = 100

could be represented compactly by removing redundant binary factors and linear inequality

constraints of the MLD system. Using these two redundancy removal methods resulted

in the reachable set R100 represented by ng,100 = 283 continuous generators, nb,100 = 29
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(a) (b)

Figure 6.12. Comparison of the using the different error metrics in the order
reduction method given by Algorithm  5 for 20 randomly generated hybrid
zonotopes. The hybrid zonotopes are reduced from ones with ng = 50, nb = 10,
and nc = 15 to have complexity nr

g = 40, nr
b = 8, and nr

c = 12.  6.11a 

Comparison of the resulting volume ratios.  6.11b Comparison of the time
required to perform each of the reductions.

binary generators, and nc,100 = 177 constraints and was found in 10.4 seconds (see Tables

 4.2 and  4.3 ). Applying the additional redundancy removal techniques described in Section

 6.1 , the reachable set Rr
100 has only nr

g,100 = 137 continuous generators, nr
b,100 = 29 binary

generators, and nr
c,100 = 31 constraints to represent the same union of 657 convex polytopes.

The hybrid zonotope is then rescaled using Algorithm  2 . Identifying and removing this

additional redundancy and rescaling the hybrid zonotope took an additional 18.54 seconds.

It is now shown how each of the order reduction techniques for finding over-approximations

effect the reachable set R100 individually.

Lift then reduce continuous generators: the hybrid zonotope Rr
100 with redundancy

removed is now reduced to the over-approximating hybrid zonotope R̃r
100 with a reduced

ñr
g,100 = 100 continuous generators, and the same ñr

b,100 = 29 binary generators and ñr
c,100 =

31 equality constraints from the previous step, using the lift then reduce strategy described

in Section  6.2.3 . This is performed using the zonotope order reduction method developed

for constrained zonotopes in [ 18 ] and [  90 ]. Removing 37 continuous generators using this
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method took 0.04 seconds. The over-approximating hybrid zonotope is depicted in Figure

 6.13 .

Figure 6.13. Projections of the over-approximated reachable set R̃r
100 with

continuous generators reduced from nr
g,100 = 137 to ñr

g,100 = 100 using the lift
then reduce strategy. Exact reachable set Rr

100 is shown in blue and it’s over-
approximation R̃r

100 in red.

Relax binary factors: the hybrid zonotope Rr
100 with redundancy removed is now

reduced to the over-approximating hybrid zonotope R̃r
100 with a reduced ñr

b,100 = 20 binary

generators, an increased ñr
g,100 = 146 continuous generators, and the same ñr

c,100 = 31 equality

constraints using Algorithm  4 . The over-approximating hybrid zonotope has a reduced |T | =

123 convex subsets. The reduction method is performed using the error metric summing over

the nr
b/2 best candidate over-approximations (see RSs in Section  6.4.1 ). Removing these 9

binary generators using this error metric took 427.96 seconds. The resulting hybrid zonotope

is depicted in Figure  6.14 .

Remove equality constraints: the hybrid zonotope Rr
100 with redundancy removed

is now reduced to the over-approximating hybrid zonotope R̃r
100 with a reduced ñr

c,100 = 25

equality constraints and ñr
g,100 = 131 continuous generators, and the same ñr

b,100 = 29 binary

generators using Algorithm  3 . The reduction method is performed using the volume ratio es-

timated by randomly sampling 600 points from the interval hull (see V S from Section  6.4.1 ).

Removing these 6 equality constraints using this error metric took 625.59 seconds. The

resulting hybrid zonotope is depicted in Figure  6.15 .
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Figure 6.14. Projections of the over-approximated reachable set R̃r
100 with

binary generators reduced to from nr
b,100 = 29 to ñr

b,100 = 20 using Algorithm
 4 . Exact reachable set Rr

100 is shown in blue and it’s over-approximation R̃r
100

in red.

Figure 6.15. Projections of the over-approximated reachable set R̃r
100 with

equality constraints reduced to from nr
c,100 = 31 to ñr

c,100 = 25 using Algorithm
 3 . Exact reachable set Rr

100 is shown in blue and it’s over-approximation R̃r
100

in red.

Reducing the reachable set: All three of the previously describe steps are now per-

formed on the same hybrid zonotope in series. First, the number of continuous generators

are reduced to ñr
g = 100, then binary generators are relaxed until ñr

b = 20, finally the equal-

ity constraints are removed until ñr
c = 25, using the individually described methods. The

total process took 1152 seconds. The resulting hybrid zonotope has ñr
g = 87 continuous

generators, ñr
b = 20 binary generators, and ñr

c = 25 constraints and is depicted in Figure

 6.16 .
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Reducing the complexity of the hybrid zonotope in all three of these process results in

a hybrid zonotope with a volume ratio of ΘV = 1.70 compared to the exact reachable set.

The large computation time is primarily due to the evaluation of the error metrics for each

of the candidate over-approximations, resulting in many MILPs needing to be evaluated.

Nonetheless, this approach provides a nonconvex outer-approximation of the true reachable

set, and allows for the analysis to be continued with a fixed computational effort by iteratively

applying the proposed reduction techniques.

Figure 6.16. Projections of the over-approximated reachable set R̃r
100 with

ñr
g = 87, ñr

b = 20 binary generators, and ñr
c = 25 equality constraints. Exact

reachable set Rr
100 is shown in blue and it’s over-approximation R̃r

100 in red.

6.4.3 Model Predictive Control

This example shows how the proposed order reduction techniques combined in Algorithm

 5 may be used iteratively in the forward reachability analysis of hybrid systems and applies

them to the double integrator under closed-loop MPC, as previously examined in Section

 4.2.5 . Specifically, the perturbed case considering model mismatch and when the closed-

loop system is subjected to bounded, additive disturbances is reevaluated. The goal of this

example is to demonstrate how order reduction allows the time horizon to be extended

to any specified amount while maintaining a reduced computational complexity to provide

conservative results.

The dynamics are propagated for twenty discrete time steps using the successor operator

given by Theorem  5.11 leveraging state-update sets while performing order reduction using
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Algorithm  5 at every third time step. The set-points used for the desired complexity of the

over-approximative reachable sets are

ñg ≤ 150 , (6.46a)

ñb ≤ 15 ∧ |T̃ | ≤ 100 , (6.46b)

ñc ≤ 100 , (6.46c)

where the number of binary factors are reduced until they are less than 15 and the number of

convex subsets of the hybrid zonotope’s binary tree is less than 100. Each step of the order

reduction described by Algorithm  5 is only performed if the resulting volume ratio of the

input and reduced set given by ( 6.31 ) remains below Θv ≤ 1.1. That is, if at any point the

algorithm detects that the introduced error is too large, the procedure is exited and the next

step in the order reduction algorithm is attempted. All error metrics are evaluated using the

over-approximated volume estimated from the disjoint covering produced by the bisection

algorithm with 250 total cuts, as described in Section  6.3.2 . Additionally, the resulting

reduced hybrid zonotope is intersected with the original set’s interval hull to guarantee that

the over-approximation is at least as good as the convex enclosure.

The first step in the reachability analysis is to generate the state-update set using the

method described in Section  5.3.2 . The resulting hybrid zonotope Φ ⊂ IR4 has ng,ϕ = 55

continuous generators, nb,ϕ = 10 binary generators, and nc,ϕ = 43 constraints and requires

only 0.001 seconds to determine. Finding the representation of the MPC’s explicit control

law as a hybrid zonotope required to generate the state-update set as described in Section

 4.2.3 took 2.11 seconds. The complexity of the resulting state-update set may be minimized

by applying the redundancy removal techniques described in Section  6.1 and results in a

reduced hybrid zonotope Φr ⊂ IR4 with nr
g,ϕ = 34 continuous generators, nr

b,ϕ = 10 binary

generators, and nr
c,ϕ = 22 constraints, requiring an additional 1.83 seconds of computation

time. Performing this redundancy removal upfront substantially reduces the complexity

that will be introduced through iterative applications of the successor operator defined by

Theorem  5.2.1 , and took an additional computation time of 3.94 seconds. Once the state-
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update set has been found, the dynamics are propagated forward in time for twenty discrete

time steps while performing order reduction at every third iteration.

The reachability analysis beings at the initial set X0 = {x ∈ IR2 | ∥x1∥∞ ≤ 5, x2 = 0} and

the resulting over-approximating reachable sets are depicted in Figure  6.17 . The result of

this reachability analysis with an extended time horizon shows that the forward reachable set

converges, and that the system is safe for all time. This inferred invariance follows from the

fact that R20 ⊂
⋃20

0 Ri. This property can be verified visually from Figure  6.17 , which was

easily plotted because of the reduction in the number of nonempty convex subsets achieved

by the proposed order reduction techniques.

The computation time of only using redundancy removal was 435 seconds to find the

exact reachable set, while using order reduction in addition to redundancy removal took

4, 457 seconds. While the computation time required by the order reduction increases by

ten times that of using redundancy removal alone, this additional time was spent almost

entirely in computing the error metrics, which were chosen to be rigorous by employing the

bisection algorithm with 250 cuts. Improvements in the computation time could be achieved

by employing one of the other error metrics described in Section  6.3 , for example the radius

ratio, at the cost of potentially introducing additional error in the over-approximations.

Figure 6.17. Depiction of the over-approximative forward reachable sets of
the perturbed closed-loop system under model predictive control for twenty
time steps. The reachable set converging proves the system is safe for all time.
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Figure 6.18. Comparison of the representation complexity of the over-
approximative reachable sets with the exact sets found using only redundancy
removal for the perturbed closed-loop system under model predictive control.
Iterations where order reduction was performed are denoted by vertical dashed
lines.  6.18a Comparison of the number of continuous generators.  6.18b Com-
parison of the number of equality constraints.  6.18c Comparison of the number
of binary generators.  6.18d Comparison of the number of nonempty leaves in
the set’s binary tree.

A comparison of the representation complexity of the exact reachable sets found using

only redundancy removal and that of the over-approximating hybrid zonotopes are given in

Figure  6.18 . The number of continuous generators of the over-approximation is reduced to

a value of ñr
g,20 = 195 which is a modest reduction when compared to the number of non-

redundant continuous generators of nr
g,20 = 220. Note that in this case, reducing the number
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of continuous generators to below the target value of 150 resulted in too much additional

error, and was not achieved at each iteration. The number of reduced equality constraints

was ñr
c,20 = 85 which is a considerable reduction below that of using redundancy removal

alone of nr
c,20 = 119 and remains below the target value of 100. The binary generators on the

other-hand are aggressively reduced from nr
b,20 = 60 to ñr

b,20 = 12, resulting in a substantial

reduction in the number of nonempty convex subsets from |T r
20| = 3313 to |T̃ r

20| = 103. Also

note that these binary factors were relaxed to be continuous, which can be seen in the increase

in continuous factors at the iterations where order reduction is performed. However, this

relaxation of the binary factors often resulted in additional redundancy that was detected

and removed at the next iteration. The effectiveness of the proposed approach can be seen by

the estimated volume ratio between the exact reachable sets and the over-approximations as

shown in Figure  6.19 . Note that the accumulated error due to iterative over-approximations

decays quickly due to the controller successfully driving the set of system trajectories toward

the origin. The resulting over-approximations at iterations k = 6, 9, 12, 15 are depicted in

Figure  6.20 . In these figures, it can be seen that the over-approximations maintain the

nonconvexity of the set and provide better approximations than could be achieved by a

convex enclosure.
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Figure 6.19. Estimated volume ratio between the exact reachable sets of the
perturbed closed-loop MPC system and the over-approximated reachable sets.
Iterations where order reduction is performed are denoted by vertical dashed
lines.
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(a) (b)

(c) (d)

Figure 6.20. Depiction of the over-approximations at iterations k =
6, 9, 12, 15 produced by the order reduction techniques for the perturbed closed-
loop MPC system. The sets input to Algorithm  5 are shown in blue and the
resulting over-approximations shown in red.  6.20a Result of order reduction
at time step k = 6.  6.20b Result of order reduction at time step k = 9.  6.20c 

Result of order reduction at time step k = 12.  6.20d Result of order reduction
at time step k = 15.

6.5 Chapter Summary

In this chapter I have presented methods for reducing the complexity of hybrid zonotopes.

I have shown how redundancy in every aspect of the hybrid zonotope set definition, includ-

ing continuous generators, binary generators, and equality constraints, may be detected and

removed. I developed order reduction techniques to further reduce the complexity of hybrid
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zonotopes to generate nonconvex over-approximations. These order reduction techniques

extend methods developed for zonotopes, constrained zonotopes, and mixed-integer pro-

grams. I then developed error metrics to evaluate the differences between multiple hybrid

zonotopes. The presented error metrics include approximation of the set’s physical char-

acteristics, such as radius and volume, as well as heuristics that are useful in determining

tight over-approximations. Using the proposed methods for order reduction and redundancy

removal give the user a way to tune the trade-off in computational complexity and accu-

racy. Applying the proposed methods within iterative set operations on hybrid zonotopes,

analysis may be performed indefinitely to provide conservative results of complex nonconvex

problems. Numerical examples show the effectiveness of the proposed methods as well as

evaluate the benefits of the different error metrics.
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7. Conclusions

7.1 Summary of Research Contributions

The reachability analysis of hybrid systems is inherently complex. As intersections with

guard sets occur and uncertain discrete inputs are applied, the number of nonconvex fea-

tures grows exponentially. The state of the art often reduces the problem to a collection of

convex sets, resulting in conservative algorithms with case-specific trade-offs in accuracy and

computational effort. In this dissertation, I derived a new mixed-integer set representation

named the hybrid zonotope that is able to represent nonconvex sets with an exponential

number of features using a linear number of continuous and discrete variables. I have shown

how the hybrid zonotope is equivalent to the union of 2N constrained zonotopes (convex

polytopes) through the addition of N binary zonotope factors, and is thus able to compactly

represent nonconvex and disconnected sets.

I have derived identities for, and proven closure under, linear mappings, Minkowski sums,

generalized intersections, halfspace intersections, Cartesian products, unions, and comple-

ments of hybrid zonotopes. To improve computational performance, I have derived re-

dundancy removal techniques that reduce the complexity of hybrid zonotopes without al-

tering the set. When further computational benefits are necessary, I have derived over-

approximation techniques that allow more complex analysis to be performed to generate

conservative results, while maintaining the nonconvexity of the set. Thus providing a non-

convex set representation applicable to a broad class of set-theoretic controls problems.

Beyond the derivation of set operations, I have shown how linear mixed-integer con-

straints may be embedded within the hybrid zonotope set representation. Using this ap-

proach, I have shown how the exact forward reachable sets of hybrid systems, including

mixed logical dynamical systems and closed-loop MPC, may be found algebraically with

linear growth in representation complexity. In addition, I have shown how optimality con-

ditions may be embedded within the hybrid zonotope, resulting in the explicit solution of

general multiparametric quadratic programs represented by a single hybrid zonotope. This

representation of the optimal set may then be decomposed into a collection of constrained

zonotopes to give the quadratic program’s explicit solution.
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Building upon these results for forward reachability, I have presented a closed-form so-

lution for the exact backward reachable sets of linear hybrid systems as hybrid zonotopes

by leveraging a new construct named the state-update set that encodes all possible state

transitions of a dynamic system over one discrete time step within a single set. I have shown

how the state-update sets of mixed logical dynamical systems and closed-loop MPC may be

represented as hybrid zonotopes by calculating the system’s one step forward reachable set

under augmented dynamics. Thereafter I have shown how state-update sets may be used

to find both the forward and backward reachable sets, and how they may be made robust

to bounded disturbances. I have shown through multiple examples the scalability of these

approaches and how they can be used to provide robust certificates of a system’s safety and

reduce the conservatism of previous methods in the literature.

7.2 Future Research Directions

The research presented in this dissertation has focused on developing the fundamental

tools for the use of hybrid zonotopes in set-theoretic methods. Using these fundamental

tools, it is now possible to extend many of the existing algorithms that rely on convex

approximations of nonconvex sets to be performed exactly. This approach to exact analysis

could be used to not only improve the accuracy of the results, but give a way to expose the

level of conservatism induced by the traditional convex approximations.

The operations presented in this dissertation were exact and rigorous, and often employ

many calls to commercial mixed-integer linear programming solvers. There is potential to

improve the computation time of these methods by replacing the calls to commercial solvers

with heuristics developed for mixed-integer programs to provide conservative bounds. These

heuristics may be customized to leverage the hybrid zonotope’s structured form and have

potential for substantial improvement in the computation time and scalability of the proposed

methods.

Providing a more scalable approach for the exact backwards reachable sets of hybrid

system’s provides a promising approach for finding positive invariant sets to be used in op-

timal control policies. While this dissertation has provided an example of how this may be
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done and improves upon previous results for linear MPC, the convergence of the algorithm

was determined by observation. While set containment can be verified using the provided

propositions, the approach has potentially exponential growth in complexity when the su-

perset is nonconvex. Furthermore, when the invariant set is found, it may be too complex

for use as a constraint in online optimal control algorithms. Derivation of conditions for the

containment of convex sets within hybrid zonotopes may extend the proposed methods to

provide less conservative invariant sets when compared to traditional results, and that may

be easily implemented online.

The results for reachable sets of hybrid systems in this dissertation were limited to

those with linear differential equations. A potentially impactful result would be to ex-

tend these results to system’s with nonlinear differential equations by leveraging existing

over-approximation methods in the literature. Applying linear model predictive control to

nonlinear systems is common in practice, and providing over-approximations of the reach-

able sets of such closed-loop nonlinear systems could provide robust a posteriori certificates

of safety. This could be achieved using the same set of optimal inputs derived in this disser-

tation represented by a hybrid zonotope combined with an over-approximation method for

the propagation of the nonlinear dynamics.

Finally, the representation of general multiparametric quadratic programs as hybrid zono-

topes provides a way to compactly represent these complex solutions. Previous results in

the literature are often limited by the possible exponential growth in the number of critical

regions. There is potential for the results in this dissertation to curve this exponential growth

and extend explicit control policies to more complex systems. Methods of efficiently using

the hybrid zonotope’s binary tree to find these solutions could provide a new approach with

improved scalability.
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constrained linear systems with bounded disturbances,” Automatica, vol. 41, no. 2, pp. 219–
224, Feb. 2005, issn: 0005-1098. doi:  10.1016/j.automatica.2004.08.019 .
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[92] M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl, “A new general-purpose algorithm for
mixed-integer bilevel linear programs,” Operations Research, vol. 65, no. 6, pp. 1615–1637,
Dec. 2017, issn: 0030-364X. doi:  10.1287/opre.2017.1650 .
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L. Jaulin, M. Kieffer, O. Didrit, and É. Walter, Eds., London: Springer, 2001, pp. 11–43,
isbn: 978-1-4471-0249-6. doi:  10.1007/978-1-4471-0249-6 2 .

[100] L. Jaulin and E. Walter, “Set inversion via interval analysis for nonlinear bounded-error
estimation,” Automatica, vol. 29, no. 4, pp. 1053–1064, Jul. 1, 1993, issn: 0005-1098. doi:

 10.1016/0005-1098(93)90106-4 .

[101] M. Kieffer and E. Walter, “Guaranteed nonlinear state estimator for cooperative sys-
tems,” Numerical Algorithms, vol. 37, no. 1, pp. 187–198, Dec. 1, 2004, issn: 1572-9265. doi:

 10.1023/B:NUMA.0000049466.96588.a6 .

[102] L. Jaulin and E. Walter, “Guaranteed nonlinear parameter estimation from bounded-
error data via interval analysis,” Mathematics and Computers in Simulation, vol. 35, no. 2,
pp. 123–137, Apr. 1, 1993, issn: 0378-4754. doi:  10.1016/0378-4754(93)90008-I .

[103] L. Brown and X. Li, “Confidence intervals for two sample binomial distribution,” Journal
of Statistical Planning and Inference, vol. 130, no. 1, pp. 359–375, Mar. 1, 2005, issn: 0378-
3758. doi:  10.1016/j.jspi.2003.09.039 .

[104] Multicriteria Optimization. Berlin/Heidelberg: Springer-Verlag, 2005, isbn: 978-3-540-
21398-7. doi:  10.1007/3-540-27659-9 .

176

https://doi.org/10.1007/978-3-030-52200-1_21
https://doi.org/10.1007/978-3-030-52200-1_21
https://doi.org/10.1007/s10107-003-0447-x
https://doi.org/10.1007/s10107-003-0447-x
https://doi.org/10.1002/(SICI)1098-2418(199708)11:1<1::AID-RSA1>3.0.CO;2-X
https://doi.org/10.1007/978-1-4471-0249-6_2
https://doi.org/10.1016/0005-1098(93)90106-4
https://doi.org/10.1023/B:NUMA.0000049466.96588.a6
https://doi.org/10.1016/0378-4754(93)90008-I
https://doi.org/10.1016/j.jspi.2003.09.039
https://doi.org/10.1007/3-540-27659-9


PUBLICATIONS

Journal Articles

• Trevor J. Bird, Jacob A. Siefert, Justin P. Koeln, Herschel C. Pangborn, and Neera

Jain, “Complexity Reduction of Hybrid Zonotopes,” 2022 (In Preparation)

• Jacob A. Siefert, Trevor J. Bird, Neera Jain, Justin P. Koeln, and Herschel C.

Pangborn, “Nonlinear State-Update Sets for Reachability Analysis, State Estimation,

and Parameter Identification,” 2022. (In Preparation)

• Trevor J. Bird, Herschel C. Pangborn, Neera Jain, and Justin P. Koeln, “Hybrid

Zonotopes: A New Set Representation for Reachability Analysis of Mixed Logical

Dynamical Systems,” Automatica, 2022. (Provisionally Accepted)

• Jacob A. Siefert, Trevor J. Bird, Justin P. Koeln, Neera Jain, and Herschel C.

Pangborn, “Robust Successor and Predecessor Sets of Hybrid Systems using Hybrid

Zonotopes,” The IEEE Control Systems Letters, 2022.

• Trevor J. Bird and Neera Jain, “Unions and Complements of Hybrid Zonotopes,”

The IEEE Control Systems Letters, 2021.

• Trevor J. Bird and Neera Jain, “Dynamic Modeling and Validation of a Micro-

combined Heat and Power System with Integrated Thermal Energy Storage,” Applied

Energy, 2020.

• Austin Nash, Brian Fu, Trevor J. Bird, Neera Jain, and Timothy Fisher, “Control-

Oriented Modeling of Integrated Flash Boiling for Rapid Transient Heat Dissipation,”

Journal of Thermophysics and Heat Transfer, 2019.

Conference Articles

• Trevor J. Bird, Jacob A. Siefert, Herschel C. Pangborn, Neera Jain, and Justin

P. Koeln, “The Hybrid Zonotope Toolbox: A Mixed-Integer Toolbox For Nonconvex

Set-Theoretic Methods,” 2023. (In Preparation)

177



• Trevor J. Bird, Neera Jain, Herschel C. Pangborn, and Justin P. Koeln, “Set-Based

Reachability and the Explicit Solution of Linear MPC using Hybrid Zonotopes,” Pro-

ceedings of the American Controls Conference, 2022.

⋆ ACC Best Student Paper Award

• Trevor J. Bird, Catherine Weaver, and Neera Jain. “Switched Linear Model of a

Stratified Hot Water Tank for Control of micro-CHP Systems,” Proceedings of the

ASME Dynamic Systems and Control Conference, 2019.

⋆ ASME Energy Systems Technical Committee Best Paper Award

Invited Talks

• Trevor J. Bird and Neera Jain, “Unions and Complements of Hybrid Zonotopes,”

Proceedings of the 2022 American Controls Conference, Atlanta, GA, June 2022.

• Trevor J. Bird, ”Hybrid Zonotopes: A Mixed-Integer Set Representation for the

Analysis of Hybrid Systems,” University of Texas at Dallas Controls Seminar, Richard-

son, TX, March 2022.

178


	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Representing Nonconvex Sets
	Reachable Sets of Hybrid Systems
	Dissertation Objective
	Dissertation Outline

	BACKGROUND
	Notation
	Set Operations
	Set Representations
	Convex Polytopes
	Hyperplane Arrangements
	Zonotopes
	Constrained Zonotopes

	Reachability Analysis

	HYBRID ZONOTOPES
	Set Definition
	Set Operations
	Linear Mappings, Minkowski Sums, Generalized Intersections, Halfspace Intersections, and Cartesian Products
	Unions
	Complements
	Point and Set Containment
	Support Functions and Convex Enclosures

	Binary Trees
	Numerical Example: Obstacle Avoidance
	Chapter Summary

	FORWARD REACHABLE SETS OF HYBRID SYSTEMS
	Reachable Sets of MLD Systems
	Mixed Logical Dynamical (MLD) Systems
	Forward Reachable Sets of MLD Systems
	Redundant Inequality Constraints
	Numerical Examples
	Piece-Wise Affine System with Two Equilibrium Points
	Thermostat-Controlled Heated Rooms


	Reachable Sets of Closed-Loop MPC
	Motivation
	Multiparametric Quadratic Programming
	Zonotopic Representation and Explicit Solution of mp-QPs
	Forward Reachable Sets of Linear MPC
	Numerical Example
	Representation and Explicit Solution of the MPC Inputs
	Reachability Analysis


	Chapter Summary

	BACKWARD REACHABLE SETS OF HYBRID SYSTEMS
	Background
	Reachability via State-Update Sets
	Reachability using Hybrid Zonotope State-Update Sets
	State-Update Set: MLD Systems
	State-Update Set: Linear MPC

	Numerical Examples
	Piece-Wise Affine System with Two Equilibrium Points
	Thermostat-Controlled Heated Rooms
	Model Predictive Control

	Chapter Summary

	COMPLEXITY REDUCTION OF HYBRID ZONOTOPES
	Redundancy Removal
	Redundant Equality Constraints
	Redundant Continuous Generators
	Redundant Binary Generators

	Over Approximations
	Rescaling Continuous Generators
	Constraint Reduction
	Continuous Generator Reduction
	Binary Generator Reduction
	Combined Algorithm

	Error Metrics
	Radius Ratio
	Volume Ratio
	Collection of hyperboxes
	Uniform sampling
	Comparison of volume estimations

	Heuristics

	Numerical Examples
	Random Hybrid Zonotopes
	Thermostat-Controlled Heated Rooms
	Model Predictive Control

	Chapter Summary

	Conclusions
	Summary of Research Contributions
	Future Research Directions

	REFERENCES
	PUBLICATIONS

