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January 11, 2024 

Lyles School of Civil Engineering 

Delon and Elizabeth Hampton Hall of Civil Engineering 

550 Stadium Mall Drive 

West Lafayette, IN 47907-2051 

 

Dear Colleagues 

 

I am pleased to apply for the open-rank faculty position in your department in the area of Construction and 

Engineering and Management with a focus on Engineering for Humanity. I am a Tenured Associate Professor in 

the Zachry Department of Civil and Environmental Engineering at Texas A&M University. I received my doctoral 

degree in Civil Engineering from Purdue University in August 2013. As a Purdue alumni, I am interested in pursuing 

this faculty position in your department because I believe that my qualifications and research program fit well with 

the position description, as well as the strategic plan of your school.  

 

I have a proven record of developing a vibrant externally-funded research program. Since I joined the 

Zachry Department of Civil and Environmental Engineering at TAMU in 2016, I have established a strong 

externally-funded interdisciplinary research program focusing on urban infrastructure resilience and data science/AI 

and have built synergistic collaborations across various disciplines. I established a new lab, the UrbanResilience.AI 

Lab, to coalesce innovative methods and models for understanding and improving resilience in urban systems. 

During my time at TAMU, I have been awarded, as the lead PI on multiple interdisciplinary projects, grants totaling 

more than $8.2M, with my share exceeding $5M. I have received various competitive awards such as a the NSF 

CAREER Award, Early-Career Fellowship of the National Academies’ Gulf Research Program, ASCE Halpin 

Award, AWS Machine Learning Award, ENR’s Top 20 Under 40, College of Engineering Faculty Excellence 

Award, Dean of Engineering Excellence Award, and Research Impact Award of Civil Eng. Department, and Best 

Paper Awards in ASCE Computing in Civil Engineering and Construction Research Congress. This competitive 

level of funding allows me to support a large and growing research group and maintain a productive research 

program. I am currently supervising 2 post-docs, 12 Ph.D. students, 8 MS students, and six funded undergraduate 

researchers in my lab. I have published 145 journal papers in various high impact civil engineering, disaster 

management, and interdisciplinary journals.  

 

My research program advance convergence research in four new interdisciplinary and interrelated 

discovery areas: (1) Resilience of Interdependent Infrastructure Networks, (2) Equitable and Human-Centric 

Resilience, (3) Urban AI for Integrated Urban Design, and (4) Disaster Data Science for Smart Resilience. In all 

these discovery areas, my team and I utilize simulation, data analytics, complex network modeling, and machine 

learning to examine, understand, model, and improve resilience in urban systems through a better understanding of 

network dynamics in the Humans, Disasters, and Built Environment (HDBE) nexus. My research has a strong and 

direct impact on resiliency practice, and has attracted a lot of attention from industrial collaborators and 

stakeholders. For example, my research on resilience intelligence and disaster informatics is strongly supported by 

leading technology companies such as Waze, Facebook, INRIX, Microsoft, Cuebiq and AWS in terms of funding, 

datasets, as well as computational resources. Also, my research has received broad external media coverage. A key 

aspect of my research program is that I combine engineering, computing, and social sciences in ways that address 

resiliency issues more effectively through transcending disciplinary silos. During my time at TAMU, I have led 

multiple successful grants and projects with interdisciplinary teams from engineering, social, computer, and natural 

sciences. My commitment and contributions to interdisciplinary research has been recognized by me being named 

a Faculty/Research Fellow in the Institute for Disaster Resilient Texas (IDRT), Hazard Reduction and Recovery 

Center (HRRC), and the Institute for Sciences, Technology and Public Policy (ISTPP) at TAMU.  

  

My time at TAMU has given me the opportunity to refine and demonstrate my effectiveness in teaching. I 

continually adopt innovative pedagogical methods, which has led me to consistently receive very positive student 

evaluations for my courses. I integrate my research into my teaching to provide high impact learning experiences 

for undergraduate students. I have consistently recruited undergraduate students in my lab and later recruited them 

for graduate studies. I have been a faculty mentor for Vertically Integrated Project (VIP) teams with more than 60 

students from various departments over the past five years. My undergraduate and graduate research student 
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mentees have received significant awards and scholarships. I have diverse expertise to develop and teach a variety 

of undergraduate and graduate courses related to urban infrastructure systems topics in your program. 

 

I also have a strong record of external service and community engagement. In addition to membership in 

various professional committees and technical committees of top conferences in his field, I am a member of editorial 

boards of three ASCE journals. I get regularly invited to serve on NSF review panels. To broaden the impact of my 

research on communities, I closely collaborates with various regional organizations such as the Harris County Flood 

Control District, the Galveston District of the U.S. Army Corps of Engineers, and the City of Houston Office of 

Resiliency, as well as global organizations such as the World Bank’s Disaster Risk Reduction and Recovery.  

 

As an alumnus of Purdue, I am familiar with the level of excellence and interdisciplinary research and 

Purdue and I believe that my background, interdisciplinary research program, and technical expertise make me a 

unique fit for the posted position. I expect excellent opportunities for campus-wide collaborations (with different 

researchers in the School of Civil Engineering, College of Engineering, and other colleges) to create a hub for smart 

urban resilience research at Purdue. 

 

I enclosed my curriculum vitae, statements for research, teaching, CV, and references in support of my application. 

If you require additional information, I will be happy to provide it.  

 

Sincerely, 

 

 

Ali Mostafavi 
 

Associate Professor, Zachry Department of Civil and Environmental Engineering 

Faculty Director, UrbanResilience.AI Lab 

Early-Career Research Fellow, National Academies’ Gulf Research Program 

Faculty Fellow, Institute for Sustainable Communities 

Fellow, Hazard Reduction and Recovery Center  

Resilience Fellow, 4TU Resilience Engineering Center, TU Delft 

Research Fellow, Institute for Science, Technology, and Public Policy 

Texas A&M University 

3136 TAMU | College Station, TX 77843-3136 

Email: amostafavi@civil.tamu.edu | Cell: (765) 543-4036 | url: urbanresilience.ai 
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Ali Mostafavi 
Zachry Career Development 

Endowed Associate 

Professor 

Zachry Department of  

Civil and Environmental 

Engineering 

Texas A&M University 

UrbanResilience.AI Lab 

College Station, TX 77843-3136 

Contact 

Cell: 
(765) 543-4036 

Email: 
mostafavi@tamu.edu 

Website: 
www.urbanresilience.ai 

Citizenship: 
U.S. Citizen 

Research Interests 

Societal Challenges 

Urban resilience, Disaster 

intelligence and informatics, 

Smart cities; Sustainable 

infrastructure. 

Theory 

Network dynamics; Complex 

adaptive systems; Urban 

science, Deep uncertainty 

decision-making. 

Methods and Tools 

Complex modeling; 

Dynamic network analysis; 

AI/Data analytics; Urban 

informatics; Agent-based 

modeling 

 

Professional Experience, Affiliations, and License 

Zachry Career Development Endowed Professorship 

Zachry Department of Civil and Environmental Engineering 

Texas A&M University 

September 2021–present 

Associate Professor  

Zachry Department of Civil and Environmental Engineering 

Texas A&M University - August 2020–Present 

Assistant Professor  

Zachry Department of Civil and Environmental Engineering 

Texas A&M University - August 2016–August 2020 

Texas Professional Engineer (PE) - 143521 

Distinguished Partner 

Institute for Disaster Resilient Texas, Texas A&M University 

Jan 2023–present 

Faculty Fellow 

Hazard Reduction and Recovery Center, Texas A&M University 

August 2018–present 

Resilience Fellow  

4TU Resilience Engineering Center, TU Delft, Netherlands 

Oct 2020-present 

Research Fellow  

Institute for Science, Technology, and Public Policy,  

Texas A&M University       

November 2018–present 

Associate Research Engineer 

Texas Transportation Institute 

August 2016–present 

Assistant Professor  

College of Engineering & Computing, Florida International University 

August 2013–August 2016 

Graduate Research/Teaching Assistant 

School of Civil Engineering, Purdue University 

May 2009–August 2013 

Education 

Ph.D., Civil Engineering 

Purdue University, West Lafayette, Indiana, August 2013 

Dissertation Title: Ex-Ante Assessment of Financial Innovation Policies 

in Infrastructure System-of-Systems  

M.S., Industrial Administration 

Purdue University, Krannert School of Management, August 2011 

M.S., Industrial Administration  

M.S., Civil Engineering  

University of Tehran, August 2008 

Thesis Title: Development of a Fuzzy Model for Appropriate Project  

Delivery System Selection  

B.S., Civil Engineering 

K.N. Toosi University of Technology, May 2006 

mailto:mostafavi@tamu.edu
http://www.urbanresilience.ai/
http://www.urbanresilience-lab.com/
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Merit-based Awards, Honors, Fellowships, and Recognitions 

▪ 2023 ASCE Daniel W. Halpin Award for Scholarship in Construction from ASCE’s Construction Institute 

for “exceptional leadership in establishing an outstanding research program that pioneer theories 

and practices of civil infrastructure resilience management to extreme weather events through 

advancing the state of the art in data-driven methods and computational modeling techniques.” 

▪ Dean of Engineering Excellence Award – Associate Professor Level (in recognition of excellence in all 

three major pillars of academia: teaching, research and service/engagement), College of 

Engineering, Texas A&M University, 2023. 

▪ Top 2% scientists in the world, 2021-2023: in the subfields of Civil Engineering and AI, Reference: 

Ioannidis JPA (2023) Updated science-wide author databases of standardized citation indicators. 

https://elsevier.digitalcommonsdata.com/datasets/btchxktzyw/4  

▪ College of Engineering Excellence Faculty Award (in recognition of excellence in contributions to the 

Engineering Program (scholarly activities, classroom instruction, and professional service)), College of 

Engineering, Texas A&M University, 2021. 

▪ Truman Jones Graduate Teaching Award (In recognition of excellence in graduate teaching), Zachry 

Department of Civil and Environmental Engineering. Texas A&M University, 2021. 

▪ Best Paper Award, Risk Analysis Journal, For the paper entitled: “Cultivating Metacognition In Each Of 

Us: Thinking About “Thinking” In Interdisciplinary Disaster Research”, 2021. 

▪ Dean of Engineering Excellence Award – Assistant Professor Level (in recognition of excellence in all 

three major pillars of academia: teaching, research and service/engagement), College of 

Engineering, Texas A&M University, 2020. 

▪ NSF CAREER Award, National Science Foundation, 2019-2024. 

▪ Selected by the National Academy of Engineering to participate in the 2020 Japan-American 

Frontiers of Engineering Symposium, 2021. 

▪ Best Paper Award, ASCE Construction Research Congress, Infrastructure Systems and Sustainability 

Track, for the paper entitled: “Human Well-being and Infrastructure Systems in Disasters: An Empirical 

Study of Hurricane Harvey”, 2020. 

▪ Selected by the National Academy of Sciences to participate in the 7th Arab-American Frontiers of 

Science, Engineering, and Medicine Symposium, 2019. 

▪ Engineering Genesis Award (for lead-PI role of significant multidisciplinary research), College of 

Engineering, Texas Engineering Experiment Station, Texas A&M University, 2018. 

▪ Research Impact Award (for excellence in research), Zachry Department of Civil Engineering, Texas 

A&M University, 2018. 

▪ Machine Learning Award, Amazon Web Services (AWS), 2017. 

▪ Early-Career Research Fellowship, National Academies of Sciences, Engineering, and Medicine, Gulf 

Research Program, 2017. 

▪ Rising Stars in Civil Engineering, Civil + Structural Engineer Magazine, 2018. 

▪ Editor’s Choice Article, ASCE Natural Hazards Review for the article entitled: “Adaptive Capacity 

under Chronic Stressors: Assessment of Water Infrastructure Resilience in 2015 Nepalese Earthquake 

Using a System Approach,” 2018. 

▪ Editor’s Choice Article, ASCE Journal of Construction Engineering and Management for the article 

entitled: “Metrics That Matter: Core Predictive and Diagnostic Metrics for Improved Project Controls 

and Analytics,” 2018. 

▪ ASCE ExCEEd Fellowship, American Society of Civil Engineers, 2017. 

▪ Engineering News Record (ENR) Top 20 under 40, Southeast Region, 2015. 

▪ Distinguished Professor Award, Construction Industry Institute, 2015. 

https://elsevier.digitalcommonsdata.com/datasets/btchxktzyw/4
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▪ Best Conference Paper Award, Computing in Civil Engineering Conference 2015, American Society 

of Civil Engineers, for paper titled: “Integrated Performance Assessment of Construction Projects 

using Dynamic Network Analysis.” 

▪ Citation in 2014 Marquis Who’s Who in the World. 

▪ NSF-ASCE Sponsored Construction Engineering Conference Travel Stipend Recipient.  

▪ Highly Commended Journal Paper Award, Journal of Built Environment Project and Asset 

Management, Emerald Literati Network Awards for Excellence 2013, for paper titled: “System-of-

systems Approach for Assessment of Financial Innovations in Infrastructure.”  

Peer-reviewed Journal Papers 

Journal Impact Factor Summary 

The following table summarizes the impact factors of journals in which Mostafavi has 

published/submitted his work.  

Journal Name Impact 

Factor 

(2021) 

(JCR) 

Journal Name Impact 

Factor 

(2021) 

(JCR) 

International Journal of Information 

Management 

18.958 Nature Scientific Reports 4.997 

Environmental Science and Technology 11.4 Environmental Modeling and Software 5.69 

Sustainable Cities and Society 10.696 IEEE Systems Journal 4.802 

Computer-Aided Civil and Infrastructure 

Engineering 

10.066 International Journal of Digital Earth 4.606 

International Journal of Project Management 9.037 Natural Hazards and Earth System 

Science 

4.58 

Journal of Environmental Management 8.91 Earthquake Spectra 4.33 

Nature Communications Earth & Environment 7.29 Risk Analysis 4.302 

Reliability Engineering and System Safety 7.09 Journal of Royal Society Interface 4.293 

Transportation Research—Part D transport and 

environment 

7.041 Natural Hazards Review 4.2 

IEEE Transactions on Automation Science and 

Engineering 

6.636 Sustainability 3.889 

Journal of Transportation Research Part A: 

Policy and Practice 

6.615 Engineering Construction and 

Architectural Management 

3.85 

Cities 6.4 PLoS One 3.752 

Computers Environment and Urban Systems 6.454 Water 3.53 

Journal of Management in Engineering-ASCE 6.415 IEEE Access 3.476 
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Journal of Computing in Civil Engineering 5.802 Journal of Infrastructure Systems 3.462 

Journal of Construction Engineering and 

Management-ASCE 

5.292 Nature Humanities and Social Sciences 

Communications 

2.731 

International Journal of Disaster Risk Reduction 4.842   

 

Total citations of 4990 – h-Index: 37 – Listed in the Stanford/Elsevier Top 2% Scientists since 2020 based 

on annual and career impact (sub-fields: Building and Construction; Artificial Intelligence). 

Journal Papers Published (Total: 148) 

*denotes Ph.D. student/post-doc advisee of Dr. Mostafavi 

**denotes MS student advisee of Dr. Mostafavi 

***denotes undergraduate research student advisee of Dr. Mostafavi 

1. Coleman*, N., Liu*, C., Zhao**, Y., and Mostafavi, A. (2023). “Lifestyle Pattern Analysis Unveils 

Recovery Trajectories of Communities Impacted by Disasters,” Nature Humanities and Social 

Science Communications, DOI: 10.1057/s41599-023-02312-7. 

2. Liu*, C., and Mostafavi, A. (2023). “Network Diffusion Model Reveals Recovery Multipliers and 

Heterogeneous Spatial Effects in Post-Disaster Community Recovery,” Nature Scientific Reports, DOI: 

10.1038/s41598-023-46096-x. 

3. Hsu*, C. W., Liu*, C., Nguyen**, K. M., Chien**, Y. H., & Mostafavi, A. (2023). “Do Human Mobility 

Network Analyses Produced from Different Location-based Data Sources Yield Similar Results across 

Scales?” Computers, Environment, and Urban Systems, 10.1016/j.compenvurbsys.2023.102052. 

4. Yuan*, F., Farahmand*, H., Blessing, R., Brody, S., and Mostafavi, A. (2023). “Unveiling Vulnerability 

and Inequality in Disrupted Access to Dialysis Centers During Urban Flooding,” Transportation 

Research: Part D, DOI: https://doi.org/10.1016/j.trd.2023.103920. 

5. Liu*, Z., Liu*, C., and Mostafavi, A. (2023). “Beyond Residence: A Mobility-based Approach for 

Improved Evaluation of Human Exposure to Environmental Hazards,” Submitted to Environmental 

Science and Technology, DOI: 10.1021/acs.est.3c04691. 

6. Ma*, J., Li*, B., and Mostafavi (2023). “Characterizing Urban Lifestyle Signatures Using Motif Properties 

in Network of Places,” Environment and Planning B: Urban Analytics and City Science, DOI: 

10.1177/23998083231206171. 

7. Hsu*, C., Ho**, M., and Mostafavi, A. (2023). “Human Mobility Networks Manifest Dissimilar Resilience 

Characteristics at Macroscopic, Substructure, and Microscopic Scales,” Scientific Reports, DOI: 

10.1038/s41598-023-44444-5. 

8. Liu*, CF., and Mostafavi, A. (2023). “Equitable Optimization of Patient Re-allocation and Temporary 

Facility Placement to Maximize Critical Care System Resilience in Disasters,” Healthcare Analytics, 

DOI: 10.1016/j.health.2023.100268. 

9. Rajput*, A., and Mostafavi, A. (2023). “Latent sub-structural resilience mechanisms in temporal 

human mobility networks during urban flooding” Nature Scientific Reports, DOI: 0.1038/s41598-023-

37965-6. 

10. Esparza**, M., Farahmand*, H., Brody, S., and Mostafavi, A. (2023). “Examining Data Imbalance in 

Crowdsourced Reports for Improving Flash Flood Situational Awareness,” International Journal of 

Disaster Risk Reduction, DOI: 10.1016/j.ijdrr.2023.103825. 

11. Rajput*, A., Nayak**, S., Dong*, S., Mostafavi, A. (2023). “Anatomy of Perturbed Traffic Networks 

during Urban Flooding,” Sustainable Cities and Society, DOI: 10.1016/j.scs.2023.104693. 
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12. Jiang*, Y., Yuan*, F., Farahmand*, H., Acharya**, K., and Zhang**, J., and Mostafavi, A. (2023). 

“Data-driven Tracking of the Bounce-back Path after Disasters: Critical Milestones of Population 

Activity Recovery and Their Spatial Inequality,” International Journal of Disaster Risk Reduction, DOI: 

10.1016/j.ijdrr.2023.103693. 

13. Patrascu, F., Mostafavi, A., Vedlitz, A. (2023). “Relationship of Access to Critical Facilities During 

Normal Times with Disparities in Disrupted Access During Extreme Weather Events,” Heliyon, DOI: 

10.1016/j.heliyon.2023.e18841. 

14. Farahmand*, H., Xu**, Y., and Mostafavi, A. (2023). “A Spatial-temporal Graph Deep Learning Model 

for Urban Flood Nowcasting Leveraging Heterogeneous Community Features,” Nature Scientific 

Reports, DOI: 10.1038/s41598-023-32548-x. 

15. Patrascu*, F., and Mostafavi, A. (2023). “Spatial Model for Predictive Recovery Monitoring Based on 

Hazard, Built Environment, and Population Features and Their Spillover Effects,” Environment and 

Planning B: Urban Analytics and City Science, DOI: 10.1177/23998083231167433. 

16. Liu*, C., and Mostafavi, A. (2023). “Hazard Exposure Heterophily: A Latent Characteristic in Socio-

spatial Networks Influencing Community Resilience,” Nature Scientific Reports, DOI: 10.1038/s41598-

023-31702-9. 

17. Afroogh, S., Mostafavi, A., Akbari, A.,  Pouresmaeil, Y., Goudarzi, S., Hajhosseini, F., and Rasoulkhani, 

K. (20XX). “Embedded Ethics for Responsible Artificial Intelligence Systems (EE-RAIS): A Conceptual 

Model,” Ethics and Information technology, DOI: 10.1007/s43681-023-00309-1. 

18. Coleman*, C., Esmalian*, A., Lee*, C., Gonzalez***, E, Koirala**, P., and Mostafavi, A. (2023). “Energy 

Inequality in Climate Hazards: Empirical Evidence of Social and Spatial Disparities in Managed and 

Hazard-Induced Power Outages,” Sustainable Cities and Society, DOI: 10.1016/j.scs.2023.104491. 

19. Kaur, N., Lee*, N., Mostafavi, A.. Mahdavi-Amiri, A. (2023). “DAHiTrA: Damage Assessment Using a 

Novel Hierarchical Transformer Architecture,” Computer-Aided Civil and Infrastructure Engineering, 

DOI: 10.1111/mice.12981. 

20. Yuan*, F., Lee*, C., Mobley, W., Farahmand*, H., Xu, Y., Blessing, R., Dong*, S., Mostafavi, A., and 

Brody, S. (2023). “Predicting Road Flooding Risk with Machine Learning Approaches Using 

Crowdsourced Reports and Fine-grained Traffic Data,” Computational Urban Science, DOI: 

10.1007/s43762-023-00082-1. 

21. Dong*, S., Gao*, X., Mostafavi, A., Gao, J., and Gangwal, U. (2023). “Characterizing Resilience of 

Flood-disrupted Dynamic Transportation Network through the Lens of Link Reliability and Stability,” 

Reliability Engineering and System Safety, DOI: 10.1111/mice.12972. 

22. Fan*, C., Xu*, J., Natarajan*, Y., and Mostafavi, A. (2023). “Interpretable Machine Learning 

Automatically Learns Complex Interactions of Urban Features to Understand Socio-economic 

Inequality,” Submitted to Computer-Aided Civil and Infrastructure Engineering, DOI: 

10.1111/mice.12972. 

23. Lee*, C., Rajput*, A., Hsu*, C., Fan*, C., Yuan*, F. Dong, S., Esmalian*, A., Farahmand*, H., Patrascu*, 

F., Liu*, C., Li*, B., Ma*, J., and Mostafavi*, A. (2022). “Quantitative Measures for Integrating Resilience 

Assessment into Transportation Planning Practice: Study of the State of Texas,” Transportation 

Research Part D, DOI: 10.1016/j.trd.2022.103496. 

24. Esmalian*, A., Yuan*, F., Coleman*, N., Xiao**, X., and Mostafavi, A. (2022). “Characterizing Equitable 

Access to Grocery Stores During Disasters Using Location-based Data,” Nature Scientific Reports, 

DOI: 10.1038/s41598-022-23532-y. 

25. Lee*, C., Maron, M., and Mostafavi, A. (2022). “Community-scale Big Data Reveals Disparate 

Impacts of the Texas Winter Storm of 2021 and Its Managed Power Outage,” Nature Humanities and 

Social Science Communications, DOI: 10.1057/s41599-022-01353-8. 

26. Li*, B., and Mostafavi, A. (2022). “Location Intelligence Reveals the Extent, Timing, and Spatial 

Variation of Hurricane Preparedness,” Nature Scientific Reports, DOI: 10.1038/s41598-022-20571-3. 
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27. Lee*, C., Chou**, C., and Mostafavi, A. (2022).”Specifying Evacuation Return and Home-Switch 

Stability During Short-Term Disaster Recovery Using Location-Based Data,” Nature Scientific Reports, 

DOI: 10.1038/s41598-022-20384-4. 

28. Fan*, C., Jiang**, X., Lee*, R., & Mostafavi, A. (2022). Data-driven Contact Network Models of 

COVID-19 Reveal Trade-offs between Costs and Infections for Optimal Local Containment Policies. 

Cities, DOI: 10.1016/j.cities.2022.103805. 

29. Dargin*, J., and Mostafavi, A. (2022). “Dissecting Heterogeneous Pathways to Disparate Household-

level Impacts due to Infrastructure Service Disruptions,” International Journal of Disaster Risk 

Reduction, DOI: 10.1016/j.ijdrr.2022.103351. 

30. Coleman*, N., Gao*, X., DeLeon***, J., and Mostafavi, A. (2022). “Human Activity and Mobility Data 

Reveal Disparities in Exposure Risk Reduction Indicators among Socially Vulnerable Populations 

during COVID-19,” Scientific Reports, DOI: 10.1038/s41598-022-18857-7. 

31. Yuan*, F., Xu**, Y., Li*, Q., and Mostafavi, A. (2022). “Spatio-Temporal Graph Convolutional Networks 

for Road Network Inundation Status Prediction during Urban Flooding,” Computers, Environment and 

Urban Systems in April 2021, DOI: 10.1016/j.compenvurbsys.2022.101870 . 

32. Dvir, R., Vedlitz, A., and Mostafavi, A. (2022). “Far from home: Infrastructure, access to essential 

services, and risk perceptions during hazard events,” International Journal of Disaster Risk Reduction 

in January 2022, DOI: 10.1016/j.ijdrr.2022.103185. 

33. Yuan*, F., Fan*, C., Farahmand*, H., Coleman*, N., Esmalian*, A., Lee*, C., Patrascu*, F., Zhang*, C., 

Dong*, S., Mostafavi, A. (2022). “Smart Flood Resilience: Harnessing Community-Scale Big Data for 

Predictive Flood Risk Monitoring, Rapid Impact Assessment, and Situational Awareness,” 

Environmental Research: Infrastructure and Sustainability, DOI: 10.1088/2634-4505/ac7251. 

34. Yuan*, F., Esmalian*, A., Oztekin***, B., and Mostafavi, A. (2022). “Unveiling Spatial Patterns of Disaster 

Impacts and Recovery Using Credit Card Transaction Fluctuations,” Environment and Planning B: 

Urban Analytics and City Science, DOI: 10.1177/23998083221090246. 

35. Lin, B., Zou, L., Duffiel, N., Mostafavi, A., Cai, H., Zhou, B., Tao, J., Yang, M., Mandal, D. and Abedin, J. 

(2022). “Revealing the Global Linguistic and Geographical Disparities of Public Awareness to Covid-

19 Outbreak through Social Media,” International Journal of Digital Earth, DOI: 

10.1080/17538947.2022.2070677. 

36. Fan*, C., Jiang**, X., and Mostafavi, A. (2022). “Equality of Access Improves Resilience in Urban 

Population-facility Networks,” EPJ Urban Sustainability, DOI: 10.1038/s42949-022-00051-3. 

37. Zhou, B., Zou, L., Mostafavi, A., Lin, B., Yang, M., Gharaibeh, N., Cai, H., Abedin, J., and Mandal, D., 

(2022). “Harvesting Rescue Requests in Disaster Response from Social Media with BERT,” Computers, 

Environment and Urban Systems, DOI: 10.1016/j.compenvurbsys.2022.101824. 

38. Dong*, S., Gao*, X., Mostafavi, A., Gao, J. (2022). “Moderate Flooding Triggers Catastrophic 

Collapses in Road Networks due to Compound Failures,” Nature Communications Earth & 

Environment, DOI: 10.1038/s43247-022-00366-0. 

39. Li*, Q., Zhang*, C., and Mostafavi, A. (2022). “Content Analysis of Inter-organizational 

Communication Networks on Social Media during Disasters,” International Journal of Emergency 

Management, DOI: 10.1504/IJEM.2022.125156. 

40. Esmalian*, A., Wang**, W., and Mostafavi, A. (2022). “Multi-agent Modeling of Hazard-Human-

Infrastructure Nexus for Equitable Resilience Assessment of Communities Facing Hurricane-Induced 

Power Outages,” Computer-Aided Civil and Infrastructure Engineering, DOI: 10.1111/mice.12818. 

41. Zhang*, C., Pradkar**, A., Yuan*, F., and Mostafavi, A. (2022). “Examining the consistency between 

geo-coordinates and content in geo-tagged tweets for enhanced disaster situational awareness,” 

Submitted to the International Journal of Disaster Risk Reduction, DOI: 10.1016/j.ijdrr.2022.102878. 

42. Farahmand*, H., Liu, X., Dong*, S., Mostafavi, A., and Gao, J. (2022). “Network Observability 

Framework for Optimal Sensor Placement in Flood Control Networks to Improve Risk Management,” 

Reliability Engineering and System Safety, DOI: 10.1016/j.ress.2022.108366. 
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43. Rachunok, B., Fan*, C., Lee**, R., Nateghi, R., and Mostafavi, A. (2022). “Is the data suitable?  The 

comparison of keyword versus location filters in crisis informatics using Twitter data,” International 

Journal of Information Management: Data Insights, DOI: 10.1016/j.jjimei.2022.100063. 

44. Redha*, T., Ross, A., and Mostafavi, A. (2022). “Public Risk Perception of Infrastructure Systems in 

Coastal Urban Areas and Factors influencing it,” International Journal of Disaster Risk Reduction, DOI: 

10.1016/j.ijdrr.2022.102883. 

45. Esmalian*, A., Yuan*, F., Rajput*, A., Farahmand*, H., Dong*, S., Li*, Q., Gao*, X., Fan*, C., Lee*, C., 

Hsu*, C., Patrascu*, F., and Mostafavi*, A. (2022). “Operationalizing Resilience Practices in 

Transportation Infrastructure Planning and Project Development,” Transportation Research-Part D, 

DOI: 10.1016/j.trd.2022.103214. 

46. Afroogh*, S., Esmalian*, A., Mostafavi, A., Akbari, A., Rasoulkhani*, K., Esmaeili, S., and 

Hajiramezanali, e., (2022) “Tracing app technology: An ethical review in the COVID-19 era and 

directions for post-COVID-19,” Ethics and Information Technology in August 2021, DOI: 0.1007/s10676-

022-09659-6. 

47. Dong*, S., Yu**, T., Farahmand*, H., and Mostafavi, A. (2022), “Predictive Multi-Watershed Flood 

Monitoring Using Deep Learning on Integrated Physical and Social Sensors,” Environment and 

Planning B: Urban Analytics and City Science, DOI: 10.1177/23998083211069140. 

48. Farahmand*, H., Wang**, W., Maron, M., and Mostafavi, A. (2022). “Anomalous Human Activity 

Fluctuations from Digital Trace Data Signal Flood Inundation Status,” Environment and Planning B: 

Urban Analytics and City Science, DOI: 10.1177/23998083211069990. 

49. Rajput*, A., Li*, Q., Gao*, X., and Mostafavi, A. (2022). “Revealing Critical Characteristics of Mobility 
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923-930. 

Journal Papers Accepted (Total: 0) 

149. Rajput*, A., Liu*, C., Liu*, Z., and Mostafavi, A. (20XX). “From Places to People: Human-centric 

Characterization of Life Activity Flood Exposure for Intra- and Inter-city Analysis,” Nature Cities, 

accepted. 

Journal Papers under Review/Revision (Total: 36) 

150. Gupta, Y., Liu*, ZW., and Mostafavi, A. (20XX). “Digital Divide in Disasters: Investigating Spatial 

and Socioeconomic Disparities in Internet Service Disruptions During Extreme Weather Events,” 

Submitted to the International Journal of Disaster Risk reduction in Dec 2023, under review. 

151. Coleman*, N., Li*, X., Comes, T., and Mostafavi, A. (20XX). “Weaving Equity into Infrastructure 

Resilience Research and Practice: A Decadal Review and Future Directions,” Submitted to npj 

Natural Hazards in Oct 2023, under review. 

152. Yin*, K., and Mostafavi, A. (20XX). “Deep Learning-driven Community Resilience Rating 

based on Intertwined Socio-Technical Systems Features,” Submitted to Nature 

Communications in Oct 2023, under review. 

153. Li*, X., Jiang*, Y., and Mostafavi, A. (20XX). “Hazard Exposure Heterophily in Socio-spatial 

Networks Contributes to Post-disaster Recovery in Low-income Populations,” Submitted to 

International Journal of Disaster Risk Reduction in November 2023, under review. 

154. Ho*, Y., Liu*, ZW, and Mostafavi, A. (20XX). “ML4EJ: Decoding the Role of Urban Features in 

Shaping Environmental Injustice using Interpretable Machine Learning,” Submitted to Environmental 

Science and Technology in Sept 2023, under review.  
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155. Li*, B., Mostafavi, A. (20XX). “Unraveling Fundamental Properties of Power System Resilience 

Curves using Unsupervised Machine Learning,” Submitted to Sustainable Cities and Society in 

September 2023, under review. 

156. Hwang, H., Lim, S., Vedlitz, A., and Mostafavi, A. (20XX). “Socially Equitable Public Service 

Provision: Towards Inclusive Coproduction of Public Infrastructure,” Submitted to Public 

Administration in September 2023, under review. 

157. Hsu*, C., and Mostafavi, A. (20XX). “Beyond Resilience Triangle: Dissecting Resilience Curve 

Archetypes and Properties in Human Systems Facing Weather Hazards,” Submitted to Nature 

Scientific Reports in Sept 2023, under review. 

158. Lee*, C., Huang*, L., Antolini, F., Garcia, M., Juan, A., Brody, S., and Mostafavi, A. (20XX). “ 

MaxFloodCast: Ensemble Machine Learning Model for Predicting Peak Inundation Depth and 

Decoding Influencing Features,” Submitted to Nature Communications Earth and Environment in 

August 2023, under review. 

159. Yin*, K., and Mostafavi, A. (20XX). “Unsupervised Graph Deep Learning Reveals Emergent Flood 

Risk Profile of Urban Areas,” Submitted to Nature Communications Engineering in July 2023, under 

review. 

160. Liu*, Z., Huang*, L., Fan*, C., and Mostafavi, A. (20XX). ““FairMobi-Net: A Fairness-Aware Deep 

Learning Model for Urban Mobility Flow Generation,” Submitted to Nature Communications in July 

2023, under review. 

161. Hsu*, C., and Mostafavi, A. (20XX). “Untangling The Relationship Between Power Outage and 

Population Activity Recovery in Disasters,” Submitted to Resilient Cities and Structures in June 2023, 

under review. 

162. Liu*, C., and Mostafavi, A. (20XX). “Decoding Urban-health Nexus: Interpretable Machine 

Learning Illuminates Cancer Prevalence based on Intertwined City Features,” Submitted to ACM 

Journal on Computing and Sustainable Societies in June 2023, under review.  

163. Farahmand*, H., Savadogo, I., Espinet, X., and Mostafavi, A. (20XX). “Integrating Climate 

Projections and Probabilistic Network Analysis into Regional Transport Resilience Planning,” 

Submitted to Transportation Research – Part D in June 2023, under review. 

164. Ma*, J., and Mostafavi, A. (20xx). “Urban Form and Structure Explain Variability in Spatial 

Inequality of Property Flood Risk among US Counties,” Submitted to Nature Communications Earth & 

Environment in June 2023, under review. 

165. Ho*, Y., Lee*, C., Diaz, N., Brody, S., and Mostafavi, A. (20XX). “ELEV-VISION: Automated Lowest 

Floor Elevation Estimation from Segmenting Street View Images,” Submitted to Landscape and 

Urban Planning in June 2023, under review.  

166. Rajput*, A., Jiang*, Y., Nayak**, S., and Mostafavi. A. (20XX). “Mapping Inequalities in Activity-

based Carbon Footprints of Urban Dwellers using Fine-grained Human Trajectory Data,” Submitted 

to  Cities in April 2023, under review. 

167. Hsu*, C., Liu*, Z., Liu*, C., and Mostafavi, A. (20XX). “Unraveling Extreme Weather Impacts on Air 

Transportation and Passenger Delays using Location-based Data,” Submitted to Transportation 

research: Part D, in March 2023, under review. 

168. Fan*, C., Wu**, F., and Mostafavi, A. (20XX). “Discovering the Influence of Facility Distribution on 

Lifestyle Patterns in Urban Populations,” Submitted to Developments in the Built Environment in 

March 2023, under review. 

169. Ridha*, T., Ross, A., and Mostafavi, A. (20XX). “Impact of Public Perceptions and Attitudes on 

their Responses to Infrastructure Adaptation Processes in Coastal Urban Areas,” Submitted to 

Sustainable Cities and Society in May 2023, under review. 

170. Li*, X., Jiang*, Y., and Mostafavi, A. (20XX). “AI-assisted Protective Action: Study of ChatGPT as an 

Information Source for a Population Facing Climate Hazards,” Submitted to the International Journal 

of Disaster Risk reduction in March 2023, under review. 
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171. Liu*, Z., Felton***, T., and Mostafavi, A. (20XX). “Interpretable machine learning for predicting 

urban flash flood hotspots using intertwined land and built-environment features,” Submitted to 

Computers, Environment, and Urban Systems in February 2023, under review. 

172. Afroogh, S., and Mostafavi, A. (20XX). “Intelligent Environmental Empathy (IEE): A new power 

and platform to fostering green obligation for climate peace and justice,” Submitted to Ethics and 

Information Technology in April 2023, under review. 

173. Huang*, X., Jiang*, Y., and Mostafavi, A. (20XX). “Emergence of Urban Heat Traps from the 

Intersection of Human Mobility and Heat Hazard Exposure in Cities,” Submitted to npj Urban 

Sustainability in May 2023, under review. 

174. Jiang, Z., Han, X., Zou, N., Fan*, C., Mostafavi, A., Hu, X. (20XX). “Fair Graph Message Passing” 

Submitted to Transactions on Machine Learning Research in March 2023, under review. 

175. Hsu*, C., Fan*, C., and Mostafavi, A. (20XX). “Limitations of gravity models in predicting fine-scale 

spatial-temporal urban mobility networks,” Submitted to Transportation Data Science in January 

2023, under review. 

176. Liu*, Z., and Mostafavi, A. (20XX). “Collision of Environmental Injustice and Sea Level Rise: 

Assessment of Risk Inequality in Flood-induced Pollutant Dispersion from Toxic Sites in Texas,” 

Submitted to the Journal of Environmental Management in December 2022, under review. 

177. Fan*, C., Wu, F., and Mostafavi, A. (20XX). “Dynamics of Collective Information Processing for Risk 

Encoding in Social Networks during Crises,” Submitted to Information Processing and Management 

in June 2023, under review. 

178. Liu*, C., Fan*, C., and Mostafavi, A. (20XX). “Graph Attention Networks Unveil Determinants of 

Intra- and Inter-city Health Disparity,” Submitted to Nature Scientific Reports in October 2022, under 

review. 

179. Ma*, J., Li*, B., Li*,Q., Fan*, C., and Mostafavi, A. (20XX). “Attributed Network Embedding Model 

for Exposing COVID-19 Spread Trajectory Archetypes,” Submitted to Travel Research in September 

2022, under review. 

180. Lee*, C., Comes, T., Finn, M., and Mostafavi, A. (20XX). “Roadmap Towards Responsible AI in 

Crisis Resilience Management,” Submitted to ACM Computing and Sustainable Societies in April 

2023, under review. 

181. Fan*, C., Chien**, YH., and Mostafavi, A. (20XX). “Human Mobility Disproportionately Extends 

PM2.5 Emission Exposure for Low Income Populations,” Submitted to Nature Communications Earth & 

Environment in May 2022, under review. 

182. Lee*, C., Namburi**, S., Xiao**, X., and Mostafavi, A. (20XX). “Homophilic and Heterophilic 

Characteristics Shaping Community Formation in Human Mobility Networks during Extreme Weather 

Response,” Submitted to International Journal of Disaster Risk Reduction in Dec 2022, under review. 

183. Esparza**, M., Farahmand*, H., Liu, X., and Mostafavi, A. (20XX). “Enhancing Inundation 

Monitoring of Road Networks Using Crowdsourced Flood Reports,” Submitted to Computers, 

Environment and Urban Systems in January 2022, under review. 

184. Fan*, C., Yang**, Y., and Mostafavi, A. (20XX). “Neural Embeddings of Urban Big Data Reveal 

Emergent Structures in Cities,” Submitted to Nature Humanities and Social Sciences Communications 

in September 2021, under review. 

185. Gao*, X., Dong*, S., Mostafavi, A., and Gao, J. (20XX). “Macroscopic and Microscopic 

Characteristics of Networks with Time-variant Functionality for Evaluating Resilience to External 

Perturbations,” Submitted to Nature Scientific Reports in June 2020, under review. 
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Peer-reviewed Conference Papers 

*denotes Ph.D. student/post-doc advisee of Dr. Mostafavi 

**denotes MS student advisee of Dr. Mostafavi 

***denotes undergraduate research student advisee of Dr. Mostafavi 

 

C81. Jiang, Z., Han, X., Fan*, C., Zou, N., Mostafavi, A., Hu, X. (2023). “Chasing Fairness in Graphs: A GNN 

Architecture Perspective, The 38th Annual AAAI Conference on Artificial Intelligence, Vancouver, 

Canada. 

C80. Jiang, Z., Han, X., Fan*, C., Zou, N., Mostafavi, A., Hu, X. (20XX). “Topology Matters in Fair Graph 

Learning: a Theoretical Pilot Study,” Submitted to NeurIPS 2023, under review. 

C79. Jiang, Z., Han, X., Fan*, C., Zou, N., Mostafavi, A., Hu, X. (20XX). “Robust Fairness via Aligned 

Sharpness-Aware Minimization under Demographic Shift,” Submitted to AAAI Conference on 

Artificial Intelligence, Feb 7-14, 2023, Washington DC, under review. 

C78. C77. Jiang, Z., Fan*, C., Mostafavi, A., Hu, X. (2022). “Generalized Demographic Parity for Group 

Fairness,” International Conference on Learning Representations, International Conference on 

Machine Learning (ICML), July 17-23, 2022, Baltimore, MD. 

C76. Esmalian*, A., Yuan*, F., Rajput*, A., Farahmand*, H., Dong*, S., Li*, Q., Gao*, X., Fan*, C., Lee*, C., 

Hsu*, C., Patrascu*, F., and Mostafavi*, A. (2022). “Operationalizing Resilience Practices in 

Transportation Infrastructure Planning and Project Development,” Submitted to 2022 

Transportation Research Board, Washington DC, January 9-13, 2022, under review. 

C75. Farahmand*, H., Wang*, W., Mostafavi, A. and Maron, M. (2021). “Human Activity Telemetry Data 

for Rapid Flood Inundation Assessment: A Hurricane Harvey Study,” ASCE Computing in Civil 

Engineering Workshop 2021 Orlando, FL: American Society of Civil Engineers. 

C74. Yao, W., Zhang*, C., Huang, R., and Mostafavi, A. (2020). “Weakly-supervised Fine-grained Event 

Recognition on Social Media for Disaster Management,” AAAI Conference on Artificial 

Intelligence, Feb 7-12 2020, New York, accepted (acceptance rate 20.6%). 

C73. Fan, C., Farahmand, H., and Mostafavi, A. (2020). “Rethinking Infrastructure Resilience Assessment 

with Human Sentiment Reactions on Social Media in Disasters,” The Hawaii International 

Conference on System Sciences (HICSS) 2020, January 7-10, Grand Wailea, Maui, accepted. 

C72. Rasoulkhani*, K., Mostafavi, A., Presa Reyes, M., and Batouli, M. (2020). “Simulation-based 

Assessment of Adaptive Planning in Coastal Water Supply Infrastructure Systems,” ASCE 

Construction Research Congress 2020, March 8-10, 2020, Tempe, Arizona, accepted. 

C71. Dargin*, J., and Mostafavi, A. (2020). “Human Well-being and Infrastructure Systems in Disasters: An 

Empirical Study of Hurricane Harvey” ASCE Construction Research Congress 2020, March 8-10, 

2020, Tempe, Arizona, accepted. 

C70. Li, Q., Dong, S., and Mostafavi, A. (2020). “Community Detection in Actor Collaboration Networks 

of Resilience Planning and Management in Interdependent Infrastructure Systems,” ASCE 

Construction Research Congress 2020, March 8-10, 2020, Tempe, Arizona, accepted. 

C69. Esmalian*, A., Dong*, S., and Mostafavi A. (2020). “Empirical Assessment of Household Susceptibility 

to Hazards-induced Prolonged Power Outages,” ASCE Construction Research Congress 2020, 

March 8-10, 2020, Tempe, Arizona, accepted. 

C68. Farahmand*, H., Dong*, S., and Mostafavi, A. (2020). “Vulnerability Assessment in Co-located Flood 

Control and Transportation Networks,” ASCE Construction Research Congress 2020, March 8-10, 

2020, Tempe, Arizona, accepted. 

C67. Fan*, C., Jiang***, Y., and Mostafavi, A. (2020). “Integrated Natural Language Processing and 

Meta-network Analysis for Social Sensing of Location-Event-Actor Nexus in Disasters,” ASCE 

Construction Research Congress 2020, March 8-10, 2020, Tempe, Arizona. 

C66. Cox*, C., and Mostafavi, A. (2020). “Modeling of Networks of Intangible Risks in Portfolio of 

Projects,” ASCE Construction Research Congress 2020, March 8-10, 2020, Tempe, Arizona. 
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C65 . Rasoulkhani*, K., Alsharef, A., Li*, Q., Chowdhury, S., Banejee, S., Mostafavi, A., Zhu, J., Jaselskis, E., 

Stoa, R. (2020). “ A Process Model for Regulatory Adaptation in the Construction Industry,” ASCE 

Construction Research Congress 2020, March 8-10, 2020, Tempe, Arizona. 

C64. Stoa, R., Mostafavi, A., Jaselskis, E., Zhu, J., Li*, Q., Rasoulkhani*, K., Banejee, S., Chowdhury, S., 

Alsharef, A., and Petty, C. (2019). “Regulatory Adaptation in The Energy Sector: Common 

Challenges and Emerging Solutions,” the Proceedings of the 65th Annual Rocky Mountain Mineral 

Law Institute, Monterey, CA, July 18-20, 2019.  

C63. Ridha*, T., and Mostafavi, A. (2019). “Assessment of the Dynamics of Human System Networks in 

Water Infrastructure Adaptation to Sea-level Rise Impacts.” The International Conference on 

Sustainable Infrastructure 2019, Los Angeles, CA, November 7–9, 2019, accepted. 

C62. Alsharef, A., Jaselskis, E., Mostafavi, A., Jin, Z., Stoa, R., Banerjee, S., Rasoulkhani*, K., Li*, Q., and 

Chowdhury, S. (2019). "Assessing the Impact of Regulatory Changes on Capital Projects in the 

United States." CIB World Building Congress, International Council for Research and Innovation in 

Building and Construction, Hong Kong, under review. 

C61.  Esmalian*, A., Ramaswamy, M., Rasoulkhani*, K., and Mostafavi, A. (2019). “Agent-based 

Modeling Framework for Simulation of Societal Impacts of Infrastructure Service Disruptions during 

Disasters.” ASCE International Conference on Computing in Civil Engineering, June 17–19 2019, 

Atlanta, GA, accepted. 

C60. Li*, Q., Dong*, S., and Mostafavi, A. (2019). “Characterization of Inter-organizational Coordination 

Dynamics in Resilience Planning: A Multilayer Network Simulation Framework.” ASCE International 

Conference on Computing in Civil Engineering, June 17–19 2019, Atlanta, GA, accepted. 

C59. Abula*, B., Mostafavi, A., and Birgisson, B. (2019). “Characterization of the Vulnerability of Road 

Networks to Pluvial Flooding Using Network Percolation Approach.” ASCE International 

Conference on Computing in Civil Engineering, June 17–19 2019, Atlanta, GA, accepted. 

C58. Fan*, C., Jiang*, Y., and Mostafavi, A. (2019). “Seeding Strategies in Online Social Networks for 

Improving Information Dissemination of Built Environment Disruptions in Disasters.” ASCE 

International Conference on Computing in Civil Engineering, June 17–19 2019, Atlanta, GA, 

accepted. 

C57. Rasoulkhani*, K., Mostafavi, A., and Sharvelle, S. (2019). “A Computational Simulation-Based 

Comparison of Dual and Singular Water Distribution Infrastructure Systems for the City of Fort 

Collins, Colorado.” ASCE International Conference on Computing in Civil Engineering, June 17–19 

2019, Atlanta, GA, accepted. 

C56.  Fan*, C., Yao, W., Mostafavi, A., and Huang, R. (2018). “A Graph-based Approach for Detecting 

Critical Infrastructure Disruptions on Social Media in Disasters.” The Hawaii International 

Conference on System Sciences (HICSS) 2019, Hawaii, accepted.  

C55. Fan*, C., Zhang*, C., and Mostafavi, A. (2018). “Meta-network Framework for Analyzing Disaster 

Management System-of-Systems;” IEEE System of Systems Engineering Conference (SoSE), June 

13–15, 2018, Paris, France. 

C54. Fan*, C., and Mostafavi, A. (2018). “A System Analytics Framework for Detecting Infrastructure-

related Topics in Disasters Using Social Sensing.” 25th International Workshop on Intelligent 

Computing in Engineering (EG-ICE), June 10–13 2018, Lausanne, Switzerland. 

C53. Fan*, C., and Mostafavi, A. (2018). “Establishing a Framework for Disaster Management, System-of-

Systems.” IEEE SysCon 2018, April 23–26, Vancouver, BC, Canada, Accepted. 

C52. Zhu*, J., and Mostafavi, A. (2018). “Enhancing Resilience in Disaster Response: A Meta-Network 

Analysis Approach.” 2018 ASCE Construction Research Congress, Baton Rouge, LA, April 2 ؘ–5, 2018. 

C51. Palagi, S., Mostafavi, A., and Javernick-Will (2017). “Establishing a Model of Post-disaster Risk 

Reduction and Relocation Decision-making.” 8th International i-Rec Conference, Toronto, June 1–

2, 2017. 
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C50. Zhu*, J., and Mostafavi, A. (2017). “Characterization of the Underlying Mechanisms of Vulnerability 

in Complex Projects Using Dynamic Network Simulation.” Winter Simulation Conference, Las 

Vegas, NV, Dec 3–6, 2017. 

C49. Rasoulkhani*, K., Presa Reyes**, M., and Mostafavi, A. (2017). “Emergence of Resilience from 

Infrastructure Dynamics: A Simulation Framework for Theory Building.” ASCE International 

Workshop on Computing in Civil Engineering, June 2017, Seattle, WA. 

C48. Rasoulkhani*, K., Logasa***, B., Presa Reyes**, M., and Mostafavi, A. (2017). “Agent-based 

Modeling Framework for Simulation of Complex Adaptive Mechanisms Underlying Household 

Water Conservation Technology Adoption.” Winter Simulation Conference, Las Vegas, NV, Dec 3–

6, 2017. 

C47.  Zhu*, J., Mostafavi, A., and Whyte (2017). “Towards Systems Integration Theory in Megaprojects:  

A System-of-Systems Framework.” Lean and Computing in Construction Congress (LC3), Heraklion, 

Crete, Greece, July 4–12, 2017. 

C46.  Batouli*, M., Bienvenu, M., and Mostafavi, A. (2017). “Putting Sustainability Theory into Roadway 

Design Practice: Implementation of LCA and LCCA Analysis for Pavement Type Selection in Real 

World Decision Making.” Transportation Research Board Annual Meeting 2015, January 8–12, 2017 

Washington DC. 

C45.  Nazarnia*, H., Mostafavi. A., Pradhananga, N., Ganapati, E., and Khanal*, R. (2016). “Assessment 

of Infrastructure Resilience in Developing Countries: A Case Study of Water Infrastructure in the 

2015 Nepalese Earthquake.” International Conference on Smart Infrastructure and Construction 

(ICSIC), June 27–29, 2016, Cambridge, UK.  

C44.  Batouli*, M., and Mostafavi, A. (2016). “A Simulation Framework for Sustainability Assessment in 

Evolving Socio-Technical Infrastructure Systems.” International Conference on Sustainable Design, 

Engineering, and Construction (ICSDEC), May 18–20, 2016, Tempe, AZs.  

C43. Inyim*, J., Carmenate, T., Pachekar, N., Chauhan, G., Bobadilla, L., and Mostafavi, A. (2016). 

“Modeling Occupant-Building-Appliance Interaction for Energy Waste Analysis.” International 

Conference on Sustainable Design, Engineering, and Construction (ICSDEC), May 18–20, 2016, 

Tempe, AZ.  

C42. Batouli*, M., and Mostafavi, A. (2016). “Assessment of Sea-Level Rise Adaptation in Coastal 

Infrastructure Systems: Robust Decision-Making under Uncertainty.” ASCE Construction Research 

Congress, May 31–June 2, 2016, San Juan, PR. 

C41.  Inyim*, J., Carmenate, T., Hidalgo, D., Reyes, M., Leante, D., Bobadilla, L., and Mostafavi, A. (2016). 

“Smart Application for Integrated Sensing, Simulation, and Feedback of Occupant Behaviors to 

Enable Personalized Interventions for Energy Saving in Buildings.” ASCE Construction Research 

Congress, May 31–June 2, 2016, San Juan, PR. 

C40. Zhu*, J., and Mostafavi, A. (2016). “Dynamic Meta-Network Modeling for Integrated Project 

Performance Assessment under Uncertainty.” ASCE Construction Research Congress, May 31–

June 2, 2016, San Juan, PR. 

C39. Pereyra**, J., He, X., and Mostafavi, A. (2016). “Multi-Agent Framework for Complex Adaptive 

Modeling of Interdependent Critical Infrastructure Systems.” ASCE Construction Research 

Congress, May 31–June 2, 2016, San Juan, PR. 

C38. Orgut, R., Batouli*, M., Zhu, J., Mostafavi, A., and Jaselskis, E. (2016). “Metrics that Matter: 

Evaluation of Metrics and Indicators for Project Progress Measurement, Performance Assessment, 

and Forecasting in Construction Phase.” ASCE Construction Research Congress, May 31–June 2, 

2016, San Juan, PR. 

C37. Carmenate, T., Rahman, M., Leante, D., Bobadilla, L., and Mostafavi, A. (2015). “Modeling and 

Analyzing Occupant Behaviors in Building Energy Analysis Using an Information Space Approach.” 

2015 IEEE International Conference on Automation Science and Engineering, August 24–28, 2015, 

Gothenburg, Sweden. 
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C36. Jia, J., Ibrahim, M., Orabi, W., Hadi, M., and Mostafavi, A. (2015). “Estimation of the Total Cost of 

Bridge Construction for use in Accelerated Bridge Construction Selection Decisions.” 

Transportation Research Board Annual Meeting 2016, January 10–14, 2016, Washington DC.  

C35. Batouli*, M., Swei, O.A, Zhu, J, Gregory, J., Kirchain, R., and Mostafavi, A. (2014). “An Integrated 

Methodology for Network-Level Cost Analysis in Roadway Infrastructure Management.” ASCE 

Computing in Civil Engineering Workshop 2015, June 21–23, 2015, Austin, TX. 

C34. Carmenate, T., Leante, D., Zanlongo, S., Bobadilla, L., and Mostafavi, A. (2014). “Decoding and 

Simulating Occupancy Behaviors in Building Energy Performance.” ASCE Computing in Civil 

Engineering Workshop 2015, June 21–23, 2015, Austin, TX. 

C33. Zhu, J., and Mostafavi, A. (2014). “Integrated Performance Assessment of Construction Projects 

using Dynamic Network Analysis.” ASCE Computing in Civil Engineering Workshop 2015, June 21–

23, 2015, Austin, TX. 

C32. Rahman, M., Carmenate, T., Bobadilla, L., Zanlongo, S., and Mostafavi, A. (2014). “A Coupled 

Discrete Event and Motion Planning Methodology for Automated Safety Assessment in 

Construction Projects.” IEEE International Conference in Robotics and Automation, May 26–30, 

2015, Seattle, WA. 

C31. Orgut, R., Zhu*, J., Batouli*, M. Mostafavi, A., and Jaselskis, E. (2014). “A Review of the Current 

Knowledge and Practice Related to Project Progress and Performance Assessment.” 2015 

International Construction Specialty Conference, Canadian Society for Civil Engineering, June 8–

10, 2015, Vancouver, BC, Canada. 

C30. Zhu*, J. and Mostafavi, A. (2014). “An Integrated Framework for Ex-ante Assessment of 

Performance Vulnerability in Complex Construction Projects.” 2015 International Construction 

Specialty Conference, Canadian Society for Civil Engineering, June 8–10, 2015, Vancouver, BC, 

Canada. 

C29. Batouli*, M. and Mostafavi, A. (2014). “Assessment of Network-level Environmental Sustainability in 

Infrastructure Systems using Service and Performance Adjusted LCA.” 2015 International 

Construction Specialty Conference, Canadian Society for Civil Engineering, June 8–10, 2015, 

Vancouver, BC, Canada. 

C28. Inman**, A. and Mostafavi, A. (2014). “Exploratory Analysis of the Pathway towards 

Operationalizing Resilience in Transportation Infrastructure Systems.” Transportation Research 

Board Annual Meeting 2015, January 11–15, 2015, Washington DC. 

C27. Batouli*, M., and Mostafavi, A. (2014). “A Hybrid Simulation Framework for Integrated Infrastructure 

Management.” 2014 Winter Simulation Conference, December 7–10, 2014, Savannah, GA. 

C26. Zhu*, J. and Mostafavi, A. (2014). “Integrated Simulation Approach for Assessment of Performance 

in Construction Projects: A System-of-Systems Framework.” 2014 Winter Simulation Conference, 

December 7–10, 2014, Savannah, GA. 

C25. Rahman, M., Carmenate, T., Bobadilla, L., and Mostafavi, A. (2014). “Ex-Ante Assessment of Struck-

by Safety Hazards in Construction Projects: A Motion Planning Approach.” 2014 IEEE International 

Conference on Automation Science and Engineering, August 18–22, 2014, Taipei, Taiwan.  

C24. Zhu*, J. and Mostafavi, A. (2014). “An Integrated Framework for Bottom-Up Assessment of 

Performance in Construction Projects.” Project Management Symposium, June 9–10, 2014, 

College Park, MD (paper accepted). 

C23, Zhu*, J., Mostafavi, A., and Romero, G. (2014). “Project Organizations as Complex System-of-

Systems: Integrated Performance Assessment at the Interface of Emergent Properties, Complexity, 

and Uncertainty.” Engineering Project Organizations Conference (EPOC 2014). 

C22. Inman**, A., Mostafavi, A., Ganapati, E., Guo, H., and Comu, S. (2014). “Towards Operationalizing 

Resilience in Transportation Infrastructure Management.” Project Management Symposium, June 

9–10, 2014, College Park, MD.  

C21. Bobadilla, L., Mostafavi, A., Bista, S., and Carmenate, T. (2014). “Predictive Assessment and 

Proactive Monitoring of Struck-by Safety Hazards in Construction Sites: An Information Space 
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Approach.” International Society for Computing in Civil and Building Engineering (ISCCBE), June 

23–25, 2014, Orlando, FL.  

C20. Zhu*, J., Mostafavi, A., and Ahmad, I. (2014). “System-of-Systems Modeling of Performance in 

Complex Construction Projects: A Multi-Method Simulation Paradigm.” International Society for 

Computing in Civil and Building Engineering (ISCCBE), June 23–25, 2014, Orlando, FL.  

C19. Zhu*, J. and Mostafavi, A. (2014). “Towards a New Paradigm for Management of Complex 

Engineering Projects: A System-of-Systems Framework.” IEEE Systems Conference 2014, March 31–

April 3, 2014 Ottawa, ON, Canada. 

C18. Mostafavi, A. (2013). “Integrated Policy Simulation in Complex System-of-Systems.” Winter 

Simulation Conference 2013, December 8–11, Washington DC.  

C17. Mostafavi, A., and Abraham, D.M. (2014). “Resilience-Based Planning in Civil Infrastructure using 

System-of-Systems Analysis.” ASCE Construction Research Congress 2014, pp. 1249-1258, May 19-

21, 2014, Atlanta, GA.  

C16. Mostafavi, A. and Abraham, D.M. (2013). “A Framework for Policy Simulation in Complex 

Infrastructure Systems.” 2013 INFORMS Annual Conference, October 6 – 9, 2013, Minneapolis, MN.  

C15. Mostafavi, A., Abraham, D. M., and Lee, J. (2013). "Assessment of the Determinants of Financial 

Innovations in Transportation Infrastructure.” Transportation Research Board Annual Meeting 2013, 

January 13–17, Washington, DC.  

C14. Mostafavi, A., Abraham, D. M., and Vives, A. (2013). "Assessment of Social Dimensions of 

Sustainable Innovative Financing in Transportation Infrastructure Projects.” Transportation Research 

Board Annual Meeting 2013, January 13–17, Washington, DC.  

C13. Huff, J., Mostafavi, A., Abraham, D. M., and Oakes, W. C. (2012). "Exploration of New Frontiers for 

Educating Engineers through Local and Global Service-Learning Projects.” Proceedings of ASCE 

Construction Research Congress 2012, pp. 2081– 2090, May 21–23, 2012, Purdue University, West 

Lafayette, IN. 

C12. Mostafavi, A., Abraham, D. M., Mannering, F. L., Vives, A., and Valentin, V. (2012). "Assessment of 

Social Attitudes towards Innovative Financing of Infrastructure Systems.” Proceedings of ASCE 

Construction Research Congress 2012, pp. 2260–2269, May 21–23, 2012, Purdue University, West 

Lafayette, IN.  

C11. Mostafavi, A., Abraham, D. M., DeLaurentis, D. A., Sinfield, J., and Queiroz, C. (2012). "Innovation 

Policy Assessment for Civil Infrastructure System-of-Systems.” Proceedings of ASCE Construction 

Research Congress 2012, pp. 2300–2309, May 21–23, 2012, Purdue University, West Lafayette, IN.  

C10. Mostafavi, A., Abraham, D. M., and DeLaurentis, D. A. (2012). "Simulation of the Policy Landscape 

of Transportation Infrastructure Financing Using Agent-Based Modeling.” Proceedings of 2012 

ASCE International Workshop on Computing in Civil Engineering, Raymond Issa and Ian Flood, 

Eds., pp. 121–128, ASCE, June 17–20, 2012, Clearwater Beach, FL.  

C9. Valentin, V., Abraham, D. M., Mannering, F., and Mostafavi, A. (2012). "Assessment of Public 

Opposition to Infrastructure Developments: The Case of Nuclear Power Projects.” Proceedings of 

ASCE Construction Research Congress 2012, pp. 1550–1559, May 21–23, 2012, Purdue University, 

West Lafayette, IN. 

C8. Mostafavi, A. and Abraham, D. M., (2012). "Risk-Based Assessment of the Inspection of 

Transportation Construction Activities.” Transportation Research Board Annual Meeting 2012, 

January 22–26, 2012, Washington, DC.  

C7. Mostafavi, A., Valentin, V., Abraham, D. M. (2011). "Research-to-Practice (R2P) Tools for Improving 

Safety in Nighttime Highway Construction Work Zones.” Electronic Proceedings of Safety and 

Health in Construction, CIB W099, Jeffrey Lew, Ed., August 24–26 2011, Washington, DC.  

C6. Mostafavi, A., Abraham, D. M., and DeLaurentis, D. A. (2011). "Towards Sustainable Financial 

Innovation Policies in Infrastructure: A Framework for Ex-Ante Analysis.” Proceedings of 2011 ASCE 

Workshop of Computing in Civil Engineering, Yimin Zhu and Raymond Issa, Eds., pp. 41–50, June 

19–22, 2011, Miami, FL.  
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C5. Mostafavi, A., Abraham, D. M., Sullivan, C. A, and Valentin, V. (2011). "Evaluation of Innovative 

Financing Alternatives as Options for Accelerating Infrastructure Projects.” Electronic Proceedings 

of 3rd International/9th Construction Specialty Conference (CSCE 2011), June 14–17, 2011, 

Ottawa, ON, Canada. 

C4. Mostafavi, A., Abraham, D. M., and Sullivan, C. A. (2011). "Drivers of Innovation in Financing 

Transportation Infrastructure: A Systemic Investigation.” Electronic Proceedings of the Second 

International Conference on Transportation Construction Management, February 7–10, 2011, 

Orlando, FL.  

C3. Mostafavi, A. and Abraham, D. M. (2010). "Frameworks for Systemic and Structural Analysis of 

Financial Innovations in Infrastructure.” working paper,  Electronic Proceedings of 2010 

Engineering Project Organization Conference (EPOC 2010), John E. Taylor and Paul Chinowsky, 

Eds., Engineering Project Organizations Society, November 4–6, 2010, South Lake Tahoe, CA.  

C2. Mostafavi, A., Iseley, T., and Abraham, D. M. (2010). "Evaluating the Appropriateness of Project 

Delivery Systems for Different Trenchless Methods.” Electronic Proceedings, No Dig 2010 

Conference, North American Society of Trenchless Technology, May 2–7, 2010, Chicago, IL. 

C1. Mostafavi, A., Karamouz, M., and Beigzadeh, S. (2008). "Project Procurement System and Project 

Delivery Systems.” Electronic Proceedings of the Second National Conference on Project 

Procurement Systems, Center of Technology Studies at Sharif University of Technology, February 4–

5, 2008, Tehran, Iran.  

Book Chapters  

• Chapter 14: GeoAI for Disaster Response, in Handbook of Geospatial Artificial Intelligence, doi: 

10.1201/9781003308423-14,  Lei Zou, Ali Mostafavi, Bing Zhou, Binbin Lin, Debayan, Mandal, 

Mingzheng Yang, Joynal Abedin, and Heng Cai. 

• Chapter 3: Resilience Assessment Methods, in Hazard-Resilient Infrastructure: Analysis and Design, 

Manual of Practice, American Society of Civil Engineers (ASCE). doi:10.1061/9780784415757.ch3 

(Mostafavi contributed to Chapter 3 along with Prof. John Van de Lindt (CSU) and Prof. Paolo 

Gardoni (UIUC).  

Invited Workshops and Technical Panels 

▪ Invited by the National Academies to participate on a panel in the Forum on Medical and Public 

Health Preparedness for Disasters and Emergencies and presented “AI for Augmenting Urban 

Resilience to Health Emergencies”, November 2023. 

▪ Invited by the U.K. Royal Academy of Engineering for an International Workshop to discuss Safer 

Complex Systems Programme (coordinated by Engineering X and founded by the Royal Academy 

of Engineering and the Lloyd’s Register Foundation), 2020. 

▪ NSF Natural Hazards Engineering Research Institute (NHERI) Idea Workshop, Washington DC, March 

18, 2019. (Invited workshop participant) 

▪ NSF Coastlines and People (CoPe) Scoping Workshop, Chicago, IL, October 2018. (Invited workshop 

participant) 

▪ NSF Interdisciplinary Methods for Disaster Research Workshop, Boulder, CO, February 2018. (Invited 

workshop participant) 

▪ NSF Interdisciplinary Methods for Disaster Research Workshop, Washington DC, March 2017. (Invited 

workshop participant) 
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Invited Technical Talks 

▪ “AI-Empowered Digital Twin for Flood Resilience,” Rice SSPEED Conference 2023, Rice University, Oct 

2023. 

▪ “Urban AI and Disaster Resilience,” Computational Sciences and Engineering Division Seminar, Oak 

Ridge National Laboratory, June 2023. 

▪ “The Next Big Leap: How AI and Data Science Can Transform Disaster Resilience Research and 

Practice,” Ignite Workshop on AI for Crisis and Climate Security, TU Delft, May 9 2023. 

▪ “Next Frontier of Resilience: Combating Disasters with AI and Data Science,” ARISE-US Symposium for 

Digital Technology and Disaster Risk Reduction, Feb 14, 2023. 

▪ “Probabilistic Economic Analysis for Climate Resilience Investments in Transportation Infrastructure”, 

International Road Federation (IRF) Conference, Barbados, June 2022. 

▪ “The Business Case for Climate Resilience Investments in Transportation infrastructure: The Study of 

Haiti”, Urban Resilience 2022 (UR 22), Dec 2022.  

▪ “Disaster-Proofing with AI and Data: The Next Frontier of Resilience,” Liles Distinguished Seminar, 

Clemson University, April 2022. 

▪ “Smart Resilience: Harnessing Big Data and AI to Augment Disaster Resilience,” KTH Royal Institute of 

Technology, May 13, 2022. 

▪ “Augmenting Urban Flood Resilience Using Big Data and Artificial Intelligence” SSPEED Center, Rice 

University, April 2022. 

▪ “AI-driven Community Resilience” Liles Distinguished Seminar, Department of Civil Engineering, 

Clemson University April, 2022. 

▪ “Smart Resilience: Harnessing Big Data and AI to Augment Disaster Resilience,” IBM Future of Climate 

Seminar Series, IBM, July 27, 2021. 

▪ “Smart Resilience to Health Crises: Predictive Pandemic Monitoring using Big Data and AI,” FEMA R6 

Interagency Recovery Coordination, August 3, 2021. 

▪ “Towards Human-Centric Infrastructure Resilience,” Structures Seminar, Oregon State University, 

March 2021. 

▪ “Human Network Dynamics during Built Environment Disruptions using Digital Trace Data” Leading 

Scholar Seminar Series of the Urban Resilience Initiative, University of Central Florida, December 10, 

2020.  

▪ “Interdisciplinary Disaster Research in the Digital Age: Uncovering Human Network Dynamics during 

Built Environment Disruptions,” Department of Civil and Environmental Engineering, Rice University, 

October 11, 2019.  

▪ “Interdisciplinary Disaster Research in the Digital Age: Uncovering Human Network Dynamics during 

Built Environment Disruptions,” School of Industrial Engineering Research Seminar, Purdue University, 

September 16, 2019.  

▪ “Convergence Research for Integrating Societal Dimensions into Engineering and Planning of 

Resilient Infrastructure Systems,” NSF Natural Hazards Engineering Research Institute (NHERI) Idea 

Workshop, Washington DC, March 18, 2019. 

▪ “Anatomy of Coupled Human-Infrastructure Systems Resilience to Urban Flooding: Integrated 

Assessment of Social, Institutional, and Physical Networks,” NSF CRISP Grantees PI Meeting, 

Washington DC, December 6, 2018. 

▪ “Integrated Assessment of Social, Institutional, and Infrastructure Networks in Flood Hazard Mitigation 

Planning and Resilience Governance: Study of Houston in Hurricane Harvey,” Natural Hazards 

Workshop Researchers Meeting, Boulder, CO, July 11, 2018. 

▪ “System-of-Systems Modeling of Urban Resilience,” Urban Infrastructures: Analysis And Modeling for 

Their Optimal Management and Operation, NSF Workshop, New York, December 2017. 



23 

▪ “Modeling Resilience in Complex Urban Infrastructure Systems,” International Workshop on Smart 

Cities, Human Behaviors, and Sustainable Development, NSF-NSFC Workshop, Beijing, China, 

September 2017.  

▪ “Complex Adaptive Modeling of Infrastructure Resilience,” Department of Construction 

Management, Tsinghua University, Beijing, China, May 2017. 

▪ “Emergence of Resilience from Network Dynamics in Project Systems,” School of Management 

Science and Engineering, Central University of Finance and Economics, Beijing, China, May 2017. 

▪ “Assessment of Roadway Infrastructure Resilience and Adaptation to Sea-level Rise Impacts,” 

Department of Civil and Environmental Engineering, University of Washington, Seattle, April 2017. 

▪ “Metrics that Matter: Improving Project Progress and Performance Assessment,” Northwest 

Construction Consumer Council, Seattle, April 2017. 

▪ “Resilience of Post-Disaster Logistics and Supply Chain Systems: Case Study of the 2015 Nepalese 

Earthquake,” Disaster Resilient Supply Chain Operations (DROPS), Cambridge University, UK, 

November 2016. 

▪ “Infrastructure System-of-Systems: A Holistic Paradigm for Sustainable and Resilient Civil Systems,” 

Department of Civil Engineering, Imperial College, London, June 2016. 

▪ “Towards a new paradigm for management of complex engineering projects: A system-of-systems 

framework,” SoS Engineering Collaborators Information Exchange, The Deputy Assistant Secretary of 

Defense for Systems Engineering (DASD(SE)), November 2015. 

▪ “Toward Theory of Infrastructure Ecology: Complex Adaptive Systems Analysis of Civil Infrastructure at 

the Interface of Engineering, Science, and Policy,” Sharif University of Technology, Tehran, 2014. 

▪ “Toward Theory of Infrastructure Ecology: Complex Adaptive Systems Analysis of Civil Infrastructure at 

the Interface of Engineering, Science, and Policy,” University of Tehran, Tehran, 2014. 

▪ “Ex-Ante Analysis of Sustainable Policies in Infrastructure System-of-Systems,” Durham Ph.D. 

Symposium, University of Nebraska–Lincoln, 2013, Lincoln, NE. 

▪ “Ex-Ante Analysis of Financing Policies in Transportation Infrastructure Systems,” Revenue and Finance 

Committee (ABE 10), Transportation Research Board, 92nd Annual Meeting, January 14, 2013, 

Washington, DC. 

▪ “Policy Simulation for Sustainable Infrastructure Planning,” Pecha Kucha Session: Transforming Urban 

Mobility Takes Innovation of All Kinds, Transportation Research Board, 92nd Annual Meeting, January 

16, 2013, Washington, DC. 

▪ “Ex-ante Simulation of Infrastructure Financing Policies,” Let’s Rebuild America Leadership Council 

Working Group, U.S. Chamber of Commerce, June 26, 2012, Washington DC. 

▪ “Simulation and Visualization of Financing Policies in Transportation Infrastructure Systems,” Research 

and Innovative Technology Administration, U.S. Department of Transportation, January 26, 2012, 

Washington, DC. 

▪ “Model for Ex-ante Policy Analysis in Infrastructure Systems,” Marketing Transportation Programs 

Session (Session 764), Transportation Research Board, 91st Annual Meeting, January 25, 2012, 

Washington, DC. 

▪ “Model for Visualization and Simulation of Financing Policies in Infrastructure Systems,” Performance 

Measurement Committee (ABC30), Transportation Research Board, 91st Annual Meeting, January 24, 

2012, Washington, DC. 

▪ “Visualization of Financing Policies in Transportation Systems,” Visualization in Transportation 

Committee (ABJ95), Transportation Research Board, 91st Annual Meeting, January 24, 2012, 

Washington, DC. 

Research Reports 

Mostafavi et al. Establish TxDOT Transportation Resilience Planning Scorecard and Best Practices (No. 

FHWA/TX-20/0-7079-R1. 
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Mostafavi et al. Hurricane Harvey Infrastructure Resilience Investigation Report. 

http://dx.doi.org/10.17603/ds2-gcrf-h607 

Kruse, C. J., Mostafavi, A., Fan*, C., Moya, J., & Risko, A. (2019). Enhancing the Sustainability of Gulf 

Intracoastal Waterway Dredge Material Placement Areas (No. FHWA/TX-19/0-6962-R1). 

Mostafavi, A., Batouli*, M., Bienvenu, M. (2016). “Development of Life-Cycle Assessment (LCA) and Life-

Cycle Cost Analysis (LCCA) for Pavement-Type Selection for SR-836 Extension,” Miami-Dade 

Expressway, August 2016. 

Orgut, R., Zhu, J*., Batouli*, M., Mostafavi, A., and Jaselskis, E. (2016). “Metrics That Matter: Improving 

Project Progress and Performance Assessment,” Construction Industry Institute, August 2016. 

Mostafavi, A., Abraham, D.M., and Sullivan, C. (2013). “Assessment of Policies for Innovative Financing in 

Infrastructure Systems,” Global Policy Research Institute, Purdue University, August 2013.  

Mostafavi, A. and Abraham, D. M. (2012). “Indiana Department of Transportation Construction 

Inspection Priorities,” Final Report, Joint Transportation Research Program of Purdue University and the 

Indiana Department of Transportation, Grant No. SPR-3400, PI: Professor Dulcy M. Abraham, May 

2012. 

Valentin, V., Mostafavi, A., Faust, K., and Abraham, D. M. (2011). “Safety of Nighttime Construction 

Operations,” Final Report, National Institute of Occupational Safety and Health (NIOSH), Grant No.1 

R01 0H07553, PI: Professor Dulcy M. Abraham, March 2011. 

Peer-reviewed/Invited Poster Presentations 

*denotes graduate student advisee 

P13. Zhu, J., and Mostafavi, A. (2015) “Meta-Network Modeling Framework for Integrated Assessment 

of Risk, Vulnerability, and Resilience in Complex Construction Projects,” CII Annual Conference, 

August 3-5, 2015, Boston, MA.  

P12. Batouli*, M. and Mostafavi, A. (2014). “Ex-Ante Simulation and Visualization of Sustainability Policies 

in Infrastructure Systems: A Hybrid Methodology for Modeling Agency-User-Asset Interactions,” 

ASCE Construction Research Congress 2014, May 19-21, 2014, Atlanta, GA. 

P11. Zhu, J. and Mostafavi, A. (2014). “Ex-Ante Assessment of Performance in Construction Projects: A 

System-of-Systems Approach,” ASCE Construction Research Congress 2014, May 19-21, 2014, 

Atlanta, GA (poster was presented by Jin Zhu). 

P10. Mostafavi, A. and Abraham, D. M. (2012). “Policy Analysis in Complex Infrastructure Systems under 

Deep Uncertainty,” Construction Industry Institute Annual Conference, July 23–25, 2012, Baltimore, 

MD (poster was presented by Ali Mostafavi). 

P9. Mostafavi, A. and Abraham, D. M. (2012). “Dealing with Uncertainties and Complexities in 

Infrastructure System-of-Systems,” NSF CMMI Engineering Research and Innovation Conference, 

July 9-12, 2012, Boston, MA (poster was presented by Ali Mostafavi). 

P8. Mostafavi, A. and Abraham, D. M. (2012). "Simulation and Visualization of Financing Policies in 

Infrastructure Systems," Construction Research Congress 2012, ASCE, May 21-23, 2012, Purdue 

University, West Lafayette, IN (poster was presented by Ali Mostafavi and was the recipient of third 

place poster award). 

P7. Mostafavi, A. and Abraham, D. M. (2012). "Prioritization of Inspection of Construction Activities," 

98th Annual Purdue Road School, March 6-7, 2012, Purdue University, West Lafayette, IN (poster 

was presented by Ali Mostafavi). 

P6. Mostafavi, A. and Abraham, D. M. (2012). "Landscape of Financing Policies in Transportation 

Infrastructure," 98th Annual Purdue Road School, March 6-7, 2012, Purdue University, West 

Lafayette, IN (poster was presented by Ali Mostafavi). 

P5. Mostafavi, A. and Abraham, D. M. (2011). "Assessment of the Dynamics of Financial Innovations in 

Infrastructure Systems," Construction Industry Institute Annual Conference, July 25-27, 2011, 

Chicago, IL (poster was presented by Ali Mostafavi). 
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P4. Mostafavi, A., Valentin, V., and Abraham, D. M. (2011). "Assessment of Safety in Nighttime 

Highway Work Zones," 2011 NORA Symposium, July 12-13, 2011, Cincinnati, OH (poster was 

presented by Ali Mostafavi). 

P3. Mostafavi, A. and Abraham, D. M. (2011). "Risk-Based Assessment of Construction Inspection 

Priorities," 97th Annual Purdue Road School, March 8-10, 2011, Purdue University, West Lafayette, IN 

(poster was presented by Ali Mostafavi). 

P2. Mostafavi, A. and Abraham, D. M. (2011). "Assessment of Sustainable Innovation for Financing 

Transportation Infrastructure," 97th Annual Purdue Road School, March 8-10, 2011, Purdue 

University, West Lafayette, IN (poster was presented by Ali Mostafavi). 

P1. Mostafavi, A. and Abraham, D. M. (2010). "Frameworks for Systemic and Structural Analysis of 

Financial Innovations in Infrastructure," 2010 Engineering Project Organization Conference (EPOC 

2010), November 4-6, 2010, South Lake Tahoe, CA (poster was presented by Ali Mostafavi). 

External and Internal Research Grants and Funding 

The summary of external and Internal grant amounts and Mostafavi’s share is shown in the table below: 

 All Grants 

 Total Amount Mostafavi Amount Share 

Total $8,245,557  $5,033,984  

TAMU (8/16–8/24) $7,495,123  $4,741,222  

FIU (8/13–8/16) $750,434  $292,762  

*Total number of external grant projects: 18 (Lead PI on 14 external grants with total amount of $5.95M) 

The following table presents the list of external grants and summaries: 

Role Agency 
Grant 
Type Duration Title 

Collaborators/ 
Co-PI (credit 

share) 
Total 

Amount 

Mostafavi 
Share 

Amount 
PI National 

Science 
Foundation 

Federal 9/1/23-
5/31/24 

Understanding Drivers of 
Inequality in Environmental 
Hazard Exposures in 
Overburdened Communities 
using Interpretable Machine 
Learning 

- $75,000 $75,000 

PI Texas A&M 
Office of the 
Vice 
President for 
Research 

Internal 9/1/23-
8/31/25 

AI-Empowered Digital Twin for 
Climate Resilience Analytics 

- $100,000 $100,000 

PI CREATE 
University 
Transportatio
n Center 
(UTC) 

Federal 9/1/23-
8/31/24 

Transportation Assets Risk and 
Resilience Analysis to Reduce 
Societal Risks to Vulnerable 
Populations 

- $112,500  $112,500 

PI TDEM Intra-
System 

4/1/23- 
5/1/24 

Applied Emergency 
Management Uses Cased of 
AI for Situational Awareness 

- $35,000 $35,000 

Co-
PI 

TXDOT State 9/1/23-
8/31/25 

Develop Systematic and 
Quantitative Approach to 
Assess the Probability of 
Extreme Weather and 
Resilience Risks for TxDOT 
Highways and Bridges 

Andrew Burt (TTI); 
Jorge Prozzi (UT 
Austin) 

$750,000 $100,000 

PI NSF Federal 4/1/20 – 
3/31/22 

Urban Resilience to Health 
Emergencies: Revealing 
Latent Epidemic Spread Risks 
from Population Activity 
Fluctuations and Collective 
Sense-making 

- $200,000 $200,000 

PI TXDOT State 9/1/20- 
8/31/22 

Establish TxDOT Transportation 
Resilience Planning 
Scorecard and Best Practices 

- $500,000 $500,000 
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Role Agency 
Grant 
Type Duration Title 

Collaborators/ 
Co-PI (credit 

share) 
Total 

Amount 

Mostafavi 
Share 

Amount 
PI Texas A&M 

Office of the 
Vice 
President for 
Research 

Internal 9/1/2020
-
8/31/202
3 

X-Grant: Disaster City Digital 
Twin: Integrating Machine 
and Human Intelligence to 
Augment Flood Resilience 

Sam Brody (25%); 
Xia Hu (10%);  

1,000,000 $625,000 

PI Microsoft AI 
for Health 

Industry 5/1/2020 
– 
12/31/20
21 

Predictive Pandemic 
Monitoring in Urban Systems 

- $105,000 (in 
Azure cloud 
computing 
credits) 

$105,000 

PI NSF Federal 2/115/19
– 
2/14/24 

CAREER: Household Network 
Modeling and Empathic 
Learning for Integrating Social 
Equality into Infrastructure 
Resilience Assessment 

- $570,000 $570,000 

PI NSF Federal 1/1/19–
12/31/23 

CRISP 2.0 Type 2: Anatomy of 
Coupled Human-
Infrastructure Systems 
Resilience to Urban Flooding: 
Integrated Assessment of 
Social, Institutional, and 
Physical Networks 

Philip Berke (20%), 
Arnold Vedlitz 
(15%), Sierra 
Woodruff (2.5%), 
Bjorn Birgisson 
(5%) 

$2,000,000 $1,180,422 

Co-
PI 

National 
Academies 
Gulf 
Research 
Program 

Federal 1/1/20-
12/31/22 

Measuring and Improving 
Blended Project-Safety 
Culture in Operations of 
Offshore Oil and Gas Facilities   

Ivan 
Damnjanovic (PI); 
John Walewski 
(Co-PI) 

$733,631 $150,000 

PI Amazon AWS 
Award 

Industry Unrestric
ted Gift 

AWS Machine Learning 
Award 

– $75,000 
($25,000 
funds + 
$50,000 
AWS credit) 

$75,000 

PI NSF Federal 10/1/17–
9/31/19 

Houston in Hurricane Harvey 
(H3): Establishing Disaster 
System-of-Systems 
Requirements for Network-
Centric and Data-Enriched 
Preparedness and Response 

Xia Hu (5%), 
Ruihong Huang 
(10%), Bjorn 
Birgisson (2.5%) 

$49,915 $40,000 

PI NSF Federal 10/15/17
–
10/14/19 

Assessment of Risks and 
Vulnerability in Coupled 
Human-physical 
Networks of Houston’s Flood 
Protection, Emergency 
Response, and 
Transportation Infrastructure 
in Harvey 

Arnold Vedlitz 
(10%), Philip Berke 
(20%), Xia Hu 
(2.5%), Bjorn 
Birgisson (5%) 

$188,873 $156,000 

PI National 
Academies  

Federal 9/1/17–
10/31/20 

Early-Career Research 
Fellowship 

– $119,543 $119,543 

PI NOAA Sea 
Grant 
Program 

Federal 2/1/18–
1/31/20 

Resilient Adaptation of 
Interdependent Built, 
Ecological, and Governance 
Systems to Sea-level Rise 
Impacts in Texas Coastal 
Communities 

– $147,203 
(+$76,704 in 
cost 
sharing*)  

$147,203 
(+$76,704 in 

cost 
sharing) 

Co-
PI 

Texas DOT State 9/1/17–
9/31/18 

Determine Placement Area 
Sustainability 

Jim Kruse (PI) 
(75%) 

$297,635 $75,000 

PI Construction 
Industry 
Institute 

Industry 5/1/17–
8/31/19 

Identifying and Evaluating 
the Impacts of Regulations 
throughout the Project 
Lifecycle 

Ed Jaselskis (NC 
State) (30%) 
Ryan Stoa 
(Concordia 
School of Law) 
(25%), Jin Zhu (U 
Conn) (15%) 

$469,297 $151,266 
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Role Agency 
Grant 
Type Duration Title 

Collaborators/ 
Co-PI (credit 

share) 
Total 

Amount 

Mostafavi 
Share 

Amount 
Co-
PI 

NSF Federal 3/1/17–
8/31/20 

Urban Water Innovation 
Network (U-WIN): Transitioning 
Toward Sustainable Urban 
Water Systems 
 

Network of 
faculty from FIU, 
ASU, UC Berkeley, 
CSU, University of 
Miami, OSU. 
University of 
Oregon 

Total 
Network 
Award: 
$12M; FIU 
Share 
$900,000** 

$140,000 
($71,526 

transferred 
from FIU to 

TAMU) 

 Total TAMU $6,491,097  $4,060,960  

Research Grants at FIU 

PI NSF Federal 8/2015–
8/2016 

RAPID: Assessment of 
Cascading Failures and 
Collective Recovery of 
Interdependent Critical 
Infrastructure in Catastrophic 
Disasters in Nepal 

E. Ganapati and 
N. Pradhananga 
(FIU) 

$49,962 $43,962 

PI Construction 
Industry 
Institute 

Industry 8/2014–
8/2016 

Improving Project Progress 
and Performance Assessment 

Other PI:  
E. Jaselskis (NC 
State) 

$239,781 $83,570 

Co-
PI 

NSF  Federal 9/2015–
9/2017 

Strategies for Leaning: 
Augmented Reality and 
Collaborative Problem-
Solving 

S. Vassigh (PI-FIU), 
E. Newman (FIU), 
D. Davis (FIU) 
A. Behzadan 
(Missouri State) 

$219,637 $32,230 

PI Miami-Dade 
Expressway 
(MDX) 

Industry 2/2015–
5/2016 

Development of LCA and 
LCCA for Pavement-type 
selection for MDX SR 836 
Extension 

Other PI:  
M. Bienvenu (FIU) 

$109,765 $93,000 

Co-
PI 

ABC UTC State 7/2014–
7/2016 

Estimating total cost of bridge 
construction using ABC and 
conventional methods of 
construction 

M. Hadi (PI), and 
W. Orabi (all FIU) 

$131,289 $40,000 

 Total FIU $750,434   $292,762 

 Total (TAMU+FIU) $6,241,531  $3,728,722  

*Cost share has not been counted in calculation of total grants 

**In calculation of total awarded funds, only Mostafavi’s share was calculated (not FIU share nor total project)  
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External Media Coverage and Highlights 

▪ Big data-derived tool facilitates closer monitoring of recovery from natural disasters, NSF Research 

News: https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=303264&org=NSF&from=news 

▪ Tools derived from big data facilitate more in-depth monitoring of recovery from natural disasters, 

Florida News Times, July 2021, https://floridanewstimes.com/tools-derived-from-big-data-facilitate-

more-in-depth-monitoring-of-recovery-from-natural-disasters/310502/ 

▪ Big data-derived tool facilitates closer monitoring of recovery from natural disasters. ScienceDaily. 

ScienceDaily, 22 July 2021. www.sciencedaily.com/releases/2021/07/210722171220.htm 

▪ Covid-19 and the bushfire season, Saturday Paper (Australian Media), November 2020: 

https://www.thesaturdaypaper.com.au/news/health/2020/11/21/covid-19-and-the-bushfire-

season/160587720010735 

▪ Proposed ‘contagion’ model predicts roadway flooding in urban areas, ASCE Civil Engineering 

Magazine, November 2020: https://source.asce.org/proposed-contagion-model-predicts-roadway-

flooding-in-urban-areas/ 

▪ Deep Learning Model Predicts COVID-19 Surges 7 Days into the Future, Health IT Analytics, October 

2020: https://healthitanalytics.com/news/deep-learning-model-predicts-covid-19-surges-7-days-into-

the-future 

▪ Using AI and big data to predict the future spread of COVID-19 cases, October 2020, Medical News: 

https://www.news-medical.net/news/20200929/Using-AI-and-big-data-to-predict-the-future-spread-

of-COVID-19-cases.aspx 

▪ Texas A&M predicting COVID-19 spread with deep-learning model, EdScoop, October 2020: 

https://edscoop.com/texas-am-covid19-deep-learning-ai/ 

▪ Researchers develop flood prediction tool, National Science Foundation News (featured on NSF front 

page) , March 10, 2020: https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=300168 

▪ Hurricanes and Wildfires Are Colliding with the COVID-19 Pandemic – and Compounding the Risks – 

August 2020: 

• Government Executive: https://www.govexec.com/management/2020/08/hurricanes-and-

wildfires-are-colliding-covid-19-pandemic-and-compounding-risks/168027/ 

• Scientific America: https://www.scientificamerican.com/article/hurricanes-and-wildfires-are-

compounding-covid-19-risks/ 

▪ Real-Time Data Can Save Lives in a Disaster, FreeThink, April 2020: 

https://www.freethink.com/articles/emergency-response 

▪ Almost Real-time Flood Prediction Tool May Boost Emergency Response During Hurricanes, The Insider 

(Newsletter of Association of State Floodplain Managers (ASFPM), April 2020. 

▪ Complaining about climate change on Twitter might actually help scientists, Quartz, Feb 2020: 

https://qz.com/1797415/scientists-are-studying-your-climate-change-complaints-on-twitter/ 

▪ In Houston, Thousands Continue to Wait for Harvey Relief Money, Texas Observer, August 2019: 

 https://www.texasobserver.org/in-houston-thousands-continue-to-wait-for-harvey-relief-money/ 

▪ Create a solution in response to wildfires while keeping sensitive data safe, IBM Blog, May 3, 2019: 

https://developer.ibm.com/callforcode/blogs/create-a-solution-in-response-to-wildfires/ 

▪ Texas A&M’s Disaster IQ App Helps Improve Disaster Response, EDM Digest, September, 25, 2018: 

https://edmdigest.com/original/disaster-iq-app/ 

▪ Better coordination networks to strengthen interdependent infrastructure resilience, National Science 

Foundation, September 21, 2018: 

https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=296559&WT.mc_id=USNSF_1#.W6p2wpqh_v

w.twitter 

▪ If you shelter in place during a disaster, be ready for challenges after the storm, August 24, 2018. 

• Los Angeles Times: http://www.latimes.com/sns-if-you-shelter-in-place-during-a-disaster-be-

ready-for-challenges-after-the-storm-101496-20180824-story.html 

https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=303264&org=NSF&from=news
https://floridanewstimes.com/tools-derived-from-big-data-facilitate-more-in-depth-monitoring-of-recovery-from-natural-disasters/310502/
https://floridanewstimes.com/tools-derived-from-big-data-facilitate-more-in-depth-monitoring-of-recovery-from-natural-disasters/310502/
http://www.sciencedaily.com/releases/2021/07/210722171220.htm
https://www.thesaturdaypaper.com.au/news/health/2020/11/21/covid-19-and-the-bushfire-season/160587720010735
https://www.thesaturdaypaper.com.au/news/health/2020/11/21/covid-19-and-the-bushfire-season/160587720010735
https://source.asce.org/proposed-contagion-model-predicts-roadway-flooding-in-urban-areas/
https://source.asce.org/proposed-contagion-model-predicts-roadway-flooding-in-urban-areas/
https://healthitanalytics.com/news/deep-learning-model-predicts-covid-19-surges-7-days-into-the-future
https://healthitanalytics.com/news/deep-learning-model-predicts-covid-19-surges-7-days-into-the-future
https://www.news-medical.net/news/20200929/Using-AI-and-big-data-to-predict-the-future-spread-of-COVID-19-cases.aspx
https://www.news-medical.net/news/20200929/Using-AI-and-big-data-to-predict-the-future-spread-of-COVID-19-cases.aspx
https://edscoop.com/texas-am-covid19-deep-learning-ai/
https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=300168
https://www.govexec.com/management/2020/08/hurricanes-and-wildfires-are-colliding-covid-19-pandemic-and-compounding-risks/168027/
https://www.govexec.com/management/2020/08/hurricanes-and-wildfires-are-colliding-covid-19-pandemic-and-compounding-risks/168027/
https://www.scientificamerican.com/article/hurricanes-and-wildfires-are-compounding-covid-19-risks/
https://www.scientificamerican.com/article/hurricanes-and-wildfires-are-compounding-covid-19-risks/
https://www.freethink.com/articles/emergency-response
https://qz.com/1797415/scientists-are-studying-your-climate-change-complaints-on-twitter/
https://www.texasobserver.org/in-houston-thousands-continue-to-wait-for-harvey-relief-money/
https://developer.ibm.com/callforcode/blogs/create-a-solution-in-response-to-wildfires/
https://edmdigest.com/original/disaster-iq-app/
https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=296559&WT.mc_id=USNSF_1#.W6p2wpqh_vw.twitter
https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=296559&WT.mc_id=USNSF_1#.W6p2wpqh_vw.twitter
http://www.latimes.com/sns-if-you-shelter-in-place-during-a-disaster-be-ready-for-challenges-after-the-storm-101496-20180824-story.html
http://www.latimes.com/sns-if-you-shelter-in-place-during-a-disaster-be-ready-for-challenges-after-the-storm-101496-20180824-story.html
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• Chicago Tribune: http://www.chicagotribune.com/sns-if-you-shelter-in-place-during-a-

disaster-be-ready-for-challenges-after-the-storm-101496-20180824-story.html 

• Houston Chronicle: https://www.houstonchronicle.com/news/article/If-you-shelter-in-place-

during-a-disaster-be-13179459.php 

• Public Radio International (PRI): https://www.pri.org/stories/2018-09-11/if-you-shelter-place-

during-disaster-be-ready-challenges-after-storm 

• Seattle pi: https://www.seattlepi.com/news/article/If-you-shelter-in-place-during-a-disaster-

be-13179459.php 

▪ Texas Standard: http://www.texasstandard.org/stories/fema-has-funded-less-than-one-percent-of-

harvey-infrastructure-projects/ 

▪ Texas A&M University’s 12th Man Spirit Defeats Natural Disasters, US News, August 2018, 

https://usnewsbrandfuse.com/TexasAM/12th-Man-Spirit-Defeats-Natural-Disasters/ 

▪ Why Another Hurricane Can Devastate Puerto Rico and Texas—Again, Engineering News Record 

(ENR), June 6 2018, https://www.enr.com/articles/44633-why-another-hurricane-can-devastate-

puerto-rico-and-texasagain 

▪ Texas A&M professor advises Congress on windstorm issues, The Battalion, November 12, 2017, 

http://www.thebatt.com/science-technology/texas-a-m-professor-advises-congress-on-windstorm-

issues/article_968b53de-c827-11e7-bc27-cb8df9e1075c.html 

▪ After Harvey: Texas A&M System researchers awarded $1.2M, tasked with collecting data to analyze 

impact of storm, The Eagle, October 22, 2017, https://www.theeagle.com/news/local/after-harvey-

texas-a-m-system-researchers-awarded-m-tasked/article_cb386406-6b55-5f27-8c39-

ac69aedf1c02.html 

▪ Texas A&M awarded $2M grant for flood, human response research. 

https://www.theeagle.com/news/local/texas-a-m-awarded-m-grant-for-flood-human-

response/article_3f53eaf1-580d-5304-a5d0-fb581c652ad6.html 

 

Internal Media Coverage and Highlights 

▪ Leveraging big data and AI for disaster resilience and recovery, August 2023, (Mostafavi featured). 

▪ Fighting COVID-19 in the Cloud with Data-Driven Research, September 2021, (Mostafavi featured). 

▪ Big data-derived tool facilitates closer monitoring of recovery from natural disasters, July 2021 

(Mostafavi featured). 

▪ Texas A&M civil engineering researchers are using a deep learning model to forecast the growth of 

COVID-19 cases, Texas A&M Today, October 2020 (Mostafavi featured). 

▪ Texas A&M Researchers Create Model To Predict Flooding In Urban Areas, Texas A&M Today, August 

2020 (Mostafavi featured). 

▪ Researchers create a contagion model to predict flooding in urban areas, August 2020 (Mostafavi 

featured). 

▪ Improving the use of social media for disaster management, August 2020 (Mostafavi featured). 

▪ Four interdisciplinary engineering projects receive funding from X-Grants program, July 2020 

(Mostafavi featured). 

▪ Texas A&M’s Mostafavi to research urban resilience to pandemics, April 2020 (Mostafavi interviewed) 

▪ Almost real-time flood prediction tool may boost emergency response during hurricanes, Engineering 

News Digest, March 2020 (Mostafavi interviewed) 

▪ Texas A&M Researchers Develop Flooding Prediction Tool, Texas A&M Today, March 2020 (Mostafavi 

interviewed) 

▪ Undergraduates dedicate summer to studying effects of natural disasters on communities, August 

2019 (Mostafavi and his student advisees featured) 

▪ 10 Challenges of Water Utilities, TxH2O Magazine, July 2019 (Mostafavi interviewed) 

http://www.chicagotribune.com/sns-if-you-shelter-in-place-during-a-disaster-be-ready-for-challenges-after-the-storm-101496-20180824-story.html
http://www.chicagotribune.com/sns-if-you-shelter-in-place-during-a-disaster-be-ready-for-challenges-after-the-storm-101496-20180824-story.html
https://www.houstonchronicle.com/news/article/If-you-shelter-in-place-during-a-disaster-be-13179459.php
https://www.houstonchronicle.com/news/article/If-you-shelter-in-place-during-a-disaster-be-13179459.php
https://www.pri.org/stories/2018-09-11/if-you-shelter-place-during-disaster-be-ready-challenges-after-storm
https://www.pri.org/stories/2018-09-11/if-you-shelter-place-during-disaster-be-ready-challenges-after-storm
https://www.seattlepi.com/news/article/If-you-shelter-in-place-during-a-disaster-be-13179459.php
https://www.seattlepi.com/news/article/If-you-shelter-in-place-during-a-disaster-be-13179459.php
http://www.texasstandard.org/stories/fema-has-funded-less-than-one-percent-of-harvey-infrastructure-projects/
http://www.texasstandard.org/stories/fema-has-funded-less-than-one-percent-of-harvey-infrastructure-projects/
https://usnewsbrandfuse.com/TexasAM/12th-Man-Spirit-Defeats-Natural-Disasters/
https://www.enr.com/articles/44633-why-another-hurricane-can-devastate-puerto-rico-and-texasagain
https://www.enr.com/articles/44633-why-another-hurricane-can-devastate-puerto-rico-and-texasagain
http://www.thebatt.com/science-technology/texas-a-m-professor-advises-congress-on-windstorm-issues/article_968b53de-c827-11e7-bc27-cb8df9e1075c.html
http://www.thebatt.com/science-technology/texas-a-m-professor-advises-congress-on-windstorm-issues/article_968b53de-c827-11e7-bc27-cb8df9e1075c.html
https://www.theeagle.com/news/local/after-harvey-texas-a-m-system-researchers-awarded-m-tasked/article_cb386406-6b55-5f27-8c39-ac69aedf1c02.html
https://www.theeagle.com/news/local/after-harvey-texas-a-m-system-researchers-awarded-m-tasked/article_cb386406-6b55-5f27-8c39-ac69aedf1c02.html
https://www.theeagle.com/news/local/after-harvey-texas-a-m-system-researchers-awarded-m-tasked/article_cb386406-6b55-5f27-8c39-ac69aedf1c02.html
https://www.theeagle.com/news/local/texas-a-m-awarded-m-grant-for-flood-human-response/article_3f53eaf1-580d-5304-a5d0-fb581c652ad6.html
https://www.theeagle.com/news/local/texas-a-m-awarded-m-grant-for-flood-human-response/article_3f53eaf1-580d-5304-a5d0-fb581c652ad6.html
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https://twri.tamu.edu/publications/txh2o/2019/summer-2019/10-challenges-of-water-utilities/ 

▪ Experience explored: Engineering freshman improves disaster response through AggiE_Challenge 

(Mostafavi and his student advisee featured) 

▪ Civil Eng./TEES News: “Mostafavi receives National Science Foundation CAREER Award” (Mostafavi 

interviewed) 

▪ TEES News: “Mostafavi from Texas A&M Engineering receives $2M NSF award on infrastructure 

resilience to urban flooding:” (Mostafavi interviewed) 

▪ TEES News: “AggiE-Challenge students develop solutions for responding to, recovering from, natural 

disasters” (Mostafavi featured) 

▪ Civil Engineering News: “Civil engineering faculty awarded NSF RAPID grants for Hurricane Harvey 

Investigation” (Mostafavi featured) 

▪ Civil Eng. News: “Mostafavi receives National Academies’ GRP Early-Career Research Fellowship” 

(Mostafavi featured) 

Advising and Mentoring Activities 

Post-Doctoral Fellows and Visiting Scholars (Principal Advisor) (Total: 9 – Current: 3) 

1. Dr. Zhewei Liu, Ph.D. in Geo AI. (Honk Kong University), Post-doc training period: 12/2022–Present, 

Texas A&M University. 

2. Dr. Yuqin Jiang, Ph.D. in Geo AI. (U of South Carolina), Post-doc training period: 07/2022–Present, 

Texas A&M University. 

3. Dr. Chao Fan, Ph.D. in Civil Eng. (TAMU), Post-doc training period: 12/2020–08/2022, Texas A&M 

University. (Current Position: Assistant Professor of Civil Engineering, Clemson University) 

4. Dr. Cheng-Chun (Barry) Lee, Ph.D. in Civil Eng. (TAMU), Post-doc training period: 06/2021–Present, 

Texas A&M University. 

5. Dr. Faxi Yuan, Ph.D. in Civil Eng. (University of Florida), Post-doc training period: 8/2020–03/2022, 

Texas A&M University. 

6. Dr. Shongjia Dong, Ph.D. in Civil Eng. (Oregon State), Post-doc training period: 9/2018–7/2020, 

Texas A&M University (Current Position: Assistant Professor of Civil Engineering, University of 

Delaware) 

7. Dr. Cheng Zhang, Ph.D. in Civil Eng. (ASU), Post-doc training period: 1/2018-8/2020, Texas A&M 

University (Current Position: Assistant Professor of Civil Engineering, Purdue University Northwest) 

8. Dr. Jin Zhu, Ph.D. in Civil Engineering, Post-doc training period: September 2016–July 2017, Texas 

A&M University (Current Position: Assistant Professor of Civil Engineering, University of 

Connecticut) 

9. Dr. Peeraya Inyim, Ph.D. in Civil Engineering, Post-doc training period: May 2015–March 2016, 

Florida International University 

Ph.D. Students (Principal Advisor) – Total 20 (Current: 11) 

1. Yu-Hsuan H, PhD. in Civil Engineering (TAMU), Expected Graduation: May 2026. 

2. Kai Yin, PhD. in Civil Engineering (TAMU), Expected Graduation: May 2026. 

3. Chia-Fu Liu, PhD. in Civil Engineering (TAMU), Expected Graduation: May 2025. 

4. Bo Li, PhD. in Civil Engineering (TAMU), Expected Graduation: May 2025. 

5. Junwei Ma, PhD. in Civil Engineering (TAMU), Expected Graduation: May 2025. 

6. Natalie Coleman, PhD. in Civil Engineering (TAMU), Expected Graduation: May 2024. 

7. Chenyue Liu, PhD. in Civil Engineering (TAMU), Expected Graduation: May 2025. 

8. Flavia Patrascu, PhD. in Civil Engineering (TAMU), Expected Graduation: May 2024. 

9. Chia-Wei Hsu, PhD. in Civil Engineering (TAMU), Expected Graduation: May 2024. 
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10. Akhil Rajput, PhD. in Civil Engineering (TAMU), Expected Graduation: May 2024. 

11. Tamarah Ridha, PhD. in Civil Engineering (TAMU), Expected Graduation: August 2023. 

12. Hamed Farahmand, PhD. in Civil Engineering (TAMU), Graduation: Dec 2022. (Current Position: 

Data Scientist, One Concern) 

13. Amir Esmalian, PhD. in Civil Engineering (TAMU), Graduation: May 2022. (Current Position: 

Associate at McKinsey and Company) 

14. Jennifer Dargin, PhD. in Civil Engineering (TAMU), Graduation: May 2022. 

15. Qingchun Li, PhD. in Civil Engineering (TAMU), Graduation: May 2021. (Assistant Professor at 

Purdue University starting Fall 2023). 

16. Chao Fan, PhD. in Civil Engineering (TAMU), Graduation: Dec 2020. (Current Position: Assistant 

Professor at Clemson University). 

17. Chris Cox, Ph.D. in Civil Engineering (TAMU), Graduation, Dec 2020 (Current Position: faculty at 

Western Carolina University). 

18. Kambiz Rasoulkhani, Ph.D. Student in Civil Engineering (TAMU), Dec 2019 (Current position: Senior 

Consultant, AMCL). 

19. Jin Zhu, Ph.D. in Civil Engineering (FIU), Graduation: August 2016 (Current position: Assistant 

professor, Department of Civil and Environmental Engineering, University of Connecticut) 

20. Mostafa Batouli, Ph.D. in Civil Engineering (FIU), Graduation: May 2017 (Current position: Assistant 

professor, Department of Civil an Environmental Engineering, The Citadel) 

Master Students (Major Advisor/research Advisor):  

Wanqui Wang, M.S. in Computer Engineering, Advisor in research, Graduation: May 2021 

Tianbo Yu, M.S. in Computer Engineering, Advisor in research, Graduation: December 2020 

Xiangqi Jiang, M.S. in Computer Engineering, Advisor in research, Graduation: May 2021 

Yang Yang, M.S. in Computer Science (TAMU), Advisor in research, Graduation: May 2021 

Fangsheng Wang, M.S. in Computer Science (TAMU), Advisor in research, Graduation: May 2021 

Rana Abu-Hamdia, M.S. in Civil Engineering (TAMU), Graduation: Dec 2018 

Jose Pereyra, M.S. in Construction Management (FIU), Graduation: May 2016 

Maria Reyes, M.S. in Computer Science (FIU), Graduation: August 2016  

Alex Inman, M.S. in Construction Management (FIU), Graduation: August 2014 

Membership in Ph.D. Committees: 

Zhimeng Jiang, Ph.D. student in Computer Science, TAMU (Major Advisor: Dr. Hu) 

Hongrak Pak, Ph.D. Student in Civil Engineering, TAMU (Major Advisor: Dr. Paal) 

Rohan Singh Wilkho, Ph.D. Student in Civil Engineering, TAMU (Major Advisor: Dr. Nasir Gharaibeh) 

Cheng-Chun Lee, , Ph.D. Student in Civil Engineering, TAMU (Major Advisor: Dr. Nasir Gharaibeh) 

Walter Olarte, , Ph.D. Student in Civil Engineering, TAMU (Major Advisor: Dr. Damnjanovic) 

Isaac Otey, Ph.D. Student in Civil Engineering, TAMU (Major Advisor: Dr. Nasir Gharaibeh) 

Vincent Teguh, Ph.D. Student in Civil Engineering, TAMU (Major Advisor: Dr. David Ford) 

Mahmudur Rahman, Ph.D. Student in Computer Science (Major Advisor: Dr. Leonardo Bobadilla) 

Ramin Taghinezhad, Ph.D. Student in Civil Engineering (Major Advisor: Dr. Atorod Azizinamini) 

Huy Pham, Ph.D. Student in Civil Engineering (Major Advisor: Dr. Atorod Azizinamini) 

Amir Naeiji, Student in Civil Engineering (Major Advisor: Dr. Iaonnis Zisis) 

Jeisson Rodriguez, Ph.D. Student in Public Administration  (Major Advisor: Dr. Allan Rosenbaum) 

Nida Azhar, Ph.D. Student in Civil Engineering (Major Advisor: Dr. Irtishad Ahmad), Graduated in August 

2014 
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External Ph.D. Dissertation Committee/Examination: 

Pranavesh Panakkal (Major Advisor: Dr. Jamie Padgett), Department of Civil and Environmental 

Engineering, Rice University. 

Shaye Palagi, Ph.D. Student in Civil Engineering, University of Colorado Boulder (Major Advisor: Dr. Amy 

Javernick-Will) 

Resulali Orgut, Ph.D. Student in Civil Engineering, NC State University (Major Advisor: Dr. Edward Jaselskis) 

Robert Ogie (Major Advisor: Dr. Pascal Perez), Faculty of Engineering & Information Sciences, University 

of Wollongong (Australia) 

MS Student (Research Supervisor/Advisor) 

Yang Yang (Computer Science- GRA with Dr. Mostafavi)    2019- 2021 

Fangsheng Wu (Computer Science- GRA with Dr. Mostafavi)   2019-2021 

Xiangqi Jiang (Computer Science- GRA with Dr. Mostafavi)    2020-2021 

Wanqui Want (Computer Eng – GRA with Dr. Mostafavi)    2019-2021 

Xin Xiao(Computer Science- researcher with Dr. Mostafavi)    2020-2021 
Sanghyeon Lee (Computer Science- researcher with Dr. Mostafavi)  2020-2021  

 

M.E. Students (Major Advisor) 

Caroline Salem Graduated (8/2017) 

Purvit Soni Graduated (8/2018) 

Bharath Reddy Rondla Graduated (8/2018) 

Manoj Taddi Graduated (8/2018) 

Enrique Jimenez Orozco Graduated (8/2018) 

Ross Navarro Graduated (12/2018) 

Dhurgham Malallah Graduated (8/2019)  

Prathyusha Banglore Ramesh Graduated (8/2019) 

Rameez Qureshi Graduated (8/2019) 

Undergraduate Advising (involved in research): 

Texas A&M University 

Funded UG Research Assistants 

Allison Clarke 2021-2022 

Cristian Podesta 2020-2021 

Sara Garcia 2020-2021 

Jared DeLeon 2020 - 2021 

Miguel Esparaza, B.S. in Civil Engineering 2017– 2020 

Natalie Coleman, B.S. in Civil Engineering 2018–2020 

Bora Oztekin 2019–2021 

Yang Yang, B.S. in Computer Science 2017–2019 

Maitreyi Ramaswamy, B.S. in Computer Science 2017–2018 

Yucheng Jiang, B.S. in Computer Science 2017–2019 

Jose Quiros, B.S. in Civil Engineering 2017–2018 

Jenny Truong, B.S. in Civil Engineering 2016–2017 

 

Summer Undergraduate Researchers (Visiting) 

Isabel McKnight (University of Alabama), Summer 2018 



33 

Taeho Kim (University of Michigan), Summer 2017 

Parul Srivastava (IIT Kanpur), Summer 2017 

Brian Logasa (UC San Diego), Summer 2016 

 

AggiE Challenge Program 

AggiE Challenge Program is a Vertically Integrated Project (VIP) in the College of Engineering Texas 

A&M University. I have been advising teams of interdisciplinary students in projects focusing of disaster 

informatics and smart cities. 

Academic Year 2018-2019 

Sournav Bhattacharya (CPSC), Nathan Dunkley (CPSC), Hamza Iqbal (INEN), Yucheng Jiang (CPSC), 

Justin Nguyen (CVEN), Madeleine Parkison (CVEN), Hertantya Putera (INEN), Melanie Beattie (ENGE), 

Jainita Chauhan (ENGE), Romil Deshpande (ENGE), Matthew Kanarr (CPSC),  Nicholas Matthews 

(CECN), Justin Nguyen (CVEN), Saif Mehmood (INEN), Grace Tjeong (CVEN) 

Academic Year 2017-2018 

Ehab Rebhy Abo Deeb (CVEN), Nicolas Carvajal (CVEN), Nandan Reddy Gade (CPSC), Sriram 

Natarajan (CEEN), Justin Do Khanh Nguyen (CVEN), Micheal Anthony Peterson (CPSC), Phuong Uyen 

Dinh Pham (INEN), Hertantya Adhika Putera (INEN), Yang Yang (CPSC) 

FIU 

Brianne Logasa, B.S. in Urban Planning (visiting from UC San Diego) Summer 2016 

Beatriz Azevedo, B.S. in Environmental Eng. Summer 2016 

Patrick Foucauld, B.S. in Construction Management 2015–2016 

Allen Llodra, B.S. in Construction Management 2015–2016 

Diana Leante, B.S. in Computer Science 2014–2015 

Fagner Soares, B.S. in Computer Science Summer 2015 

Mateus Marcos, B.S. in Civil Engineering Summer 2015 

Gianny Romero, B.S. in Construction Management 2013-2015 

Luciana De Souza, B.S. in Civil Engineering  Summer 2014 

Geeticka Chauhan, B.S. in Computer Science Summer 2014 

Tim Libre, B.S. in Civil Engineering,  2014 

Triana Carmenate, B.S. in Computer Science, 2013–2014 

Student Advisee Honors and Awards 

Natalie Coleman, NSF Graduate Research Fellowship, 2020-2024. 

Natalie Coleman, Undergraduate Research Scholars (URS) Outstanding Thesis Award, LAUNCH 

Undergraduate Research Program, Texas A&M University, 2019. 

Kambiz Rasoulkhani, ACE in Higher Education Research Award, TAMU Student Research Week 

Symposium, 2019. 

Natalie Coleman, Sigma Xi-Interdisciplinary Award for Undergraduate Research, TAMU Student 

Research Week Symposium, 2019. 

Kambiz Rasoulkhani, 3rd Place Best Poster Award, Construction Research Congress, 2018. 

Kambiz Rasoulkhani, Sea Grant Best Poster Award, TAMU Student Research Week Symposium, 2018. 

Jin Zhu, 2nd Place Best Poster Award, Construction Research Congress, 2016. 

Mostafa Batouli, 3rd Place Best Poster Award, Construction Research Congress, 2016. 

Jin Zhu, Top 10 Poster Finalist, Academic Poster Session, Construction Industry Institute, 2016. 

Jin Zhu, Best Conference Paper Award, ASCE Computing in Civil Engineering Conference, 2015. 

Jin Zhu, Top 10 Poster Finalist, Academic Poster Session, Construction Industry Institute, 2015. 
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Jin Zhu, Dissertation Year Fellowship, FIU University Graduate School, 2015. 

Peeraya Inyim, Inaugural Technical Paper Award, Florida ASCE Conference, 2015. 

Peeraya Inyim, 1st Place Best Poster Award, FIU Graduate Scholarly Forum, 2015. 

Jin Zhu, 2nd Place Best Poster Award, FIU Graduate Scholarly Forum, 2015. 

Triana Carmenate, Fiatech Conference Scholarship, Top 6 Research Posters for presentation at Fiatech 

Annual Conference 2015. 

Mostafa Batouli, Student Government Association Graduate Scholarship, Florida International University, 

2014 

Mostafa Batouli, University-wide Scholarship, Graduate School, Florida International University, 2014 

Jin Zhu, 3rd Place Poster Award in Engineering Category at Florida International University’s Graduate 

Scholarly Seminar  

Teaching 

Courses Taught and Student Evaluations 

The students were asked to evaluate the course and the instructor with respect to different criteria (e.g., 

course materials and learning, communication and availability, and respect and concern for students’ 

learning). The following table summarizes the average scores across all the criteria.  

Scale for rating*: 1= Has serious deficiencies in this area which are detrimental to students; 2= Does not 

perform well in this area; 3= Good; 4= Very Good; 5=Deserves an award in this area; excellent. 

*TAMU and FIU have similar scale for student course/teaching evaluation. 

 

Course Cr. University Role Level Semester 

Number 

of 

Students 

Average 

Evaluation 

Score 
CVEN-641: Construction 
Engineering Systems 

4 TAMU Instructor Graduate Spring 2023 18 4.95 
 

CVEN-668: Advanced 
EPC Project 
Development 

3 TAMU Instructor Graduate Fall 2022 32 4.41 

CVEN-641: Construction 
Engineering Systems 

4 TAMU Instructor Graduate Spring 2022 12 4.83 
 

CVEN-668: Advanced 
EPC Project 
Development 

3 TAMU Instructor Graduate Fall 2021 42 4.68 

CVEN-641: Construction 
Engineering Systems 

4 TAMU Instructor Graduate Spring 2021 24 4.60 
 

CVEN-668: Advanced 
EPC Project 
Development 

3 TAMU Instructor Graduate Fall 2020 30 4.54 

CVEN-641: Construction 
Engineering Systems 

4 TAMU Instructor Graduate Spring 2020 27 4.51 
 

CVEN-668: Advanced 
EPC Project 
Development 

3 TAMU Instructor Graduate Fall 2019 32 4.50 

CVEN-641: Construction 
Engineering Systems 

4 TAMU Instructor Graduate Spring 2019 16 4.63 
 

CVEN-668: Advanced 
EPC Project 
Development 

3 TAMU Instructor Graduate Fall 2018 27 4.33 
 

CVEN-349: Project 
Management for Civil 
Engineers 

3 TAMU Instructor Undergraduate Spring 2018 32 4.3 

CVEN-668: Advanced 
EPC Project 
Development 

3 TAMU Instructor Graduate Fall 2017 32 4.7 
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Course Cr. University Role Level Semester 

Number 

of 

Students 

Average 

Evaluation 

Score 
CVEN-641: Construction 
Engineering Systems 

4 TAMU Instructor Graduate Spring 2017 8 4.7 
 

CVEN-668: Advanced 
EPC Project 
Development 

3 TAMU Instructor Graduate Fall 2016 24 4.8 

BCN-5585: Sustainable 
Construction 

3 FIU Instructor Graduate Spring 2015 15 4.7 

BCN-3753: Financial 
Management of 
Construction 
Organizations 

3 FIU Instructor Undergraduate Spring 2015 16 4.7 

BCN-3753: Financial 
Management of 
Construction 
Organizations 

3 FIU Instructor Undergraduate Fall 2014 27 4.7 

BCN-5585: Sustainable 
Construction 

3 FIU Instructor Graduate Spring 2014 28 4.4 

BCN-3761: Construction 
Documentation and 
Communication 

3 FIU Instructor Undergraduate Spring 2014 36 4.2 

BCN-3727: Construction 
Sitework and 
Equipment 

3 FIU Instructor Undergraduate Fall 2013 36 4.7 

EPICS- Service Learning 
Project 

3 Purdue Co-
advisor 

Undergraduate Spring 2012 12 4.9 

 

Service to Department, College, and University 

Texas A&M University 

Committee for Creating New Ph.D. Track                                                                       Fall 2021-Summer 2022 

Faculty Search Committee                                                                                                   Fall 2021-Spring 2022 

Committee for Defining Metrics for Research Active Faculty                                             Spring 2019-Present 

Committee on Practice, Management and Professionalism in BS-CVEN Curriculum      Spring 2018 

Florida International University  

Member of Leadership Committee, Sea-Level Rise Solutions Center 2015–2016 

 

Leadership, Professional Service, and Community Engagement 

Panel/Proposal Reviewer 

▪ Panel Fellow, NSF CMMI Game Changer Academies  2021 - Present 

▪ National Science Foundation (2014, 2015, 2017-2020)  Dates withheld for confidentiality 

▪ Department of Energy (2020)  Dates withheld for confidentiality 

▪ NWO - the Dutch Research Council (2020) 

▪ National Research and Development Agency (ANID) of the Ministry of Science, Technology, 

Knowledge and Innovation of Chile 

▪ South Plains Transportation Center Dates withheld for confidentiality 
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Editorship of Journal and Other Publications 

Member of Editorial Team,  

ASCE Journal of Management in Engineering 2014– Present 

 ASCE Journal of Infrastructure Systems 2019– Present 

 ASCE Natural Hazards review 2022-Present 

 Nature Scientific report 2021-Present 

Journal Reviewer 

Computer-Aided Civil and Infrastructure Engineering 2018–Present 

ASCE Natural Hazard Review 2015–Present 

Elsevier Transportation Research Part A 2015–Present  

ASCE Journal of Computing in Civil Engineering 2015–Present 

ASCE Journal of Construction Engineering and Management 2010–Present 

ASCE Journal of Infrastructure Systems 2013–Present 

IEEE Systems Journal 2012–Present 

Journal of Automation in Construction 2014–Present 

ASCE Journal of Management in Engineering 2012–Present 

ASCE Journal of Computing in Civil Eng. 2015–Present 

Professional and Research Societies 

Member, Infrastructure Resilience Division of American Society of Civil Engineers (ASCE) 

Academic Advisor, CII MLS Sector (2018-2020) 

Member, American Society of Civil Engineers (ASCE) 

Member, ASCE Infrastructure Resilience Division (IRD) 

Member, CII Power, Utility, and Infrastructure Committee (2017-2020) 

Vice-Chair, CII Annual Conference Poster Session Subcommittee (2014-2016) 

Member, ASCE Construction Research Council (CRC) 

Member, Academic Committee, Construction Industry Institute (CII) (2013-2016) 

Member, Virtual Design and Construction/Civil Integrated Management Sub-Committee of TRB 

Member, ASCE Visualization, Information Modeling, and Simulation (VIMS) Committee 

Member, ASCE Data Sensing and Analytics (DSA) Committee 

Member, ASCE Digital Project Delivery Committee 

Conference Organizing 

Member, Technical Committee, ASCE the San Fernando                         

Earthquake Conference – 50 years of Lifeline Engineering February 7-11, 2022 

Member, Technical Program Committee,  

ASCE Computing in Civil Engineering,  June 25–27, 2017 

Member, Technical Program Committee, ASCE CRC 2016 May 31–June 2, 2016 

Member, Technical Program Committee, CONVR 2015 October 5–7, 2015 

Member, Review Program Committee, ASCE IWCCE 2015 June 21–23, 2015 

Member, Technical Program Committee, IEEE SysCon 2015 April 13–16, 2015 

Member, Ph.D. Track Organizing Sub-Committee, FIATECH 2015 April 13–16, 2015 

Session Chair, Construction Research Congress 2014 May 19–21, 2014 

Program Committee, Construction Research Congress 2014 May 19–21, 2014 
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Organizing Committee, FIU-MIT Transp. Infrastructure  

Sustainability Summit  October 29, 2013 

Session Chair, Simulation Session, INFORMS 2013 October 6–9, 2013 

Assistant Track Coordinator, Construction  

Research Congress 2012 May 21–23, 2012 

Assistant Track Coordinator, Construction Engineering and  

Management Global Leadership Forum  May 21–23, 2012 May 21–23, 2012 

Assistant Track Coordinator, Construction Engineering  

and Management Global Leadership Forum March 20–22, 2012 

Conference Reviewer  

Construction research Congress 2020 March 8-10, 2020 

Construction research Congress 2016 May 1–June 2, 2016 

ASCE Computing in Civil Engineering Workshop June–23, 2015 

IEEE SysCon 2015 April 13–16, 2015 

Winter Simulation Conference 2014 December 7–10, 2014 

Transportation Research Board Annual Meeting 2014 January 12–16, 2014 

Construction Research Congress 2014 May 19–21, 2014 

Transportation Research Board Annual Meeting 2013  January 13–16, 2013 

Construction Research Congress 2012  May 21–23, 2012 

CSCE 3rd International/9th Construction Conference June 14–17, 2011 

CIB W099 2011 Conference August 24–26, 2011 

Engineering Project Organization Conference (EPOC 2010) November 4–6, 2010 
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TEACHING STATEMENT 

 

Teaching Philosophy 

I am committed to educating students to become engineers who will be strong in technical and analytical 

thinking, effective in communication, cooperative in teamwork, and reliable in community service. My 

teaching style is flexible and driven by the diverse learning styles of my students, the needs of the 

profession, and the priorities of the global community. My teaching philosophy can be summarized as 

follows: teaching and mentoring should release the untapped potential of my students and open doors to 

them for lifelong opportunities and inspiration.   

Approach to Effective Teaching  

I consider critical thinking, real-world problem-solving, social commitment, effective communication, 

global team building, leadership, and empathic skills to be significant capabilities that students should 

develop in addition to technical competence in their field of study. Unfortunately, the traditional lecture-

based pedagogy of engineering education has failed to efficiently promote these skills for training a “new 

kind of engineer”, as advocated by the National Academy of Engineering.  

I employ three strategies to develop these skills in my students: (i) adopt learner-oriented and project-based 

learning methods; (ii) integrate my teaching with my research; and (iii) adopt innovative pedagogical 

models. I believe that learner-oriented teaching promotes learning that is both purposeful and lasting. As 

an instructor, it is my responsibility to know who my learners are, what learning styles they have, and what 

they want to achieve so that I can tailor a curriculum that fits their learning style/needs.   

I embrace collaborative, case-based learning, along with other interactive learning activities, because these 

best stimulate critical thinking and cooperative problem-solving, and lay the groundwork for life-long 

collaborative practices. To attain this objective, I design problems as a part of each lecture and assign case 

study assignments and course projects in which my students work in groups and help each other to solve 

the problems. In addition, I continually collaborate with industry professionals to connect the classroom 

concepts with real world applications. Inviting industry speakers for guest lectures and using case studies 

are examples of different methods that I have utilized to sustain student motivation and interest in learning 

the subject matter. For example, in CVEN-668 (Fall 2016-2021), I invited guest industry speakers to talk 

about the real-world aspects of project planning theories and methods, which students had previously 

discussed in class. In addition, I used the Construction Industry Institute (CII) materials in my course to 

expose the students to best practices in the industry. I have used two case studies (similar to real-world 

projects) as assignments for the students to apply the concepts and methods covered in the course. My 

dedication to integrating real-world knowledge and examples into my teaching activities has resulted in my 

receiving the Outstanding Professor Award from CII. 

Integrating teaching with research provides students with the opportunity to develop their skills in problem 

solving and critical thinking. In particular, my graduate course Construction Engineering Systems (CVEN 

641) is tailored to integrate teaching with my research interests. Since I started teaching CVEN-641 at Texas 

A&M, I have made major changes in the course content by shifting the focus to system thinking and model-

based learning pedagogies. I added three new modules to the course, focusing on: (1) complex systems 

approach to infrastructure project analysis; (2) modeling and design of construction operations; and (3) 

network modeling and analysis of project organizations. In these modules, students learn about employing 

the principles of systems thinking in analyzing complex processes and interdependencies in infrastructure 

projects and systems. In addition, students learn different modeling and simulation methods, such as 

discrete-event simulation and dynamic network modeling. My approach to teaching effectiveness has led 

me to consistently receive excellent teaching evaluations from my students for all my classes. 

For undergraduate students, I use a Vertically Integrated Project (VIP) approach to incorporate research 

into undergraduate learning. Since August 2017, I have been advising an interdisciplinary 

AggiE_Challenge team composed of students from Civil Engineering, Computer Science, and Industrial 
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and Systems Engineering in a project related to development of a system for community resilience to 

disasters. In 2019, My AggiE_Challenge team was selected to represent TAMU in the 2019 NAE’s Global 

Grand Challenges Summit Competition. This collaborative team-based context provides an environment in 

which the members learn professional skills and the application of engineering knowledge and theories, as 

well as experience working in interdisciplinary teams in addressing societal challenges. In addition, the VIP 

approach also facilitates recruitment and retention in graduate studies. Many of the undergraduate students 

involved in our VIP project have continued on to graduate studies.  

Engineering Education and Pedagogical Research 

I continually refine and enhance my teaching skills and learn new pedagogical approaches by attending 

workshops related to teaching excellence. I am also interested in improving the use of innovative 

pedagogies in civil engineering education. I recently concluded a NSF-funded project (my role: Co-PI) to 

examine the use of immersive technologies in team-based learning environments. I have also co-authored 

multiple journal and conference publications regrading innovative pedagogies (such as service learning) in 

civil engineering education. My current interest in engineering education focuses on integrating empathy 

and compassion with human-centric engineering design. The notion of sustainability and resilience has 

been changing the focus for engineering and has promoted the search for solutions tailored to address the 

needs of communities across generations. I know of no other pedagogical framework that can emphasize 

human-centered engineering more than empathic learning. I am currently investigating a pedagogical model 

for empathic learning as part of my NSF CAREER Award and plan to extend my work in this area through 

pursuing educational grants. 

Teaching Interests 

My academic and industry experiences enable me to teach a variety of courses related to civil engineering 

and infrastructure systems at both the undergraduate and graduate levels. In addition to standard 

undergraduate and graduate courses in infrastructure engineering, civil systems, and project management, 

I would be interested in developing new courses that parallels my research interests. One course would be 

entitled Complex Modeling of Urban Systems and would concentrate on problems, theories, and research 

tools for complex urban infrastructure modeling. Students will learn the fundamentals of complex systems 

theories, infrastructure interdependencies, resilience engineering, infrastructure adaptation, dynamic and 

probabilistic network modeling, game theory, and agent-based modeling. Another course would be Disaster 

Informatics & Urban Data Science and would focus on analytical tools for multi-modal data sensing and 

analytics for urban mapping and situational awareness during disasters. Students will learn about different 

data modalities (such as social media and digital trace data), as well as urban informatics and analytics 

techniques (such as machine learning, topic modeling, network embedding, and complex network 

modeling) for important disaster management and risk reduction tasks.    

Mentoring and Supervising Experience 

My research mentoring approach is guided by mutual respect, effective communication, constructive 

feedback, and professionalism. I greatly value undergraduate research experience and have been actively 

recruiting undergraduate students. I currently advise three post-doctoral researchers, twelve Ph.D. students, 

eight master-level (MS/ME) students, and six funded undergraduate researchers. In addition, I have 

graduated six Ph.D. students so far. My former Ph.D. students and post-docs have been hired in tenure-

track faculty positions in the U.S. My graduate students have been awarded best paper and poster awards 

at ASCE and other major conferences. Engagement of undergraduate students in funded research positions 

has enabled me to ignite their interest in pursuing graduate degrees. More than 50% of my undergraduate 

research students have continued to pursue graduate degrees. I greatly value undergraduate research 

experience and have been actively recruiting undergraduate students into my research projects. My research 

experience exposes my students to current scientific research and gives them the opportunity to effectively 

develop critical thinking, communication, and leadership skills. Diversity is a core value in my research 

group. I have been actively recruiting students from underrepresented populations in engineering and 

science into my research group. 
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RESEARCH STATEMENT 
Overview of Research Focus 

My long-term research goal is to improve resilience, sustainability, and equity in infrastructure systems through data-driven 
and equitable approaches. My research program is a response to a growing concern in the U.S., as well as global level in 
facing compounding climate hazards and other urban stressors and their societal and economic impacts. In my research 
program, I employ interdisciplinary methods and theoretical frameworks at the intersection of the fields of civil 
infrastructure, complex systems, and data science/AI to investigate complex phenomena in the human-disasters-built 
environment nexus. Specifically, I utilize heterogeneous community-scale big datasets related to physical infrastructure 
(e.g., flood sensors data, road network topology, traffic data) and human activities and interactions with infrastructure (e.g., 
location-based, social media, and digital trace data) in creating advanced computational algorithms and machine 
learning/deep learning models to assess, characterize, understand, and predict various complex phenomena such as 
resilience and recovery of interdependent infrastructure networks, social equality in risk impacts and access to critical 
facilities, human mobility, segregation and social connectedness in urban structures, and human collective sense-making 
and protective actions in response to hazards. Fundamental research and advanced computational models related to these 
complex phenomena are essential to move us closer to integrated urban/community design for improving resilience and 
sustainability in a smarter and more equitable fashion. In the following section, I further explain the main discovery areas 
in my interdisciplinary research program, as well as my community engagement activities for research-to-practice transition. 

 
Current Interdisciplinary Research Program 
Since I joined the Zachry Department of Civil and Environmental Engineering at TAMU in 2016, I have established a 
strong externally-funded interdisciplinary research program focusing on urban resilience and AI and have built synergistic 
collaborations across various disciplines. I was promoted to Associate Professor with Tenure in 2020. Since then, I 
revamped my research lab, the UrbanResilience.AI Lab, to coalesce innovative data-driven methods and computational 
models for understanding and improving infrastructure resilience. My research program is strongly funded by diverse 
sponsors such as NSF, National Academies’ Gulf Research Program, TxDOT, CII, and AWS. Since my promotion to an 
Associate Professor in 2020, my research program has grown (with annual total research expenditures of $711K, $911K, 
$907K in 2020, 2021, and 2022, respectively). My research lab has produced more than 180 journal papers (145 published 
and 33 under review). For the past two years, I have been listed in the Stanford/Elsevier list of top 2% scholars. This level 
of research productivity has enabled my research program to advance convergence research in four new interdisciplinary and 
interrelated discovery areas.  

In the first discovery area (Resilience of Interdependent Infrastructure Networks), my research efforts have 
established new theoretical and computational modeling frameworks for understanding the structure and dynamics of 
human and physical networks that influence resilience in communities. In this discovery area, my research students and I 
harness various heterogeneous datasets to construct computational models of spatio-temporal networks (such as physical 
infrastructure networks, mobility networks, network of facilities) embedded in communities. My research in this area is 
supported through multiple NSF grants including my NSF CRISP 2.0 project. In this project, I lead an interdisciplinary 
research team from three different colleges (Engineering, Urban Planning, and Public Policy). My investigations of network 
resilience and recovery has led to fundamental insights and new methods for understanding, analyzing, and predicting 
vulnerability, failure cascades and collective recovery in interdependent infrastructure systems and processes. For instance, 
through examining topological properties, sub-graph motifs, and dynamical attributes in physical infrastructure, our work 
has revealed important network diffusion and percolation processes that contribute to vulnerability, spread of failures, and 
multi-stage recovery in urban networks during disasters.    

In the second discovery area (Equitable and Human-Centric Resilience), my interdisciplinary research efforts aim 
at advancing the understanding of the societal dimensions of infrastructure resilience. My work in this area has resulted in 
new theoretical frameworks and human-centric computational models that advance the standard model of infrastructure 
resilience, thus enabling a paradigm shift in research and practice by changing the focus from “systems” to “people.” Also, 
new complex system models are created to capture and simulate the dynamic interactions in populations-infrastructure-
hazards nexus in resilience assessments. Accordingly, my work in this area has investigated multiple phenomena such as 
urban segregation, inequality of access to facilities, and digital divide in communities in the context of crises to reveal the 
underlying mechanisms affecting disparities in risk exposures and protective actions. These fundamental investigations 
provide new models and insights for promoting equitable resilience in communities. My research in this interdisciplinary 
area has been supported by a NSF CAREER Award, NSF Analytics for Equity, and a NOAA Sea Grant projects.  

In the third discovery area (Urban Artificial Intelligence for Integrated Urban Design), my work focuses on 
harnessing big data and artificial intelligence to better understand, model, and analyze complex interactions among 
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populations and built environment in cities/communities. In this discovery area, my research students and I utilize various 
heterogeneous big datasets to construct computational models to characterize and predict various emergent and complex 
urban phenomena such as human mobility, facility distribution, spatial spillover effects, and public health risks. Such data-
driven and network-centric approach is essential for integrated urban design in order to plan for city growth while 
proactively considering effects to the environment and social inequality, as well as resilience to crises. These research 
activities are sponsored by different grants such as an Early-Career Research Fellowship from the Gulf Research Program 
of the National Academies of Engineering, Sciences, and Medicine, an AI for Health Grant from Microsoft Azure, and 
multiple NSF grants. I have also established partnerships with various technology organizations such as Waze Connected 
Citizen Program, INRIX, Meta Data for Good, and Spectus to gather fine-grained data related to urban fluctuations and 
digital traces of population dynamics in creation of computational models to inform integrated urban design for sustainable 
and resilient development.  

In the fourth discovery area (Disaster Data Science for Smart Resilience), my research activities are geared towards 
advancing the technologies for intelligent disaster management and emergency response to help residents, civilian 
volunteers, and emergency responders better cope with disasters. The fields of urban resilience and data science/artificial 
intelligence are on a collision course giving rise to the interdisciplinary field of smart resilience. My work in the area of 
smart resilience is focusing on augmenting situational awareness using big data and artificial intelligence solutions. My lab’s 
investigations have created novel computational models and algorithms such as spatio-temporal graph deep learning, 
network embedding, and natural language processing models to analyze community-scale big data for predictive flood risk 
monitoring and now-casting, rapid impact assessment, infrastructure network failure predictions, and proactive response 
and recovery monitoring. While addressing technical challenges in creating AI-based models to promote smart resilience, 
my work has a particular focus on responsible AI practices to address issues of data bias, model fairness, and explainability 
of results. These research activities are sponsored by different projects such as a $1 million X-Grant project, two NSF 
projects, and an AWS Machine Learning Award, and a grant from Microsoft AI for Good.  

The outcomes of my research in these four interrelated discovery areas promise significant societal benefits by providing 
interdisciplinary, science-based building blocks which communities could methodically adapt to in becoming more resilient 
to disasters. So far, the outcomes of my research has led to multiple internal and external merit-based awards and 
recognitions, as well as publications in highly-regarded civil engineering and interdisciplinary systems and disaster journals. 
Due to the interdisciplinary and boundary-spanning nature of my research, I have established collaborative relationships 
with well-known researchers in civil engineering, computer science, and social sciences across the U.S. and internationally. 
My research has attracted a lot of attention from industrial collaborators and stakeholders. For example, my research on 
smart resilience and urban intelligence is strongly supported by leading companies such as Waze, Meta, INRIX, Cuebiq, 
Microsoft, and AWS in terms of funding, datasets, as well as computational resources. I have been invited for presentation 
and panel participation in multiple urban resilience forums and workshops in the U.S., U.K., Netherlands, and China. In 
addition, the findings of my research efforts have received broad coverage from media, such as Los Angeles Times, 
Houston Chronicle, Public Radio International, the Texas Standard, US News. 

I also have made efforts to operationalize my research results for the civil engineering community. I recently established a 
startup (called Resilitix) to commercialize the research outcomes in my lab. The main technology currently being 
commercialized is an AI-empowered Digital Twin for Disaster Resilience Analytics. Also, based on my research, I have 
made recommendations to various state and local agencies that has led to actionable results. Texas Department of 
Transportation (TxDOT) is promoting the use of the network-level vulnerability assessment framework and decision 
support tool that my group created to systematically incorporate resilience in transportation infrastructure planning and 
project development. In fact, the methods and measures created in my work are the foundation of the ongoing State-wide 
transportation resilience plan in TxDOT. Also, I worked with the World Bank’s Disaster Risk Reduction Group to employ 
my research outcomes for estimation of road network vulnerability in Haiti and Columbia. The probabilistic network 
resilience analysis method created by my work was the key component in evaluation of a $50M climate resilience 
investment by the World Bank in Haiti’s road infrastructure.  

My interdisciplinary research program fits well with the vision and priorities of the Lyles School of Civil Engineering 
(focusing on Engineering for Humanity). I also expect excellent opportunities for campus-wide collaborations at the 
intersection of AI, Climate Resilience, and Equitable Infrastructure. So far, I have established a nationally-recognized 
interdisciplinary research program with strong external support. In collaboration with various interdisciplinary researchers 
at Purdue, my goal for the next several years will be to establish a globally-recognized hub in the area of urban resilience 
and artificial intelligence. 
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Abstract
Infrastructure service disruptions impact households in an affected commu-
nity disproportionally. To enable integrating social equity considerations in
infrastructure resilience assessments, this study created a new computational
multi-agent simulation model, which enables integrated assessment of hazard,
infrastructure system, and household elements and their interactions. With a
focus on hurricane-induced power outages, themodel consists of three elements:
(1) the hazard component simulates exposure of the community to a hurricane
with varying intensity levels; (2) the physical infrastructure component sim-
ulates the power network and its probabilistic failures and restoration under
different hazard scenarios; and (3) the households component captures the
dynamic processes related to preparation, information-seeking, and response
actions of households facing hurricane-induced power outages. We used empir-
ical data from household surveys from three hurricanes (Harvey, Florence, and
Michael) in conjunction with theoretical decision-making models to abstract
and simulate the underlying mechanisms affecting the experienced hardship of
households when facing power outages. The multi-agent simulation model was
then tested in the context of Harris County, Texas, and verified and validated
using empirical results from Hurricane Harvey in 2017. Then, the model was
used to examine the effects of different factors—such as forewarning durations,
social network types, and restoration and resource allocation strategies—on
reducing the societal impacts of service disruptions in an equitable manner. The
results show that improving the restoration prioritization strategy to focus on
vulnerable populations is an effective approach, especially during high-intensity
events, to enhance equitable resilience. The results show the capability of
the proposed computational model for capturing the dynamic and complex
interactions in the nexus of households, hazards, and infrastructure systems to
better integrate human-centric aspects in resilience planning and assessment of
infrastructure systems in disasters. Hence, the proposed model and its results
could provide a new tool for infrastructure managers and operators, as well as
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for disaster managers, in devising hazard mitigation and response strategies to
reduce the societal impacts of power outages in an equitable manner.

1 INTRODUCTION

The objective of this study is to create a computational
multi-agent simulation framework for capturing dynamic
processes and interactions in the nexus of hazards, house-
holds, and infrastructure systems in order to better inte-
grate social impacts and equity considerations in infras-
tructure resilience assessments. The societal impacts of
prolonged disruptions in infrastructure systems are the
emergent properties arising from dynamic interactions in
complex socio-physical systems (Dai et al., 2020; Guidotti
et al., 2019; Rasoulkhani et al., 2020; Williams et al., 2020).
Therefore, there is a need for novel computational models
to capture and model the dynamic processes and interac-
tions between the complex systems of humans, hazards,
and infrastructure systems. With a focus on prolonged
power outages during hurricanes, this study proposes a
novel computational simulation modeling framework for
integrated analysis of hazard, household, and infrastruc-
ture systems to examine the societal impacts on infrastruc-
ture service disruptions. Examining the impacts of power
outages on the households and assessing the effect of dif-
ferent mitigation strategies on the social groups is a fun-
damental step toward equitable resilience assessment in
infrastructure systems.
Existing infrastructure resilience assessment models

focus primarily on physical infrastructure but fall short
of fully considering interactions between households and
hazards and infrastructure (Mostafavi, 2018; Mostafavi
& Ganapati, 2019). Computational frameworks properly
model the failure and restoration of infrastructure systems
in the face of disturbances to the systems (Guikema et al.,
2014; Ouyang & Dueñas-Osorio, 2014; Ouyang & Fang,
2017; Tomar & Burton, 2021; Winkler et al., 2010). Several
studies have devised ways to assess the resilience of
various infrastructure systems (Batouli & Mostafavi, 2018;
Gori et al., 2020; Guidotti et al., 2019; Hassan &Mahmoud,
2021; Ma et al., 2019). Particularly related to power infras-
tructure systems, there are studies that have developed
computational models for determining the system’s reli-
ability when exposed to potential hazards with respect to
topological and inherent vulnerabilities (Figuero-candia
et al., 2018; Holmgren, 2006; Mensah & Dueñas-Osorio,
2016; Outages et al., 2018; Ouyang & Zhao, 2014; Reed
et al., 2010). Furthermore, there are frameworks that
enable modeling and optimizing the restoration of dam-
aged infrastructure systems (Sharma et al., 2020; Sun &

Davison, 2019; Xu et al., 2019). While these studies inform
about the resilience and reliability of physical infrastruc-
ture systems (such as power networks and transportation
systems), shed light on the interactions between hazards
and infrastructure, and include modeling the restoration
process of utilities, the current body of literature lacks
integrated computational models and frameworks that
consider households’ interactions with infrastructure
systems vis-à-vis the probabilistic impacts of hazards.
Recent studies highlight the need for accounting for

human interaction with infrastructure systems (Simpson
et al., 2020). Households do not experience the adverse
impacts of natural hazards and damage to infrastructure
systems equally (Jones & Tanner, 2017). Integrating
household-level attributes with infrastructure systems
is essential in achieving resilience goals (Ghanem et al.,
2016). Household-level attributes (e.g., previous hazard
experience and socio-demographic attributes) and protec-
tive actions (e.g., preparedness and information-seeking)
and their integration with hazard scenarios, as well as con-
sideration of probabilistic physical infrastructure failures,
service disruption duration, and restoration possibilities,
are essential components for examining societal impacts
of infrastructure service disruptions. Recent studies have
shown a significant disparity in the societal impacts of
infrastructure service disruptions (Chakalian et al., 2019;
Coleman et al., 2019; Esmalian et al., 2020b; Mitsova
et al., 2018, 2021). These studies unveil risk disparities
and suggest that households are heterogeneous entities as
evidenced by varying levels of tolerance for service disrup-
tions. Particularly, shelter-in-place households experience
great hardship from infrastructure service disruptions.
Thus, there is a need for equitable resilience assessment
for infrastructure systems. This equitable resilience assess-
ment includes: (1) examining the disproportionate impact
that disruptions in infrastructure systems have on the
households and (2) assessing to what extent the mitigation
strategies for reducing the societal risks would benefit
different social subgroups. Computational frameworks
are needed to capture households’ interactions with
infrastructure systems. A household’s decisions related to
protective actions are not only influenced by its attributes,
such as socio-demographic characteristics, but they are
also highly influenced by perceived risk from the hazard
(Lindell & Hwang, 2008), information-seeking process
(Morss et al., 2016), and their social network’s influence
(Haer et al., 2016; Kashani et al., 2019). Capturing these
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dynamic processes and decisions is essential for modeling
and understanding the societal impacts of infrastructure
service disruptions. In addition, a households’ hardship
experiences are influenced largely by the duration of
service disruptions, which is the result of physical infras-
tructure failures and the utilities’ decisions regarding
service restorations. Hence, the societal impacts of infras-
tructure service disruptions emerge from the complex
interactions among various processes in the hazard,
households, and infrastructure systems nexus. The cur-
rent literature, however, lacks computational models that
are capable of capturing and modeling the complex inter-
actions in this nexus. Consideration of societal impacts
and disparities in infrastructure resilience assessments
requires novel integrated complex modeling approaches
(Mostafavi, 2018). Integrated complex modeling enables
capturing various processes and mechanisms related
to physical infrastructure and human decision-making
behaviors and their interactions using computational
simulation to identify nonlinear and emergent behaviors
(Reilly et al., 2017). Integrated complex modeling enables
evaluating the combined effects of hazard characteris-
tics, human decision-making behaviors and protective
actions, and physical infrastructure network properties
and restoration strategies. Such combined evaluation of
various processes across different systems is necessary to
capture emergent phenomena in civil infrastructure and
urban systems, such as societal impacts and disparities
due to infrastructure service disruptions.
To address this gap, this study proposes and tests a

novel computational multi-agent simulation framework
including three components: (1) the hazard component
that simulates a hurricane with different intensities; (2)
the physical infrastructure component that simulates
the dynamic process of failures and restoration; and (3)
the households component that captures the dynamic
mechanisms related to households behavior facing power
outages. The proposed modeling framework was tested
and implemented for the examination of strategies to
reduce the societal impacts of disruptions of power
systems. The model bridges the gap in the abstraction
of behaviors of system components and provides a com-
putational implementation of households’ interaction
with infrastructure systems and probabilistic simulation
of hazards and failure scenarios to enable examining
equitable ways for reducing the societal risks.
Using the proposed multi-agent computational simula-

tion framework, we examined strategies to reduce the soci-
etal impacts of power outages and investigated important
questions such as (1)What are the proper strategies formit-
igating the societal risks due to prolonged power outages?
(2) To what extent are the hazard mitigation and response
strategies equitable? The model enables exploratory anal-

ysis of the pathways that determine different levels of soci-
etal impacts. Themodel also enables assessing the extent to
which different strategies for reducing the societal impacts
are equitable (Williams et al., 2020). Computational frame-
works and decision-making tools are needed for resilient
and sustainable infrastructure systems (Rafiei & Adeli,
2016; Wang & Adeli, 2013; Zavadskas et al., 2018). The
computational modeling framework would help disaster
managers, infrastructure managers, and utility operators
in making informed decisions that consider the specific
needs and societal risks in their resilience assessments.
The remainder of the paper unfolds as follows. Section 2

outlines the multi-agent simulation framework, including
the detailed description of model development and the
description of agents. Section 3 presents the model imple-
mentation andmodel testing; furthermore, the description
of model outputs and experimentation are presented in
this section. Section 4 presents the results for equitable
resilience assessment of power networks and discusses the
effectiveness of different strategies for mitigating societal
risks. Last, Section 5 discusses the contribution and major
findings of the research.

2 MULTI-AGENT SIMULATION
FRAMEWORK

Multi-agent simulation modeling is a proven approach
for complex modeling and analysis of coupled human–
infrastructure systems (Eid & El-adaway, 2018; Nejat
& Damnjanovic, 2012; Rasoulkhani et al., 2020; Reilly
et al., 2017; Terzi et al., 2019). The multi-agent simulation
model enables the consideration of dynamic processes and
complex interactions among different entities (Gutierrez
Soto & Adeli, 2017; Haer et al., 2017; Watts et al., 2019;
Widener et al., 2013). Furthermore,multi-agent simulation
approach has the advantage of enabling the consideration
of interrelation within agents and their heterogeneity
(Morss et al., 2017; Navarrete Gutiérrez et al., 2017). There-
fore, multi-agent simulation provides a powerful approach
for modeling the nexus of hazard–human–infrastructure.
This approach also enables better incorporating equity in
both impact assessment and resource allocations (Bills &
Walker, 2017). For example, Gurram et al. (2019) developed
an agent-based model to examine the exposure inequality
related to traffic air pollution. Chen et al. (2019) created
a computational framework for examining the equity
in access to bike-sharing systems. Williams et al. (2020)
developed an agent-based model to assess the equity in
the resilience enhancement plans for smallholder farming
systems. In the current study, we create a multi-agent
simulation model to examine the equity in the impact
and recovery of infrastructure systems, in particular
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power outages, in the context of natural hazards. In the
context of this study, the hazard component would cause
damage to the infrastructure systems and also influence
the preparation time for households. The infrastructure
system would be damaged due to the impacts of the
natural hazard. The system’s physical vulnerability and
restoration decisions affect the duration of service outages.
The experienced hardship due to service disruptions by
individual households is a function of their susceptibility
and protective actions. The susceptibility and protective
actions of households are influenced by various factors
(e.g., income and race) and processes and shape the level
of tolerance of households to durations of service outages.
Households perceive threats from the hazard, inform their
social network, and make decisions about their protective
actions (such as preparedness). Households in the commu-
nity have unique attributes and interact with each other to
inform their decision to take protective actions depending
on their capabilities, perception of risks, and their immedi-
ate social network’s actions. Thus, the dynamic process of
information-seeking behavior and decision-making about
the protective actions are integral aspects of determining
the level of tolerance to power outages. In this study,
we used the household service gap model (Esmalian
et al., 2021) to characterize societal risks at the household
level. The model examines service disruptions as threats,
households’ tolerance as susceptibility, and experienced
hardship as an indicator for the realized impacts of risk.
When the duration of service outages exceeds the toler-
ance level of households, they would experience hardship
(which is the indicator of societal impact in this study).

2.1 Model overview

Figure 1 depicts the underlyingmechanisms and processes
in the hazard–households–infrastructure nexus captured
in the proposed framework. In this framework, each of the
underlying mechanisms leading to the societal impacts
(experienced hardship) could be captured as dynamic
processes. The integration of these processes enables
simulating the extent of infrastructure failures, tolerance
level of households, and service restoration duration,
and hence determines the proportion of households in
the community that experience hardship under different
scenarios of hazard intensity and response/restoration
strategies. The detailed descriptions of these interactions
are discussed in the following sections.
The hazard component simulates the intensity of haz-

ard and exposure of components of infrastructure systems.
The infrastructure component captures the physical vul-
nerability and network topology of power infrastructure
systems. The extent of damage to the infrastructure sys-

tem depends on the components’ fragility and the net-
work topology. The more fragile the systems’ components,
the greater the probability of severe damage. Furthermore,
network topology influences the system’s physical vulner-
ability due to the cascading failure and connectivity loss in
the network. The extent of damage and the restoration pro-
cess of the utility determines the duration of a service out-
age. The duration of power service outages affects the hard-
ship experienced by households (Miles & Chang, 2011).
The household component captures the dynamic pro-

cesses and interactions influencing the level of toler-
ance of households to service outages. In particular, this
research focused on the shelter-in-place-households, as
these households are vulnerable to the impacts of power
outages. The rapidity of the unfolding of a hazard event
affects how far in advance households are informed about
the upcominghazard event (i.e., hurricane), allowing them
to take adequate protective actions. Households interact
with each other to share information about the hurricane
and form perceptions about the potential duration of the
outages based on the information they receive and char-
acteristics specific to the household, such as prior hazard
experience.Householdsmake decisions about their protec-
tive action to reduce the impacts of service losses. Their
decisions are not solely influenced by their risk perception
and socio-demographic attributes; they are also influenced
by other households’ decisions. A household is more likely
to prepare for an upcoming hurricane if other households
in their social network take protective actions. Hence, the
model captures the dynamic process related to the house-
holds’ information search behavior, risk perception, and
decisions related to preparedness actions that determine
their tolerance. The experienced hardship of households
would be determined by comparing their tolerance with
their experienced duration of disruptions. Themodel could
then simulate the hardship profile of the affected com-
munities to examine societal impacts of varying hurricane
intensities based on the physical condition of the power
network, restoration activities, and households’ protective
actions to better tolerate the disruptions.

2.2 Hazard component

The hazard component of the proposed model considers
the failure of the power network due to damage by severe
windstorms to components not designed to withstand
strong winds. It is important to mention that the damages
to components of the power network are not limited to
those induced by intense winds; other risks such as debris
flows and potential flooding could also cause damages
to power networks. However, wind-induced damages are
the most prevalent causes of damage during hurricanes as
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F IGURE 1 Human–hazard–infrastructure nexus framework for equitable resilience assessment of power systems

suggested by a review of the literature (Dunn et al., 2018;
Panteli et al., 2017).
The hazard component simulates different hurricane

categories and also includes the historical wind speed of
Hurricane Ike and Hurricane Harvey in Harris County.
The wind speed model is obtained from the HAZUS-MH
wind model (Vickery et al., 2006). The wind model proba-
bilistically generates the full profile of wind speed during
the duration of a hurricane event with various return
periods. The generated hurricane scenarios are grouped
based on the maximum gust wind speed in the county.
This model generates wind speed values for each census
tract across the study area. Then, the generated hurricane
scenarios are used to simulate the hurricane hazard in
the multi-agent model. The wind gust speeds for different
coordinates are implemented for the fragility analysis of
the power network.

2.3 Power network agent

2.3.1 Network structure

The hurricane wind model poses stress on the power
network and could cause multiple damages to the power
network. The power network is a connected grid consisting

of elements such as generators, substations, transmission
lines, poles, conductors, and circuits. The data for mod-
eling actual power networks within an area are either
unavailable or difficult to access due to security issues.
Therefore, the power network in this study is modeled by
using a synthetic power network introduced by Birchfield
et al. (2017) and Gegner et al. (2016). The implemented
synthetic power network is a near-real representation
of the power network in the study area, which matches
the topological characteristics of the actual network in
Harris County. The synthetic power network determines
the geographic coordinates of the synthetized generations
and loading substations based on the required loads and
the publicly available power plant data in the study area.
Then, the substations and generators are connected by
transmission lines through a network that has structural
and topological properties of an actual network and a
converged power Alternating Current (AC) flow.
The distribution network consists of distribution poles

and conductors. The number of distribution poles is esti-
mated based on the population of each tract, assuming
each pole serves 40 customers (Ouyang & Dueñas-Osorio,
2014). In the presence of actual data, the assumed values
could be updated to provide context to the model outputs.
The poles are directly linked via a distribution line to the
distribution pole. Similarly, each distribution pole is con-
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F IGURE 2 Schematic overview of the process for modeling
the power system failure

nected to households through conductors. This methodol-
ogy enables investigating damage to the power network in
the absence of real data to model the actual system. Com-
ponents of the power network, including power genera-
tors, substations, transmission lines, the distribution net-
work, and their linkages are captured in the modeled syn-
thetic power network.
Failures in the power network occur not only due to the

direct damage to the power network components due to
wind forces, but connectivity loss and cascading failures
also cause disruptions to the network. Figure 2 shows
the overview of the failure-modeling process in a power
infrastructure network. The model includes two elements
capturing the failure of the network from its exposures to
a hurricane: (1) component damage: Failure in the power
network components, which is modeled by incorporating
fragility functions. The fragility functions help determine
the probability of damage to the network components
based on hazard intensity; (2) connectivity disruptions:
The failure of a network component may lead to a series
of consecutive connectivity losses. We used connectivity
analysis of the network tomodel such cascading failures in
the power network. The following describes the detailed
modeling approach.

2.3.2 Component damage

Fragility curves are used tomodel the failure in the compo-
nents of the power network. Fragility curves are commonly
used for modeling damages to infrastructure systems in

response to natural hazards (Winkler et al., 2010). Fragility
curves, in this model, determine the failure probability
(𝑃(𝑤)) based on the imposed wind speed. To this end,
the failure probability would be compared to a random
variable 𝑟 ∈ [0, 1] from a uniform distribution in each
iteration (Figure 2). A component, such as a power pole,
would fail if the failure probability becomes greater than
the generated random number (𝑟). In this model, we con-
sider the failure in the critical components of the power
network: substations, transmission lines, distribution
poles, and conductors. Damage to power plants by hurri-
canes, being highly unlikely, was not being considered as
structural damage (Ouyang & Dueñas-Osorio, 2014).

Substations
The damage to substation loads is modeled by imple-
menting the aggregated fragility functions developed in
HAZUS-MH 4 (FEMA, 2008). The fragility functions
provide failure probability based on the local terrain, wind
speed at the area, and the structural characteristics of
the substation. Equation (1) shows the general form of
the fragility function. In this equation, the probability of
failure (𝑃𝑓) is related to the exposed wind speed (𝑥). The
two parameters, mean (𝜇) and variance (𝜎2) are used to
define the lognormal fragility curve. The fragility curves
used for modeling damage to the substations are plotted
in Figure B4 in Appendix B:

𝑃𝑓 (𝑑𝑎𝑚𝑎𝑔𝑒|𝑤 = 𝑥) =

−∞

∫
𝑥

1√
2𝜋𝜎

exp

(
−(ln(𝑥) − 𝜇)

2

2𝜎2

)
𝑑𝑥 (1)

Transmission elements
Transmission elements include the transmission lines and
the transmission towers, which support the lines. The
length of the transmission lines is determined based on
the specific latitude and longitude of the generators and
substations loads in the synthetic network. The number of
necessary transmission towers is estimated by assuming
0.23 km between two consecutive towers. Similar to the
fragility function in Equation (1), we implemented a
lognormal fragility function for determining the (𝑃𝑓) of
the transmission towers. The implemented fragility curves
for modeling damage to the transmission tower are shown
in Figure B2 in the Appendix. Damage to transmission
towers is modeled so that towers fail independently of one
another (Panteli et al., 2017); therefore, the total failure
probability for the transmission element due to damage to
the support structure between two substations that have n
towers would be calculated using the following approach.
In Equation (2), PT(w) is the probability of failure in the
transmission element, 𝑃𝑘,𝑤 represents the probability of
failure of an individual tower between substations, and 𝑁



ESMALIAN et al. 7

is the number of required towers for supporting the lines:

𝑃𝑇 (𝑤) = 1 −

𝑁∏
𝑘=1

(
1 − 𝑃𝑘,𝑤

)
(2)

Extreme weather conditions could cause great damage
to transmission lines; thus, separate fragility curves are
used to model such damage. Following the approach
proposed by Panteli et al. (2017), a linear fragility function
(interpolated linearly), as shown in Equation (3) and
Figure B2 (Appendix B), is implemented for calculating
the probability of failure for the transmission lines.

𝑃𝐿 (𝑤) =

⎧⎪⎨⎪⎩
0.01, if 𝑤 < 𝑤critical

𝑃𝐿, if 𝑤critical < 𝑤 ≤ 𝑤collapse

1, if 𝑤 ≥ 𝑤collapse

(3)
This equation considers three conditions. First, if the

wind speed is below a certain level of “good weather
condition,” the probability of failure is small (0.01). Here,
𝑤critical is the wind speed at which the transmission lines
can sustain damage, and 𝑤collapse represents a situation
when the survival probability of the component is very
small. Then, the component’s probability of failure (𝑃𝐿)
is calculated by considering a linear relation in the inter-
mediate phase between 𝑤critical and 𝑤collapse. These wind
speed thresholds are assumed to be between 30 and 60
m/s following empirical studies (Murray & Bell, 2014;
Panteli et al., 2017). In the presence of data from utilities,
the equations and thresholds could be adjusted to reflect
the real behavior of the components; pseudo algorithms
are presented in Table A1 in Appendix A.

Distribution elements
The synthetic distribution network considers the failure of
the conductors that connect the households to the power
network and the poles that support the conductors. The
empirical damage models, developed by Quanta Tech-
nology and implemented by Quanta (2009) and Mensah
and Dueñas-Osorio (2016) are used in the absence of field
data. The fragility equation for modeling the failure to the
conductors is shown in Equation (4). This equation (also
see Figure B3) draws the relationship between the wind
speed (𝑤) and the probability of failure to the conductors
(𝑃𝐶(𝑤)) in the distribution network.

𝑃𝐶 (𝑤) = 8 × 10−12 × 𝑤5.1731 (4)

Last, the fragility function for modeling failure in
the distribution poles is implemented in the model.
Several studies have developed fragility equations for
the distribution poles depending on their material, age,

and maintenance (Salman & Li, 2016; Salman et al., 2015;
Shafieezadeh et al., 2014). The fragility equation developed
by Shafieezadeh et al. (2014) is used in this study to model
the failure in the distribution poles. An example of the
fragility curves is shown in Figure B3 in Appendix B.

2.3.3 Connectivity disruption

The failure of a component in the power network may
propagate through the network and lead to connectivity
loss (also called cascading failures; Winkler et al., 2010).
The model also considers the cascading failures due to the
interdependencies among the components of the power
network. For example, when a substation experiences
damage, if the distribution network elements connected
to the damaged substations are no longer connected to
a power generator through other network components,
these subsequent distribution networks would also be
removed from the power network (Mensah & Dueñas-
Osorio, 2016). Therefore, at each iteration of the model,
the connectivity of the subsequent network component
to a generator will be assessed. The pseudo-codes of the
developed algorithmare shown inTableA2 inAppendixA.

2.3.4 Restoration process

Restoration activity takes place after the hurricane passes
through the affected area. After the failures in the power
network are detected, the utility repairs damaged compo-
nents of the power network. The downtime of different
system elements depends on three main factors: (1) the
extent of damage to the power network, (2) the available
resources to the utility for restoring service, and (3) the
utility’s strategy for restoring the power (Duffey, 2019;
H. Liu et al., 2007). Severe hurricanes pose more danger
to the infrastructure elements and make it difficult for
the utilities to restore services. The number of crews and
the spare equipment in place also affect the restoration
time (Xu et al., 2019). Finally, the priority of restoration
activities influences the duration of outages. For example,
restoration in more populated areas may sometimes
be prioritized to meet the needs of a higher number of
affected households (H. Liu et al., 2007). The pseudo
algorithms are shown in Table A4 in Appendix A.
To determine restoration duration, the model deter-

mines the duration of the power outages by considering
the dynamic repair process (Figure 3). The process involves
multiple steps (Sharma et al., 2020). First, the priorities are
given to the power restoration in different areas to imple-
ment repair and restoration strategies. Then, for each dam-
aged element, the required resources and time to repair
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F IGURE 3 Schematic overview of the process for modeling
the restoration activity

will be calculated based on Table B1 (Appendix B). The
time to restore each element is calculated by consider-
ing a normal distribution and checking for non-negativity,
𝑁(𝜇, 𝜎), with specific mean and standard deviation (Men-
sah, 2015). The resources in this model are crews, mate-
rials, and machines. The number of teams needed for
the repair task is given in Table B1. The utility could
have a finite number of resources in place, but then these
resources could be augmented daily by assistance from
other utilities through RegionalMutual Assistance Groups
and collaborations (Edison Electric Institute, 2016). A lin-
ear relationship is assumed for the increase in repair
resources (Figure B1) based on the results of previous stud-
ies (Ouyang & Dueñas-Osorio, 2014). The model inputs
resources and initially implements 800 teams increasing
by 15 teams per hour for a week as the base case scenario.

2.3.5 Restoration strategies

Based on a review of the literature, there is no standardway
of restoring power when a severe weather event damages a
power network (Applied Technology Council, 2016). Some
utilities would prioritize the restoration of the service areas
with greater populations; however, this restoration strat-

egy might favor residents living in a larger metropolitan
area and might adversely affect people in rural areas (H.
Liu et al., 2007). Other strategies mainly focus on physical
characteristics, such as prioritizing the components with
a high criticality, such as failed substations and transmis-
sions (C. Liu et al., 2021; Ouyang & Dueñas-Osorio, 2014).
The model uses priorities assigned to the components in
the network to generate the different repair strategies.
In this study, we tested the influence of three main

strategies for restoring the power for residents, component-
based restoration, population-based restoration, and social
vulnerability-based restoration. In component-based
restoration, the model prioritizes the restoration of critical
components, such as failed substations and transmis-
sions. The critical components are those that require
more resources and serve a large number of users. After
the repair of these components, the model initiates the
repair of the damaged distribution network comprising
conductors and poles in a random sequence. Restoration
based on population and the social vulnerability index
(SVI) focuses on the prioritization of the repair of the
components, which serve areas with larger populations
or higher social vulnerability scores informed by census
data and an SVI (Flanagan et al., 2011). Depending on
the selected strategies, the ranges of service restoration
duration would vary in different areas. Therefore, in this
model, households would experience varying levels of
power outage durations due to the differences in the
restoration duration, which is a function of the extent of
damage and the utility’s restoration strategy.

2.4 Household agent

Households have varying levels of tolerance for withstand-
ing power outages. Empirical data fromhousehold surveys
collected in the aftermath of three major hurricane events
(Harvey, Florence, and Michael) together with theoretical
decision-making models were implemented to simulate
the underlying mechanisms that influence households’
tolerance. The tolerance depends on households’ decisions
about protective actions and their inherent needs for the
service (Baker, 2011; Coleman et al., 2020; Esmalian et al.,
2020b). The model includes the process through which
households know about the event and form perceptions
about the risks. Then, empirical models developed based
on the survey data used in conjunction with decision-
making processes are used to determine the probability of
a household taking protective actions. This probabilistic
characteristic of the households’ behaviors enables con-
sideration of the uncertainties regarding the individual’s
behavior in the model. Finally, the household’s hardship
status would be determined based on tolerance and the
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F IGURE 4 Schematic overview of the information seek/share
behavior

duration of outages. The pseudo algorithms are shown in
Table A3 in Appendix A.

2.4.1 Information propagation process

Two information propagation processes are considered in
this model (Figure 4). First, we modeled information-
sharing through official sources (such as mass media). In
the days before hurricane landfall, officials disseminated
information about the upcoming hurricane, which is mod-
eled by implementing a probability of receiving the infor-
mation by the households through officials (𝑃𝑜). In addi-
tion, those who receive the message might also share the
information with their immediate social network, depend-
ing on how important they perceive the risks of the hazard,
and then take protective action themselves. Hence, two
probability values of (𝑃𝑖) and (𝑃𝑛) are considered for imple-
menting the information-sharing process by households.
Those who perceive great risk from the hazard and take
protective actions (𝑃𝑖) are more likely to share informa-
tion with their social network than those who do not take
protective actions (𝑃𝑛). These probabilities are determined
using the empirical data and considering a higher value for
the probability of receiving information from the officials.

2.4.2 Household agent’s social network

Agents interact with each other and influence the deci-
sions of others through their social networks. The social

network of the agent would not only influence the infor-
mation propagation process; it would also affect other
agents’ decisions regarding protective actions (Anderson
et al., 2014; Tran, 2012). Multiple network structures—
random network, small-world (SW) network, scale-free
(SF) network, and distance-based network—characterize
how households are connected with each other. These net-
work structures are present in real-life social settings. For
example, the literature suggests that information-sharing
through online social media, which follows an SF network
structure, could expedite information propagation (Nocaj
et al., 2015; Schnettler, 2009). Therefore, we considered
multiple network structures to account for various modes
through which households could interact and share
information, and we tested the impact of such structures
on the overall impact of the hazard on the communities.
The social network would affect both the information
propagation process and the household decision-making
on the protective actions through peer effect.

2.4.3 Household agent’s risk perceptions

Household agents form a perception about the potential
duration of the power outages. We analyzed data collected
from the household surveys to determine households’
expectations of the disruptions; the summary statistics of
household survey data could be found in Esmalian et al.
(2020b).Households’ expectation of the duration of the dis-
ruption affects their decisions regarding taking protective
actions. Those with higher expectations of the disruptions
are more likely to take protective actions (Coleman et al.,
2020; Lindell & Hwang, 2008). The expected duration of
disruptions was measured by the number of days a house-
hold expected the power outages. This variable is positive
and a count data; thus, a Poisson regression model was
selected for modeling the expected duration of the outage.
Equation (5) shows how the mean value of the duration of
the expectation (𝜇) is related to the predictors through a log
link by implementing a Poisson regression model. In this
model, 𝑥𝑓 refers to the forewarning duration of the event
(measured by the number of days),𝑥𝑖 captures if the house-
holds receive the information about the hurricane (binary
variable), 𝑥𝑜 is home ownership, 𝑥𝑎 captures whether the
head of the household is elderly, 𝑥𝑚 captures if any of the
household members have a mobility/disability issue, and
𝑥𝑓𝑧 refers to if the households live in a flood zone:

𝜇 = 𝑒𝑥𝑝
[
1.74700 + 0.30471𝑙𝑜𝑔

(
𝑥𝑓 + 1

)
+ 0.12369𝑥𝑖

− 0.27720𝑥𝑜 − 0.21065𝑥𝑎 − 0.51210𝑥𝑚 − 0.28153𝑥𝑓𝑧
]
(5)
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2.4.4 Household agent’s socio-demographic
characteristics

Households’ demographic characteristics influence their
perceptions of the risk, decisions regarding the protective
actions, and consequently their tolerance for the disrup-
tions (Baker, 2011; Coleman et al., 2019; Horney, 2008).
In this model, households’ demographic characteristics
are considered by developing a sample of agents based on
publicly available census data. A population is sampled by
considering the probability of being from a specific seg-
ment of a community byusing the actual proportions in the
census data. In particular, data about income level, race,
age, education, mobility/disability conditions, and type of
housing of the households were collected. In addition, to
determine whether a household was in a flood zone, their
location was plotted against a 500-year flood map.
The demographic characteristics of households not

only influence their decisions on protective actions, but
they also affect households’ level of need for the service.
The level of need is modeled through the use of empirical
data. In the surveys, this variable is measured with an
ordered five-level Likert scale; therefore, a cumulative
logit model is developed for determining the level of need
(Equation 6). The model relates the effect of predictor
𝑥 on the log odds of response category 𝑗 or below by
coefficient 𝛽 (Agresti, 2007). This type of modeling helps
in determining the probability of 𝑌 (the level of need)
falling below a certain level (Equation 7). Then, as the
summation of each probability level (𝜋𝑗) equals 1, the
probability of each level could be determined. Appendix B
outlines the models for estimating the level of needs:

logit 𝑃 (𝑌 ≤ 𝑗) = 𝛼𝑗 + 𝛽𝑥 (6)

logit [𝑃 (𝑌 ≤ 𝑗)] = log

[
𝑃 (𝑌 ≤ 𝑗)

1 − 𝑃 (𝑌 ≤ 𝑗)

]
= log

[
𝜋1 +⋯+ 𝜋𝑗

𝜋𝑗+1 +⋯+ 𝜋𝐽

]
, 𝑗 = 1, … , 𝐽 − 1 (7)

2.4.5 Household agent’s protective action
process

Households take protective actions to reduce the impacts
of power outages in two ways. First, the general prepared-
ness behavior of households in terms of obtaining food,
water, and emergency kit supplies helps them to better
cope with the outages. Second, some households might
take further actions by purchasing a generator. We mod-
eled the protective action process of households by imple-
menting the diffusion model developed by Banerjee et al.

F IGURE 5 Schematic overview of taking protective actions by
households

(2013). As shown in Figure 5, households are first informed
about the hurricane through the information propagation
of officials or their immediate social network. Second,
an initial number of households decide to take protective
actions depending on their decisions’ probability (𝑃𝑝).
Households’ probability of taking protective actions (𝑃𝑝)
depends on the households’ personal characteristics, such
as demographic characteristics, risk perception, and peer
influence. Equation (8) shows the implemented logistic
function to model this process. Third, those who decide to
take protective actions influence their social network by
passing the information regarding their protective actions.
Fourth, the newly informed households now decide if
they want to take protective action. This process initiates
as soon as the officials detect the hurricane and ends after
(𝑓) days of forewarning:

log

(
𝑃𝑝

1 −
(
𝑃𝑝

)) = 𝑋𝑖 × 𝛽 + 𝜆 × 𝐹𝑖 (8)

In this model, 𝛽 is the vector of the coefficients that
relates the personal characteristics (𝑋𝑖) to the log-odds
ratio of the protective action decisions. 𝐹𝑖 is the fraction
of the household’s social network that had decided to take
protective actions divided by the total number of house-
hold’s social network. The unit-less parameter of 𝜆 repre-
sents the change in the log-odds ratio of protective actions
due to peer influence. A value of zero for 𝜆 describes the
case in which households make their decision indepen-
dent of their social network, while larger values of 𝜆 refer
to a situation when households affect the decision of their
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social network. The empirical models were implemented
to determine the 𝛽, and the model has been tested to
determine the range of 𝜆s. Details related to the factors
considered for developing these models are presented in
Appendix B.

2.4.6 Household agent’s protective action
process

Households have different levels of tolerance for with-
standing prolonged power outages (Esmalian et al.,
2019). This is why even a similar outage duration would
cause varying levels of hardships in different households
(Coleman et al., 2019). Households’ tolerance for power
outages is a function of their protective actions and
inherent needs for the service. Household tolerance is
determined by implementing accelerated failure time
(AFT) models, which are a type of survival analysis
approach for the time-to-event data (Dale, 1985). This type
of modeling was found to best describe the model and
to have the lowest prediction error when compared to
generalized linear models (Poisson family and negative
binomial regression) and ensemble learning methods
(random forests and boosting; Esmalian et al., 2020a).
Using AFT models, we can directly relate tolerance to
the predictors with a linear relationship as shown in
Equation (9):

log 𝜇𝑖 = 𝑥𝑇
𝑖
𝛽 + 𝜀𝑖 (9)

where 𝜇𝑖 represents the mean tolerance, 𝑥𝑇
𝑖
denotes the

vector of predictor, 𝛽 is the vector of parameters, and
𝜀𝑖 is an error term that is assumed to be independently
distributed. In this model, three main predictors were
used for determining tolerance: households’ level of need
for the service, their preparedness for the event, and if
they obtain a generator to withstand the power outages.
The protective actions of the households are determined
through a probabilistic approach outlined in the previous
sub-section. The level of need is determined based on
their socio-demographic characteristics to be considered
in calculating the tolerance level.
In the last step, the households’ experienced hardship is

determined by integrating the results from the restoration
process with households’ tolerance. Households experi-
ence different levels of the duration of disruptions and
experience hardship when the duration of the outage
exceeds their tolerance. Figure 6 presents the process for
determining the households’ experienced hardship from
service disruptions.

F IGURE 6 Schematic overview of household hardship
experience process

3 MODEL IMPLEMENTATION AND
SIMULATION EXPERIMENTS

3.1 Computational implementation

Computational representation of the proposedmulti-agent
modeling framework includes developing and implement-
ing algorithms and mathematical models to capture the
theoretical logic representing the experienced hardship of
households due to disaster-induced disruptions. The com-
putational model is created by using an object-oriented
programming platform, AnyLogic 8.3.3. Figure 7 depicts
the Unified Modeling Language diagram of the model,
which shows the class of the agents, agents’ attributes
and functions, and their relationships. A sample of 2500
households based on the demographic characteristics of
Harris County was generated and placed in the census
tracts. The sample is statistically representative of the
households in Harris County with a 95% confidence level
and a 2% margin of error. The synthetic power network
includes a total of 97 substations, 242 transmission ele-
ments, and 1433 distribution elements located in Harris
County based on latitude and longitude coordinates as
described in the power network agent section.

3.2 Verification and validation

The model is verified and validated through a systematic
and iterative process to ensure the quality and credibility
of findings. Various internal and external approaches were
conducted to verify the data, logic, and computational
algorithms in the simulation model (Bankes & Gillogly,
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F IGURE 7 Unified Modeling Language class diagram of the multi-agent simulation model

1994; Mostafavi et al., 2016; Rasoulkhani et al., 2020).
First, the internal verification of the model was ensured by
using the best available theories and standard approaches
for implementing the models’ logic and rules. Second,
we used reliable empirical data collected in the aftermath
of three major hurricane events to develop the model.
Furthermore, we conducted a component validity assess-
ment for ensuring the model components’ completeness,
coherence, consistency, and correctness. The extreme
conditions were tested to examine the model’s ability to
generate reasonable outcomes. External verification of the
model was ensured by examining the causal relationships
among the model components. The behavior of these sub-

components under different values was traced to ensure
the external verification of the model. Themodel logic and
functions were examined to discover any unusual patterns
to ensure that logic and assumptions in the model are
correct.
For validation, the generated patterns in the model

outputs were compared against the empirical data to val-
idate model behavior. The mode of each simulated output
was used to determine the system’s behavior, then the
generated patterns from the model were compared with
the actual household behaviors from the empirical survey
data and similar studies and reports. The developed multi-
agent simulation model integrated the processes leading
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F IGURE 8 Comparing values generated by the model with empirical data. Red whiskers show the model replications’ 5% and 95% values

to the generated patterns. These generated patterns were
compared against the distribution of parameters of interest
to check if the model is able to generate correct behavior.
In this study, the intent of the model was to examine the
strategies to reduce societal impacts of power outages.
In particular, emergent behavior patterns of the outputs
were of interest. Furthermore, results from similar studies
and reports on the impact of hurricanes on the power
networks were used to validate the model’s output for the
physical system (Mensah & Dueñas-Osorio, 2016; Ouyang
& Dueñas-Osorio, 2014). The model is capable of gener-
ating patterns and values similar to the empirical data
(Figure 8). The model outputs capture the Hurricane Har-
vey scenario in Harris County, Texas, in 2017 (Figure 8).
For example, the generated proportions of households that
prepare and obtain substitute energy sources (generators)
are similar to those values from empirical data. Some
differences arise in the model results for large and small
values of the forewarning time; however, the distribution
of tolerance is close to the empirical values. It is worth

mentioning that the primary objective for the creation and
use of multi-agent and agent-based models is not a predic-
tion but rather to generate examples of the probabilities
of various possibilities for robust decision-making under
uncertainty (Mostafavi et al., 2016).

3.3 Model output description

The percentage of households experiencing hardship
from power outages is recognized as an indicator of the
societal impacts on the community. When a households’
duration of power disruption exceeds their tolerance,
they experience hardship. This indicator includes both
the physical impact and the societal susceptibility of the
households for the risk posed. This dynamic measure is
calculated for all households based on their location and
their tolerance during the time without service. Figure 9a
shows how the dynamic profile of hardship could be
implemented to assess the effectiveness of various strate-
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F IGURE 9 Schematic dynamic profile of hardship. (a)
Comparison of the effect of strategies, and (b) comparison of the
impact of strategies on different social groups

gies in reducing the societal impacts of power disruptions.
Different scenarios could be tested to find ways to mitigate
the societal risks of disruptions to power networks.
In addition to examining the societal impact on the

community, the model enables examining the impact on
various sub-populations (Figure 9b). This capability of
the model enables an understanding of whether system
restoration strategies are equitable. For example, while one
strategy might reduce the societal impact on the commu-
nity as a whole, it is possible that the strategy is in favor
of certain demographics in the community. Thus, strate-
gies would be examined to determine how they improve
the condition of different social groups in the affected com-
munity.

3.4 Simulation experimentation

The developed simulation model enables testing scenarios
through various variables such as household character-
istics, household social network structure, forewarning
duration, hurricane category, and restoration units and
strategy. The user could choose the values related to
each of these variables in an interactive user interface
(Figure 10a). The model outputs the various values related
to different variables, including household protective
actions and tolerance, the extent of damages to the
different components of the power network, and the
households’ profile of hardship. In addition, as shown in
Figure 10b, the model visualizes the spatial distribution
of households’ states by color-coding them depending on
their states. Households who experience the power out-
ages are shown in orange, those whose tolerance becomes
less than their duration of disruption and experience
hardship are shown in red, and the color changes to green
when the power is restored for these households.
We performed Monte Carlo experimentation in the

scenario testing to account for the stochasticity in
the model. The primary variable of interest in the
model experimentation was the percentage of the house-

holds who experienced hardship from the power dis-
ruption. Therefore, experiments were replicated as many
times as the mean value of proportional of households
experiencing hardship reached 95% confidence inter-
val with 5% error (Hahn, 1972). The experiment sce-
narios were designed by changing the input values of
each scenario and replicating iterations for each of the
experiments.

3.5 Scenario analysis

The model is implemented for scenario testing aiming
at (1) identifying the combination of the strategies that
would lead to the lowest societal impact due to the power
outages, and (2) examining the extent to which the strate-
gies are equitable. In this study, we examine three main
strategies to reduce the societal impacts of power outages.
First, the power utility’s restoration strategy would be
evaluated to examine its influence on the hardship levels.
In this regard, three strategies of restoration based on the
importance of the components, population size, and SVI
would be evaluated. SVI is a widely adopted measure for
examining the susceptibility of populations in disasters.
Second, the influence of the forewarning time on the expe-
rienced hardship of the households could be examined.
Early warning about the upcoming hazard can reduce the
societal impacts (Panakkat & Adeli, 2009; Rafiei & Adeli,
2017) by influencing the protective decisions of households
(Cremen & Galasso, 2021; Watts et al., 2019). This assess-
ment would determine the effectiveness of identifying
an impending hurricane and communicating critical
information with the population. Third, the impact of the
social network of the households on their experienced
hardship would be evaluated. This assessment would
show the value of using alternative social networks (such
as social media) for disseminating hazard information.
Socialmedia platforms, for example, have distinct network
characteristics, which enable quicker information-sharing
without spatial boundaries (Watts et al., 2019; Zhang et al.,
2019). Therefore, the type, density, and weight of the social
influences would be examined to explore their effect on
reducing the impacts of power outages on the households.
The combination of these strategies to lower the hardship
experienced by the households was also examined. In
addition, the equitable resilience assessment in this study
is being implemented by examining the disproportionate
impact and effect of strategies on racial groups, while
there are other social dimensions in equitable resilience. A
similar approach could be implemented for understanding
the equity aspect for other social groups; however, this
study mainly focused on one group as an example of
equitable resilience assessment.
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F IGURE 10 Screenshots of the developed simulation model

4 RESULTS AND DISCUSSION

The hardship experience of households from scenario
analysis was used for exploratory analysis of societal risks
of prolonged power outages. The analysis included: (1)
examining strategies for reducing the societal impacts;
(2) examining to what extent these strategies, including
restoration strategies, forewarning, and social networks,
are equitable; (3) robustness of the strategies for reducing
the societal impacts under different scenarios; (4) identify-
ing pathways that lead to low societal impacts. To this end,
a base scenario similar to the Hurricane Harvey context
was used with a forewarning of 9 days, component-based
restoration by utility, and an SF social network between
households. Scenarios were then modeled and compared
with the base-case scenario through Monte Carlo simula-
tion. In the simulation results, day zero is the time when
an impending hurricane is identified by the officials as
a threat, and the information is communicated with the
residents.

4.1 Simulating community-scale
societal impacts

Abaseline scenario of societal impacts of power outage dis-
ruption in a community similar to Harris County affected
by a category 4 hurricane is shown in Figure 11. Figure 11a
shows the mean proportion of households experiencing
hardship each day. The results suggest that at maximum,
around 50% of the community experienced hardship from
the outages, and it took roughly 20 days for the community
to fully recover (recovery is determined by having power
restored for all households). The impact, however, was
not equal among the subgroups in the community. Racial
minority groups experienced a higher hardship from
disruptions. Figure 11b shows the overall probability of
experiencing hardship for each group. Analysis of variance

(ANOVA) test showed that the difference between the two
groups is statistically significant at 0.05 confidence level (p
= .018). This result suggests that racial minority groups are
more likely to experience hardship from power outages
in comparison with others in the base-case scenario. The
results overall show the model’s capability to capture the
societal impact of the disruptions on communities and also
reveal the inequities in the impacts of prolonged power
outages on vulnerable populations (e.g., minority groups).

4.2 Examining strategies for reducing
societal impacts

4.2.1 Restoration strategy

Results for comparing different strategies for restoring the
power (Figure 12) show that while under the component-
based strategy, the maximum proportion of hardship
in a day is around 54%. This value would be decreased
to around 47% under the population- and SVI-based
restoration strategies. The results show that overall, a
community similar to Harris County, Texas, would benefit
from prioritization of the areas with a higher vulnerable
population. In this case, the probability of experiencing
hardship for the nonvulnerable population increases and
becomes greater than the vulnerable population (p =

.003); however, the reduction in the probability of experi-
encing hardship for the socially vulnerable groups leads to
an overall reduction in the societal impacts. In addition,
giving priority to the areas with a higher population result
in the reduction of overall societal impacts on the affected
community, while the vulnerable population still faces a
greater probability of experiencing hardship (p = .003).
These findings suggest that overall, the prioritization of
areas with a higher social vulnerability level and also with
a higher population could lead to the reduction of societal
impacts in the affected community.
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F IGURE 11 Societal impacts of disruptions from power outages in the baseline scenario. (a) Average daily proportion of households
experiencing hardship and the 10% confidence intervals, and (b) boxplots and mean lines for the probability of racial minorities and whites
experiencing hardship

F IGURE 1 2 Comparing different power restoration strategies. (a) Dynamic patterns of the proportion of households experiencing
hardship under each strategy, with shaded areas indicating the 0.25 and 0.75 percentile of the values, and (b) probability of experiencing
hardship for different racial groups under each restoration strategy

The results comparing the effect of different prioritiza-
tion strategies on racial groups are shown in Figure 13. The
charts juxtapose the probability of experiencing hardship
for two social groups under different restoration strate-
gies. In the SVI-based recovery, the probability of expe-
riencing hardship decreases by 8% for the socially vul-
nerable groups, while it would increase by 4% for the
nonverbal group. The population-based recovery, however,
decreases the probability of experiencing hardship by 2%
and 4% for the vulnerable and the nonvulnerable groups,
respectively. The results suggest that the population-based
restorations while improving the overall societal risks, do
not favor minority groups. On the other hand, the SVI-
based recovery, while increasing the risks for the Whites,

reduces the overall societal impact. While the population-
based restoration and SVI-based would reduce the overall
societal impacts, an SVI-based approach seems to be more
equitable.

4.2.2 The effect of increasing the
forewarning period

Providing a longer forewarning to the communities
reduces the societal impacts of power outages. As
expected, the longer duration of the forewarning helps the
households to better prepare for the impacts of the power
outages and take protective actions to reduce the impacts
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F IGURE 13 Comparing the probability of experiencing hardship for the racial groups under each restoration strategy

F IGURE 14 Comparing different forewarning levels. (a) Dynamic patterns of the proportion of households experiencing hardship
under each forewarning level. The shaded areas show the 0.25 and 0.75 percentile of the values, (b) probability of experiencing hardship for
different racial groups under each forewarning level, and (c) change in the probability of experiencing hardship for the racial groups under
improvement of the forewarning level

of power outages on their well-being. Comparing an event
with a week of forewarning with a scenario in which the
household had 2 weeks of forewarning, the results suggest
that this early identification of a hazard is very effective for
reducing the impacts for the communities (Figure 14). The
maximum proportion of households experiencing hard-
ship in a day would decrease around 8% when increasing
the forewarning time from 7 to 14 days. With rapidly
intensifying hurricanes (such as Hurricane Ida, 2021),
the forewarning period is becoming shorter, and hence
the results show the effect of shorter forewarning periods
on the experienced societal impacts of power outages.
Investments in making advancements in predicting and
tracking the hurricane pass, and proper communication
with households could significantly reduce the societal
impacts of power outages. However, the enhancements
in providing longer forewarning would not necessarily
reduce the societal impact for socially vulnerable popula-

tions. In both the base scenario and the enhanced strategy,
minorities show a statistically significant higher probabil-
ity of experiencing hardship (p-values are respectively .002
and .001 for forewarning of 7 and 14), Figure 14b. While
the enhanced strategy shows to reduce the impact for
the minority groups slightly more than other groups, this
strategy seems to treat everyone equally and does not nec-
essarily be in favor of improving the equity in the impact.

4.2.3 The effect of hazard information
dissemination and social network types

The social network type has implications regarding which
social network people receive information. The two struc-
tures of social networks, namely, SF and SW, are compared
as each provides certain characteristics in the propagation
of information through the community. For example, as
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F IGURE 15 Comparing scale-free and small-world social networks. (a) Dynamic patterns of the proportion of households experiencing
hardship under each forewarning level. The shaded areas show the 0.25 and 0.75 percentile of the values, (b) probability of experiencing
hardship for different racial groups under each network structure, (c) change in the probability of experiencing hardship for the racial groups
under a change in the social network structure

discussed earlier, communication among close friends
happening offline (in person or on the phone) is through
an SW network, and communication on social media is
through an SF network (Nocaj et al., 2015; Schnettler,
2009). The results from Figure 15 show that there is a
slight difference in the societal impacts of power outages
on the community when comparing the two network
structures. One reason is due to the delays in acting upon
the information received by the social network for taking
protective actions. Results suggest that the probability of
experiencing hardship is greater in the small-work struc-
ture. Both cases show a greater probability of experiencing
hardship by the vulnerable population, with p-values
being .018 and .001, respectively, for SF and SW structures.
The change in the network structure from SF to SW seems
to have a greater impact on the nonminority group. This
means that lack of information communication through
social media could have more impacts onminority groups,
compared to White households.

4.3 Combined effect of strategies for
reducing the societal impacts

4.3.1 Robustness of restoration strategy to
different hurricane categories

The effectiveness of implementing different strategies
for restoring power to reduce the societal impacts varies
depending on the intensity of the hurricanes. Figures 16a,b
show the probability of experiencing hardship for each
strategy and the dynamic impact under the four hurricane
categories. While there is no significant advantage for
implementing population-based and SVI-based strategies
during low-impact events such as hurricane category 1 (p-
value equal to .297), these strategies seem to over-perform
the component-based restoration during hurricane cat-
egories 2 and 3 (with p-values for ANOVA test being

.001 and < .001). The largest difference is related to
hurricane category 3, with population-based restoration
leading to the mildest societal hardship. However, the
difference between the societal impacts of implementing
the population-based and SVI-based with component-
based, while being statistically different (p-value of .01),
decreases in hurricane category 4. This result suggests
that the effectiveness of the improved restoration strategy
may not increase linearly as the intensity increases.
When the intensity increases to hurricane category 4, the
SVI-based strategy seems to perform slightly better than
population-based and component-based restoration. This
trend is due to the increased gap between the vulnerable
population and others when the intensity increases as
the intensity of the hurricane increases. Figures 16c, d
compare the probability of experiencing hardship for the
racial groups for population-based and SVI-based relative
to component-based, respectively. While the population-
based recovery seems to improve the condition for both
social groups, this strategy seems to be slightly in favor
of the nonvulnerable population. However, the SVI-based
restoration reduces the societal impacts for the vulner-
able population more than others. Therefore, when the
intensity increases to hurricane category 4, this strategy
reduces the overall hardship even slightly better than the
population-based restoration.

4.3.2 Robustness of forewarning to different
hurricane categories

The extent of reduction in the societal impacts of power
outages by providing a longer forewarning time varies
depending on the hurricane category. The probability of
experiencing hardship for different forewarning levels is
not equal in different hurricane categories (p-values are <
.001). The reduction of societal impacts showed significant
changes for the forewarning time of more than 6 days
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F IGURE 16 Effect of restoration strategy on the societal impacts of power outages under various hurricane intensities. (a) Histograms
of the probability of experiencing hardship for each scenario, (b) displays the average daily experienced hardship for each scenario, (c, d)
percentage difference of the probability of experiencing hardship for the racial groups under each scenario

(Figure 17a,b). These figures show that both the proba-
bility of experiencing hardship and the daily experienced
hardship sharply decline when forewarning time increases
to more than 6 days. The results explain the major impact
of rapid onset hazard events (such as fast-moving hurri-
canes) on the affected communities. Figure 17c compares
the probability of experiencing hardship for scenarios
increasing by 3-day increments of forewarning. This result
suggests that providing longer forewarning is mainly an
effective strategy for low-intensity hurricanes. The effect
of providing a longer forewarning in categories 3 and 4
hurricanes seems to diminish. Thus, implementing this
strategy may not solely reduce the societal impacts of
high-intensity hazard events. Last, Figure 17d shows the
percentage of reduction of the probability of experiencing
hardship for racial groups if the forewarning increase
from 6 to 12 days. The result shows that increasing the
forewarning duration does not seem to benefit certain

groups. While minorities experience a decrease in the
experienced hardship under hurricane categories 1 and 2,
the difference does not seem to be significant, especially
for the more intense hurricane events.

4.4 Pathways to different levels of
societal impacts

A combination of scenarios was used to create the scenario
landscape (Figure 18) and to evaluate the combination of
strategies that lead to the least onerous societal impacts of
power outages. To this end, classification and regression
tree (CART) analysis was implemented to examine the
effect of different variables for reducing the societal
impacts under various scenarios (Breiman et al., 1984).
CART is a tree-based classification technique that explains
how a target variable could be determined based on the
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F IGURE 17 Effect of providing longer forewarning on the societal impacts of power outages under various hurricane intensities. (a)
Histograms of the probability of experiencing hardship for each scenario. (b) average daily experienced hardship for each scenario, (c)
percentage change of the reduction in the probability of experiencing hardship for each scenario compared to the forewarning equal to 3 days,
and (d) percentage difference of the probability of experiencing hardship for the racial groups under each scenario

interaction among a large number of predictors. This
algorithm recursively partitions into binary splits, which
maximizes the homogeneity of the groups in relation to
the dependent variable (Prasad et al., 2006). The higher
splits show the variables with a stronger influence over
changes in the dependent variable, which is the experi-
enced hardship in the scenario landscape. CART analysis
is shown to be effective in meta-modeling analysis based
on simulation results (Mostafavi, 2018).
In this analysis, in addition to the described strate-

gies for reducing the societal impacts (restoration activ-
ity, longer forewarning, and social network structure), also
included are the hurricane category, the number of restora-
tion resources, and the information sharing probability
of the officials. The hurricane category has the greatest
impact on households’ experienced hardship. A longer
forewarning duration seems to have a great impact on

reducing the societal impacts of the power outages. This
pattern is consistent for different hurricane categories,
which supports the suggestion that providing a longer
forewarning could effectively reduce societal impacts. The
effect of the restoration strategy and increasing the num-
ber of resources varies depending on the hurricane inten-
sity. Improving the restoration strategy to focus on the
needs of the population (population-based and SVI-based)
seems to more effectively reduce societal impacts than
increasing the number of resources in response to high-
intensity hurricanes. The effect of increasing the number
of resources, however, seems to be an effective approach
for lower-severity events. Last, when considering the effect
of longer forewarning and information-sharing by the offi-
cials, the effect of the social network structure seems to be
insignificant in reducing the societal impacts of disaster-
induced prolonged power outages. The results show that
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F IGURE 18 Classification and regression tree analysis for analyzing the effect of various strategies in reducing the societal impacts

hardships due to power outages during high-intensity hur-
ricanes would be inevitable for minorities and other vul-
nerable populations unless power infrastructure systems
are strengthened to reduce their likelihood of failure and
sufficient resources, focusing on socially vulnerable popu-
lations, are earmarked for prioritizing power restoration.

5 CONCLUDING REMARKS

This study presents a new computational simulation
framework formodeling the complex hazard–households–
infrastructure nexus to better integrate social equity
considerations into resilience assessments. The proposed
integrated multi-agent simulation model enables cap-
turing of the complex interactions between hazard, risk
and restoration process, and households’ decision-making
behaviors. This new computational model enables con-
sideration of heterogeneity in the impact of infrastructure
service disruption in affected communities.
The model enables a combined evaluation of the

effects of hazard characteristics, population attributes and
decision-making processes, and physical infrastructure

network topology and vulnerability in facilitating more
equitable resilience assessments. While the current litera-
ture includes various computational models for assessing
infrastructure resilience, the majority of existing models
focus primarily on physical systems and fail to consider
the population’s interactions with these systems and their
services during disasters. The proposed computational
framework captures and models the underlying dynamic
mechanisms and complex interactions among hazard,
physical networks, and household behavior in determin-
ing the societal impacts and disparities. Thus, this paper
contributes to the field of computer-aided infrastructure
engineering by (1) abstracting the complex mechanisms
that lead to the societal impacts of hurricane-induced
power outages; (2) simulating societal impacts by using
theoretical models and empirical data and capturing
and modeling the interactions between hazard, power
network, and households’ behavior; and (3) devising
an approach to meet the need for equitable resilience
assessment in infrastructure systems. The multi-agent
simulation model enables the inclusion of the social
dimension in the resilience assessment of the infrastruc-
ture system. The model is capable of assisting in resilience
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assessment in different contexts given the availability of
similar data such as household information.
The output results would inform about the overall

societal impact on the community and the distributional
impact on the various segments of the community. By
enabling decision-makers to conduct scenario analysis
of strategies for reducing societal impacts of power out-
ages, such as restoration strategies, forewarning time, and
household social network structure, themodel provides an
approach to reduce overall societal impacts. The proposed
model could be used by emergency and infrastructure
managers and operators to better prioritize resource
allocation to their hazard mitigation investments and
restorations to reduce the societal impacts of infrastructure
disruptions. Beyond its contribution to equitable infras-
tructure resilience assessment, the computational simula-
tionmodel proposed in this study contributes to integrated
complex modeling approaches in civil infrastructure and
urban systems. Integrated complex modeling is a grow-
ingly important approach in analyzing various complex
phenomena related to sustainability and resilience of
urban resilience and infrastructure systems for robust
decision-making, as well as developing interdisciplinary
socio-technical system theories of urban infrastructure
systems and disaster resilience. The integrated simulation
framework that captures the complex interactions among
hazard characteristics, population behaviors, and physical
infrastructure network properties could provide a tool
and simulated data for developing more interdisciplinary
disaster resilience theories and examining complex phe-
nomena, which could not be evaluated using empirical
and observational data (Mostafavi & Ganapati, 2019).
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TABLE A3 Pseudo-households decision-making and
protective action

APPENDIX B
Model development
Fragility curves and restoration resources

Household agents
Model description
In these models, the zone of tolerance would be calculated
through the process and depending on the three variables.
The households’ zone of tolerance is a function of the

F IGURE B1 Number of added resources for the restoration
activity

TABLE A4 Pseudo-algorithms for the restoration activity and
prioritization

household’s need, substitute, and preparedness level. The
following equation describes the relationships among the
variables:

𝜇 = exp
[
1.7762 − 0.5130𝑥𝑠 + 0.1827𝑥𝑛 + 0.2664𝑥𝑝

]
Therefore, in this model, we needed to calculate the

three factors of substitute, need, and preparedness.

Need
The needed variable is inherent based on the socio-
demographic characteristics of the household. Table B2
shows the influencing factors:
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TABLE B1 Required resources for the damage to each
component

Damaged component Restoration time
Needed
resources

Load
substations

Moderate: N*(72 h,
36 h), severe:
N(168 h, 84 h) and
complete: N(720
h, 360 h)

6
14
60

Transmission towers N(72 h, 36 h) 6
Transmission lines N(48 h, 24 h) 4
Distribution poles N(10 h, 5 h) 1
Distribution lines N(8 h, 4 h) 1

*N(a,b) refers to the randomly generated number from a normal distribution
with mean = a and standard deviation = b (Mensah, 2015).

TABLE B2 Influencing factors of the households’ need

Variable Measure
Race minority “Yes” = 1, “No” = 2
Mobility issue "Yes" = 1, "No" = 2
Young children (age 10) "Yes" = 1, "No" = 2
Medical "Yes" = 1, "No" = 2

TABLE B3 Model for determining the households’ need

Variable Estimate p-value
(Intercept):1 0.444 .125
(Intercept):2 1.792 <.001
(Intercept):3 3.344 <.001
(Intercept):4 4.992 <.001
Racial minority 0.896 <.001
Mobility issue −0.519 <.001
Having children (< 10) 0.220 .050
Medical issue −0.303 <.001

TABLE B4 Influencing factors of the households’ protective
action (buying a generator)

Variable Measure
Income “Less than $25,000” = 1,

“$25,000–$49,999” = 2,
“$50,000–$74,999” = 3,
“$75,000–$99,999” = 4,
“$100,000–$124,999” = 5,
“$125,000–$149,999” = 6, “more
than $150,000” = 7

Expectations The number calculated in the
previous step

Ownership “Renter” (1), “owner” (0)
Self-efficacy “Strongly low” = 1, “somewhat low”

= 2, “medium” = 3, “somewhat
high” = 4, “strongly high” = 5

Logistic regression relates the predictors to the logit based on the following
equation:

TABLE B5 Influencing factors of the households’ preparation

Variable Measure
Vehicle vulnerability “Did not have a car” = 1, “I have it”

= 0
Experience The number calculated in the

previous step
Ownership “Renter” (1), “owner” (0)
Self-efficacy “Strongly low” = 1, “somewhat low”

= 2, “medium” = 3, “somewhat
high” = 4, “strongly high” = 5

Elderly Yes (1), no (0)
Forewarning Number of days
Distant to supermarket Miles

Note: Distancewas simulated fromanormal distributionwithmean 5 and vari-
ance 30.

TABLE B6 Influencing factors of the households’ level of
self-efficacy

Variable Measure
Ownership Yes (1), no (0)
Social capital Yes (1), no (0)
Chronic disease Yes (1), no (0)
Medical Yes (1), no (0)

TABLE B7 Model for determining the households’ level of
self-efficacy

Variable Estimate p-value
(Intercept):1 −3.191 <.001
(Intercept):2 −1.792 <.001
(Intercept):3 −0.551 .009
(Intercept):4 1.458 <.001
Ownership 0.339 <.001
Medical −0.245 .016
Chronic disease −0.237 .029
Social capital 0.217 <.04

The variables in the model are socio-demographic
characteristics; therefore, we implemented a simulated
sample of the population for determining these variables.
The cumulative logit models with proportional odds

were used for modeling the parameter; here, there are

TABLE B8 Influencing factors of the households’ level of
experience

Variable Measure
Having a child (age 10) Yes (1), no (0)
Race Yes (1), no (0)
State duration Number of years
Elderly Yes (1), no (0)
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F IGURE B2 Transmission distribution network fragility curve

four intercepts, which means there exist four equations
for calculating the probability of the five need levels B3.
The general equation for this model is as follows:

logit [𝑃 (𝑌 ≤ 𝑗)] = log

[
𝑃 (𝑌 ≤ 𝑗)

1 − 𝑃 (𝑌 ≤ 𝑗)

]
= log

[
𝜋1 +⋯+ 𝜋𝑗

𝜋𝑗+1 +⋯+ 𝜋𝐽

]
, 𝑗 = 1, … , 𝐽 − 1

Here, instead of directly calculating the probability of
each level (e.g., the probability of need to be 1 (p(y = 1)),
we will calculate the p(Y ≤ = 1). But P(y ≤ 1) = P(y = 1);
thus, we can calculate the probability of the first level, p(y
= 1), by the following equation:

log
𝑝 (𝑦 = 1)

1 − 𝑝 (𝑦 = 1)
= 0.44441 + 0.89646𝑥𝑟 − 0.51914𝑥𝑚

+0.21971𝑥𝑎 − 0.30319𝑥𝑚

F IGURE B3 Distribution network fragility curve

Then, the probability of (p(y = 1) would be determined
based on the following equation:

𝑝 (𝑦 = 1) =
𝑒[𝑝(𝑦=1)]

1 + 𝑒[𝑝(𝑦=1)]

Then, the next probability would be the probability of
p(Y < = 2), which is P1 + P2. Therefore, we can calculate
the probability of the second one based on the difference
between this probability and the one calculated in the
previous step:

log
𝑝 (𝑦1) + 𝑝 (𝑦2)

𝑝 (𝑦3) + 𝑝 (𝑦4) + 𝑝 (𝑦5)
= 1.79242 + 0.89646𝑥𝑟

−0.51914𝑥𝑚 + 0.21971𝑥𝑎 − 0.30319𝑥𝑚

Therefore, p(y ≤ 2) would be calculated based on the
following equation:

𝑝 (𝑦 ≤ 2) =
𝑒[𝑝(𝑦≤2)]
1 + 𝑒[𝑦≤2]
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F IGURE B4 Substation fragility curve

Thus, p(2) would be the difference between the two
probabilities. This will be continued until we have used
the third and fourth intercepts. Last, the probability of the
final level p5 would be calculated by 1−p(y ≤ 4). Here, p(y
≤ 4) is equal to the last equation using intercept 4.

Substitute
We calculate the probability of getting a generator by using
logistic regression. We calculate the probability of getting
a generator by using logistic regression. Here, the prob-
ability depends on the income, self-efficacy, ownership,
and the household’s expectations of the disruptions. Table
B4 shows the variables.

𝑃𝑠 = log
𝑝 (𝑦 = 1)

1 − 𝑝 (𝑦 = 1)
= −2.53950 + 0.07416𝑥𝑖

− 0.93270𝑥𝑜 + 0.48647 log (𝑥𝑒 + 1) + 0.26128𝑥𝑠𝑒

Here, the log transformation was conducted on the
expectation variable. Then, the probability of having a
generator or p(y = 1) would be determined based on the
following equation:

𝑝 (𝑦 = 1) =
𝑒[𝑃𝑠]

1 + 𝑒[𝑃𝑠]

Preparation
This variable was modeled in a similar fashion as the
substitute. The main variable that makes it a process
variable is the forewarning. This variable depends on the
following factors: having a vehicle, previous experience,
being elderly, ownership, forewarning, distance to the
supermarket, and self-efficacy. We calculated the proba-
bility of preparedness by using logistic regression. Table
B5 below shows the variables.
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Logistic regression relates the predictors to the logit
based on the following equation:

𝑃𝑝 = log
𝑝(𝑦 = 1)

1 − 𝑝(𝑦 = 1)
= 1.89292 − 0.58174𝑥𝑣

−1.11299𝑥𝑒 + 0.44445𝑥𝑒𝑙 − 0.60578𝑥𝑜 + 0.08802𝑥𝑓

− 0.02362𝑥𝑑 + 0.50834𝑥𝑠𝑒

Then, the probability of having a generator or p(y = 1)
would be determined based on the following equation:

𝑝 (𝑦 = 1) =
𝑒[𝑃𝑝]

1 + 𝑒[𝑃𝑝]

Self-efficacy
This variable defines to what extent the households believe
in the effectiveness of the preparedness actions. Table B6
shows the influencing variables: ownership, having social
capital, having a chronic disease, and a medical condition.
The calculation of the probabilities based on results in

Table for each level should be done using the procedure
explained in the need section B7.

Experience
This variable is calculated to find those with previous
disaster experience.Having previous experiencewith a dis-
aster depends on the duration of the time they have lived in
their state, racial minority, elderly, and having a child (B8).
State duration should be simulated based on a normal

distribution and mean 25 and standard deviation 15
(variance of 225). Logistic regression relates the predictors
to the logit based on the following equation:

log
𝑝(𝑦 = 1)

1 − 𝑝(𝑦 = 1)
= 1.371844 + 0.020162𝑥𝑠𝑑

−0.656271 𝑥𝑟 − 0.366558𝑥𝑎 + 0.272127𝑥𝑒

Then, the probability of having a generator or 𝑝(𝑦 = 1)

would be determined based on the following equation:

𝑝 (𝑦 = 1) =
𝑒[−1.98711+0.12456𝑥𝑖−0.71779 𝑥𝑜+0.37576log(𝑥𝑒+1)]

1 + 𝑒[−1.98711+0.12456𝑥𝑖−0.71779 𝑥𝑜+0.37576log(𝑥𝑒+1)]
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Abstract
Inequality in cities is a phenomenon arising from the complex interactions
among urban systems and population activities. Conventional statistics and
mathematical models like multiple regression models require assumptions of
feature interactions with specified mathematical forms that may fail to fully
capture complex interactions of heterogeneous urban components, creating
challenges in systematically assessing socio-economic inequality in cities. To
overcome the limitations of these conventional mathematical models, in this
work, we propose an interpretable machine learning model to capture the
complex interactions of urban variables and themain interaction effects on socio-
economic statuses. We extract urban features from high-resolution anonymized
mobile phone data with billions of activity records related to people and facili-
ties in 47 USmetropolitan areas and predict the attributes of urban areas from six
income and race groups. We show that socio-economic inequality in cities can
be effectively measured by the predictability of trainedmachine learningmodels
in controlled experiments. We also examine the tradeoff between spatial resolu-
tion, sample size, and model accuracy; test the presence of influential features;
and measure the transferability of the trained models to identify the optimal val-
ues for controlled factors. The results show that metropolitan areas share similar
patterns of inequality, which could bemoderated by improved polycentric facility
distribution and road density. The generality of associated factors and transfer-
ability of machine learning models can help bridge data gaps between cities and
inform about inequality alleviation strategies. Despite similarities, 50% to 90%
of variations among cities are still present, which shows the need for localized
policies for inequality alleviation and mitigation. Our study shows that machine
learning models could be an effective approach to examine inequality, which
opens avenues for more data-centric and complexity-informed planning, design,
policymaking, and engineering toward equitable cities.

© 2023 Computer-Aided Civil and Infrastructure Engineering.
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2 FAN et al.

1 INTRODUCTION

Inequality in metropolitan cities has become one of the
cornerstone social and economic issues of our age, prompt-
ing a debate about the measurement and solutions and
fueling public discontent with the built environment
and society (Woetzel et al., 2017). Despite great effort
(Acemoglu & Robinson, 2009; Balland et al., 2020) hav-
ing been applied to research and practice for measuring
and mitigating inequality, systematic divergence from the
optimal equality of facility services and life opportuni-
ties in cities still exists (Mirza et al., 2021), a situation
that is not well understood. We hypothesize that a con-
tribution to such divergence arises from neglecting to
examine equality as an outcome of the complex interac-
tions between the population and the built environment
in urban areas (Fan et al., 2021a). Capturing this mech-
anism by a computational metric can help measure and
explain the presence of inequality, pinpoint potential solu-
tions for mitigating inequalities, and inform policy and
design promoting equitable cities (Xue et al., 2022).
Understanding and improving socio-economic equal-

ity in metropolitan cities is a long-lasting challenge
(Acemoglu & Robinson, 2009). A growing and diverse
number of studies (Gazzotti et al., 2021) have been inves-
tigating this phenomenon over the past two decades.
Conventional research (Marger, 1999) mainly focuses on a
theoretical understanding of social and economic inequal-
ity. The problems of inequality arise with the stratification
of socio-economic classes and relations, characterized
by income concentration (Thomas & Emmanuel, 2014).
The most controversial topics related to income inequal-
ity previously focused on the distribution of wealth. As
research progressed and cities developed, studies on this
front started addressing the inequalities present in people’s
lives, such as satisfactory public services (Anand & Raval-
lion, 1993), accessibility to life needs, availability of social
capital (Dahl &Malmberg-Heimonen, 2010), and opportu-
nities of higher education (Triventi, 2013). The economic
inequality intertwining social needs increases the com-
plexity of the inequality assessment problem. Literature
(Cingano, 2014) has been attempting to establish connec-
tions between urban features and socio-economic status
of people. Theoretical studies, however, are not fully con-
sidering socio-economic inequality as a multidimensional
phenomenon.
Urban inequality represents the level of disparity in

diverse socio-economic contexts across different areas of
a city, which has been unveiled in a variety of aspects
including infrastructure services and population activities
(Casali et al., 2021). The infrastructure statuses and human
activities are heterogeneous and dynamic, leading to high

variations in socio-economic patterns (Niu et al., 2020).
Recall that inequality is defined from such a variation
that exists in the relationship between urban components
and socio-economic patterns. Quantifying the variation in
socio-economic patterns is one of the key steps to eval-
uating inequality in cities (Li et al., 2019). In addition,
the interactions between the built environment and pop-
ulation activities are nuanced and non-linear as a result
of the different paces of the dynamic urban components
including socio-economic activities of populations and the
evolution of the infrastructure and the environment (J.
Wang et al., 2019). To understand the inequality arising
from intertwined urban features, it is critical to capture the
variation and the non-linearity in the interactions between
heterogeneous urban components.
Machine learning, a method that captures information

fromaportion of samples and predicts the labels of the rest,
provides an effective way to assess the variation present
in the data samples (Adeli & Hung, 1994; Rafiei & Adeli,
2016). Inequality, in the socio-economic context, could
be well considered as the variations in the relationship
between input features and output labels of data samples.
Hence, machine learning could be very helpful to address
inequality in cities (Zhou & Liu, 2019). On the other
hand, machine learning models are created in the way
the complex and non-linear interactions of the features
are modeled in an automated manner, without theoretical
assumptions for formulating the equations (Rafiei &Adeli,
2017). Such an automated learning process is promising to
connect the interactions of urban features with the non-
linear model structures of machine learning (Ahmadlou
& Adeli, 2010). Considering these capabilities, we could
claim the fundamental connection between the inequality
of cities and the predictability of machine learning mod-
els to inspire the adoption of machine learning to assess
inequality.
Examining socio-economic inequality as a phenomenon

based on population activity and built environment fea-
tures cannot be fully implemented without the support of
sufficient fine-scale data. Prior to the age of smart devices
and technologies, it was notoriously difficult to collect and
analyze fine-grained data about urban components, such
as facilities and population activities and their interactions
(Esmalian et al., 2022). The digital footprints that accu-
mulate and aggregate on smartphones provide an efficient
and effective proxy for investigating issues of inequal-
ity, as the mobile phone data reveal patterns of human
movements and activities at greater temporal and spatial
granularity while ensuring anonymity and user privacy
(Moro et al., 2021). In addition, the availability of place
data that describe the location, category, and brand of a
place enables specifying the distribution of urban facilitie
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FAN et al. 3

and the development of the built environment, as well as
population life activities. To harness the potential of these
emerging location-based datasets, an increasing number
of studies (Aleta et al., 2020) have employed these data
in multiple research domains and have validated the scale
and accuracy of these data. In particular, existing literature
(F. Wang et al., 2019) has demonstrated that the location-
based data could be highly demographically representa-
tive. Hence, the use of fine-scale location-based data can
transform conventional measurement and understanding
of inequality at a scale and in ways never attempted before
(Milanovic, 2016).
More recently, benefiting from the explosion of urban

data, data-driven inequality research (Fan et al., 2021b)
has been growing significantly, and a transition from the-
oretical to data-driven inequality research has emerged
(Mirza et al., 2021). One stream of work adopts and ana-
lyzes location-based data, such as mobile phone data and
geotagged social media data. Researchers in this stream
quantify the connection inequality of neighborhoods (Q.
Wang et al., 2018), income inequality for resilience to natu-
ral disasters (Yabe & Ukkusuri, 2020), the racial inequality
of probabilities of becoming infected in pandemics (Millett
et al., 2020), and economic inequality of innovation activi-
ties and products (Balland et al., 2020) in cities. Another
stream of research relies on public utility and empirical
data, such as facility locations and survey data. These stud-
ies capture the inequality of facility distributions (Xu et al.,
2020) and income inequality of hazard exposure (Rasch,
2017). These studies are largely based on datasets that
document only single aspects of urban systems, such as
social and physical connections (Dong et al., 2019), access
to services (Johar et al., 2018), and interactions with the
environment (Rao et al., 2017).
Cities, however, are complex systems involving a variety

of interconnecting components, such as facilities, infras-
tructure, and populations (Pan et al., 2013). Devoting
efforts to understanding and seeking equality based on
individual components of cities is not nearly enough. An
optimal socio-economic equality knowledge and solution
require an integrative consideration of all urban com-
ponents and their non-linear interactions. The question
arises as to whether it is possible to predict the socio-
demographic status of areas based on features related to
population activities and the built environment and their
interaction. This question is far from being answered by
extant research due to the absence of consensus on ways
ofmeasuring inequality by concurrently incorporating fea-
tures of the built environment and population activities,
as well as the non-linear interactions among the features.
Traditional linear mathematical models are insufficient to
encode the non-linearity in urban systems in examining
inequality.

Conventionalmathematicalmodels likemultiple regres-
sion models have been widely adopted to examine the
effect of independent variables on the dependent variable
in the context of social science and urban development.
In these complex study areas, independent variables also
commonly interact with each other. That means, the
relationship between an independent variable and the
dependent variable changes when the independent vari-
able interacts with another independent variable and the
value of the third variable changes. This type of effect
makes the underlying mechanism of variable relation-
ships more complex. But this is, in fact, how the real
world behaves, and it is critical to incorporate it into
the model. Conventional mathematical models call it
interaction effect.
The interaction effect in conventional mathematical

models is examined in a couple of ways, such as incorpo-
rating the multiplication of two variables in the regression
model to consider both the main effect and the interaction
effect of the variables at the same time. This conventional
method works well to consider the interaction effects,
indicating that the relationship between an independent
variable and the dependent variable depends on the value
of another independent variable. The conventional meth-
ods, however, have two assumptions. First, the methods
assume that the interaction effects of the variables fol-
low the multiplication relationship. Second, the value of
the dependent variable is a linear combination of the
main effects of individual independent variables and the
interaction effects of multiple independent variables. That
is, conventional mathematical methods require that the
relationship between the dependent variable and the inde-
pendent variables and the interactions of independent
variables need to be specified before testing the models on
real-world data.
The interactions of urban environment features are

particularly complex. Without fully understanding the
mechanism of how these features are interacted and
influence the dependent variable, it is challenging and
problematic to specify the relationship in the mathe-
matical model, especially in a case of a great number
of independent variables. To overcome the limitations
of these conventional mathematical models, here, we
propose an interpretable machine learning model to auto-
mate the process of capturing the complex interactions
of independent urban variables and the main and inter-
action effects on the dependent variable (socio-economic
attributes). The proposed machine learning method can
encode both the built environment and population activity
features. The method advances our understanding of vari-
able interactions, which releases the constraints of speci-
fying the interaction terms and the linear combination of
multiple effects in existing mathematical models, which
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4 FAN et al.

will provide fundamental insights into interpreting the
effects of urban development, human activities, and land-
scape change on socio-economic inequality in cities. With
that, we claim that the proposed interpretable machine
learning model outperforms conventional mathematical
models.
The core idea of this study is that inequality can be

identified and measured in cities using machine learning.
Machine learning enables capturing various heteroge-
neous urban systems and population features and their
interactions; if the socio-economic status of different areas
could be predicted accurately by machine learning models
using population activity and built-environment features
and their non-linear interactions, then inequality exists. In
other words, if equality is present, features of population
activities and the built environment would not vary drasti-
cally across high-income versus low-income and minority
versus non-minority areas. Hence, the prediction perfor-
mance metrics of machine learning models could be used
to measure the extent of inequality. The high predictabil-
ity of models indicates greater socio-economic inequality
in cities. Also, it could be evidence that inequality is a phe-
nomenon that may not be attributed to individual features
but rather to the complex interactions among various fea-
tures in cities if individual features alone cannot explain
the predictability of machine learning models.
We first created grid maps for 47 US Metropolitan Sta-

tistical Areas (MSAs), assigned socio-economic labels of
census block groups (CBGs) to grid cells within block
groups, and computed features for each grid cell. The
considered features of urban components draw upon mul-
tiple sources of data, including 1 million points of interest
(POIs) data, billions of anonymized mobile phone data,
and more than 10,000 social-economic records for CBGs.
The mobile phone data covers population activities during
the first week of April 2019, which is considered a sta-
ble period, portraying regular human life activities. Two
advanced machine learning (ML) models, XGBoost and
neural network models, were trained and tested. We con-
sidered the predictability of the machine learning models,
quantified by F1 scores, as a metric for evaluating mod-
els’ prediction performance and, accordingly, as a measure
of inequality in a city. To demonstrate the effectiveness
and reliability of the metric, we investigated the tradeoff
between grid size and accuracy and tested the influence
of individual features on the predictability of the models.
Furthermore, we demonstrated the cross-MSA generality
of inequality patterns by training a model in one MSA
and then applying it directly to other MSAs. The trans-
ferability of machine learning models can imply sharable
inequality patterns and quantify variations across MSAs.
We further examined the relationship between inequality
metrics and urban characteristics, including road density

and facility distribution in MSAs to explore potential solu-
tions for alleviating inequalities. Finally, a conventional
mathematical model, ridge regression model, is used to
demonstrate the performance and capabilities of machine
learning models in capturing the complex interactions
of urban features. The study serves as an effort toward
data-driven and ML-based scientific discovery to address
urban policy challenges such as infrastructure planning to
combat urban inequality.

2 METHODS

2.1 Data collection and processing

This study focuses on MSAs in the United States. We
selected the MSAs based on three criteria. First, the popu-
lation size of the MSA should be sufficiently large to serve
as an object of study. Hence, the MSAs selected in this
study are ranked in the top 50 in terms of the sizes of
residential populations. Second, the selected MSAs should
cover different regions of the United States, to consider
the regional effects in concluding the general patterns of
socio-economic inequality in cities. Finally, both public
and private datasets should be available for the selected
MSAs. Considering these criteria, we end upwith 47MSAs
for analyses in this study. A complete list can be found in
the Supplementary Information.

2.1.1 Grid and label creation

To understand the fine-scale socio-economic disparities in
cities, we divided the area of an MSA into grid cells of rel-
atively equal size (see Figure 1). We considered one side of
a grid cell as spanning a certain range of latitude or longi-
tude. We started with 0.01 degree as the length of the side
of grid cells and tested different values from 0.01 to 0.05
degrees with a step size of 0.01 degree. As the grid cells get
larger, more facility and human activity information will
be covered by a grid and integrated to represent the fea-
tures of the grid cells. We used grid cells with a side of 0.01
for all analyses in this study and also showed that this is a
proper selection for the size of grid cells.
To compare the features of different urban areas, we

collected socio-economic public data including per capita
income and race–ethnicity data from the US Census 2014–
2018 (5 years) American Community Survey (ACS) at
census tract level of spatial aggregation (United States
Census Bureau, 2019). We focused on the three largest
race–ethnicity groups as determined by self-identification
in the Census: White, Black or African American, and
Hispanic (Q. Wang et al., 2018). These three population
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FAN et al. 5

F IGURE 1 Illustration of the methodological framework. The upper panel shows a schematic of feature engineering, training,
validation, and testing processes. We divide a metropolitan statistical area (MSA) into grid cells of equal size, extract the features related to
facilities and human mobility, and convert the features into a vector for each grid cell. Each grid cell is labeled by one of the six labels related
to income level and race. The lower panel of the figure shows three analyses using the F1 scores of the machine learning models as a metric of
inequality. We interpret the importance of the features on the inequality of an MSA, evaluate the similarity of inequalities among MSAs, and
identify general solutions for alleviating inequalities

subgroups are mutually exclusive: “Hispanic” including
people of all races except White and Black, “Black” refer-
ring only to non-Hispanic Black people, and “White”
including only non-Hispanic White people. The race that
accounts for greater than 50% of people in a census tract
reported in the Census data is considered the race label of
this census tract. We similarly classified the census tracts
as low-income or high-income based on whether the per
capita income of the census tract is higher than themedian
of the MSA or not. We assign the label of a grid cell to the
label of a census tract if the centroid of the grid cell falls
into the polygon of the census tract. As such, the grid cells
belonging to specific census tracts in an MSA are labeled
by one of six socio-economic labels.

2.1.2 Mobility data for activity features

Urban systems are spatially diverse in terms of population
activities and facility distributions. Here, we characterize
each grid cell based on these two dimensions. To under-
stand the inequality of population activities, we employed
mobile phone data from Cuebiq, a data intelligence com-

pany that collects location data from mobile phone users
who opt in to share their data anonymously through a
General Data Protection Regulation- and California Con-
sumer Privacy Act-compliant frameworks. The current
daily active user count collected by Cuebiq is roughly
15 million in the United States. The data sample has a
wide set of attributes, including anonymized device iden-
tifier (ID), latitude, longitude, visited place ID (if the user
visited a specific POI), UTC (coordinated universal time)
time of observation, and the duration of each visit/stop
(e.g., dwelling time). The data were shared under a strict
contract with Cuebiq through their academic collaborative
program in which they provide access to de-identified and
privacy-enhanced mobility data for academic research.
Cuebiq’s responsible data-sharing framework enables us
to query anonymized, aggregated, and privacy-enhanced
data, by providing access to an auditable, on-premises
sandbox environment (Moro et al., 2021). All researchers
processed, aggregated, and analyzed the data under a non-
disclosure agreement and were obligated not to share data
further and not to attempt to re-identify data.
It is important to capture population activities in reg-

ular conditions when no external extreme events perturb
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6 FAN et al.

human activities. Considering that we extracted the Cue-
biqmobility data fromApril 1, 2019, to April 7, 2019 (7 days)
for selected MSAs, there are no particular events for MSAs
in this time period, to the best of our knowledge. Also, we
took the data for 7 days in order to account for the vari-
ation of population activities on weekdays and weekends.
Using these data, we first assigned each visit or stop point
to a defined grid cell. Then, we calculated a vast number of
features related to population activities, such as the mean
daily number of visits to a grid cell, the average duration of
each visit in a grid cell, and the maximum daily number of
stops in a grid cell. In addition, Cuebiq provides an estima-
tion of the residential areas ofmobile devices,which allows
us to estimate the number of residents in each grid cell. The
complete list of population activity features is provided in
the Supplementary Information. The representativeness of
the Cuebiq mobility data has been demonstrated by mul-
tiple prior studies (Aleta et al., 2020; F. Wang et al., 2019).
They found that Cuebiq data are valid to describe human
activities as one of the urban components (Deng et al.,
2021). Hence, the features generated using these datasets
should be representative and valid for our analyses.

2.1.3 POI data for facility-relevant features
and metrics

To capture the distribution of facilities in urban areas, we
adopted the 6.5million active POI data in theUnited States
fromCuebiq. The dataset includes basic information about
the POIs, such as POI IDs, location names, geographical
coordinates, address, brand, andNorth American Industry
Classification System (NAICS) code to categorize the POIs.
The NAICS code is the standard used by Federal statisti-
cal agencies in classifying business establishments, such
as retail trade, health care facilities, education, and enter-
tainment places (United States Census Bureau, 2017). In
this study, we selected 10 important types of POIs that are
closely relevant to human lives: restaurants, schools, gro-
cery stores, churches, gas stations, pharmacies and drug
stores, banks, hospitals, parks, and shopping malls. We
counted the number of POIs in each grid cell as their
facility features.
By knowing the grid cell location of each POI, we further

adopted a metric, urban centrality index (UCI), to char-
acterize the distribution of the facilities in an MSA. UCI
is the product of the local coefficient and the proximity
index (Pereira et al., 2013). The local coefficient is com-
puted based on the number of POIs within each grid cell,
and the proximity index is computed based on the number
of POIs within each grid cell along with a distance matrix

that considers the distance between grid cells. The indices
are formulated as follows:

𝐿𝐶 =
1

2

𝑁∑
𝑖=1

(
𝑘𝑖 −

1

𝑁

)

𝑃𝐼 = 1 −
𝑉

𝑉max

𝑉 = 
′ × 𝐷 ×

(1)

where 𝑁 is the total number of grid cells in an MSA;
 is a vector of the number of POIs in each grid cell,
and 𝑘𝑖 is a component of the vector ; 𝐷 is the distance
matrix between grid cells; Vmax is calculated by assuming
that the total POIs are uniformly settling on the bound-
ary of theMSA. LC is the local coefficient, whichmeasures
the unequal distribution; PI is the proximity index, which
solves the normalization issue; andV is the Venables index
(Pereira et al., 2013). The value of UCI ranges from 0
to 1. The values close to 0 indicate polycentric distribu-
tions, while the values close to 1 indicate monocentric
distributions.

2.1.4 Other datasets and metric calculations

To calculate other metrics, we employed datasets from
multiple commonly adopted platforms. In particular, we
extracted data from Open Street Map (Open Street Map,
2021) to calculate the density of road segments in urban
grid cells. We estimated complete road networks from the
raw data by assembling road segments. Since the lengths of
road segments created by the source are close to each other,
we approached the road density by dividing the number of
road segments by the areas of anMSA. To estimate the sta-
tus of the economic development of the MSA, we adopted
the 2018 data of gross domestic product (GDP) for each
MSA (Bureau of Economic Analysis, 2018). The data are
provided by the Bureau of Economic Analysis in the US
Department of Commerce.
The socio-demographic data obtained from US Census

2014–2018 (5 years) ACS is also used to calculate the ethnic-
ity entropy for an MSA. We first generated the distribution
of population sizes for all race–ethnicity subgroups. Then,
the Shannon entropy function is applied to calculate the
ethnicity entropy𝐻(𝑅):

𝐻 (𝑅) = −

𝑛∑
𝑖=1

𝑃
(
𝑟𝑗
)
log 𝑃

(
𝑟𝑗
)

(2)

where 𝑟𝑗 is the race–ethnicity category, which occurs with
probability 𝑃(𝑟𝑗) calculated by the proportion of people in
the population of an MSA.
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FAN et al. 7

2.2 Inequality characterization

The analyses employing the features and labels for urban
grid cells consist of two components: (1) measuring
inequality of eachMSAusing a quantitativemetric, and (2)
examining inequality within and across MSAs to explore
potential inequality-alleviating solutions. This section pro-
vides an overview of the methods adopted to conduct
experiments in these two components of analyses.

2.2.1 Machine learning models

Machine learning models take as inputs the features of
urban grid cells and learn the non-linear relationships
among the features and the labels (Ramchandani et al.,
2020). If the machine learning model in controlled exper-
iments can reveal the socio-economic disparities of grid
cells based on the input features and their non-linear rela-
tionships, it is an indicator of inequality in a city. In other
words, in the presence of equality, the model should not
be able to predict the socio-economic status of grid cells
based on the input features. Accordingly, the predictabil-
ity of socio-economic status based on the input features in
the machine learning models is an indication of the exis-
tence of inequality, and thus the prediction performance
measure could be a metric for measuring the inequality of
the citieswith regard to the complex interactions of the fea-
tures. Hence, we consider the F1 score, which is a metric
for the predictability of machine learning models, as the
metric of inequality of the cities (see Figure 1).
In this study, the F1 scores in each socio-economic class

are calculated individually first in a one-vs-rest manner.
In each class, the positive label is the class label, and
the negative label includes the rest socio-economic labels.
Then, true positives are the oneswhere themodel correctly
predicts their real positive socio-economic label, and true
negatives are the ones where the model correctly predicts
a real negative label. False positives are the ones where the
model incorrectly predicts the positive label, and false neg-
atives are the oneswhere themodel incorrectly predicts the
negative label. Both false positives and false negatives indi-
cate that the machine learning model cannot distinguish
the socio-economic label well. True positives indicate a
good performance of the model. Hence, both precision
(considering true positives and false positives) and recall
(considering true positives and false negatives) are equally
important to the model. F1 score, the harmonic mean of
precision and recall, conveys the balance between the pre-
cision and the recall of the machine learning models. In
addition, data samples for different socio-economic labels
are highly imbalanced. F1 score has been designed to work

well on imbalanced data, compared to the accuracy of a
machine learning model. The greater the F1 score in a
model of a city, the greater the inequality.
To obtain valid and reliable results, this study adopts two

widely used machine learning models: XGBoost and neu-
ral networks. The XGBoost model, a scalable tree boosting
system, is an efficient and easy-to-use algorithm that deliv-
ers high performance and accuracy (Chen & Guestrin,
2016). We tend to have hundreds of thousands of samples
(i.e., urban grid cells) in each MSA, leading to time-
intensive model training processes. The XGBoost model
could quickly execute and performwell in prediction tasks.
Hence, this study mainly uses the results of XGBoost to
characterize and understand the inequality in MSAs. Neu-
ral networks, composed of an input layer, a hidden layer,
and an output layer, can efficiently identify important
information from inputs leaving out redundant informa-
tion. Through an embodied activation function, the neural
networks are capable of capturing the non-linear rela-
tionship between the input features and output labels.
Recognizing the benefits of the neural network model, we
employed this model for validating the results generated
fromXGBoost, further enhancing the reliability of the find-
ings and implications obtained from this study. The ridge
regression model is a conventional mathematical model
that is good at avoiding overfitting by regularizing the coef-
ficient estimates (Hoerl & Kennard, 1970). The results of
the ridge model help to demonstrate the performance and
capabilities of the machine learning models in capturing
complex urban feature interactions.
We implemented these machine learning models using

an open-source Python package, scikit-learn (Pedregosa
et al., 2011). We first randomly split the data into two sets,
train and test; 80% of the samples are in the training set,
and 20% of the samples are in the testing set. We further
adopt the cross-fold validation to train the machine learn-
ing model and tune its hyperparameters. We divide the
training set into five subsets of equal size. Four out of five
subsets are used for training, and the remaining one is used
for validation. With this process, the model would be fur-
ther applied to the testing set and compute the F1 score for
each city. In addition, the results of the machine learning
model, especially the F1 scores for differentMSAs, are vali-
dated through the training and testing of differentmachine
learning models, neural networks and XGBoost.
The performance of a machine learning model may be

influenced by many factors including the structure of the
model, size of data, and so forth. The proposed method
considers these uncertainties and controls them in gen-
erating the metric. We used the same model for learning
the patterns of cities, the same size of grid cells in divid-
ing urban spaces, and the same data sources for generating
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8 FAN et al.

features. Each MSA has more than 1000 grid cells so that
the model can have sufficient data for training and vali-
dation. Hence, we could expect that the method proposed
in this study is capable of capturing the actual inequality
phenomenon in cities.

2.2.2 Understanding of inequalities

As explained earlier, in this study, the F1 score of machine
learning models quantifies the degree of inequality of
each MSA. The next step is to identify potential solutions
to alleviate inequalities in urban areas, which requires a
thorough understanding of the underlying mechanisms of
inequalitywithin and acrossMSAs.Here, we propose three
experiments to understand inequality from three different
aspects.
In an MSA, inequality is shaped by both static features

of facilities and dynamic features related to human activ-
ities. Examining the contributions of each feature to the
inequality of the MSA is necessary for identifying allevia-
tion solutions. To this end, we conducted experiments to
measure the importance of features to the F1 score of the
machine learning models. In these experiments, based on
the trained models with all parameters and hyperparame-
ters fixed, we set the values of one input feature to be zero
for all samples andmeasure the predictability of themodel
(Lundberg & Lee, 2017). The decrease in F1 scores, to some
degree, can indicate the importance of the features to the
inequality of the MSA. Transforming the distribution of
the important feature in areas of MSA would contribute
to reducing the inequalities.
In addition to MSA-specific strategies, policies that are

effective in more than one MSA would be beneficial for
reducing policy-making efforts and enhancing the exe-
cution of policies at scale. Capturing the similarities of
MSAs based on their inequality characteristics allows us
to understand the effectiveness of cross-MSA policies. To
this end, we employed themethod of transferringmachine
learning models to different MSA and quantifying the
similarities of inequalities across MSAs by the metric of
model transferability. Specifically, we train the machine
learning model by feeding in the samples from an MSA.
Once the training process is done and all parameters
are fixed, we feed in the sample from other MSA and
measure the predictability of the model. The obtained
F1 score could indicate the extent to which the patterns
of the MSA on which the model is trained share simi-
larities with the patterns of the MSA that the model is
predicting. This quantitativemetric offers us a genericmet-
ric to capture similarities of features shaping inequality,
which could inform us about policy generalization and
execution.

Finally, inequalities are not uniform among MSAs. The
variations of urban characteristics across MSAs may tell
us general approaches to mitigate urban inequalities. As
such, we extend our analysis to capture the relationships
between urban characteristics and F1 scores across MSAs.
Here, we primarily look into: (1) the status of economic
development quantified by GDP; (2) the scale of urban
development quantified by the number of POIs in the
MSA; (3) the connectedness of urban areas quantified by
road density; (4) the diversity of residents quantified by
ethnicity entropy; and (5) the geometric distribution of
facilities quantified by the UCI. The calculation of these
metrics is as aforementioned in previous sections. With
all these characteristics of MSAs, to capture the rela-
tionships between inequality and urban characteristics,
we employ an ordinary least squares (OLS) regression
model to incorporate the interactions among multiple
independent variables:

𝑦𝑖 ∼ 𝛽0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + 𝛽3𝑥𝑖,3 + 𝛽4𝑥𝑖,4 + 𝛽5𝑥𝑖,5 + 𝜀𝑖
(3)

where 𝑦𝑖 is the F1 score of MSA 𝑖; 𝑥𝑖,1 to 𝑥𝑖,5 are the vari-
ables of urban characteristics; 𝛽 are coefficients; ϵi is the
error term. In the regression, since the values of GDP, road
density, and number of POIs have a much larger scale
than other variables, we use logarithmic transformation of
values.

3 RESULTS

3.1 Empirical statistics of features

The variety of datasets we gathered allowed us to capture
different features of the cities. We first show examples of
features mapped into the metropolitan area of Atlanta to
gain a basic and empirical understanding of the distribu-
tion of facilities and human activities in an MSA. Figure 2
illustrates the extent to which densities of features vary
across the areas of the Atlanta MSA. As we observed, the
number of active residents varies across different regions
of the MSA (Figure 2a). POIs are concentrated in the cen-
ter of the MSA and expand like a tree from the center to
the periphery of the MSA (Figure 2c). The main incentive
for human movements is the visits to POIs, such as work-
ing and shopping, leading to agglomerated activities in the
center of theMSAs with a high density of POIs (Figure 2b).
Beyond activities in POIs, the footprints of people also
include visits to friends and work commutes. Hence, the
scale of population activities is broader than the locations
of POIs. Finally, in Figure 2d, we show the residential
areas labeled by socio-demographic groups. We find that
White people account for the majority of the residential

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.12972 by T
exas A

&
M

 U
niversity L

ibraries, W
iley O

nline L
ibrary on [07/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FAN et al. 9

F IGURE 2 Spatial distribution of features and socio-economic characteristics of population groups in Atlanta MSA. (a) The distribution
for the number of residents (mobile phone devices as a proxy) based on mobile phone data. The numbers of residents are aggregated at the
census tract level. Because the areas of census tracts vary, the figure shows the only number of people in different regions of the MSA rather
than the population density. (b) The distribution of the average number of stops per day in a grid cell. (c) The distribution of the number of
points of interest in a grid cell. (d) The distribution of different income and race groups: HI represents high-income groups; LI represents
low-income groups. (e–f) The distribution of some example features (i.e., number of residents (e), number of restaurants (f), number of
grocery stores (g), and number of hospitals (h)) in each sociodemographic group: W represents White; H represents Hispanic, and B
represents Black. The error bar represents the variance of samples.

area of the MSA. High-income White people are living in
the North and close to the center of the MSA, while low-
income White people tend to live on the periphery and
the South of the MSA. Compared to the wide distribution
of White people, the residential areas of Black people are
more condensed, and high-income and low-income Black
subgroups are intertwined in the center of the MSA. His-
panic subgroups occupy only a very small proportion of the
area and are dispersed across theMSA. These observations
inform us about the segregation and inequality of feature
distributions and the complex association between urban
features and socio-demographic groups.
In the next step, we first look at the features of facilities

shared by different population groups. Figure 2e–h shows
the differences in the number of example facilities in the
grid cells occupied by different socio-demographic groups.
We observe that the differences in facilities in residential
areas of different socio-demographic people are not signif-
icant. Specifically, comparing the mean and variance in
the average number of facilities in a grid cell, the differ-
ences may be present in the mean values. For example,
grid cells of Hispanic people have more restaurants and
grocery stores (Figure 2f,g). White people, high-income
or low-income, have the minimum number of facilities
in their residential grid cells. The variance across grid
cells in a population group, however, is extremely large,
making the differences in the number of facilities incon-

spicuous. This pattern is observed in all selected MSAs
(more details can be found in the Supplementary Infor-
mation). Such observation implies that inequality is not
apparent and cannot be simply quantified through basic
statistics and based on only one urban feature due to the
complex interactions of urban features. Hidden and non-
linear mechanisms resulting in inequalities at the nexus of
urban features and socio-demographic attributes exist and
are underexplored without advanced methods capable of
specifying the complex interactions of features.

3.2 Measurement of inequality

To further decompose the inequality in cities, we trained
three extensively adopted and technically mature mod-
els: two machine learning models, XGBoost and neu-
ral network models, and one conventional model, ridge
regressionmodel. The predictability of thesemodels, given
features in urban grid cells, is considered a metric of
inequality in an MSA. The machine learning models are
well-trained in the same way for different cities. All the
metric values for evaluating the model performance are
obtained when the models are optimized and convergent.
We only compare the inequality metric of cities when all
other influential factors, such asmodel types, grid size, and
features, are controlled. Showing the influence of these

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.12972 by T
exas A

&
M

 U
niversity L

ibraries, W
iley O

nline L
ibrary on [07/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 FAN et al.

factors on model performance is to help select the proper
model, grid size, and features for this study.Under this con-
text, the poor performance of the model can indicate less
inequality since all other influential factors are controlled
well. The results of F1 scores are based on the testing data
for each city. The inequality is pronounced if the machine
learning model can obtain high predictability, indicated
by a great F1 score. That is, the interactions among urban
features can distinguish the residential areas with differ-
ent socio-demographic population groups, reflecting the
fact that inequalities of urban features in serving resi-
dents of subgroups present. Using the F1 score as the
metric of inequality, we quantify the inequality of all
selectedMSAs by considering the nuanced relationships of
urban features. However, as aforementioned in the Meth-
ods section, the ability to capture the complex relationships
among urban features and the algorithmic advantages
varies among machine learning models. Here, by training
and testing the models, we found that the ridge and neu-
ral network models have similar performance across all
MSAs; and the XGBoost model outperforms conventional
ridge models by about 25% in the majority of the selected
MSAs (Figure 3a). The XGBoost models achieve an aver-
age of 0.8 for F1 scores among selectedMSAs,meaning that
the model can explain 80% of the variations of labels based
on input variables. In view of the outstanding performance
of the XGBoost models, we used the results of XGBoost
to analyze the inequality of MSAs in this study, and the
results of the other two models to validate the outcomes
of XGBoost models.
The predictability of the machine learning models may

be influenced by factors such as the size of grid cells
or specific features that undermine the importance of
the complex interactions of urban features. To examine
the robustness of the models and the results, we applied
the models to samples generated from different sizes of
grid cells. Figure 3b displays the relationship between F1
scores and the size of grid cells for three examples ofMSAs.
We observe that the performance of the XGBoost model
decreases when the size of the grid cell increases. There is
a jump in performance at around the grid size of 0.02 and
0.03. Decreases in model performance could be attributed
to the lack of grid cells (samples) to train the model and
also the aggregation of features that reduces the dispari-
ties among grid cells. Such a negative correlation between
model performance and grid size provides us with the
rationale for selecting a proper grid size for measuring the
inequality of MSAs. Based on the results, 0.01 and 0.02
would be proper grid sizes. Thus, for all the analyses in this
study, we used 0.01 as the size of the grid cell so that the
results generated from themachine learning models could
be comparable and informative.

In addition, individual features may also influence the
performance of the model due to the strong correlation
between individual features and labels. Here, we examined
the contributions of individual features while fixing the
parameters of the well-trained model. The trained model
preserves both the complex interactions of the features
and the contributions of individual features. Figure 3e
shows the decrease in model performance by removing
specific features. The elimination of features related to
general human activities, such as mean stops, mean vis-
its, average visit time, and the number of residents, could
lead to decreases in F1 scores. But the decreases do not
significantly influence the performance of themodel, com-
pared to the high predictability of the model. For example,
for the results of the XGBoost model, the average influ-
ence of the number of residents on F1 scores is below 0.3.
In Figure S1a,b, we also plot the influences of the fea-
tures on the F1 scores for the ridge and neural network
models. The average influences of the features are even
much lower than 0.2. Compared to the average F1 score
of XGBoost, which is 0.81, we consider that urban features
do not have a significant influence on the model perfor-
mance. In addition, the specific types of POIs and visits to
these types of POIs do not make toomuch difference to the
F1 scores. In general, individual features cannot explain
the inequality of each MSA well. This result implies that
inequality is a phenomenon arising from non-linear inter-
action among various urban features. Hence, inequality
should be attributed to hidden complex interactions of the
urban features rather than individual attributes.

3.3 Transferability of inequality

We mapped the F1 scores of the MSAs obtained from the
XGBoost model in Figure 3c. There are 22 MSAs from
the South, 12 MSAs from the West, nine MSAs from the
Midwest, and six MSAs from the Northeast of the United
States. We observed significant regional patterns from
the map: MSAs in the US West tend to have higher F1
scores thanMSAs from other regions, andNortheastMSAs
tend to have lower F1 scores. That means, socio-economic
inequality is greater in theMSAs in theUSWest, and socio-
economic inequality is lesser in theMSAs in theNortheast,
compared to the MSAs in other regions. To further explore
this observation, we plotted the relationships among F1
scores, regions, and the GDP in Figure 3d. In addition to
the regional patterns, we also find that lower GDP is corre-
lated with higher F1 scores, while higher GDP is correlated
with lower F1 scores. This association is not very strong
since we selected MSAs with the largest populations.
The weak negative correlation can still demonstrate the
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FAN et al. 11

F IGURE 3 Results of model training and testing. (a) F1 scores of three models: neural networks, ridge classifier, and XGBoost for each
MSA. The numbers on the bars are the mean values of the F1 scores for all selected MSAs. The dots on top of each bar represent the F1 scores
of the MSAs. The error bars show the variance of the F1 scores. XGBoost achieves the best performance among the three models. (b) Results of
testing the effect of grid size on the performance of the XGBoost model in three example MSAs: Dallas-Fort Worth MSA, Boston MSA, and
Cleveland MSA. The sizes of the grid cells are measured by the differences in the longitude and latitude of the corner points on one side of a
grid cell. Hence, the values on the x-axis represent the differences in degree in the geographical coordinate systems. (c) A geographical map
shows the F1 scores for selected MSAs in the United States. (d) The relationships between F1 scores and gross domestic product of MSAs in
four regions of the United States: South, Northeast, Midwest, and West. (e) Importance of features to the F1 score of the XGBoost models for
each MSA. The x-axis is the difference between the original F1 scores and the F1 scores after dropping a specific feature from the input
(decrease of predictability of the XGBoost model). The y-axis represents the features selected to be removed for understanding its contribution
to the inequality of the MSAs.

association between the extent of socio-economic inequal-
ity and the GDP of the MSAs. These regional patterns of
inequality motivate us to consider the common character-
istics shared by MSAs.
To explore the similarities of inequality across a variety

of MSAs, we conducted experiments on the transferability
of the patterns. That is, to what extent the machine learn-
ingmodel trainedwith the samples of oneMSA can predict
the occupied population groups for grid cells in other
MSAs. The transferability of the models helps us to under-
stand the generalizability of the patterns across MSAs and
regions. As most of the analyses and results are taken
from the most populated MSAs, other MSAs can benefit
from the identified and generalized patterns (Dong et al.,
2019), if the shared inequality patterns can be captured.We
trained the machine learning models using data samples
from one MSA with both validation and testing processes.
Then, we applied the fixed model to the data samples from
another MSA. This process aims to address if the patterns
from one MSA are transferrable to another MSA, which

allows us to observe the variations of inequality in cities
across the nation and motivates us to explore the factors
related to variant inequalities. Hence, the results present
in the paper are based on the performance of the mod-
els on the testing sets, either from the same MSA or a
different MSA. Figure 4 summarizes the results obtained
from cross-MSA experiments. As expected, all the models
trained and tested on the same MSAs (diagonal) outper-
form models trained and tested in different MSAs. The
performance of the models varies for different pairs of
MSAs. The values on the upper left corner are closer to
light blue, meaning that the F1 scores are close to 0.6 and
the transferability ismore evident, whilemost of the values
on the right-hand side are dark red,meaning that the trans-
ferability is quite low (Figure 4a). These results imply that
some MSAs share common characteristics shaping their
inequalities, and thus the same inequality-alleviatingmea-
sures could work across these MSAs. We also found that
the transferability matrix is asymmetric. We show exam-
ple MSAs that achieved the highest transferability and the
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12 FAN et al.

F IGURE 4 Shared inequality among selected MSAs measured by the transferability of machine learning models. (a) Pair-wise similarity
of inequalities among MSAs. Each row represents the MSA where the model is trained, and each column represents the MSA where the
trained model is adopted to make predictions. The color indicates the F1 scores. Here, the machine learning model is XGBoost. (b) Examples
of transferability results for the top four and bottom four models for MSAs: Columbus (Col), Kansas City (KC), Oklahoma City (OKC),
Cincinnati (Cin), Salt Lake City (SLC), SJ-Sunnyvale-SC (SJ-S-SC), Tucson (TC), and Urban Honolulu (Hon). The error bars show the
variance of the F1 scores. The numbers attached at the bottom of the bars are the mean values of the F1 scores.

lowest transferability among the selected MSAs. Models
trained on MSAs such as Columbus and Kansas City can
learn themost commonpatterns of inequality, which could
be applied to most of the other MSAs. However, models
trained on MSAs such as Urban Honolulu are not able to
capture the common inequality patterns of other MSAs
since Urban Honolulu is in Hawaii, where the develop-
ment and environment are different from cities in the US
mainland.

3.4 Relationship with urban
characteristics

Considering the variety and transferability of models
among MSAs, the next question is what inequality-
alleviating strategies would be effective among MSAs
consistent with their urban characteristics. To investigate
this question, we computed the metrics of urban charac-
teristics for MSAs, including the urban centrality index,
road density, and ethnicity entropy, along with the num-
ber of POIs and GDP of the MSAs (more details can be
found in the Methods section.) Results are summarized
in Figure 5 and Table 1. The distributions of UCIs and
the inequality extent measured by F1 scores are approxi-
mately normal, with histograms shown in Figure 5a. The
Kendall rank correlation reaches 0.72, the Spearman rank
correlation reaches 0.88, and the Pearson correlation coef-
ficient approaches 0.89 for these 47MSAs.Allmeasures are
statistically significant with p < 0.01, indicating a strong
positive correlation between the UCI and the extent of
inequality. UCI itself is not included in machine learning
models. The strong correlation between UCI and the F1

F IGURE 5 The relationship between urban characteristics
and inequality (F1 scores). (a) The values of urban centrality index
(UCI) as a function of F1 scores obtained from XGBoost models. (b)
The logarithmic values of road density in grid cells are a negative
function of F1 scores obtained from XGBoost models. The
correlation analysis under the plots shows the exact statistics and
p-values. Three statistical tests were conducted for each of the
correlation analyses. All measures are statistically significant with
p < 0.01. The UCI is strongly positively correlated with inequality,
and road density is moderately negatively correlated with inequality
for the selected 47 MSAs.

score serves as an important interpretation of the presence
of inequality in cities. That is, a pronounced concentration
of POIs greatly contributes to inequality in MSAs. Analy-
ses on road density reveal another significant relationship.
The distribution of road density is close to log-normal,
while the distribution of F1 scores is normal (histograms
in Figure 5b). The Kendall rank correlation reaches−0.44,
the Spearman rank correlation reaches −0.60, and the
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Pearson correlation coefficient approaches −0.62, for 47
MSAs. These significant measures signify a moderate neg-
ative correlation between road density and inequality.
That is, the increase in road density (as an indicator of
urban development and connectivity) could contribute to
alleviating socio-economic inequalities.
Coupled with other factors, we analyzed the extent to

which urban characteristics can capture the inequality
of MSAs. We examined the performance of multilinear
models with different combinations of variables. Table 1
summarizes the results of the multilinear regression mod-
els using OLS. The first four models with the inclusion
of UCI as a variable reach high-fitting performance with
𝑅2 greater than 0.79, indicating that UCI can explain 79%
of the inequality in MSAs. The coefficients for UCI are
significant, showing a consistent result with the corre-
lation analysis. Other variables, such as the number of
POIs, GDP, and ethnicity entropy, are not significant, even
though they may have positive and negative correlations
with the inequality scores. The relationship between road
density and inequality is not significant. This result implies
that, although the correlation analysis finds the alleviating
effect of road density on the inequality of MSAs, a poly-
centric distribution of POIs could moderate the effect of
road density on inequality. The other threemodels exclude
the UCI variable and examine the effects of road density
coupling with other factors. In these models, the neg-
ative relationships between road density and inequality
are significant, confirming our previous findings in the
correlation analysis and making the road density weakly
predictive of inequality. The 𝑅2 of these models reaches
more than 0.35, showing the moderate effect of expand-
ing road density on the inequality of MSAs. Other factors,
includingGDP, and ethnicity entropy are still insignificant.
To establish that the correlations between inequality and
urban characteristics are sufficiently general, we tested
these findings using the F1 scores obtained from neural
networks and ridge models. The results are summarized
in the Supplementary Information, Tables S1 and S2. These
findings inform us about the potential of enhancing road
density and POI distribution for inequality alleviation,
which will be discussed in detail in the discussion section.

3.5 Model comparison

The machine learning models that this study focuses on
are the neural network model and the XGBoost model.
The ridge regression model is a conventional mathemati-
calmodel because it is a type of linear regression technique
used to solve some of the problems of OLS by impos-
ing a penalty on regression. The form of the ridge model
is clearly defined. Solving the ridge model is equivalent
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to solving the coefficient for each independent variable.
The results in Figure 3a show the lowest predictive per-
formance of the ridge model, compared to the machine
learningmodels like neural network and XGBoost models.
In addition, comparing the results in Figures 3c,d and S2,
we find that the ridge regression model cannot distinguish
the degrees of inequality across US cities. Finally, based on
the poor performance in Table S1, compared to the results
in Tables 1 and S2, we find that the ridge regression model
is limited in interpreting the factors influencing inequality
in cities. Therefore, we prove that conventional regression
models are not capable of capturing the complex interac-
tions among the inputs. The proposed machine learning
models outperform conventional mathematical models to
measure and explain inequality in cities.

4 DISCUSSION AND CONCLUDING
REMARKS

Measuring and understanding the socio-economic
inequality in cities is of great importance to policymaking,
planning, and design toward equitable urban systems
of facility services and life opportunities. When equal-
ity exists, people of different income levels and racial
groups would have similar interactions with facilities and
infrastructure to meet their life needs. In this study, we
present a new computational method that leverages the
interpretability of machine learning models to encode
the high-dimensional and complex interactions of urban
features to quantify and understand socio-economic
inequality in 47 US metropolitan areas. Inequality is a
multifaceted phenomenon that arises from the complex
interactions among heterogeneous urban features. Dif-
ferent from existing works, the method proposed in this
study allow us to integrate heterogeneous urban features
and their complex interactions into a comprehensive and
quantitative metric. The metric is capable of providing
a holistic view of the inequality of intertwined urban
components in a city and also allowing to transfer insights
across cities.
We show that being able to predict the income and race

label of an area based on population and the built envi-
ronment features is an indicator of inequality. Accordingly,
we demonstrate the effectiveness of using the predictabil-
ity of machine learning models as a metric of inequality to
integrate the non-linear relationships among urban com-
ponents. We also examine the tradeoff between grid size
and model accuracy and find regional patterns of inequal-
ity of MSAs. The results show that the predictability of
machine learning models does not decline drastically if
individual features are removed. This result provides evi-
dence that inequality is a phenomenon influenced by the

intertwined urban features rather than a consequence of
individual features.
We conducted validation on different parts of the

method to enhance the validity of the findings. First,
the validation of the machine learning models has been
conducted using five-fold cross-validation in training the
models. Second, the results of themachine learningmodel,
especially the F1 scores for different MSAs, are validated
through the training and testing of different machine
learningmodels such as neural networks andXGBoost and
the comparison with the results of conventional mathe-
matical models like the ridge regression model. Third, the
strong correlations between F1 scores and facility distribu-
tions, and road density, which align with existing social
science literature, could also support the validity of the
method and findings in this study.
The objective of the proposed machine learning method

for urban inequality is not to improve the prediction
accuracy or other quantitative metrics of model perfor-
mance. The proposed machine learning model overcomes
the limitations of the conventional mathematical models
that require specifying the form of feature interactions
and compound effects on the dependent variable. In fact,
it is improper to specify the forms of feature interac-
tions and compound effects before being aware of the
underlying mechanisms of these interactions. As such,
existing mathematical models based on assumed formulae
are not comparable with our model because the complex
interactions of urban features are unknown.
The finding helps us rethink how inequality should

be examined in cities. The transferability analyses of the
models show that MSAs indeed share common patterns
of inequality, implying that urban characteristics may
influence the inequality of cities. Variations of inequality
patterns, however, still exist because the models are not
completely transferable. By examining the relationships
between urban characteristics and the inequality met-
ric, we develop a deeper understanding of inequality and
identify general solutions for inequality mitigation. The
results and findings of this study have notable implications
that contribute to decision-making in various research
and practical domains such as urban planning, infrastruc-
ture development, economic promotion, and government
regulation.
With the growing availability of urban big data and

the amplified complexity of urban systems, learning how
urban components interact with and understanding the
consequent impacts of complex interactions are particu-
larly critical for optimizing the operations of urban systems
and the decision-making of urban development. Our
results suggest individual features cannot reveal the com-
plexity of the urban systems and how inequalities emerge,
and thus are not capable of quantifying the inequality
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of cities properly. The inequality metric proposed in this
study further understanding of the non-linear interaction
of population activities and facility distributions and the
effects on social-economic inequality of cities. The pro-
posed metric provides a new perspective on evaluating the
complex relationships of urban components and a novel
approach to deriving knowledge of urban systems from
large-scale multisource granular data. In particular, over-
coming city-scale challenges such as inequality issues, a
holistic perspective to think about the underlying mech-
anisms and solutions is required, as the interdependencies
of the urban components are making a difference in the
socio-economic outcomes of the whole city.
Another implication of ourwork is helping city planners

and governments evaluate strategies for alleviating socio-
economic inequalities in MSAs with the inferred relation-
ship between urban characteristics and the inequalitymet-
ric. Our study shows that better urban development and
dispersed distribution of facilities could alleviate inequal-
ity of cities significantly. Changing the facility distribution
from mono-centricity to poly-centricity could narrow the
service gap between different areas of the cities and could
intertwine with the regular life activities of the population.
Increasing road density (as an indicator of urban develop-
ment) could improve the accessibility of public services.
On the other hand, the effects of facilities distribution
may moderate the effects of road density on inequality.
This finding raises a more practical way for alleviating and
mitigating inequalities as dramatically changing the distri-
bution of facilities in a city would lead to a worse impact
on the economy than the benefits of mitigating inequality.
Hence, given limited resources, policies that could increase
road density and slightly change facility distribution at the
same time may end up being cost-effective solutions, as
these actions could reshape the mobility flows and visit
patterns of the population. In addition, localized actions
for eachMSA are still needed since variations of inequality
patterns are also observed in our study.
This study also has some limitations that need future

research to overcome. First, human activities are not
static features. Activities in different scenarios, such as
gathering events, commuting peaks, and natural disasters
could show a more comprehensive profile of population
patterns and furthermake a difference inmeasuring socio-
economic inequality. Future research could build upon our
framework and extend the machine learning models to
incorporate dynamic population activities. For example,
the long short-term memory model could be adopted to
encode time-series information on human activities (Alam
et al., 2020). The understanding of inequality could be
deepened by capturing more features about urban sys-
tems and populations. Second, this study considers each
area of a city as independent. The physical adjacencies

and social dependencies are not computed and included
in our models, although these features are of impor-
tance to understanding the spillover effect of inequality.
Future research could develop new computational models
(Martins et al., 2020), such as graph neural networks
to encode such relational information quantifying the
inequality of cities.
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A B S T R A C T

Urban flooding disrupts traffic networks, affecting mobility and disrupting residents’ access. Flooding events are
predicted to increase due to climate change; therefore, understanding traffic network’s flood-caused disruption
is critical to improving emergency planning and city resilience. This study reveals the anatomy of perturbed
traffic networks by leveraging high-resolution traffic network data from a major flood event and advanced
high-order network analysis. We evaluate travel times between every pairwise junction in the city and assess
higher-order network geometry changes in the network to determine flood impacts. The findings show network-
wide persistent increased travel times could last for weeks after the flood water has receded, even after modest
flood failure. A modest flooding of 1.3% road segments caused 8% temporal expansion of the entire traffic
network. The results also show that distant trips would experience a greater percentage increase in travel time.
Also, the extent of the increase in travel time does not decay with distance from inundated areas, suggesting
that the spatial reach of flood impacts extends beyond flooded areas. The findings of this study provide an
important novel understanding of floods’ impacts on the functioning of traffic networks in terms of travel time
and traffic network geometry.

1. Introduction

Transportation networks connect populations and services (FEMA,
2020). The stability of a transportation network is challenged by flood
hazards (Pregnolato, Ford, Wilkinson, & Dawson, 2017), which can
trigger compound physical and functional failure that results in net-
work connectivity loss (Dong, Gao, Mostafavi, & Gao, 2022). Commu-
nity recovery is further impacted when access to critical facilities such
as fire stations, shelters and hospitals is disrupted (Fan, Jiang, Lee,
& Mostafavi, 2022; Yuan, Xu, Li, & Mostafavi, 2022). The extent of
impact is expected to increase due to climate change (Ghanbari, Arabi,
Kao, Obeysekera, & Sweet, 2021; Wasko, Nathan, Stein, & O’Shea,
2021). Researchers have sought to understand how floods disrupt
transportation networks (Dong et al., 2022; Wang, Yang, Stanley, &
Gao, 2019) to improve infrastructure resilience planning (Esmalian
et al., 2022). Existing studies, however, focus mainly on either physical
road network topology during disruptions (Bagloee, Sarvi, Wolshon,
& Dixit, 2017; Mattsson & Jenelius, 2015; Wang et al., 2019) or
on transportation functionality in normal conditions without disrup-
tion (Hamedmoghadam, Jalili, Vu, & Stone, 2021; Li et al., 2015). Little
attention is devoted to the time-varying link functionality in trans-
portation networks. The flow of traffic through the network, as well as
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E-mail addresses: akhil.rajput@tamu.edu (A.A. Rajput), sanjaynayak@tamu.edu (S. Nayak), sjdong@udel.edu (S. Dong), amostafavi@civil.tamu.edu

(A. Mostafavi).

network connectivity, is essential to functioning of a community. But
the flood impact on traffic networks is not yet fully understood.

The use of percolation methods (Stauffer & Aharony, 2018) to ana-
lyze physical road networks provides limited insights regarding floods’
impacts on transportation systems. Although such measures adequately
quantify the extent of the impact on road networks, they give little to
no insights into how travel is impacted in the city. Percolation-based
analysis informs about the physical vulnerability of networks but does
not inform about impacts on transportation system functioning. One
key indicator of the functioning of traffic networks is travel time. Some
studies have tried to address this using the percolation approach (Ganin
et al., 2017; Sohouenou, Neves, Christodoulou, Christidis, & Lo Presti,
2021) but there is limited research on the understanding of traffic
networks under natural disasters such as flooding. However, little is
known about the extent to which floods perturb travel time in traffic
networks and whether the impacts on traffic networks would be local
to flooded areas or affect the more significant part of the network.
Or how long would the travel time impacts persist in the network
after the flood recedes? Therefore, percolation analysis does not fully
capture real-world networks’ temporal dynamics and spatiality. Recent
studies have shown the significance of understanding the geometric

https://doi.org/10.1016/j.scs.2023.104693
Received 22 November 2022; Received in revised form 28 March 2023; Accepted 28 May 2023

https://www.elsevier.com/locate/scs
http://www.elsevier.com/locate/scs
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
mailto:akhil.rajput@tamu.edu
mailto:sanjaynayak@tamu.edu
mailto:sjdong@udel.edu
mailto:amostafavi@civil.tamu.edu
https://doi.org/10.1016/j.scs.2023.104693
https://doi.org/10.1016/j.scs.2023.104693


Sustainable Cities and Society 97 (2023) 104693

2

A.A. Rajput et al.

Fig. 1. Conceptual illustration of the analysis performed. (a) Illustration of pair wise travel time and changes in temporal links due to perturbations. (b) Connected component
framework at different Filtration levels. Each filtration level corresponds to a travel time, within which the nodes (road junctions) in the network are connected, although they
may not have a direct link connectivity. Metric for the number of connected components at each filtration level represents the most basic higher order network analysis metric.

properties of spatial infrastructure networks such as road networks
(Badhrudeen, Derrible, Verma, Kermanshah, & Furno, 2022; Dumedah
& Garsonu, 2021; Liu & Li, 2019). However, when the flow dynamics
on the network are involved, we need to derive new metrics to under-
stand the network resilience properties. Traffic networks are spatially
embedded in cities and communities, and their link dynamic varies
temporally (Batty et al., 2012; Serok, Levy, Havlin, & Blumenfeld-
Lieberthal, 2019). We have learned the impact of floods on the spatial
geometry of the physical road network, but how the geometry of
the traffic network changes in the time domain has yet to be fully
understood. For example, when road inundations and heavy congestion
increase the travel time between two spatial nodes (i.e., road junction),
this is equivalent to the two spatial nodes becoming more distant from
each other. Hence, the temporal geometry of spatially-embedded traffic
networks would change.

To this end, the goals of this research are to assess (1) the extent
to which floods perturb travel time in traffic networks, (2) whether
the impacts on traffic networks would be isolated to flooded areas
or would affect a larger part of the network, and (3) length of time
that the impacts on travel time persist in the network after the flood
recedes. Traffic networks are defined as representations of a network
of roads with time-varying functionality. To characterize the anatomy
of perturbed traffic networks during floods, we adopted two novel
geometric properties of the dynamic traffic network (Fig. 1): (1) net-
work expansion and (2) simplicial complex change. Network expansion
refers to the extent to which travel time between the node pairs
(road junction pairs) in the networks increases due to perturbations.
In flooding, road inundations and congestion would increase travel

time between node pairs and hence, cause a virtual expansion in traf-
fic network topology. Simplicial complexes represent the topological
geometry of networks (Torres & Bianconi, 2020). They capture higher-
order topological changes in traffic networks during flooding. Hence,
the examination of changes in the higher-order traffic networks with
time-varying link functionality can provide a better understanding of
the perturbed traffic networks during floods. Both network expansion
and simplicial complex change simultaneously capture the effects of
road inundations and congestion caused by flooding, providing a more
complete understanding and quantification of flood impact on traffic
networks.

Using high-resolution empirical traffic data from Harris County,
Texas, collected during Hurricane Harvey (2017), We first examined
the average shortest travel time between node pairs (road intersections)
during normal status and during flood-disrupted states to quantify the
extent to which flooding expands travel time between node pairs,
and to infer the virtual expansion of the traffic network. Second,
we examined the Betti number at different filtration levels in traffic
networks, as fluctuations in the Betti number reflect the traffic network
simplicial complex change. Fluctuations in the Betti number expose
the characteristics of higher-order network changes and reveal the
extent of changes in traffic network topological features when flooding
causes direct (road inundation) and indirect (congestion) perturbations.
Using this travel time-based characterization of the traffic network, the
findings of this study move us closer to a complete understanding of the
impacts of flooding on transportation systems and the functioning of
cities. Fig. 1 shows the conceptual illustration of the idea of the paper.
More about it will be discussed in detail in the methods section.
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The study’s contribution lies in several aspects; for instance, as per
our knowledge, no prior studies have examined the impact of flooding
on traffic networks based on observational data and also from the
perspective of higher-order networks. Moreover, our study captures the
impact of both functional and physical failure simultaneously, which
traditional methods such as percolation analysis are not able to do.
The functioning of the road transportation system cannot be evaluated
only based on knowledge of road closures in a particular location. Since
traffic network’s role is to provide access to critical infrastructure at the
time of need and facilitate evacuation, understanding the travel times
from every part of the city to another is an important attribute, which
to our knowledge, had not been considered by any previous studies.
This study also evaluates the pair-wise travel time from every junction
in the road network to another to assess the impact of local flood-
related failures in the road network on the entire traffic system. The
results of this study have significant implications for city managers,
transportation planners, and emergency managers for better evaluating
network performance and recovery levels during disasters

The outline of the remaining sections is as follows. Section 2 dis-
cusses the review of past literature in the domain of city vulnerability
and infrastructure codependency, and resilience assessment using com-
plex networks. Section 3 discusses data, pre-processing steps, and novel
methodology implemented in this study. The results are discussed
in Section 4, and key results and their significance are highlighted
in discussion Section 5. We conclude this work by summarizing key
findings in Section 6.

2. Related work

2.1. City vulnerability based on infrastructure interdependence

A disaster’s impact and recovery time can be dramatically impacted
by how people, businesses, and governmental organizations behave
before, during, and just after the disaster (Aerts et al., 2018). Aerts
et al. (2018) explain why this is a problem and show that, despite
the inevitability of the initial efforts’ limited representation of human
behavior, innovations in flood-risk assessment that incorporate societal
behavior and behavioral adaptation dynamics into such quantifica-
tions may result in more accurate risk characterization and improved
evaluation of the effectiveness of risk-management strategies and in-
vestments. Existing research mainly focus on the link-node represen-
tation without taking into account important system features, such
as hydraulic features/structures for water distribution networks and
traffic flow characteristics for transportation networks (Mohebbi et al.,
2020). Cariolet, Vuillet, and Diab (2019) reviewed recent literature
and identified that methods for mapping hazard, vulnerability and
risk are well established. But for mapping resilience in urban areas
poses a challenge as there are no agreed-on methodological approaches
for doing so. Moreover, they identified that very few methods have
been used to identify inherent resilience at city scale. Serdar, Koç,
and Al-Ghamdi (2022) reviewed resilience assessment methods for
transportation networks, indicators, and disturbance categories. They
recommend a new representation for the relationships between perfor-
mance, time, and resilience, emphasizing other network characteristics
and their association with resilience.

Mohebbi et al. (2020) used an infrastructure oriented approach to
examine system interdependence and quantification of resilience for
different infrastructure networks. In order to examine the combined
impact of integrated infrastructure disruptions and socioeconomic fac-
tors on household vulnerability during disasters, Dargin, Berk, and
Mostafavi (2020) suggests a novel paradigm based on disaster risk
theory and Food–Energy–Water (FEW) Nexus systems thinking. They
evaluate disaster impact at household level. Utilizing extensive mobility
data gathered from Puerto Rico during Hurricane Maria, Yabe, Rao,
and Ukkusuri (2021) evaluated the socio-physical interdependencies in
urban systems and their impacts on disaster recovery and resilience.

They showed that as cities get bigger and their centralized infrastruc-
ture systems get more extensive, key services recover more quickly,
but socioeconomic systems’ ability to rely on themselves in times
of crisis is reduced. Yang, Ng, Zhou, Xu, and Li (2019) propose a
synthetic physics-based framework for resilience analysis of interdepen-
dent infrastructure systems. They investigate the pre-event resilience of
interdependent stormwater drainage system and road transport system
to model the functional behaviors of diverse infrastructure systems
at the component level and capture the effects of interdependencies
across various systems. Yang, Ng, Zhou, Xu, and Li (2020) developed
a synthetic physics-driven framework for system-wide infrastructure
resilience analysis which takes into account the interdependence of
infrastructure systems.

2.2. City infrastructure resilience assessment using complex networks

Considering the geographic exposure of infrastructure to natural
hazards, Dong, Wang, Mostafavi, and Gao (2019) evaluated network
robustness by considering the post-disaster network access to important
critical facilities such as emergency services. Mostafavi (2017) provided
a System-of-Systems (SoS) methodology for a comprehensive evalua-
tion of resilience in US civil transportation infrastructure. To determine
how vulnerable the metropolitan road system is to flooding, Singh,
Sinha, Vijhani, and Pahuja (2018) developed an integrated framework
relating flood depth to speed reduction and assess the vulnerability of
the road network, connecting meteorological data, land use functions,
and hydrodynamic model with safety speed function. They discovered
that during a 100 year return period rainstorm event in India, more
than 40% of the network’s route length becomes impassable.

Morelli and Cunha (2021) discusses methods for measuring trans-
portation vulnerability to extreme events in urban road networks based
on travel distribution in a city in Brazil as a case study. They found
that shorter trips are more robust to these extreme events. Fan, Jiang,
and Mostafavi (2021) used adaptive reinforcement learning to evaluate
perturbations on urban mobility in disasters. Dong, Yu, Farahmand and
Mostafavi (2020) presented a probabilistic model based on the Bayesian
framework to assess risk of cascading failures on co-located road and
channel networks. Goldbeck, Angeloudis, and Ochieng (2019) devel-
oped an integrated, dynamic modeling and simulation framework that
combines network and asset representations of infrastructure systems
and models the optimal response to disruptions. Their framework takes
into account resources needed for operating and maintaining assets,
failure propagation dependencies, and system-of-systems architecture.

Erath, Birdsall, Axhausen, and Hajdin (2009) analyzes the effects
of network-wide congestion on the transport-related implications of
link failures. They identify detours, mode shifts, destination shifts,
and trip-activity suppression as four potential demand shifts brought
on by single link failures. Their study shows that detours are the
most common demand response. Abenayake, Jayasinghe, Kalpana, Wi-
jegunarathna, and Mahanama (2022) used a network measure-based
method such as betweenness centrality and closeness centrality net-
work metrics for evaluating the failure of the entire transportation
system as a result of urban floods. As a result, they evaluate the effect
of urban floods on patterns of human migration.

3. Data and methods

To evaluate the dynamics of change in the geometry of traffic
networks, we employed the framework shown in Fig. 2. First, we
processed the raw data to correct any rounding errors and obtained the
required temporal resolution. Then we form a spatio-temporal network
where edge attributes change with time. Creating a network model is
the first step in the methodology. We then obtained a pair-wise node
distance matrix which were used in the two main approaches used
in this study to examine effects of disaster in spatio-temporal traffic
networks. Both shortest path analysis and higher network dimension
analysis are independently analyzed but they both rely on the distance
matrix. Each step in the method is explained below.
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Fig. 2. Framework used in this study to evaluate the dynamics of change in spatio-temporal traffic network.

Fig. 3. Study region. Harris county is the most populous county in Texas state and includes the city of Houston. Due to its proximity to the coast and climate change, it is
susceptible to flooding-related events. The figure on the right shows the road network along with the flood-inundated areas during the peak of Hurricane Harvey.

3.1. Data and pre-processing

We used a weighted road transportation network of Harris County,
Texas, a period before and after Hurricane Harvey flooding (August 1
through September 30, 2017) for this analysis. Fig. 3 shows the study
region along with the road network on which we evaluate the travel
times. In 2017, Hurricane Harvey hit Houston, the fourth-largest city
in the United States. Houston suffered an estimated $125 billion loss,
mainly from the flooding triggered by the rainfall and the release of the
Addicks and Barker reservoirs (Costliest, 2018). A major flood occurs
somewhere in Harris County about every two years (Blackburn, 2021).
Due to the high risk of Harris County to flood-related events and data
availability, we chose this city for this analysis. The findings from this
study will provide valuable insights for city managers, decision makers,
and transportation planners in the region, enabling them to better pre-
pare for and respond to future flooding events. From INRIX, a private
analytics company, we acquired two components of traffic data: road
segment location data and segment attributes. The dataset includes the
travel time value for each major road segment in Harris County, within
which is located the city of Houston. INRIX collects location-based
data from both sensors and vehicles. INRIX traffic data contains the
average traffic speed of each road segment at 5-min intervals and their
corresponding historical average traffic speed. Each road segment’s
geometric information, such as name, geographic locations defining
its start and end coordinates, and length, is also available from the
INRIX data set. Aggregating these two datasets yields a dataset that has
location information of all the road segments and their corresponding
travel times and information on road closure.

Location attributes of some of the road segments varied at the fifth
decimal level when taken in degree decimal format. This resulted in
some of the road segments being disconnected from the main network,
although they were physically connected. To address this, coordinates
were rounded off to the fourth decimal to ensure that road segments
connect entirely when a network is formed. We then aggregated the
attribute information of the road segments at a daily resolution to re-
duce computational effort and provided an overall travel characteristic
for the entire day that may differ during rush hours and early morning.
Travel time for a road segment was calculated by taking the mean value
for all 15-min intervals for an entire day.

3.2. Network construction

We constructed a network from the processed road segment data
that contains 17,089 edges and 13,550 nodes. Where edges correspond
to road segments and nodes correspond to road junctions. We map each
of the road segments based on their location attributes to form this
network. The original network consisted of 19 712 edges and 15 390
nodes but we filtered the nodes and edges from the largest connected
component in the network and removed some of the nodes that had
no data even during non impact days. This step ensured that shortest
paths exist between every pairwise junction in the network as it is
a primary step in data processing in this paper. Having disconnected
nodes or clusters would lead to non-reachable junctions which are
not desirable for this analysis. The resulting giant component (largest
connected component) accounted for 88% of the nodes and 87% of the
edges from the original network.



Sustainable Cities and Society 97 (2023) 104693

5

A.A. Rajput et al.

We use this network as a skeleton and construct weighted temporal
traffic networks for each of the days from August 1, 2017 through
September 30, 2017. We use travel time in minutes as edge weight in
the network that represents the time for a vehicle passing through an
edge (road segment) to traverse through it.

3.3. Distance matrix

After obtaining temporal networks with travel time as edge at-
tributes, we computed a matrix 𝐴13500×13500 where 𝐴𝑖𝑗 corresponds to
the shortest travel time from road junction 𝑖 to road junction 𝑗 in
minutes. Since we treat the transportation network as an undirected
graph, travel time from 𝑖 ← 𝑗 is the same as from 𝑗 ← 𝑖, thus
yielding a symmetric matrix, where 𝐴𝑖𝑗 = 𝐴𝑗𝑖. This distance matrix,
where distance between junctions 𝑖 and 𝑗 (or 𝑗 and 𝑖), is evaluated in
time domain. This matrix contains information about the travel time
between any junction pairs in the network and collectively represents
the travel characteristics of the Harris County traffic network. We use
the Bellman-Ford algorithm (Bellman, 1958) to compute the travel time
for the shortest paths between every pairwise junction. Since, our net-
work has roughly 13,500 nodes and 17,000 edges, it is computationally
expensive to compute the shortest paths between every pairwise node
in the network. Python natively uses single core for computation so
Python libraries such as swifter, dask, and native libraries that allow
multi-core processing were adopted to speed the computation.

3.4. Shortest paths analysis

We use the distance matrix to evaluate the effective spatial transfor-
mation of traffic network in Harris County. As the travel time changes
for each road segment, the shortest paths between pairwise junctions
(nodes) denote the spatial proximity of these junctions in the time
domain. Fig. 1(a) illustrates a sample traffic network showing pairwise
travel time with impact on delays due to disasters. Each road segment
undergoes a change in travel time during disruption. This could be
both positive or negative. If a road segment experiences disruption due
to inundation, debris, or other disaster-related obstruction, it would
experience increased travel time. This would have a compounding
effect on travel times between different junctions, as multiple road
segments in the path experience disruptions. Other road segments that
are not in proximity to damaged areas may experience higher than
usual travel times, as they absorb additional traffic routed through
them.

To assess the impact of urban flooding on the entire traffic net-
work, we compute two parameters: the impact of flooding on the
average travel time between every pairwise road junction and the
impact of Harvey on different travel time ranges of 15-min intervals.
For both these parameters, the first two weeks of August 2017 were
used as a baseline to compute change during Harvey. The same days
of the week are compared to one another to account for different
mobility patterns during different days, such as the weekday-weekend
effect (Siła-Nowicka et al., 2016; Xia et al., 2018). The first parameter
provides an idea on the extent of the impact of flooded roads on the
average state of the entire network. The second parameter informs us
about the disproportionate impacts on different travel time ranges.

3.5. Higher network dimension analysis

The simple network based measures, such as average path length,
giant component size in the disrupted network, and other network-
related measures are not able to fully capture the underlying changes
in the network geometry (Dey, Gel, & Poor, 2019). The study of
interactions between higher-order network features gives a more thor-
ough understanding of topological changes in the network that may
uncover important roles that higher-order networks might play in the
understanding of dynamics of network topology during disruptions. We

capture these hidden dynamics by considering the most basic high-
erorder feature computed using Betti number of zeroth order (Betti-0)
that gives a count of the number of connected components at different
distance thresholds (Islambekov, Kumer Dey, Gel, & Poor, 2018;
Torres & Bianconi, 2020). The Betti numbers are fundamental topolog-
ical invariants that characterize higher-order networks represented by
simplicial complexes (Bianconi, 2021).

Mathematically we can represent it as following: Let 𝐺 = (𝑉 ,𝐸, 𝜔),
an (edge)-weighted graph, be a representation of a temporal traffic
network. If we select a certain threshold (or scale) 𝜖𝑗 > 0 and keep
only edges with weights between nodes 𝑢 and 𝑣, 𝜔𝑢𝑣, is less than 𝜖𝑗 , we
obtain a graph 𝐺𝑗 with an associated adjacency matrix 𝐴𝑢𝑣 = 1𝜔𝑢𝑣≤𝜖𝑗 .
Now, changing the threshold values, 𝜖1 < 𝜖2 < ⋯ < 𝜖𝑛, results in a hier-
archically nested sequence of graphs 𝐺1 ⊆ 𝐺2 ⊆ … ⊆ 𝐺𝑛 that is called as
a network filtration. These filtration levels are depicted in Fig. 1(b) for a
sample network. Each sequence of graphs represents a list of junctions
that fall within a specific threshold, where threshold represents travel
time. Intuitively, each threshold of travel time indicates road junctions
that are accessible within a temporal distance of threshold. At the
lowest threshold (0 min), no other junction is accessible, so we have
the same number of components as nodes or junctions in the network.
As the threshold increases, more junctions become reachable to these
individual junctions; these are connected to form clusters. As the travel
time threshold is increased again, these clusters slowly start merging
with other clusters to form a single connected component. When the
accessibility to a junction is not broken, the last threshold yields just
one large connected component, as all junctions are reachable by one
another within this time period.

During non-impact days, the composition of the number of clusters
that get formed at different travel time thresholds changes and may
show certain characteristics in network geometry indicating higher
order dynamics of traffic networks. These changes may not be appar-
ent with basic network measures. Using Vietoris–Rips (VR) complex
(Carlsson, 2009; Otter, Porter, Tillmann, Grindrod, & Harrington, 2017;
Zomorodian, 2010), one of the most popular Topological Data Analysis
filtration methods, we track evolution of topological features such as
connected components using Betti numbers at different filtration levels.
In our case, the distance measure corresponding to travel time in
minutes was for a graph, 𝐺 = (𝑉 ,𝐸, 𝜔); the vertices correspond to
road junctions, edges correspond to a link between every junction, and
weights account for the travel time between the vertices.

3.6. Spatial dependence

To determine if flood impacts show spatial decay, spatial patterns of
travel time change with respect to proximity to inundated areas were
evaluated for each road junction in the traffic network. To compute
this, we calculate the median change in the travel time at every
junction, considering travel to every other junction. This was done to
obtain an overall measure of the travel time change for each junction.
Next, we computed the distance from the flooded region for each road
junction to investigate if there was any spatial dependence on the
impact of flooding on the travel time change. To visually observe the
spatial dependence of flooded roads with travel times in every junction,
the junctions that exhibited an overall magnitude of change of more
than 15% were spatially visualized along with the traffic change in each
road segment. This allowed for a better understanding of the spatial
patterns of travel time change with respect to proximity to inundated
areas.

4. Results

4.1. Persistent travel time increase and temporal expansion in the entire
traffic network

Hurricane Harvey made landfall in Harris County on August 25,
2017, and significantly disturbed the traffic network. To evaluate the
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Fig. 4. Percentage change in travel time between every pair of road junctions in Harris county during, before and after Harvey. (a) Percentage of flooded edges as a function of
time. After Harvey leaves Houston, further flooding happens due to reservoir water release leading to addition road closures immediately after Harvey period. (b) Average daily
travel time between pairwise junctions in minutes. Weekdays and weekends show distinct trip patterns due to differences in lifestyle and lack of work-related trips on weekends.
Work-related trips increase average traffic and lead to higher travel times compared to weekends. (c) Change in the pairwise travel time compared to the baseline values. The
same day of the week is compared across weeks to account for differences in movements for different days of the week. For a modest 1.3% of flooded roads, 8% increase in travel
time is observed for the entire network on August 27 and 28. After roads recover from inundations, with only 0.25% of roads remaining perturbed, sustained impact is observed
for travel times. The entire network experiences an average of 3% increase in travel time among node pairs even a month after Harvey landfall.

impact of flooding in the traffic network, we look at the changes in
the pairwise travel time in the network obtained from computing the
shortest paths between every road junction in the traffic network. In
the average network-wide pairwise travel time at different phases of
the Harvey (Fig. 4), we see that the travel time first decreased at the
time of Harvey’s landfall (August 25) due to residents sheltering in
place, thus reducing travel demand, in anticipation of Harvey’s landing.
Travel time then increases (August 28) due to the increase in flooding-
induced road closures. The travel time drops again between August 28
through 30, as flooding is receding but residents still have not started
traveling. By September (Fig. 4a), the number of flooded/perturbed
road segments decreased from 1.3% (August 28 and 29) to 0.25%.
The travel time slowly recovers as flooded roads become available
and debris is removed. By September 5, road conditions are largely
improved and travel demand is headed towards normalcy. Longer
travel times due to congestion have a persistent impact on the travel
time for the entire network for perturbed road segments that account
for less than 0.25% of road segments.

A small fraction of road closures impacts the entire traffic network.
According to Fig. 4(a), at peak inundation, 1.3% of perturbed roads
contribute to an average of 8% of increases in travel time in the entire
network, which is equivalent to the network being expanded by 8%

(every junction pair gets more distant from each other by 8% travel
time). However, it is interesting to note that both 1.3% (August 28
and 29) and 0.25% (Sep 4) of flooding-induced road closure can result
in an 8% of increase in travel time. This affirms two findings: (1) the
location of flooding is important. When a small number of critical roads
are perturbed, the impact is as extensive as the disruption of multiple
ordinary roads; (2) accounting for disturbed travel demand due to
flooding is a factor in assessing the impacts on the traffic network in
terms of travel time. During Hurricane Harvey, many roads were closed,
thus increasing overall travel time. In the post-Harvey period, travel
demand picked up, and thus more congestion on the road (while fewer
road segments were perturbed). With a small proportion of road closure
remaining, the compound flooding and congestion impacts led to an
increase in the travel time of 8% on September 4 (Dong et al., 2022).

Flooding affects traffic networks differently during weekdays and
weekends. As shown in Fig. 4(b and c), Travel times during weekdays
and weekends were both disturbed by the flooding; however, weekend
travel time quickly recovered to the pre-Harvey level, while weekday
travel sustained the average 3% of travel time increase even one
month after the Harvey. This persistent travel time increase during
weekdays can be attributed to the weekday commute demand change
in the aftermath of flooding. Weekend travel needs and schedules tend
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to be flexible, thus travel time returned to normal during weekends
more quickly. The 3% persistent travel time increase in the entire
network during weekdays can translate to significant social and eco-
nomic impacts in terms of user costs, additional CO2 emissions, and
lost productivity.

4.2. Flooding disproportionately prolongs long-duration travel

For the shortest path between pair-wise road junctions (also called
node pairs), travel time is computed by summing the time contribution
of perturbations or disturbances in each road segment. This method
has a compounding effect on the overall time for movement from one
location to another. We evaluated the impact of flooding on trip ranges
by segregating trips into 15-min intervals: trips of less than 15 min,
between 15 up to 30 min, 30 up to 45 min and so on, the last interval
being 60 to 75 min. We then count the number of junction pairs that
fall within each travel time range and compare them with baseline.
This parameter provides insights about the disproportionate impact on
junctions within different temporal proximity. This interval classifica-
tion accounts for more than 99.9% of the trips on non-impact days;
therefore, represents the entire traffic network reliably. The distribution
of travel time versus fraction of node pairs (Fig. 5(a)) suggests that,
during peak inundation, travel time follows long-tailed distribution.
Changes in travel time of pairwise junctions on August 29 (Fig. 5b)
suggest that while peak inundation induces an overall increase in travel
time, due to disconnection of some junctions from main network due
to closure related to inundation and road damage. Nevertheless, a large
proportion of road segments show a decrease in travel time.

The results shown in Fig. 5(c–g) provide insights on the extent of
change and impact for travel time ranges. On average, trips with a mean
travel time of less than 30 min show a decrease of about 5 to 10%.
This is because trips of shorter travel time, thus fewer road segments,
are less subject to compounding effects. On the other hand, the extent
of increase in trips of greater than 60 min is about 50% on average
and increases to about 140% during peak impact day. On average,
the extent of impact increases as travel times increase between road
junctions. Thus, the impact on travel times due to urban flooding is
directly proportional to the distance between the places.

We also see a sharp decline in shorter travel times immediately after
Harvey, as there is less traffic on road. As evacuated residents return
and city recovers to normalcy, travel times increase exponentially,
reaching the same level as that during Hurricane Harvey. This is due
to the fact that some road segments are still littered with debris or
closures, but still must cater to high demand. It is worth noting that
the average levels of change for all time intervals reach almost the same
level as that observed during Harvey. This indicates that although the
actual landfall lasted only for a couple of days, its impact was observed
at virtually the same intensity on average until the end of September.

To examine the impact of flooding on higher-order network mea-
sures, we use a topology based measure, Betti-0, that computes the
number of connected components in a network at different travel time
thresholds. In the context of a traffic network, Betti number at a thresh-
old of 15 min (𝜖1 = 15) would look at the number of connected network
components when road junctions within a 15-min proximity are merged
and considered as one component. At the initial thresholds of travel
time, there are multiple pockets of such connected components, since
not all junctions are reachable by one another given the threshold.
Hence, a number of clusters get formed. These clusters represent places
of closest proximity in terms of travel time. For simplicity, we focus
only on five thresholds, 𝜖𝑖, 𝑖 = 15, 30, 45, 60, 75. The results of the
percentage change in Betti numbers on different days for these five
filtration values are shown in Fig. 5(h–l).

The results indicate that changes in the topological features in the
network follow distinct patterns. For features within 15- and 30-min
thresholds, we first see a decrease in the number of such connected
components, then an increase, followed by a slight decrease before

reaching at equilibrium. For other filtration levels, we see an increasing
trend till the second day of Harvey (August 26) and then a decreasing
trend till immediately after Harvey (September 1). There is then an
increase in the connected components at the respective travel time
thresholds that stagnates at a higher or similar level, as observed during
Harvey. The percentage change in the number of connected compo-
nents within different time intervals is less than the changes observed
in the variation in the number of junctions connected at different
thresholds (Fig. 5h–l). This result indicates that higher filtration levels
(associated with connectivity of junctions with longer travel times)
show more sensitivity to changes in the network due to flooding. This
result confirms the earlier results regarding the greater sensitivity of
longer travels to flooding impacts.

The reduced number of the connected components during Harvey
for shorter trips is a result of decreased travel time due to less traffic,
making a greater number of nodes reachable within a time threshold as
compared to pre-Harvey conditions. In contrast, there was an increase
in the number of connected components for longer trips during Harvey,
implying lower reachability given the same time window, as if flooding
caused an invisible temporal expansion of the entire road network
of the city. This temporal expansion of the traffic network influences
the higher-order structures in the network and makes more junctions
reachable for shorter trips in terms of travel time and fewer junctions
for longer duration trips. The differences in travel time change for
various filtration levels reveals that floods affect travel durations dis-
proportionately, putting longer-distance travels in jeopardy. Coupled
with critical service needs and accessibility, such impact disparity
can further exacerbate the community vulnerability (Dong, Esmalian,
Farahmand and Mostafavi, 2020).

4.3. The extent of travel time change does not decay with distance from
inundated areas

We evaluated the spatial patterns of travel time changes with re-
spect to proximity to inundated areas. We spatially visualized the
junctions that show an overall magnitude of change of more than 15%.
Here we assess the impact by aggregating the travel times from one
junction to every other junction and calculate the average change in
travel time at a junction. We compared this result with road segments
having an average travel time change of more than 15% to evaluate
if they exhibit spatial colocation. Fig. 6(a) and (b) show spatial occur-
rence of the specified junctions and road segment, respectively, on peak
flooding day, August 29. The effect of perturbation in the filtered road
segments can be seen in Fig. 7(c), which corresponds to August 27,
two days after the landfall of Harvey in Harris County; Fig. 7(d) shows
the road segments that experienced an increase in travel times due to
flooding for the same day. Although the road segments on the major
highways show increased travel times, the effect can be seen over the
entire network. Most of the junctions show an increase in travel time of
more than 15%, with some showing more than a 50% increase. Similar
insights can be obtained by comparing the results for August 28 and
29.

When Harvey dissipated in the Houston area on August 30 and
31, the majority of junctions experienced a reduction in travel time,
consistent with the results obtained from comparing average travel
times in the overall network. Although some regions, such as southwest
Harris County, retained road segments with increased travel times, the
effect cannot be seen locally or throughout the entire network. But
a week later, the increase in travel time resolved in Southwest area,
despite roads unaffected by flooding showing increased travel time.
This result provides evidence that, although flood-related impacts on
the road network are local, the spatial reach of flooding on the overall
travel time and connectivity is extended beyond inundated areas. This
spatial reach does not decay with distance from inundated areas.

Further investigation of the absence of spatial decay evaluated the
change in travel time with distance from flooding (Fig. 6c). The median



Sustainable Cities and Society 97 (2023) 104693

8

A.A. Rajput et al.

Fig. 5. Perturbation characteristics of long and short trips in traffic network. (a) Distribution of the number of node pairs (junction-to junction-travel pairs) versus travel time for
August 29. Distribution for all days follows a bell curve for and has a mean value of around 30 min. (b) Proportion of the number of node pairs corresponding to travel time
percent change due to Harvey on August 29. Change of more than 100% was considered as 100% for better visual clarity. (c–g) shows the change in the trips for intervals of 0–15,
15–30, 30–45, 45–60, 60–75 min intervals respectively. (h–l) shows change in the number of connected components at thresholds of 15, 30, 45, 60 and 75 min, respectively. Longer
trips show higher impact due to traffic disruptions as impacts compound for longer commutes. Travel time and topology-based impact assessment show different characteristics of
disruption and recovery for different time intervals. Post-disaster sustained impact is seen in every time range in both assessments.
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Fig. 6. Spatial impact of floods on traffic network on August 29. (a) Percent change in travel time for each road segment along with flooded regions for that day. (b) Average
impact in terms of percent change in travel time at each node (road junction) when trips are considered to every other node. (c) Changes in travel time as a function of distance
from flooded region. Change for regions within inundated region is shown by Violin plot at 0 distance; plot at 5.5 km distance presents the aggregated changes for all road
junctions more than 5 km away, which accounts for less than 1% of the road junctions. There is no decay in change of travel time with respect to distance to inundated areas.
Areas far from the flooded regions also show same extent of travel time change on an average.

change in the travel time at every junction, considering travel to every
other junction, shows a similar pattern irrespective of the distance from
flooded region. Additionally, junctions in flooded areas have the same
change as those outside inundated areas, demonstrating that flooding
affects the entire traffic network irrespective of direct proximity to
flooded regions. We do not, therefore, observe any decay in flooding
impact on travel time with distance from flooded regions. While Li,
Wang, Liu, Small, and Gao (2022) show that mobility exhibits spatio-
temporal decay from crisis locations when observed at county, state,
and country resolution, our analysis at a much finer resolution does

not indicate the presence of spatial decay in the impacts flood on traffic
networks.

5. Discussion

This study examines the virtual expansion of traffic networks dur-
ing flooding by considering flood impact on travel time. The results
reveal three novel properties of perturbed traffic networks caused by
urban flooding: (1) persistent entire network travel time increase, (2)
long-tail effects on long-travel distance travels, and (3) absence of
spatial decay in travel time changes with distance from inundated
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areas. Specifically, the results show that 1.3% of flooded roads during
Hurricane Harvey in 2017 were responsible for an 8% increase in
overall travel time throughout the network. The impacts of flooding on
traffic networks persisted for several weeks after inundation receded.
Furthermore, such impact on travel time is not homogeneous but
affects longer trips (i.e., 45–60 min) more strongly than shorter ones
(i.e., less than 15 min). Such a heterogeneous impact of flooding on
travel times is a factor to be considered in disaster traffic management
to maintain a community’s access to critical services. Investigation of
high-dimensional features using the Betti number reveals that flooding
imposes an impact on traffic congestion post-disaster, which can be
as high as that observed during peak inundations. Although flood
disruption on road segments is localized, the generated impact is dif-
fused throughout the network, suggesting that the impact on the travel
time in a city is invariant of the location of disruption. Moreover,
the impact is sustained even one month after flooding and causes a
3% expansion of the traffic network for a fraction of unrestored road
segments.

The findings of this study had important implications: first, the
findings reveal the impact of floods on travel times in urban traffic net-
works. Prior studies focused on vulnerability of physical roads (Bagloee
et al., 2017; El-Maissi, Argyroudis, Kassem, & Mohamed Nazri, 2023;
Mattsson & Jenelius, 2015; Wang et al., 2019); our understanding
of the perturbed functioning of traffic networks during floods was
limited. Second, we found that the impacts of the flood are not local
but affect the entire network disproportionately when travel times are
considered. So even if flooding is localized in a city, the infrastructure
impact will be local and considered contained, but our study reveals
that the impact on travel time will be seen in the entire city. A
percolation-based approach is less equipped to provide these insights.
Third, unlike the majority of studies that use location-based human
mobility data for analyzing origin–destination trip fluctuations in floods
and other crises, this study dissected fine-resolution link-level travel
time data to analyze the perturbed dynamics of traffic networks. The
fluctuations in human mobility do not fully capture the functionality
of traffic networks in terms of travel time (the primary function of
transportation networks). The number of trips might return to normal,
but the travel time between junctions may stay elevated for a longer
duration.

This study employed topological network measures and higher-
order network analysis to capture both temporal dynamics and spa-
tiality of traffic networks. The prior studies on urban networks were
primarily based on percolation analysis (Stauffer & Aharony, 2018)
and were not able to capture temporal dynamics of links functionality
as well as the spatiality of real world networks, so new metrics were
needed to understand the network resilience properties, that we pre-
sented in this paper. Hence, the novel insights obtained from this study
move us closer to a better understanding of the impacts of floods on
urban traffic networks. Results from this study can be used to evaluate
the impact of floods on communities better. As multiple studies have
focused on aspects such as income, distance from the city center,
elevation, and accessibility to the road network, the results of this
study have implications for the community’s well-being. If travel times
increase, commuters’ quality of life will be impacted. Moreover, it will
have an additional cost for both individuals and businesses. Not only
will the communities and companies be impacted, but it will lead to an
increase in carbon emissions and other pollutants. The study provides a
more comprehensive way of understanding transportation vulnerability
which has potential implications for infrastructure planning in different
cities.

6. Concluding remarks

Urban flooding is a threat to large metropolitan cities, and the
frequency of floods is expected to increase with climate change. The
study revealed persistent and network-wide impact of floods and their

heterogeneous impacts on trips of varying lengths, providing evidence
for planners and emergency officials to effectively manage the city
traffic during urban floods to ensure proper functioning of cities. The
pairwise junction travel assessment method and higher order analysis
employed in this study capture both temporal dynamics and spatiality
of traffic networks. The findings of this study would be generalizable to
other cities, and flood events since traffic and mobility networks show
similar characteristics in cities thought the world (Chan, Donner, &
Lämmer, 2011; Noulas, Scellato, Lambiotte, Pontil, & Mascolo, 2012).
Therefore, they are likely to exhibit similar patterns of disruptions and
recovery during disasters. Moreover, This method can be transferred to
other spatially embedded and dynamic temporal networks and disaster
scenarios, such as the power grid during storm events. Application of
these methods on traffic networks showed that on average, localized
impact has same effect on travel times away from disrupted regions as
those within and in the nearest proximity to disruptions locations.

This study complements existing location-based human mobility
studies by dissecting fine-resolution link-level travel time data to an-
alyze the anatomy of flood-perturbed traffic networks. We reveal that
although the total number of trips might return to normal after flood-
ing, the travel time between junctions can persist for a longer duration.
The approach used in this study can be employed for assessing the
resilience of other spatially embedded and temporally dynamic net-
works, such as power grid networks. Given the importance of traffic
network function in terms of travel time, the findings of this study can
inform city managers, transportation planners, and emergency respon-
ders about the persistent and entire network impacts of local floods,
which are expected to grow with climate change impacts. The persistent
travel time increase in the entire network can translate to significant
social and economic impacts in terms of user costs, additional CO2
emissions, and lost productivity.
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Fig. 7. Average change of travel time observed in road junctions in comparison to change in travel time for road segments during Harvey. (a), (c), (e) and (d) show the change
in travel time for road junctions, and (b), (d), (f) and (h) show the change in travel time for edges for the respective days.
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Fig. 8. Average change of travel time observed in road junctions in comparison to change in travel time for road segments after Harvey. (a), (c), (e) and (g) show the change in
travel time for road junctions, and (b), (d), (f) and (h) show the change in travel time for edges for the respective days.
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