
Dear Search Committee, 

 

My name is Jingxiao Liu, a Postdoctoral Researcher in the Senseable City Lab at the Department of Urban 

Studies and Planning at Massachusetts Institute of Technology (MIT). I received my Ph.D. degree in Civil and 

Environmental Engineering with a Ph.D. Minor in Electrical Engineering from Stanford University. I am 

submitting this letter to express my interest in the tenure-track faculty position at Purdue University.  

The main objective of my research is to enable scalable monitoring of civil infrastructure through non-

dedicated sensing and physics-informed learning. Under the evolving conditions induced by climate change, 

the need for a scalable infrastructure monitoring solution has become increasingly critical to ensure the long-

term resilience of infrastructure. Specifically, I have been using pre-existing vehicles and telecommunication 

fiber-optic cables as non-dedicated sensors. I investigate the interactions between these sensors and the 

infrastructure systems to extract structural condition information. In collaboration with the Port Authority of 

Allegheny County, City of San Jose, and City of Palo Alto, I have conducted field experiments to monitor 

bridge health and roadway traffic using multi-modal sensing systems including vehicle vibration sensing and 

distributed fiber-optic sensing. My work has been published in top-tier conferences and journals in both civil 

and electrical engineering. Furthermore, I have received multiple awards and fellowships, including 6 best 

paper awards.  

In the future, I plan to assess the impact of future climate on civil infrastructure, incorporating climate data 

into the monitoring framework to ensure long-term infrastructure resilience. Moreover, I aim to advance 

scalable infrastructure monitoring by developing multi-modal crowd-sensing and decentralized learning 

approaches. These approaches will handle heterogeneous data from diverse sensing platforms and ensure data 

privacy. Additionally, I plan to extend my research framework to various urban monitoring domains (e.g., 

mobility and air pollution), addressing complex interactions between non-dedicated sensors and sensing targets, 

while providing explainable data-driven models for decision-making in dynamic sensing environments. 

As practical utilization of infrastructure monitoring research is of great necessity, I will seek new collaborations 

with Indiana Department of Transportation, Greater Lafayette Public Transportation Corporation, and City of 

West Lafayette to conduct experiments with real-world infrastructures. Some of the current/potential funding 

agencies for my research include the National Science Foundation (e.g., CIS, CPS, and CMMI programs), the 

Department of Transportation, the Federal Highway Administration, the Federal Railroad Administration, 

NVIDIA, Google, and Bentley Systems. 

In addition, one of the key reasons I am determined to pursue a career in academia is my enthusiasm to learn 

and share what I have learned with students. My teaching philosophy is to encourage students to learn from 

observation and experimentation with my progressive assessment and adaptive teaching styles, thus building 

students’ investigating and problem-solving skills. I am capable of teaching a wide variety of courses, 

including general engineering courses (e.g., statics and dynamics), core structural engineering courses (e.g., 

structural stability, structural analysis, and finite element analysis), and advanced courses in smart systems 

such as sensing, signal processing, data mining, and machine learning. 

Last but not least, I plan to continue promoting and encouraging diverse, equal, and inclusive academic 

environments as an academic instructor and mentor in my future career. A few examples of specific actions I 

would take include seeking opportunities to actively recruit and retain minority students, developing hands-on 

summer courses and outreach events for K-12 students, and designing course materials that are approachable 

to students with diverse background. 

Thank you for considering my application. I am attaching my CV, research statement, teaching statement, and 

diversity statement. I look forward to hearing from you. 

 

Sincerely, 

Jingxiao Liu 



Jingxiao Liu
Postdoctoral Fellow at MIT Senseable City Lab
Last Updated 2023-10-30, jingxiao@mit.edu

RESEARCH
AREAS

• Scalable Structural Health Monitoring Using Vehicles as Non-Dedicated Vibration Sensors
• Urban Monitoring Using Telecommunication Fiber Cables as Non-Dedicated Strain Sensors
• Physics-guided Machine Learning and Signal Processing
• Dynamics of Vehicle-Structure Interaction Systems

EDUCATION Stanford University, Stanford, California, USA
Ph.D. in Civil & Environmental Engineering June 2023
• Cumulative GPA: 4.0 / 4.0
• Advisor: Prof. Hae Young Noh
• Thesis title: Accurate and Scalable Bridge Health Monitoring Using Drive-by Vehicle Vibrations

Ph.D. Minor in Electrical Engineering June 2023
• Cumulative GPA: 4.0 / 4.0

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
Master of Science in Civil Engineering Dec 2017
• Cumulative GPA: 3.9 / 4.0

Central South University, Changsha, China
Bachelor of Engineering in Civil Engineering Jun 2016
• Cumulative GPA: 89.6 / 100.0, Valedictorian

APPOINTMENTS Postdoctoral Fellow, Sep 2023 - Present
Senseable City Lab, Dept. of Urban Studies and Planning, MIT, MA, USA

Research Affiliate, Sep 2023 - Sep 2023
Dept. of Geophysics and Dept. of Civil & Envir. Engineering,
Stanford University, Stanford, CA, USA

Research Affiliate, Jul 2023 – Sep 2023
Senseable City Lab, Dept. of Urban Studies and Planning, MIT, MA, USA

Postdoctoral Scholar, Jun 2023 – Aug 2023
Dept. of Geophysics and Dept. of Civil & Envir. Engineering,
Stanford University, Stanford, CA, USA

Graduate Research Assistant, Jan 2020 – Jun 2023
Dept. of Civil and Envir. Engineering, Stanford University, Stanford, CA, USA

Research Intern - IoT system, data science, fiber-optic sensing, Jun 2021 – Sep 2021
PARC, a Xerox company, Palo Alto, CA, USA

Data Analyst, Jun 2021 – Sep 2021
Eloque, Remote, Joint with the research intern role at PARC, a Xerox company.

Graduate Research Assistant, Jan 2018 – Dec 2019
Dept. of Civil and Envir. Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Summer Research Intern, Jun 2017 – Sep 2017
Dept. of Civil and Envir. Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

ACADEMIC
HONORS
& AWARDS

Best Journal Paper Award, 2023
ASME SHM/NDE Committee

The Gary Marsden Travel Awards for attending ACM Ubicomp 2023, 2023
ACM, Special Interest Group on Computer-Human Interaction (SIGCHI)
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The First-Place Award, Student Paper Competition, 2022
Structural Health Monitoring and Control Committee, ASCE Engineering Mechanics Institute

The Second-Place Award, Student Project Competition, 2022
Second International Competition for Structural Health Monitoring, Asia-Pacific Network of
Centers for Research in Smart Structures Technology (ANCRiSST)

The Third-Place Award, Student Paper Competition, 2021
Structural Health Monitoring and Control Committee, ASCE Engineering Mechanics Institute

Best Journal Paper Award (Runner-Up), 2021
ASME SHM/NDE Committee

Leavell Fellowship on Sustainable Built Environment (Merit-based) 2020
Dept. of Civil and Envir. Engineering, Stanford University

Best Presentation Award (Runner-Up), 2020
BuildSys/SenSys Joint PhD Forum, ACM BuildSys/Sensys Conference

Best Student Paper Award, 2020
Second Nurse Care Activity Recognition Challenge, ACM International Joint Conference on
Pervasive and Ubiquitous Computing

Fenves Travel Grant for Attending IWSHM Conference in Stanford, CA 2019
Carnegie Mellon University

Fenves Travel Grant for Attending SPIE Conference in Denver, CO 2019
Carnegie Mellon University

Dean’s Fellowship (support 1-year PhD study) 2018
College of Engineering, Carnegie Mellon University

Valedictorian of Dept. of Civil Engineering, 2016
Central South University

Outstanding Undergraduate Thesis, 2016
Central South University

Mao Yi-sheng Science and Technology Award - Star of Hope, 2015
Mao Yi-sheng Science and Technology Education Foundation

RESEARCH
EXPERIENCES

Urban SystemMonitoring Using Combined Vehicle On-Board Sensing (VOS) and Roadside
Distributed Acoustic Sensing (DAS) Jun 2020 – present
Stanford University, Stanford, California, USA
Research Advisor: Professor Hae Young Noh & Professor Biondo Biondi
• Exploring the value of combined VOS and DAS to achieve a cost-effective urban infrastructure monitoring.
• Achieved car position and speed estimation, underground fiber localization, and traffic-induced surface wave
characterization using combined VOS and DAS.

• Collaborated with the City of Palo Alto, and the City of San Jose to demonstrate the capability of using DAS
for bridge monitoring at low cost and with low maintenance.

Drive-by Bridge Health Monitoring Jan 2020 – present
Stanford University, Stanford, California, USA
Research Advisor: Professor Hae Young Noh
• Introducing signal processing and machine learning approaches to detect, localize, and quantify damage on
multiple bridges using vehicle vibration responses.

• Demonstrated the feasibility of the drive-by bridge healthmonitoring approach through numerical simulations,
lab-scale and full-scale experiments.

• Published our work on drive-by bridge health monitoring in both top-tier conferences and journals in civil
engineering and electrical engineering.
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Railroad Track Monitoring Using Train Vibrations Jun 2017 – Dec 2019
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
Research Advisors: Professor Hae Young Noh & Professor Mario Bergés
• Introduced an anomaly detection algorithm for monitoring railroad track using train vibration responses.
• Collaborated with Port Authority of Allegheny County to develop a train-based structural health monitoring
system to help monitor railroad tracks of a 42.2-km light rail network in Pittsburgh.

• Collected and published a comprehensive dataset from light rail vehicles, which is the first open-access dataset
for vehicle-vibration-based structural health monitoring.

Study of Australia Traffic for Bridge Loading Applications Oct 2015 – Jul 2016
Monash University, Melbourne, Victoria, Australia
Research Advisor: A/Professor Colin Caprani
• Developed a traffic characteristic model by analyzing Weigh-in-Motion data to classify vehicles based on the
physical nature of the traffic configurations.

• Collaborated with the Roads Corporation of Victoria (VicRoads).
• Received the outstanding student thesis award.

PROFESSIONAL
EXPERIENCES

PARC, a Xerox Company, Palo Alto, California, USA Jun 2021 – Sep 2021
Research Intern in Data Science, IoT system, Fiber-optic sensing
• Contributed to a systematic algorithm and hardware development of a fiber-optic sensing system for civil
infrastructure monitoring. The system is successfully deployed in Melbourne, Australia for superload
monitoring with Department of Transportation.

• Developed signal processing, statistical, and computer vision algorithms for utilizing and validating Fiber
Bragg Grating sensors in bridge monitoring and traffic characterization applications.

PUBLICATIONS JOURNAL PAPERS

[J11] Jingxiao Liu, Siyuan Yuan, Yiwen Dong, Biondo Biondi, Hae Young Noh, “TelecomTM: A
Fine-grained and Ubiquitous Traffic Monitoring System Using Pre-Existing Telecommunication
Cables as Sensors,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7, 2, Article 64
(June 2023).
Received “The Gary Marsden Travel Awards” for attending Ubicomp 2023 from ACM
Special Interest Group on Computer-Human Interaction (SIGCHI).

[J10] Siyuan Yuan, Jingxiao Liu, Hae Young Noh, Robert Clapp, Biondo Biondi, “Using
Vehicle-induced DAS Signals for Near-surface Characterization with High Spatiotemporal
Resolution,” Journal of Geophysical Research: Solid Earth (Under Review). DOI:
10.22541/essoar.169755571.19783911/v1

[J9] Jingxiao Liu, Susu Xu, Mario Bergés, Hae Young Noh, “HierMUD: Hierarchical Multi-task
Unsupervised Domain Adaptation between Bridges for Drive-by Damage Diagnosis,” Structural
health monitoring, (2022), https://doi.org/10.1177/1475921722108115.
Received “Best Journal Paper Award” from SHM/NDE Committee, ASME.

[J8] Jingxiao Liu, Siyuan Yuan, Bin Luo, Biondo Biondi, Hae Young Noh, “Turning optical
telecommunication cables into distributed acoustic sensors for vibration-based bridge health
monitoring,” Structural Control and Health Monitoring, vol. 2023, Article ID 3902306, 14 pages,
2023.

[J7] Yiwen Dong, Megan Iammarino, Jingxiao Liu, Jesse Codling, Jonathon Fagert, Mostafa
Mirshekari, Linda Lowes, Pei Zhang, Hae Young Noh, “Ambient Floor Vibration Sensing
Advances Accessibility of Functional Gait Assessment for Children with Muscular Dystrophies,”
Submitted to Scientific Report (Under Review).

[J6] Daniel Cantero, Muhammad Zohaib Sarwar, Abdollah Malekjafarian, Robert Corbally,
Mehrisadat Alamdari, Prasad Cheema, HaeYoungNoh, Jingxiao Liu, Jatin Aggarwal, “Numerical
benchmark for road bridge damage detection from passing vehicles responses applied to four
data-driven methods,” Submitted to Measurements (Under review).

Page 3/8



[J5] Jingxiao Liu, Yujie Wei, Bingqing Chen, Hae Young Noh, “A Hierarchical Semantic
Segmentation Framework for Computer Vision-based Bridge Damage Detection,” Smart
Structures and Systems, 31(4) (2023), pp.325-334.
Received “the Second-Place Award” in the Second International Competition for Structural
Health Monitoring, 2022, and invited to submit to a special issue in the Journal of Smart
Structures and Systems.

[J4] Siyuan Yuan, Martijn van den Ende, Jingxiao Liu, Hae Young Noh, Robert Clapp,
Cédric Richard, Biondo Biondi, “Spatial Deep Deconvolution U-Net for Traffic Analyses with
Distributed Acoustic Sensing,” in IEEE Transactions on Intelligent Transportation Systems, doi:
10.1109/TITS.2023.3322355..

[J3] Ankit Shrivastava, Jingxiao Liu, Kaushik, Dayal, Hae Young Noh, “Predicting peak stresses
in microstructured materials using convolutional encoder-decoder learning,” Mathematics and
Mechanics of Solids, (2022), 10812865211055504.

[J2] Jingxiao Liu, Siheng Chen, Mario Bergés, Jacobo Bielak, James HGarrett, Jelena Kovačević,
Hae Young Noh, “Diagnosis algorithms for indirect structural health monitoring of a bridge model
via dimensionality reduction,”Mechanical Systems and Signal Processing 136 (2020): 106454.
Received “Best Journal Paper Award (Runner-up)” from SHM/NDE Committee, ASME.

[J1] Jingxiao Liu, Siheng Chen, George Lederman, David B Kramer, Hae Young Noh, Jacobo
Bielak, James H Garrett, Jelena Kovačević, Mario Bergés, “Dynamic responses, GPS positions
and environmental conditions of two light rail vehicles in Pittsburgh,” Scientific data, 6(1) (2019),
pp.1-11.

ARCHIVAL PEER-REVIEWED CONFERENCE PAPERS

[AC2] Jingxiao Liu, Bingqing Chen, Siheng Chen, Mario Bergés, Jacobo Bielak, HaeYoung Noh,
“Damage-sensitive and domain-invariant feature extraction for vehicle-vibration-based bridge
health monitoring,” In IEEE 45th International Conference on Acoustics, Speech, and Signal
Processing, ICASSP 2020

[AC1] Bingqing Chen, Jingxiao Liu, Henning Lange, Mario Bergés, ”Dyna-BOLT: Domain
adaptative binary factorization of current waveforms for energy disaggregation,” In IEEE 45th
International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020

OTHER CONFERENCE ANDWORKSHOP PAPERS

[C9] Yiwen Dong, Jingxiao Liu, Hae Young Noh, “GaitVibe+: Enhancing Structural
Vibration-based Footstep Localization Using Temporary Cameras for In-home Gait Analysis,”
Accepted in the Fourth Workshop on Continual and Multimodal Learning for Internet of Things,
co-located with SenSys 2022.

[C8] Jingxiao Liu, Siyuan Yuan, Biondo Biondi, Hae Young Noh, “Vibration-Based Bridge
Health Monitoring using Telecommunication Cables,” Accepted In the 8th World Conference on
Structural Control and Monitoring, 2022.

[C7] Jingxiao Liu, Susu Xu, Mario Bergés, Hae Young Noh, “A Hierarchical Domain-Adversarial
and Multi-Task Learning Algorithm for Bridge Damage Diagnosis Using a Drive-by Vehicle,”
International Workshop on Structural Health Monitoring, IWSHM 2021.

[C6] Siyuan Yuan, Jingxiao Liu, Hae Young Noh, Biondo Biondi, “Urban system monitoring
using combined vehicle onboard sensing and roadside distributed acoustic sensing,” In First
International Meeting for Applied Geoscience & Energy, pp. 3235-3239. Society of Exploration
Geophysicists, 2021.
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[C5] Yiwen Dong, Joanna Jiaqi Zou, Jingxiao Liu, Jonathon Fagert, Mostafa Mirshekari, Linda
Lowes, Megan Iammarino, Pei Zhang, and Hae Young Noh, “MD-Vibe: physics-informed
analysis of patient-induced structural vibration data for monitoring gait health in individuals with
muscular dystrophy.,” In Adjunct Proceedings of the 2020 ACM International Joint Conference on
Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium
on Wearable Computers, UbiComp-ISWC ’20.

[C4] Yiwen Dong, Jingxiao Liu, Yitao Gao, Sulagna Sarkar, Zhizhang Hu, Jonathon Fagert, Shijia
Pan, Pei Zhang, Hae Young Noh, and Mostafa Mirshekari, “A window-based sequence-to-one
approach with dynamic voting for nurse care activity recognition using acceleration-based
wearable sensor.,” In Adjunct Proceedings of the 2020 ACM International Joint Conference on
Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium
on Wearable Computers, UbiComp-ISWC ’20.

[C3] Jingxiao Liu, Susu Xu, Mario Bergés, Jacobo Bielak, James H. Garrett, Hae Young
Noh, “An Expectation-maximization Algorithm-based Framework for Vehicle-Vibration-Based
Indirect Structural Health Monitoring of Bridges,” International Workshop on Structural Health
Monitoring, IWSHM 2019.

[C2] Jingxiao Liu, Yujie Wei, Mario Bergés, Jacobo Bielak, James H Garrett Jr, HaeYoung Noh,
“Detecting anomalies in longitudinal elevation of track geometry using train dynamic responses
via a variational autoencoder,” Sensors and Smart Structures Technologies for Civil, Mechanical,
and Aerospace Systems 2019.

[C1] Jingxiao Liu, Mario Bergés, Jacobo Bielak, James H Garrett, Jelena Kovačević, Hae Young
Noh, “A damage localization and quantification algorithm for indirect structural health monitoring
of bridges using multi-task learning,” In AIP Conference Proceedings (Vol. 2102, No. 1, p.
090003). AIP Publishing LLC. QNDE 2018.
Received “Best Paper Award” in the Second Nurse Care Activity Recognition Challenge
(part of HASCAWorkshop, ACM UbiComp, 2020)

POSTERS AND EXTENDED ABSTRACTS

[A6] Jingxiao Liu, Siyuan Yuan, Biondo Biondi, and Hae Young Noh, “Turning
Telecommunication Cables into Distributed Acoustic Sensors for Bridge Health Monitoring,” In
Engineering Mechanical Institude, ASCE, 2022.

[A5] Jingxiao Liu, Susu Xu, Mario Bergés, and Hae Young Noh, “Hierarchical Model Transfer
Between Bridges for Multi-Task Damage Diagnosis Using Drive-by Vehicles,” In Engineering
Mechanical Institude, ASCE, 2021.

[A4] Jingxiao Liu, “Scalable bridge health monitoring using drive-by vehicles: PhD forum
abstract,” In Proceedings of the 18th Conference on Embedded Networked Sensor Systems, Sensys
2020.
Received “Best Presentation Award (Runner-up)” from BuildSys/SenSys Joint PhD Forum,
ACM, 2020.

[A3] Jingxiao Liu, M. Bergés, J. Bielak, J. Garrett, J. Kovačević, and H. Noh, “A damage
localization and quantification algorithm for indirect structural health monitoring of bridges using
multi-task learning,” in Engineering Mechanical Institude, ASCE, 2018.

[A2] Jingxiao Liu, Siheng Chen, Mario Bergés, Jacobo Bielak, James H Garrett, Jelena
Kovačević, Hae Young Noh, “A Damage Localization and Quantification Algorithm for Indirect
Structural Health Monitoring of Bridges Using Multi-Task Learning,” in Machine Learning in
Science and Engineering, Pittsburgh, PA, 2018.

[A1] Jingxiao Liu, Mario Bergés, Jacobo Bielak, James H Garrett, Jelena Kovačević, Hae
Young Noh, “Poster Presentation: Damage Diagnosis Algorithms for Indirect Structural Health
Monitoring of Bridges,” in PIANC-SMART Rivers Conference, Pittsburgh, PA, 2017.
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OPEN-ACCESS DATASET

[D3] Jingxiao Liu, Siheng Chen, George Lederman, David B Kramer, Hae Young Noh, Jacobo
Bielak, James H Garrett, Jelena Kovačević, Mario Bergés, “The DR-Train dataset: dynamic
responses, GPS positions and environmental conditions of two light rail vehicles in Pittsburgh,”
Zenodo 2020, https://doi.org/10.5281/zenodo.1432702

[D2] Yiwen Dong, Megan Iammarino, Jingxiao Liu, Jesse Codling, Jonathon Fagert, Mostafa
Mirshekari, Linda Lowes, Pei Zhang, Hae Young Noh, “The MD-Vibe Dataset: Footstep-Induced
Floor Vibration Data for Functional Gait Assessment of Individuals with Muscular Dystrophy,”
Zenodo 2023, Zenodo. https://doi.org/10.5281/zenodo.8125744

[D1] Xinlei Chen, Xinyu Liu, Kent X. Eng, Jingxiao Liu, Hae Young Noh, Lin Zhang, Pei Zhang,
“The S&M-HSTPM2d5 dataset: High Spatial-Temporal Resolution PM 2.5 Measures in Multiple
Cities Sensed by Static&Mobile Devices,” Zenodo 2020, http://doi.org/10.5281/zenodo.4028130

PRESENTATIONS
AND TALKS

DEPARTMENT SEMINAR

[S2] “Scalable civil infrastructure monitoring through non-dedicated sensing and
physics-informed learning,” at Dept. of Civil and Environmental Engineering, stony brook
university, Nov 2022.

[S1] “Taking the pulse of the city via non-dedicated sensing of ambient vibrations,” at Dept. of
Electrical Engineering and Computer Science, University of California Merced, Sept 2022.

INVITED TALKS

[T9] “Scalable civil infrastructure monitoring through non-dedicated sensing and
physics-informed learning,” at Dept. of Civil and Environmental Engineering, University
of Vermont, Feb 2023.

[T8] “DAS Monitoring of Bridges and Urban Traffic,” at Distributed Acoustic Sensing (DAS)
Research Coordination Network (RCN), IRIS Earthquake Science Presentations, Dec 2022.

[T7] “Scalable civil infrastructure monitoring through non-dedicated sensing and
physics-informed learning,” at Centre for Advanced Materials and Structures, Dept. of
Civil and Environmental Engineering, National University of Singapore, Dec 2022.

[T6] “Scalable civil infrastructure monitoring through non-dedicated sensing and
physics-informed learning,” at Senseable City Lab, MIT, Nov 2022.

[T5] “Scalable civil infrastructure monitoring through non-dedicated sensing and
physics-informed learning,” at Dept. of Civil and Environmental Engineering, Tufts University,
Nov 2022.

[T4] “Turning Telecommunication Fiber-cables into Distributed Acoustic Sensors for
Vibration-based Bridge Health Monitoring,” at Stanford Exploration Project (SEP) group,
Dept. of Geophysics, Stanford University, May 2022.

[T3] “Accurate and Scalable Bridge Health Monitoring Using Drive-by Vehicle Vibrations,” at
Advanced Infrastructure Systems group, Dept. of Civil and Envir. Engineering, Carnegie Mellon
University, March 2022.

[T2] “Scalable Bridge Health Monitoring Using Drive-by Vehicles,” at Eloque & PARC, a Xerox
company, Summer 2021.

[T1] “Diagnosis Algorithms for Indirect Structural Health Monitoring of a Bridge Model via
Dimensionality Reduction,” at Dept. of Civil and Envir. Engineering, Chongqing University,
China, Summer 2019.

CONFERENCE PRESENTATIONS
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[P11] Jingxiao Liu, Siyuan Yuan, Biondo Biondi, and Hae Young Noh, “Integrating Pre-Existing
Telecommunication Fiber Cable Vibration Sensing and Drive-by Vehicle Vibration Sensing for
Scalable Bridge Health Monitoring,” in International Workshop on Structural Health Monitoring,
2023.
[P10] Jingxiao Liu, Siyuan Yuan, Yiwen Dong, Biondo Biondi, and Hae Young Noh,
“TelecomTM: A Fine-Grained and Ubiquitous Traffic Monitoring System Using Pre-Existing
Telecommunication Fiber-Optic Cables as Sensors,” in Engineering Mechanical Institute, ASCE,
2023.

[P9] Jingxiao Liu, Siyuan Yuan, Biondo Biondi, and Hae Young Noh, “Vibration-Based Bridge
Health Monitoring using Telecommunication Cables,” in 8th World Conference on Structural
Control and Monitoring, 2022.

[P8] Jingxiao Liu, Siyuan Yuan, Biondo Biondi, and Hae Young Noh, “Turning
Telecommunication Cables into Distributed Acoustic Sensors for Bridge Health Monitoring,” in
Engineering Mechanical Institute, ASCE, 2022.

[P7] Jingxiao Liu, Susu Xu, Mario Bergés, and Hae Young Noh, “Hierarchical Model Transfer
Between Bridges for Multi-Task Damage Diagnosis Using Drive-by Vehicles,” in Engineering
Mechanical Institute, ASCE, 2021.

[P6] Jingxiao Liu and Hae Young Noh, “Scalable Bridge Health Monitoring Using Drive-by
Vehicles,” in BuildSys/SenSys Doctoral Colloquium, ACM, 2020.

[P5] Jingxiao Liu, Mario Bergés, Jacobo Bielak, and Hae Young Noh, “Damage-Sensitive and
Domain-Invariant Feature Extraction for Bridge Health Monitoring Using Vehicle Vibration
Responses,” in Engineering Mechanical Institude, ASCE, 2020.

[P4] Jingxiao Liu, Susu Xu, Mario Bergés, Jacobo Bielak, James H Garrett, and Hae Young Noh,
“An Expectation-maximization Algorithm-Based Framework for Vehicle-Vibration-Based
Indirect Structural HealthMonitoring of Bridges,” in International Workshop on Structural Health
Monitoring, 2019.

[P3] Jingxiao Liu, YujieWei, Mario Bergés, Jacobo Bielak, James H Garrett, and Hae Young Noh,
“Detecting Anomalies in Longitudinal Elevation of Track Geometry Using Train Dynamic
Responses via a Variational Autoencoder,” in Sensors and Smart Structures Technologies for Civil,
Mechanical, and Aerospace Systems, SPIE, 2019.

[P2] Jingxiao Liu, M. Bergés, J. Bielak, J. Garrett, J. Kovačević, and H. Noh, “A damage
localization and quantification algorithm for indirect structural health monitoring of bridges using
multi-task learning,” in Engineering Mechanical Institute, ASCE, 2018.

[P1] Jingxiao Liu, M. Bergés, J. Bielak, J. Garrett, J. Kovačević, and H. Noh, “A damage
localization and quantification algorithm for indirect structural health monitoring of bridges using
multi-task learning,” in Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE), ASME, 2018.

TEACHING
EXPERIENCES

Stanford University, Stanford, CA, USA
Teaching Assistant Winter 2023
Course Title: Structural Monitoring (CEE286)
Teaching Faculty: Professor Haeyoung Noh

Head Teaching Assistant Fall 2020, Fall 2022
Course Title: Data Analytics for Physical Systems (CEE154/254)
Teaching Faculty: Professor Haeyoung Noh
• Helped design the course, including lectures, homework, and project.
• Held MATLAB tutorial lecture.
• Held weekly office hours to help students develop a better understanding of the course materials.

Guest Lecturer Winter 2023
• Lecture Topic: Scalable Civil Infrastructure Monitoring through Non-Dedicated Sensing and
Physics-Informed Learning (part of CEE286: Structural monitoring)
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Carnegie Mellon University, Pittsburgh, PA, USA
Teaching Assistant Win 2018, Win 2019
Course Title: Building Information Modeling (BIM) for Engineering, Construction and Facility Management
(12-711)
Teaching Faculty: Professor Xuesong Liu
• Ran 2-4 labs to assist students to build BIM models and explore contemporary BIM topics.
• Held weekly office hours to help students develop a better understanding of the state-of-the-art BIM-based
software systems that are being used during design and construction.

STUDENTS
MENTORED

Doyun Hwang, Graduate Student, Civil and Env. Engineering, Stanford University 2023
Peiyao Xu, Graduate Student, Civil and Env. Engineering, Stanford University 2023
Jatin Aggarwal, Graduate Student, Civil and Env. Engineering, Stanford University 2022
Kent Eng, Graduate Student, Civil and Env. Engineering, Stanford University 2021
Aaron Appelle, Graduate Student, Civil and Env. Engineering, Stanford University 2020
Yiwen Dong, Graduate Students, Civil and Env. Engineering, Stanford University 2020
Joanna Zou, Graduate Students, Civil and Env. Engineering, Stanford University 2020

SERVICES Workshop Chair
• The Fourth Workshop on Continual and Multimodal Learning for Internet of Things
(CML-IoT), co-located with ACM SenSys, 2022

Session Chair
• Engineering Mechanics Institute Conference, ASCE, 2023
• Engineering Mechanics Institute Conference, ASCE, 2022
• International Conference on Information Processing in Sensor Networks (ACM, IPSN), 2022
• CML-IoT workshop, co-located with ACM Ubicomp, 2020

Technical Program Committee
• IASA 2023: 2nd ACM International Workshop on Intelligent Acoustic Systems and
Applications, co-located with CPS-IoT Week 2023

• Data: Acquisition to Analysis workshop, co-located with ACM SenSys, 2021

Reviewer
• Structural Health Monitoring, SAGE
• Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, ASME
• International Conference on Systems for Energy-Efficient Buildings (ACM BuildSys), 2022
• Annual Conference of the Prognostics and Health Management (PHM) Society
• International Conference on Acoustics, Speech, & Signal Processing (IEEE ICASSP)
• Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
(ACM IMWUT)

• Journal of Engineering Mechanics, ASCE
• Mechanical Systems and Signal Processing, Elsevier
• Measurement, Elsevier
• Journal of Vibration and Control, SAGE
• Structural Control & Health Monitoring, Wiley
• Frontiers in Big Data
• Frontiers in Built Environment
• Canadian Journal of Civil Engineering

MEDIA Stanford Woods Institute for the Environment: 2023
“Improving Communities: Stanford researchers design car sensors to track neighborhood quality,”
https://youtu.be/DD6ik5gD53Q

CBS Mission Unstoppable: 2021
“What are Geophone Sensors?” https://youtu.be/S9OwJi88Dus

CMU News Letter: 2018
“Simulations, Sensors Provide Insight into Health of Transportation Infrastructure,”
https://shorturl.at/ehzAR
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Jingxiao Liu jingxiao@mit.edu Teaching Statement & Plan

My experiences as a student, a researcher, an instructor, and a mentor have deeply shaped my teaching philosophy

that students need to learn from observations and experiments to solve real-world problems, and my teaching style

should be adaptive to students from different backgrounds. In this statement, I first describe the elements of my

teaching philosophy and then give an overview of how I put my philosophy into practice. Finally, I conclude with

courses I am interested in and qualified to teach.

Teaching Philosophy. One thing I have learned through years of studying and researching is that knowledge can

be learned better through application and experimentation. I encourage students to apply the knowledge in real-world

situations through progressive assessment, from well-defined assignments to open-ended projects and experimentation.

The foundation of my teaching philosophy includes four components:
• Context-first & experiential learning. Students would learn better if they understood the purpose of what they

were learning. I use hands-on projects and experimentation to present new concepts to students so they can

better understand how things work and their significance in the real world.

• Progressive assessment. The goals of engineering learning evolve from understanding fundamental concepts to

implementing solutions in real-world situations as the students gain experience. Therefore, I try to gradually

raise the level of difficulty in assessing students (e.g., from assignments to hands-on projects).

• Encouraging self-guided learning. The world is fast changing, and course materials may not give students all the

solutions for their future careers. Thus, I guide students to resources and apply knowledge they can use to solve

problems instead of directly giving them answers.

• Adaptive teaching. Teaching activities are open to students with unique learning styles and at various academic

levels. Thus, I re-orient the course material and adapt my teaching style based on feedback from students.
Teaching Experience. I had teaching experiences across two institutes. At Carnegie Mellon University, I was a

TA for one project-based course: “Building Information Modeling (BIM) for Engineering, Construction and Facility

Management” (12-711). Being a TA for 12-711 gave me the opportunity to run lab sessions to assist students in

building BIM models and exploring contemporary BIM topics. At Stanford University, I helped the professor develop

a new course: “Data Analytics for Physical Systems” (CEE154/254), for both graduate and undergraduate students

and was the head TA when the course was first offered. This experience allowed me to go through the development of

a new course for students with varying levels of background in civil engineering.

In particular, as the first TA for CEE154/254, I implemented the Context-first & experiential learning philosophy

when helping the instructor design lecture notes. We demonstrated course concepts through real-world examples.

For example, I helped create lecture materials from field experimental data. I also invited students to visit our lab

to show them how we measure footstep-induced floor vibrations to infer human gait patterns. Also, I implemented

the Progressive assessment philosophy by significantly aiding the instructor in developing homework and the course

project, with the level of difficulty gradually increasing. Specifically, the first two sets of homework are well-defined

assignments to reinforce students’ understanding of essential course materials; the third homework and the course

project let the students analyze real-world air pollution data with open-ended questions.

Mentoring Experience. My teaching philosophy can be extended in many ways to mentoring students both

individually and in groups. I mentored several students during my Ph.D. studies in different fields (e.g., structural

and electrical engineering) at all levels (including high school, undergraduate, master’s, and Ph.D.) and for various

mentoring purposes (e.g., coursework projects and research). I have been a project mentor for the course: “Sensing

and Data Mining for Smart Structures and Systems” at Carnegie Mellon University, the course “Mobile & Pervasive

Sensing and Computing” at the University of Michigan, and the course “Structural Monitoring” (CEE286) at Stanford

University. The mentoring experience in CEE286 resulted in the publication of two research papers in the Ubicomp

2020 Workshops. These papers were co-authored with students from the class, and notably, one of them received the

Best Student Paper Award.

Teaching Interests. I’m enthusiastic about the prospect of teaching and passing on my knowledge and experiences

to upcoming students and engineers. Based on my strong background in civil and electrical engineering and my highly

interdisciplinary Ph.D. research, I am capable of teaching a wide variety of courses, including general engineering

courses (e.g., statics and dynamics), core civil/structural engineering courses (e.g., structural stability, structural

analysis, seismic analysis, and finite element analysis), and advanced courses in smart systems such as sensing, signal

processing, data mining, and machine learning. I also look forward to the opportunities to design/develop new courses,

especially project-based and interactive courses, in interdisciplinary areas combining several engineering specialties,

such as structural health monitoring and smart city.

In summary, my teaching philosophy is to encourage students to learn from observation and experimentation with

my progressive assessment and adaptive teaching styles, thus building students’ self-guided and problem-solving skills.

I look forward to the opportunity to teach and mentor the next generation.
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Scalable Civil Infrastructure Monitoring under Future Climate

through Non-Dedicated Sensing and Physics-Informed Learning

Climate change significantly threatens civil infrastructure assets like bridges, railways, and roads. We’ve seen an

83% increase in climate-related disasters, rising from 3,656 events between 1980 and 1999 to 6,681 in the past two

decades. This surge places immense pressure on our extensive inventory of aging infrastructure, posing significant

challenges to the economy and public safety. Effective monitoring of various infrastructure assets, including their

structural health and surrounding urban environments, is an important step toward making our city safer, enhancing

its resilience, and preparing for future climates. For example, detecting early-stage damage in these assets is crucial

to prevent severe deterioration and potential collapse. Currently, dedicated sensors such as cameras and vibration

sensors have been deployed directly on infrastructure for monitoring. Nevertheless, these dedicated sensors require

on-site installation and maintenance, which is inefficient and costly for large-scale infrastructure monitoring.

To this end, my research introduces a scalable civil infrastructure monitoring system based on non-dedicated

sensing and physics-informed learning. Specifically, I have been using pre-existing vehicles and telecommunica-

tion (telecom) fiber-optic cables as non-dedicated sensors. The interactions between our non-dedicated sensors

and infrastructure enable us to indirectly extract infrastructure health information. For example, many modern

automotive vehicles and trains come equipped with vibration sensors primarily for monitoring vehicle operational

conditions and detecting accidents. Yet, these sensors can also be used to capture ambient vibrations of transporta-

tion infrastructure systems, revealing critical structural damage like cracking, spalling, and corrosion in elements

such as bridges and railroad tracks. In addition, these non-dedicated sensors are widely dispersed across the

city, eliminating the need for additional sensor installation and maintenance. There fore, this approach to civil

infrastructure monitoring is not only cost-effective but also highly scalable.

Research Challenges. Although the non-dedicated sensing approaches for infrastructure monitoring have various

benefits, real-world implementation faces several challenges:

1) Complex interactions. Interactions between the non-dedicated sensors and infrastructure (i.e., sensor-infrastructure

interactions), such as vehicle-bridge and train-track interactions, are complex and often non-linear. The anal-

ysis of non-dedicated sensing data to extract the desired infrastructure information is challenging because the

data have unpredictable noise conditions as well as many uncertainties involved.

2) Heterogeneous interactions. The non-dedicated measurements are sensitive to the heterogeneous properties of

both the sensors and the infrastructure, such as vehicle suspensions and bridge dimensions. The monitoring

model learned for one infrastructure system is hard to generalize to monitor other systems due to the data

distribution shift between different interactions.

3) Incomplete information. Due to the non-dedicated nature of our sensing methods, infrastructure information

that is captured by non-dedicated sensors may be limited or incomplete. For instance, the drive-by vehicle

moves across the bridge, resulting in a high spatial resolution during the sensing time, but having limited

temporal information at each coordinate on the bridge, compared to fixed sensors.

My Research Framework. To overcome these challenges, I have introduced a physics-informed learning of

sensor-infrastructure interaction framework (Figure 1) that learns, generalizes, and integrates infrastructure

monitoring models. To address the complex interaction challenge, the first module learns the infrastructure moni-

toring model by informing data-driven models of sensing data with physical properties of the sensor-infrastructure

interaction formulation (e.g., non-linearity of the vehicle-bridge interaction). To address the heterogeneous interac-

tion challenge, the second module generalizes the infrastructure monitoring model from one infrastructure to other

infrastructure systems by introducing a transfer learning approach that integrates physical constraints of moni-

toring tasks (e.g., different task difficulties). To address the incomplete information challenge, the third module

integrates multiple sensing modalities for providing complementary information about the infrastructure.

Train-track 
interactions

Vehicle-bridge 
interactions

Telecom cable-road 
interactions

Non-dedicated Sensing of Civil Infrastructure Physics-Informed Learning of Sensor-Infrastructure Interactions

Learn the infrastructure 
monitoring model based 
on physical properties of 

the interaction

Generalize the 
infrastructure 

monitoring model 
between different 

interactions

Integrate multiple 
sensing modalities to 

provide complementary 
information

Figure 1: Overview of my research framework. Ambient vibration data of infrastructure captured by non-dedicated sensing
systems is input to the Physics-informed Learning of Sensor-Infrastructure Interaction framework.
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In collaboration with Port Authority of Allegheny County, City of San Jose, and City of Palo Alto, I have

conducted real-world deployments on multiple infrastructure systems, including multiple bridges and a 42.2-km light

rail system for 6 years. Moreover, I have applied my framework to other civil infrastructure monitoring problems,

including track geometry monitoring, traffic monitoring, and underground telecom infrastructure localization using

vehicle and telecom fiber responses. My work has been published in both top-tier conferences and journals in civil

engineering and electrical and computer engineering. I have received various best paper and presentation awards

from ASCE, ASME, and ACM conferences.

Future Research Plans. I plan to advance the scalable infrastructure monitoring with my non-dedicated sensing

and physics-informed learning framework in three aspects:

1) Multi-Modal Crowd-Sensing and Decentralized Learning of Civil Infrastructure Systems. An

increasing number of urban sensing platforms, such as vehicles, fibers, drones, and smartphones, have been

connected to the Internet. They can provide complementary information to enhance the accuracy of infras-

tructure monitoring. Thus, ensuring scalability for integrating multiple sensing modalities is important. Two

primary challenges arise in this process: a) data recorded from different sensing platforms exhibit heterogene-

ity in terms of physical units, reliability, and data quality, and b) aggregating crowd-sensing data sharing

may lead to data privacy issues and network congestion.

To tackle these challenges, I plan to fuse information from multiple sensing modalities in a decentralized

manner, guided by the physical understanding of each sensor-infrastructure interaction. I plan to develop

multi-modal crowd-sensing and decentralized learning (e.g., federated learning and gossip learning) approaches

that train models collaboratively on crowd-sensing edge devices and upload only the updated model, low-

dimensional features, or inference results to a cloud server without exchanging the data. The server then

aggregates the updates/results to conduct a feature/decision-level fusion of multi-modal information.

2) Service Life Assessment under Future Climate. With climate change intensifying, it is important

to assess whether our built civil infrastructure can withstand future climate. My second research direction

is to understand the impacts of future climate on our existing civil infrastructure. One main goal is to

conduct service life assessments that consider the dynamic interactions between environmental factors and

civil infrastructure under future climate.

To achieve this objective, I plan to incorporate climate data, including temperature fluctuations, precipitation

patterns, and the occurrence of extreme weather events, into my monitoring framework. I will evaluate the

relationships between climate data and structural responses and create digital twin models for infrastructure

systems. These models will incorporate the collected structural response data to predict how infrastructure

systems respond to a changing climate. They can further inform proactive maintenance and adaptation

strategies, ensuring the long-term resilience of infrastructure in an unpredictable climate.

3) Expanding Monitoring beyond Civil Infrastructure to the Urban Environment. In addition to

monitoring civil infrastructure systems, I plan to extend my framework to other aspects of urban environments,

such as mobility, noise emission, and air pollution. This expansion creates new research challenges. The

relationships between non-dedicated sensors and these sensing targets are more complex and indirect than

those for infrastructure systems like bridges and tracks. Moreover, these sensing targets involve and are

affected by human activities. Therefore, it is important to develop data-driven models that are accurate,

as well as explainable and interpretable. This will enable us to gain insights into the underlying reasons

governing these complex urban phenomena.

To this end, I plan to develop explainable data-driven approaches, such as using Causal Inference, to charac-

terize the interactions between sensors and the various sensing targets. These approaches will enable humans

to understand the decision-making processes of the data-driven models and provide interpretations of the

sensing target conditions.

As practical utilization of infrastructure monitoring research is of great necessity, I will continue collaborating

with companies and authorities such as Palo Alto Research Center, Bosch Center for AI, OptaSense, a

Luna Company, City of Palo Alto, City of San Jose, and Port Authority of Allegheny County and

seek new collaborations with Indiana Department of Transportation, Greater Lafayette Public Trans-

portation Corporation, and City of West Lafayette to conduct experiments and investigations of my work

with real-world infrastructures. Some of the current/potential funding agencies for my research include the Na-

tional Science Foundation (e.g., CIS, CPS, and CMMI programs), the Department of Transportation, the Federal

Highway Administration, the Federal Railroad Administration, NVIDIA, Google, and Bentley Systems.
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We introduce a nondedicated bridge health monitoring (BHM) system that turns pre-existing telecommunication fber-optic
cables into distributed acoustic sensors to collect bridge dynamic strain responses. Due to extensively installed telecommunication
fber cables in the cities, our telecommunication cable-based system enables efcient and low-cost BHM without the requirement
of on-site sensor installation and maintenance; however, it is challenging to extract bridge damage-sensitive information (e.g.,
natural frequencies andmode shapes) from this nondedicated strain data as it has large measurement noise and error propagation.
To overcome the challenge, we develop a physics-guided system identifcation method that models strain mode shapes based on
physics-guided parametric mode shape functions derived from bridge dynamics. We then estimate the displacement mode shape
function by analytically double-integrating the modeled strain mode shape. Our method improves the accuracy of estimating
bridge damage-sensitive features and reduces error propagation by constraining strain and displacement mode shapes with bridge
dynamics. We evaluated our system on a concrete continuous three-span bridge in San Jose, California. Our system successfully
identifed the frst three natural frequencies and reconstructed strain and displacement mode shapes in a meter-scale resolution.

1. Introduction

Bridges are vital components of transportation in-
frastructure that link people, roadways, railways, and more.
However, around 140,000, or 22% of the more than 617,000
bridges in the United States are considered structurally
defcient or functionally obsolete in 2019 [1], which require
immediate maintenance and regular monitoring. Terefore,
an efcient and efective bridge health monitoring (BHM)
approach is essential for keeping our bridges safe and
reliable.

Manual inspection [2] and dedicated sensor in-
strumentation [3] are currently used to monitor bridge
conditions. Manual inspection by skilled inspectors is the
primary strategy for BHM on the majority of the bridges, but
such an approach is labor-intensive, time-consuming, and
potentially hazardous [4]. To address such disadvantages,
dedicated sensor-based BHM approaches that install sensing
devices directly on bridges to collect structural performance

data autonomously and continuously were introduced;
however, these approaches are also costly and inefcient as
they require on-site installation and maintenance of the
dedicated sensing equipment and instruments on every
bridge of interest [5]. To improve scalability and efciency,
many researchers recently proposed mobile sensing
methods for BHM. For example, capturing visual and dy-
namic information by scanning the bridge using vehicles
(e.g., cars and unmanned aerial vehicles) in a nondedicated
manner [6–10]. Although such mobile sensing methods can
capture high-spatial-resolution information of multiple
bridges, they have limited temporal information at each
coordinate of bridges due to their mobile sensing nature,
restricting their ability to continuously infer and diagnose
bridge conditions.

To this end, we introduce a novel BHM system that uses
pre-existing telecommunication fber cables as a non-
dedicated distributed acoustic sensing (DAS) system to
collect bridge dynamic responses. DAS is based on the ϕ
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-OTDR technique [11] that uses a standard fber cable as
long-ofset virtual dynamic strain sensor arrays [12–14]. In
particular, a DAS system consists of an interrogator unit and
a standard optical fber, where the DAS interrogator unit
injects short laser pulses into the optical fber and receives
the Rayleigh backscattering induced by inhomogeneities in
the optical fber [15]. Te scattering centers could phase shift
as a result of a strain perturbation in the fber’s surround-
ings. Terefore, by repeatedly measuring the phase shift, the
strain variations in diferent fber sections can be obtained.
Due to the unique capacity of DAS, it was initially proposed
for intrusion detection for important infrastructure [16].
Later, it was introduced in many important applications,
including acoustic source localization [17], industrial
downhole monitoring [18], near-surface imaging [12, 19],
seismic monitoring [14], and road trafc monitoring
[13, 20].

Using pre-existing telecommunication fber cables for
BHM is low-cost, scalable, and efcient. In modern so-
ciety, millions of kilometers of fber-optic cables are
deployed for telecommunication around the world. For
instance, in 2017, the length of the fber-optic cable
network in China alone was more than 37 million kilo-
meters [21]. Also, most telecommunication infrastructure
utilizes pipes and conduits installed on bridges to span
rivers, roads, or other obstacles. DAS responses collected
from cables bound to bridges refect bridge dynamic re-
sponses that contain damage-sensitive information. Such
information can be used for diagnosing bridge damages
and providing early alarm about bridge health. In addi-
tion, our system only requires connecting an optoelec-
tronic instrument called the interrogator unit to one end
of the fber. Te interrogator unit used by our system can
record strain data from a telecommunication fber cable
up to 100 km long in a high spatial-temporal resolution
(up to 250 Hz and 1-meter channel spacing) [13]. By
taking advantage of unlit dark fbers (i.e., fbers that are
not used for data transmission), our BHM system can
continuously record data for years without any in-
terference to regular telecommunication signals or any
on-site sensor installation and maintenance [19, 22].

In this work, we extract three damage-sensitive features
using DAS responses from telecommunication cables,
namely, bridge natural frequencies, strain mode shapes, and
displacement mode shapes. Natural frequencies and dis-
placement mode shapes are sensitive to bridge global be-
havior, so they have been used as indicators for damage
detection [23, 24]. Strain mode shapes refect the longitu-
dinal strain distribution along the bridge and are more
sensitive to bridge local behavior [25]. Hence, they have been
used for damage localization and quantifcation [23–25].

However, estimating the above-given features using this
novel system is challenging due to its nondedicated nature.
In particular, telecommunication fber cables were originally
deployed and optimized for data transmission as opposed to
strain sensing. Due to distinct properties of the cable de-
ployments, such as fber conduit types, cable materials,
coupling conditions between the cable and the bridge, and so
on, the cable responses have larger measurement noises and

uncertainties than direct measurements from dedicated and
well-calibrated bridge sensors (e.g., strain gauges, geo-
phones, and accelerometers). Especially, the error of strain
mode shape estimation propagates when estimating dis-
placement mode shapes as it requires the double integration
of the estimated strain mode shapes numerically or ana-
lytically. As the error propagates, numerical double in-
tegration of strain mode shape becomes unstable; analytical
double integration of strain mode shape with conventional
basis functions, such as polynomial functions, produces
inaccurate results [26, 27].

To overcome the challenge, we introduce a physics-
guided damage-sensitive feature extraction method. Our
method improves the estimation accuracy of bridge damage-
sensitive features and reduces error propagation by con-
straining strain and displacement mode shapes with physical
principles of bridge dynamics. In the frst module, we for-
mulate an elemental strain state-space model that considers
DAS responses from telecommunication cables as obser-
vations of the actual bridge strain dynamics. Our model
efectively represents the multiple-input-multiple-output
(MIMO) system of the telecommunication cable-bridge
interaction in the time domain. We then estimate the
bridge's natural frequencies and strain mode shapes using
the data-driven stochastic subspace identifcation (SSI-data)
algorithm [28–30]. SSI-data are used because it is an output-
only method that works for operational system identifcation
[31]. It estimates modal parameters from only vibration
response data obtained in operational rather than laboratory
conditions. In addition, based on reliable numerical algo-
rithms of QR decomposition and the singular value de-
composition (SVD), it does not need complex (nonlinear)
optimization techniques required by other methods such as
prediction error minimization [32]. In the second module,
we ft a parametric shape function that is derived from
bridge dynamics to the estimated strain mode shape. Finally,
we perform an analytical double integration on the ftted
function to estimate the displacement mode shape. Tis
method avoids the instability problem that may be en-
countered by numerical double integration methods and
improves estimation accuracy by physically constraining the
mode shape functions.

We evaluated our system with real-world feld ex-
periments on a 50-meter-long concrete continuous three-
span bridge in San Jose, California, with telecommuni-
cation fber cables running in a conduit beneath the deck.
Our system efectively identifed the frst three natural
frequencies with up to 1.2% mean absolute percentage
diference compared to those extracted from accelerom-
eters deployed on the bridge deck. In addition, our system
estimated the frst three strain and displacement mode
shapes in a meter-scale resolution and achieved a 0.800
modal assurance criterion compared to those from ac-
celerometers. Overall, our evaluation results show the
applicability and feasibility of turning telecommunication
fber cables into large-scale, cost-efective, and high-
spatial-temporal-resolution BHM systems.

In summary, the three main contributions of the study
are as follows:
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(1) introduce a nondedicated BHM system throughDAS
with pre-existing telecommunication fber cables to
capture the dynamic strain responses of bridges.Tis
system could achieve cost-efective, efcient, and
large-scale BHM since it eliminates the need for on-
site sensor installation and maintenance.

(2) introduce a new physics-guided system identifca-
tion method that overcomes the large measurement
noise and uncertainty challenge by constraining the
mode shapes with bridge dynamics.Tis method can
accurately estimate damage-sensitive features of the
bridge, including bridge natural frequencies and
strain and displacement mode shapes.

(3) validated this new system on real-world experiments.
Our experimental results show that DAS responses
from cables attached to the bridge contain damage-
sensitive features, which can be directly used for
model-based BHM or indirectly analyzed for data-
driven BHM.

Te remainder of this paper is divided into fve sections.
Section 2 provides a background of the DAS with pre-
existing telecommunication fber cables. Section 3 presents
our vibration-based BHM system using telecommunication
cable responses. Section 4 describes the evaluation of our
system with feld experiments, followed by Section 5 which
presents the evaluation results. Section 6 concludes this
paper and discusses the important future works of using
DAS for BHM.

2. Distributed Acoustic Sensing with Pre-
Existing Telecommunication Fiber Cables

To provide a background understanding of our BHM
system that uses pre-existing telecommunication cables
for distributed acoustic sensing (DAS), we begin with
describing the principles of DAS. DAS is an emerging
technology that uses a long-range fber-optic cable as
distributed virtual sensors to measure the ground vi-
bration along the cable with high temporal and spatial
sampling rates. A DAS system comprises an interrogator
unit and a standard optical fber, where the DAS in-
terrogator unit injects short laser pulses into the optical
fber and receives the Rayleigh backscattering induced by
naturally occurring inhomogeneities in the optical fber
[15]. By means of optical refectometry, the optical phase
change between the outgoing and backscattered laser
pulses is measured, which can be linearly converted to the
strain or strain rate measurements exerted on the fber-
optic cable [19]. DAS has received increasing attention in
geotechnical applications [12, 14, 19] and urban moni-
toring [13] in recent years thanks to its advantages over
traditional single-point sensors. Modern DAS can achieve
meter-scale spatial resolution on a fber-optic cable of tens
of kilometers long, resulting in tens of thousands of
sensing channels [22], whereas point sensors, such as
geophones, fber Bragg gratings (FBGs), and accelerom-
eters, have limited spatial resolution due to their high per
unit cost.

We can rapidly establish a large-scale DAS system by
connecting the pre-existing telecommunication fber cable
with a DAS interrogator unit stored in a secured room for
meter-scale spatial resolution monitoring at the cost of
a single interrogator unit. Te well-established telecom-
munication fber-optic network can be repurposed by DAS
as strain sensors for infrastructure monitoring. By taking
advantage of unlit dark fbers (i.e., spare fbers that are not
used for data transmission), DAS can continuously record
data for years without any interference to regular tele-
communication signals or any on-site sensor installation
and maintenance [19, 22]. On the other hand, the in-
stallation andmaintenance of conventional point sensors are
logistically challenging, especially since their usage in large-
scale and long-period measurements is limited in urban
environments.

Terefore, by leveraging pre-existing along-bridge
telecommunication fber, DAS ofers signifcant potential
for BHM. Te fber-optic cable becomes an array of nu-
merous densely spaced virtual sensors attached to the
bridge that records the local vibration of the bridge in-
duced by the trafc (Figures 1(a) and 1(b)). DAS array
data are therefore in a 2-D format, with axes in space and
time (Figure 1(c)). After DAS system-related pre-
processing [33], vehicles traveling along the road
instrumented by DAS fber can be easily identifed in the
space-time domain, and their interactions with bridges
generate characteristic DAS signals that can be used for
BHM. Bridge dynamic properties and damage-sensitive
features, such as natural frequencies and mode shapes, can
be extracted using DAS responses from along-bridge
telecommunication cables. Tese features can be used for
bridge damage diagnosis.

Although using pre-existing telecommunication fber
cables enables low-cost and low-maintenance BHM, chal-
lenges still exist due to the larger measurement noise and
uncertainty of DAS responses from nondedicated fbers
compared to that of well-calibrated and dedicated sensors.
Te large measurement noise and uncertainty afect the
estimation accuracy of bridge dynamic properties and
damage-sensitive features. To overcome this challenge, we
develop an elemental strain state-space model followed by
a physics-guided analytical double integration method to
extract bridge damage-sensitive features (Section 3). We
overcome the large measurement noise and uncertainty
challenge by constraining the estimation of mode shapes
with bridge dynamics.

3. Vibration-Based BHM System Using
DAS with Pre-Existing
Telecommunication Cables

Tis section introduces the details of our system (as shown in
Figure 2) that uses DAS responses from telecommunication
cables for vibration-based BHM. Our system contains two
modules: 1) an elemental strain state-space model identif-
cation module and 2) a physics-guided displacement mode
shape estimation module. In the following subsections, we
present each module in detail.
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3.1. Elemental Strain State-Space Model Identifcation.
Te elemental strain state-space model identifcation
module contains two steps: (1) modeling strain response to
trafc load as stochastic dynamic processes and (2) esti-
mating system parameters using the SSI-data algorithm.Te
estimated system parameters are then used to estimate
bridge damage-sensitive features. We describe the details of
the two steps in the following paragraphs.

First, an elemental strain state-space model is
employed to mathematically formulate bridge dynamics
with DAS responses from telecommunication cables. A
dynamical system can be represented conventionally in
four diferent ways, namely, the state-space model, the

diferential equation model, the impulse response model,
and the transfer function model [28]. We use the state-
space model because it (1) models both the physics and
measurement systems using the state and output equa-
tions, respectively and (2) is a more compact and con-
venient representation for multiple-input-multiple-
output (MIMO) systems compared to other representa-
tions of dynamical systems.

For the bridge dynamics in the fnite element formu-
lation with N degrees of freedom, the diferential equation
based on elemental strain is

Mεε
..
(t) + Cεε

.
(t) + Kεε(t) � Q

− T
f(t), (1)

Interrogator Unit Laser pulse
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Figure 1: An illustration of the distributed acoustic sensing system with pre-existing telecommunication (telecom) fber cables. (a)
Distributed acoustic sensing with pre-existing telecommunication fber cables. (b) Telecom cables attached to a bridge. (c) An example of
DAS measurement.

Strain responses from telecommunication cables: y

§ 3.1. Elemental strain state-space model identifcation

Modeling strain response to trafc load as stochastic dynamic processes

Estimating system parameters using the SSI-data algorithm

Natural frequencies: ϖn
Strain mode shapes: φn

§ 3.2. Physics-guided displacement mode shape estimation

Constraining strain mode shapes with parametric functions based on bridge dynamics

Estimating displacement mode shapes through analytical double integration

Bridge natural frequencies, strain and displacement mode shapes: ωn, φn, ϕn

Figure 2: Te fowchart of our bridge health monitoring system using DAS with pre-existing telecommunication fber cables.
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where Mε � Q− TMQ− 1, Cε � Q− TCQ− 1, Kε � Q− TKQ− 1;
M, C, and K are the mass, damping, and stifness matrices of
the bridge structure, respectively; ε(t) is the nodal strain
vector; f(t) is the input load on the bridge due to trafc
traveling; Q is the transformation matrix that converts the
nodal displacement vector to the nodal strain vector [34],
and Q− T is the transpose of Q− 1.

Trafc excitation is the primary source of the input load,
f(t), applied to the bridge, which may not be measured in
practice. Tus, the input loads have to be identifed together
with the system. Such identifcation problem is called the
output-only system identifcation that requires a pre-
processing to convert the unmeasured input loads into
stochastic or harmonic loads [31]. Signals produced by trafc
excitation (i.e., moving vehicles) that are recorded by tele-
communication cables have mainly two components: quasi-
static signals (< 1Hz for street trafc) resulting from the
ground deformation due to the vehicle weight and surface
waves (3 to 20Hz) caused by the dynamic vehicle-road
interaction because of the roughness profle of the road [12].
From our observation, most of the vehicles don’t excite
evident 1 ∼ 3Hz energy, which is relatively weak unless
other excitation sources (e.g., earthquakes) exist, so we ig-
nore this band signal in our analysis. Since there are many
cars, trucks, bicycles, people, etc., all with diferent dynamic
characteristics, positions, and speeds, acting on the bridge
during the measurement, such trafc loads can be ap-
proximately modeled in a stochastic way after removing
their contributions to the quasi-static signals [31].

Terefore, in the frst step, a high-pass flter with a 1-Hz
cutof frequency is applied to DAS responses from tele-
communication cables to attenuate quasi-static signals due
to trafc traveling. In this way, we model the bridge strain
response to trafc load as stochastic dynamic processes using
the following elemental strain state-space model:

_x(t) � Acx(t) + w(t),

y(t) � Ccx(t) + v(t).
(2)

where x(t) � εd(t)T, ε
.

d(t)T
  is the system state; εd(t)T and

ε
.

d(t)T are dynamic nodal strain and strain rate of the bridge,
respectively; y(t), w(t), and v(t) are the high-pass fltered
output observation, state noise and stochastic input load,
and observation noise at time t, respectively; and

Ac �
0, I

−M
−1
ε Kε, −M

−1
ε Cε

 , Cc � [I, 0], (3)

are the system and observation matrices, respectively. Our
elemental strain state-space model considers DAS responses
from the telecommunication cable as observations, y(t), of
the actual bridge strain dynamics, x(t).

Te continuous-time state-space model is converted to
discrete-time with the time step ∆t by holding each sample
value for one sample interval (i.e., zero-order hold [35]),

_xk � Axk−1 + wk,

yk � Cxk + vk,
(4)

where A � eAc∆t and C � Cc.

Ten, in the second step, we adopt the data-driven sto-
chastic subspace identifcation algorithm (SSI-data) [29, 31] to
estimate the dynamic properties of the elemental strain state-
space model (equation (4)). Te outputs of this step are the
estimations of bridge natural frequencies, ωn, and strain mode
shapes, φn. Strain mode shapes then become the input to the
next module for estimating displacement mode shapes.

Te SSI-data algorithm estimates the stochastic linear
system given a set of output measurements. It proceeds with
projecting the row space of the future output Yf into the row
space of the past output Yp, where Yf and Yp are defned in
a block Hankel matrix:

H �
1
�
j



y0 y1 · · · yj−1

y1 y2 · · · yj

· · · · · · · · · · · ·

yi−1 yi · · · yi+j−2

yi yi+1 · · · yi+j−1

yi+1 yi+2 · · · yi+j

· · · · · · · · · · · ·

y2i−1 y2i · · · y2i+j−2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
Yp

Yf

, (5)

where i and j are user-defned numbers of block rows and
columns, respectively. Te projection is defned as

Pi � Yf · Y
T
p · YpY

T
p 

†
· Yp, (6)

where (·)† denotes the pseudoinverse of a matrix. Tis
projection retains all the information in the past that is
useful to predict the future and can be factorized as the
production of the observability matrix Oi and the Kalman
flter state sequence Xi [36]:

Pi �

C

CA

CA
2

· · ·

CA
i− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xi, xi+1, . . . , xi+j−1  � Oi
Xi, (7)

Oi can be obtained by applying SVD to the projection matrix:

Pi � USV
T

� U1, U2( 
S1 0

0 0
 

V
T
1

V
T
2

⎛⎝ ⎞⎠,

Oi � U1S
1/2
1 .

(8)

Furthermore, we can obtain the estimated systemmatrices C

and A from the estimated observability matrix, Oi.Te dynamic
properties of the system are characterized by performing an
eigenvalue decomposition of the system matrix A � ΨΛΨ−1:

ωn �
ln λn

∆t




,Φ � CΨ, (9)
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where ωn is the eigenfrequency of mode n; λn � Λnn is the
n-th eigenvalue; Φ is the mode shape matrix with each
column ϕn being the strain mode shape of mode n. Note
that, the physical modes of the structure appear at nearly
the same eigenfrequency when the model order is
overspecifed [31]. Terefore, the same eigenfrequency
being identifed for models with diferent model orders
would be one of the structural natural frequencies.

Since DAS measures axial strain responses of the cable
along the bridge, we only estimate the strain mode shapes
with the SSI-data algorithm, not the displacement mode
shape. Displacement mode shape is an important global
bridge property that shows defection patterns related to
a particular natural frequency and represents the relative
displacement of all components of the bridge. To this end, in
the next module, a physics-guided double integration
method that estimates displacement mode shapes based on
bridge dynamics and beam theory is introduced.

3.2. Physics-Guided Displacement Mode Shape Estimation.
Te physics-guided displacement mode shape estimation
module contains two steps: (1) constraining strain mode
shapes with parametric functions based on bridge dynamics
and (2) estimating displacement mode shapes through an-
alytical double integration. Te details of the two steps and
explanations are provided in the following paragraphs.

We frst revisit the bridge dynamics to determine the
relationship between the displacement mode shape and the
strain mode shape. Specifcally, assuming an
Euler–Bernoulli beam whose span is greater than ten times
the height of its cross-section so that the efect of shear force
on the defection is negligible. We also assume that all the
strain measurement points have the same distance to the
neutral axis of the beam so that the longitudinal strain is
proportional to the beam curvature. According to the beam
theory [37], the relationship between the vertical displace-
ment and longitudinal strain is

u
″
(l, t) � −

1
d
ε(l, t), (10)

where u(l, t) and ε(l, t) are the vertical displacement and
strain of position l along the beam at time t, respectively; d is
the distance from the strain measurement point to the beam
neutral axis. Furthermore, according to beam dynamics [38],
the beam displacement and strain can be expressed as the
following form of mode shapes superimposed with the
modal coordinates:

u(l, t) � 
N

n�1
ϕn(l)qn(t),

ε(l, t) � 
N

n�1
φn(l)qn(t),

(11)

where ϕn(l) and φn(l) are the n-th displacement and strain
mode shapes of position l, respectively; qn(t) is the n-th
modal coordinate at time t. Combining equations (10) and
(11), we obtain the relationship between the n-th displace-
ment and strain mode shape as

ϕn
″
(l) � −

1
d
φn(l). (12)

Terefore, estimating the displacement mode shapes
requires double integrating the strainmode shapes estimated
in the frst module of our method. Tis double integration
can be performed numerically or analytically. However, due
to the large measurement noise and uncertainty of DAS
responses from telecommunication cables, conventional
numerical and analytical double integration methods (e.g.,
the trapezoidal rule [39] and analytical integration with
a polynomial basis [26]) would produce inaccurate results as
the error propagates in the integration steps.

To this end, we estimate the displacement mode shape by
frst ftting a physics-guided shape function to the strain
mode shape and then double integrating the ftted strain
mode shape. In this way, we do not have the instability
problem caused by numerical double integration and im-
prove the estimation accuracy of analytical double in-
tegration by physically constraining the strain mode shape.

In detail, the physics-guided shape function is derived
based on the beam dynamics. According to the homoge-
neous solution of the beam vibration equation [38], for
a multispan continuous beam with P spans, the general
solution for the n-th mode’s displacement mode shape of the
p-th beam span is

ϕn,p(l) � C1,n,p sin βn,pl  + C2,n,p cos βn,pl 

+ C3,n,psinh βn,pl  + C4,n,pcosh βn,pl ,

0≤ l≤ lp,

(13)

where C1,n,p,C2,n,p,C3,n,p, and C4,n,p are constant coefcients;
βn,p is a variable that depends on beam properties such as
material density, Young’s modulus, moment of inertia, and
span length; and lp is the length of the p-th beam span.Ten,
by combining equations (12) and (13), the strain mode shape
of the p-th beam span is defned as

φn,p(l) � −dβ2n,p −C1,n,p sin βn,pl  − C2,n,p cos βn,pl  + C3,n,psinh βn,pl  + C4,n,pcosh βn,pl  , for 0≤ l≤ lp. (14)
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Constant coefcients, C1,n,p, C2,n,p, C3,n,p, and C4,n,p, are
evaluated from the boundary conditions of the beam span:

(1) Zero displacement values at support locations:

ϕn,p(0) � ϕn,p lp  � 0. (15)

(2) Continuous angle of rotation at support locations:

ϕ′n,p(0) � ϕ′n,p−1 lp−1 ,

ϕ′n,p lp  � ϕ′n,p+1(0).
(16)

(3) Continuous bending-moment at support locations:

ϕn,p
″

(0) � ϕn,p− 1
″

lp−1 ,

ϕn,p
″

lp  � ϕ″n,p+1(0).
(17)

Subsequently, our method fts the physics-guided shape
function defned in equation (14) (subject to equation
(15)–(17)) to the strain mode shapes estimated using DAS
responses and performs an analytical double integration on
the ftted shape functions to estimate the displacement mode
shapes.

In summary, our method estimates bridge natural fre-
quencies and strain mode shapes by analyzing telecom-
munication cables’ dynamic responses using the SSI-data
algorithm in the frst module. Ten, by physically con-
straining the strain mode shape function with bridge dy-
namics, the second module of our method efectively
estimates the displacement mode shapes that provide the
necessary understanding of bridge global behaviors.

4. Field Evaluation

Tis section presents our feld evaluation of the introduced
system with feld experiments on a 50-meter-long concrete
continuous three-span bridge in San Jose, California. We
frst show the experimental setup, followed by a description
of our data.

4.1. Experimental Setup. Te testbed bridge (the Coyote
Creek bridge) is a concrete girder continuous three-span
bridge that carries roadway trafc and walkway over Coyote
Creek in San Jose, California. Te Coyote Creek bridge and
a representation of our sensing deployment on the bridge are
shown in Figure 3. Telecommunication fber cables run in
a conduit beneath the bridge deck. An Optasense QuantX
DAS interrogator [40] that was installed around 2 kilometers
away from the bridge performed distributed acoustic sensing
on the bridge with a 250Hz sampling rate. Te Optasense
QuantX interrogator is based on the phase-sensitive Optical
Time-Domain Refectometry ϕ-OTDR technique [11] with
phase demodulation. We chose a 10-meter gauge length and
a 1-meter channel spacing in our system to obtain fne-
grained bridge dynamic information with an adequate
signal-to-noise ratio for accurate bridge health monitoring.
Furthermore, four PCB 354C03 accelerometers [41] were
installed on the bridge deck to measure the vertical

acceleration of the bridge, providing validation signals to our
BHM system. Specifcally, three of them were installed in the
middle of each span, and the last one was installed in the
third quarter of the middle main span.

4.2. Data Description. During the experiment, we collected
ten sets of telecommunication cable DAS responses and
accelerometer data on two consecutive days in June 2021.
Each set contains around eight minutes of data. Specifcally,
the ten datasets include two sets collected from 6:49 pm to 7:
03 pm on June 18, 2021, and eight sets collected from 5:19
pm to 6:39 pm on June 19, 2021. Figure 4 shows an example
of a 100-second telecommunication cable DAS response and
accelerometer data collected from the Coyote Creek bridge
on June 18, 2021. We can observe the dynamic responses of
the bridge caused by trafc during the measurement. Each
vertical darker line in Figure 4(a) and impulse response in
Figure 4(b) (e.g., the signal in the red boxes) are the tele-
communication cable DAS responses and the acceleration
signals induced by a passing-by vehicle on the bridge, re-
spectively. Vehicles traveling in the lane closer to the tele-
communication cable and accelerometers induce larger DAS
and acceleration responses. For this 100-second sample data
in Figure 4, 11 vehicles were passing through the bridge in
the lane closer to the telecommunication cable, and six
vehicles were in another lane further from the cable.

5. Results and Discussions

Tis section presents evaluation results and discussions of
our system performance for telecommunication cable-based
BHM, including bridge natural frequencies identifcation
and strain and displacement mode shapes estimation.

5.1. Natural Frequency Identifcation Results. We frst eval-
uate the natural frequency identifcation results of our
system using the stabilization diagram. A stabilization di-
agram is a standard tool in modal analysis to display and
identify the modes of a structure [30]. It plots identifed
modes in a model order versus eigen frequency diagram. At
each model order, the SSI-data algorithm is used to estimate
the eigen frequencies and mode shapes. Te mode of
a structure is stable when the stabilization criteria in the
estimatedmodal parameters between two consecutive model
orders are smaller than certain threshold values; otherwise, it
is an unstable mode. For the eigen frequencies, the stabi-
lization criterion is defned as a mean percentage absolute
diference, and for the mode shapes, the criterion is defned
as one minus their modal assurance criterion value. We use
the same stability criteria values as in the work of Van
Overschee et al. [29]: 1% for eigen frequencies and 2% for
mode shapes. Figure 5 shows the stabilization diagrams for
the accelerometer and our telecommunication cable DAS
data. Te solid red curve is the complex mode indicator
function (CMIF) [42] which is the singular values of the
MIMO system’s frequency response matrix (equation in the
paper by Shih et al. [42]). Local peaks on the CMIF plot
indicate damped natural frequencies of the structure. Cross
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markers and dots indicate stable and unstable modes, re-
spectively. We identify the eigen frequencies with stable
modes across model orders (i.e., vertically aligned blue
crosses in Figure 5) as structural modes. Also, the identifed
structural modes should be at the local peaks of the CMIF
(red curve). Both telecommunication cable DAS data and
accelerometer data show that the structural modes are at 4.6,
6.3, and 8.9Hz (indicated by red ovals in Figure 5).

For the ten datasets we collected, our system successfully
identifed the frst three natural frequencies with a 0.055Hz
mean absolute diference (MAD) or up to 1.2% mean ab-
solute percentage diference compared to those identifed
from accelerometer data. Table 1 presents the mean values of
the identifed bridge natural frequencies using the acceler-
ometer data and telecommunication cable DAS data and the
MAD values between them. Furthermore, boxplots in
Figure 6 show the distributions of absolute diferences be-
tween identifed frequencies of the bridge using acceler-
ometer data and telecommunication cable DAS data. Each
box in the boxplot presents fve values, including minimum,
maximum, median, the frst quartile, and the third quartile.
Specifcally, for the frst two modes, our identifcation results
have a 0.110Hz maximum absolute diference and

a 0.030HzMAD. Due to the smaller signal-to-noise ratio for
higher modes, the maximum and mean absolute diferences
for identifying the third mode are 0.272Hz and 0.107Hz,
respectively, which are larger than those of the frst
two modes.

5.2. StrainMode Shape Estimation Results. Figure 7 presents
the estimated strain mode shapes using the SSI-data algo-
rithm (indicated as “Measured”) and two ftted parametric
strain mode shapes using (1) our physics-guided shape
function (indicated as “Ours”) and (2) a baseline method
based on the second-order piecewise polynomial function
(indicated as “Poly”). We can observe that compared to our
physics-guided method, the polynomial ftting overfts the
estimated strain mode shape that includes propagated error
from telecommunication cable DAS data.

We evaluate the consistency of the estimated strainmode
shapes by computing the modal assurance criterion (MAC)
between each pair of mode shapes estimated using the ten
datasets. Te MAC is a statistical indicator that is calculated
as the normalized scalar product of two sets of vectors [43].
It is often used to evaluate the consistency of mode shapes
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Figure 4: An example of 100-seconds of (a) telecommunication cable DAS response data and (b) accelerometer data of the Coyote Creek
bridge on June 18, 2021. Red boxes indicate an example of vehicle-induced signals.
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Figure 3: Our experimental setup: (a) the Coyote Creek bridge testbed and (b) a representation of our sensing deployment on the bridge.
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derived from two diferent scenarios (e.g., two diferent
experiments, sensing modalities, or models such as ana-
lytical vs. empirical). It is bounded between 0 and 1, with 1
indicating fully consistent mode shapes. Figure 8 presents

a MAC value matrix of estimated strain mode shapes using
telecommunication cable DAS data for the entire bridge.Te
diagonal elements of the matrix in Figure 8 are MAC values
of modes compared to themselves, and the of-diagonal
elements are MAC values of modes compared to diferent
modes. We can observe that for the same mode comparison
(diagonal elements), strain mode shapes of the frst two
modes are on average 20% more consistent between each
pair of the ten datasets than those of the third mode. It is
because the third mode response has a smaller magnitude
and lower signal-to-noise ratio than the frst two mode
responses. We also observe that the of-diagonal elements in
the red ovals of Figure 8 are close to one, meaning the frst
strain mode shape is not clearly distinguishable from the
second and the third strain mode shapes.

To further validate our strain mode shape estimation,
we calculate the MAC value matrices for the three bridge
spans (as shown in Figure 9) to show the diferences in
mode shapes of each bridge span. It is observed that the
of-diagonal elements of the frst and the third spans’
MAC value matrix are small (as shown in Figures 9(a) and
9(c)), meaning that the frst three modes’ strain mode
shapes of the frst and the third spans are distinct. On the
other hand, the of-diagonal elements of the second span’s
MAC value matrix are close to 1 (as shown in Figure 9(b)),
meaning that the frst three modes’ strain mode shapes of
the second bridge span are similar to one another. It could
be because the one-dimensional measurements of tele-
communication cables are insufcient to distinguish be-
tween independent two- or three-dimensional mode
shapes (e.g., mode shapes in torsional directions) for the
second bridge span.

5.3. Displacement Mode Shape Estimation Results. We
compare the estimations of displacement mode shapes
using our method (DAS-ours) with those using two
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Figure 5: Stabilization diagrams of (a) telecommunication cable DAS data and (b) accelerometer data collected from 18:57 to 19:05 on June
18, 2021. We identify the same set of modes at 4.6, 6.3, and 8.9Hz (red ovals) using telecommunication cable DAS data and
accelerometer data.

Table 1: Mean values of identifed bridge natural frequencies using
accelerometer data (mean freq-acc) and telecommunication cable
DAS data (mean freq-DAS), and the MAD between them. Our
system successfully identifes the frst three natural frequencies with
a 0.055Hz mean absolute diference (MAD) compared to those
identifed from accelerometer data.

Mode # Mean freq-acc (Hz) Mean freq-DAS (Hz) MAD (Hz)
1 4.572 4.606 0.034
2 6.331 6.323 0.025
3 8.937 8.848 0.107
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Figure 6: Absolute diferences between the identifed bridge
natural frequencies using accelerometer data and telecommuni-
cation cable DAS data.
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baseline methods, namely, a numerical method (DAS-
num) that double integrates the measured strain mode
shapes using the trapezoidal rule and an analytical method
(DAS-poly) that double integrates the strain mode shapes
ftted using a piecewise polynomial basis function. Fig-
ure 10 shows the estimated displacement mode shapes
using the three diferent double integration methods and
the comparison of displacement mode shapes between
using accelerometer data and telecommunication cable
DAS data, respectively.

To evaluate our results, we compute MAC values of
displacement mode shapes estimated using accelerom-
eters versus using telecommunication cable DAS data for
diferent double integration methods. Table 2 and Fig-
ure 11 present the mean values and distributions of the
computed MAC, respectively. Our method achieves the
highest consistency with the validation system having an
average 0.800 MAC value for the three modes and a 72%
and an 11% improvement compared to the numerical
method and the polynomial-based method, respectively.
Moreover, the displacement mode shapes of the second
modes are 6.5% and 7.8% more consistent with the
validation system compared to the frst and the third
modes, respectively. Note that, both the strain and
displacement mode shapes estimated using telecom-
munication cable DAS data have a one-meter spatial
resolution, which is very benefcial for detecting local
bridge damages and achieving a high-spatial-
resolution BHM.

We also evaluate the consistency of the estimated dis-
placement mode shapes between the two days of data
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Figure 10: Estimated displacement mode shapes (plots in the frst row) and comparison of displacement mode shapes between using
accelerometer data and telecommunication cable DAS data (plots in the second row) for the three identifed mode shapes based on data
collected from 18:57 to 19:05 on June 18, 2021.

Table 2: Mean MAC values of displacement mode shapes esti-
mated using numerical double integration (mean MAC-num),
analytical double integration with piecewise polynomial basis
(mean MAC-poly), and with our physics-guided shape function
(mean MAC-ours)-accelerometer data vs. telecommunication ca-
ble DAS data. Our method achieves the highest consistency with
the validation system with an average 0.800 MAC value for the
three modes.

Mode # Mean MAC-num Mean MAC-poly Mean MAC-ours
1 0.013 0.633 0.783
2 0.039 0.783 0.848
3 0.188 0.657 0.770
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Figure 11: MAC value distributions of displacement mode shapes
estimated using accelerometer data vs. using telecommunication
cable DAS data. “Num,” “Poly,” and “Ours” refer to methods using
the numerical double integration, analytical double integration
with piecewise polynomial basis, and with our physics-guided
shape function.
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collection. Figure 12 shows MAC values of estimated dis-
placement mode shapes using June 18 data versus June 19
data. Cross markers in the fgure are outlier values that are
more than 1.5× interquartile range away from the top or
bottom of the box. Te displacement mode shapes estimated
using telecommunication cable DAS data have strong
consistency (i.e., mean MAC values are greater than 85%)
between the two days.

In summary, our evaluation shows promising results
for using DAS data from pre-existing telecommunication
cables to achieve cost-efective and high-spatial-resolu-
tion BHM, including bridge natural frequencies identi-
fcation and strain and displacement mode shapes
estimation.

6. Conclusion

In this work, we introduce a nondedicated BHM system
that turns pre-existing telecommunication cables into
distributed acoustic sensors to capture bridge dynamic
strain responses. Te system successfully estimates
damage-sensitive dynamic properties of bridges, in-
cluding bridge natural frequencies and strain and dis-
placement mode shapes. It enables an efcient and low-
cost BHM as it does not require on-site installation and
maintenance of sensors and equipment by taking ad-
vantage of extensively installed telecommunication fber
cables. Specifcally, we developed an elemental strain
state-space formulation followed by a physics-guided
analytical double integration method to overcome the
challenge of inaccurate estimations for the dynamic
properties due to the large measurement noise of DAS
responses from telecommunication cables. Te system
was evaluated with a concrete three-span bridge and
validated with a conventional system using accelerom-
eters. Our system efectively identifed the frst three
bridge natural frequencies with a 0.055 Hz mean absolute
diference compared to the natural frequencies identifed
using a conventional accelerometer system. It also

estimates the strain and displacement mode shapes with
a 0.800 modal assurance criterion, resulting in 72% and
11% improvements compared to the two baseline
methods that use conventional numerical and analytical
double integration, respectively. Te experimental results
discussed in the result section have validated the feasi-
bility and the efectiveness of the introduced system to
extract bridge dynamic information for achieving an
efcient BHM.

7. Future Work

To the best of our knowledge, this work is the frst one that
uses pre-existing telecommunication fber cables for BHM.
Our vision of future works is provided as follows:

(1) Characterizing the noise of using telecommunication
fber cables for DAS. Since the introduced system is
a nondedicated sensing system, it would have more
uncertainties and noise sources and larger noise
magnitudes compared with the dedicated and well-
calibrated sensors. For example, the telecommunica-
tion cable at diferent DAS channels along the bridge
often has diferent coupling conditions to the bridge
structure, resulting in diferent levels of sensitivity of
distributed acoustic sensors. In the future, we intend to
study how diferent coupling conditions afect the DAS
responses and characterize diferent types of noise and
uncertainty in this new system.

(2) Developing a bridge damage diagnosis framework.Te
introduced BHM system in this paper presents an
efcient way to extract bridge dynamic properties using
DAS responses from pre-existing telecommunication
fber cables. It enables model-based BHM that di-
agnoses bridge damage through detecting and quan-
tifying changes in the estimated dynamic properties
such as modal parameters. Also, damage-sensitive
features can be extracted from DAS responses for
bridge damage diagnosis using data-driven methods
such as dimensionality reduction techniques, classif-
cation, and regression methods. In the future, we plan
to develop a framework to detect, localize, and quantify
bridge damage using DAS responses from telecom-
munication cables.Te framework would include DAS
data collection, damage-sensitive feature extraction,
damage diagnosis and inference, and BHM decision-
making.

(3) Validating on comprehensive and complex feld
experiments. Te evaluation of our system in this
paper was conducted on an operational bridge that
carries roadways and pedestrian walkways. Te ex-
perimental time and the allowed number of vali-
dation sensors are limited to not interfere with
regular trafc. Especially, as there is a limited
number of accelerometers being used in the vali-
dation system, it may not be sufcient to distin-
guish the independent mode shapes from each
other and validate the high-spatial-resolution
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Figure 12: MAC values of estimated displacement mode shapes
using telecommunication cable DAS data of two diferent days.
Mean MAC values of each mode are 0.999, 0.874, and 0.934,
respectively.

12 Structural Control and Health Monitoring



mode shapes estimated using DAS. In the future,
we plan to look for a testing bridge that would
allow us to deploy more sensors and even induce
structural changes (or damages) to further validate
the capacity of the introduced system for assessing
bridge health and detecting damages.
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TelecomTM: A Fine-Grained and Ubiquitous Traffic Monitoring
System Using Pre-Existing Telecommunication Fiber-Optic Cables as
Sensors
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HAE YOUNG NOH, Stanford University, USA

We introduce the TelecomTM system that uses pre-existing telecommunication fiber-optic cables as virtual strain sensors
to sense vehicle-induced ground vibrations for fine-grained and ubiquitous traffic monitoring and characterization. Here
we call it a virtual sensor because it is a software-based representation of a physical sensor. Due to the extensively installed
telecommunication fiber-optic cables at the roadside, our system using redundant dark fibers enables to monitor traffic
at low cost with low maintenance. Many existing traffic monitoring approaches use cameras, piezoelectric sensors, and
smartphones, but they are limited due to privacy concerns and/or deployment requirements. Previous studies attempted to
use telecommunication cables for traffic monitoring, but they were only exploratory and limited to simple tasks at a coarse
granularity, e.g., vehicle detection, due to their hardware constraints and real-world challenges. In particular, those challenges
are 1) unknown and heterogeneous properties of virtual sensors and 2) large and complex noise conditions. To this end,
our TelecomTM system first characterizes the geographic location and analyzes the signal pattern of each virtual sensor
through driving tests. We then develop a spatial-domain Bayesian filtering and smoothing algorithm to detect, track, and
characterize each vehicle. Our approach uses the spatial dependency of multiple virtual sensors and Newton’s laws of motion
to combine the distributed sensor data to reduce uncertainties in vehicle detection and tracking. In our real-world evaluation
on a two-way traffic road with 1120 virtual sensors, TelecomTM achieved 90.18% vehicle detection accuracy, 27× and 5× error
reduction for vehicle position and speed tracking compared to a baseline method, and ±3.92% and ±11.98% percent error for
vehicle wheelbase and weight estimation, respectively.
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1 INTRODUCTION
A traffic monitoring system, which automatically and continuously detects, tracks, and characterizes vehicles in
moving traffic, is important for urban management, maintenance, and planning. For instance, a traffic monitoring
system can track and predict traffic patterns to help reduce traffic congestion [30, 32, 34] and manage safety and
emergency situations [11, 21, 41]. Also, with a detailed understanding of individual vehicle characteristics (e.g.,
vehicle number, size, weight) and the use of roads and bridges, we can image the near-surface (tens of meters under
the ground) seismic properties of urban areas [56, 57], monitor critical transportation infrastructure [15, 29, 35, 51]
and efficiently determine the needs of future transportation projects [9, 14, 53].
There are several existing technologies for traffic monitoring, such as vision-based systems [6, 40, 42] and

pavement sensing systems (e.g., inductive loops [4, 16, 18], piezoelectric sensors [16, 23, 60], and fiber optic
sensors [49, 58]). However, these systems bring several drawbacks: Vision-based systems are perceived as privacy-
invasive and are sensitive to reduced visibility caused by weather conditions. Pavement sensing systems only
capture traffic information at specific locations as they are point sensing. Due to the high cost in installations
and maintenance, it is difficult to scale up and achieve fine-grained monitoring using existing vision-based
and pavement sensing systems. Furthermore, crowd-sensing approaches that use mobile phone data from the
drivers/passengers [17, 43, 61] have been developed to enable cost-effective and high-resolution traffic monitoring.
However, they only capture the vehicle position and speed information and have also raised privacy concerns.

To this end, we introduce the TelecomTM system that uses pre-existing roadside telecommunication (telecom)
fiber-optic cables as virtual strain sensors to sense vehicle-induced ground vibrations for fine-grained and
ubiquitous traffic monitoring and characterization. In particular, TelecomTM achieves vehicle detection, tracking,
speed and position estimation, weigh-in-motion, and wheelbase estimation. Our system is based on the distributed
acoustic sensing (DAS) technology, specifically, the Phase Sensitive Optical Time Domain Reflectometry (𝜙-
OTDR) [31, 38]. A DAS channel is called a “virtual sensor" because it is a software-based representation of
a physical sensor. It uses the readings of the backscattered light in the fiber to calculate the strain responses
of the telecom cable. TelecomTM is built on the idea that vehicle motion creates unique vibration patterns
on the ground and near-surface structures. When vehicles move on the road, the ground deforms due to the
vehicles’ self-weight [19, 56]. When vehicles pass by a structure (e.g., a roadway structure), forces applied by
their wheels induce the structure to vibrate [25–27, 54]. These vibrations carrying information about vehicle
characteristics (e.g., size and weight) are transmitted to the roadside telecom fiber conduits coupled to the earth
and road structures. Our TelecomTM system senses these vehicle-induced telecom fiber vibrations to monitor
traffic ubiquitously and infer vehicle activities with fine-grained spatial resolution.

TelecomTM is a scalable, efficient, and cost-effective system. There are millions of kilometers of telecom fiber
cables deployed around the world that can be utilized for ubiquitous traffic monitoring. For instance, in 2017,
the length of the optical fiber cable network in China alone was more than 37 million kilometers [48]. Most
telecom infrastructure utilizes pipes and conduits several meters under the ground and along the roadways to
distribute around the urban area, which can capture fine-grained traffic information. It only requires connecting
an optoelectronic instrument called the interrogator unit to one end of the fiber. The interrogator unit used
by TelecomTM can record strain data from a telecom fiber cable up to 100 km long in a high spatial-temporal
resolution (up to 250 Hz and 1-meter channel spacing) [28, 57]. In addition, by taking advantage of unlit dark fibers
(i.e., fibers that are not used for data transmission), TelecomTM can continuously record data for years without
any interference to regular telecommunication signals or any on-site sensor installation and maintenance [1, 24].

Researchers have explored the idea of using dark fibers for traffic monitoring before; however, due to hardware
constraints and real-world challenges, existing works are limited to exploratory simple tasks at coarse-granularity,
e.g., vehicle detection and traffic speed estimation [33, 37, 50, 52, 55, 57]. For example, incoherent OTDR [13] only
has intensity measurement at a lower spatial resolution (e.g., 10-meter channel spacing). Importantly, existing
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works lack a systematic approach to cope with real-world challenges, which prevented them from achieving
fine-grained traffic monitoring and individual vehicle characterization. In particular, the key research challenges
are:

• Unknown and heterogeneous properties of virtual sensors. TelecomTM measures the dynamic strain
of the fiber around each virtual sensor. Due to cable spooling in cabinets and manholes, each virtual sensor’s
actual geographic location (geo-location) is unknown. Therefore, the surrounding conditions (e.g., coupling
between the cable and the conduit and between the conduit and the earth, near-surface soil properties, etc.)
of each virtual sensor is unidentified, resulting in high uncertainties and heterogeneity in signal properties,
including signal pattern and the ratio between the virtual sensor’s response and vehicle-induced forces
(i.e., transmissibility). Without a prior understanding of the geo-location and signal properties, we cannot
accurately model vehicle-induced telecom fiber responses at each virtual sensor. Vehicle detection and
tracking could also fail due to inaccurate vehicle position and speed estimations.

• Large and complex noise conditions. Fiber cables were originally deployed for data transmission as
opposed to strain sensing. Telecom fiber responses are indirect measurements of the vehicle-induced
ground vibrations, which have larger and more complex noises and uncertainties than direct measurements
from dedicated and well-calibrated sensors (e.g., piezoelectric sensors in the pavement). The noise signals
created by non-vehicle vibrations (e.g., environmental changes) may be falsely recognized as the vehicle-
induced vibration signals or overwhelm the vehicle signals, resulting in wrong or missing detection of
vehicles. These large and complex noise conditions can further affect the accuracy of vehicle tracking and
characterization.

TelecomTM addresses the above two challenges through a System Characterization module and a Bayesian
Analysis using Distributed Sensors module. In the first module, we characterize the system through driving tests
that use a car with a GPS antenna to drive across the road. We estimate the geographic position of each virtual
sensor by matching the vehicle’s GPS signals with the induced telecom fiber responses. Virtual sensor properties,
including signal patterns and transmissibility, are also learned from the driving tests to help design the vehicle
detection method and determine its model parameters. In the second module, the arrival times of vehicles at
each virtual sensor channel are first estimated through a prominence-based peak detection method. Then, a
spatial-domain Bayesian filtering and smoothing algorithm is developed to address the challenge of large and
complex noise conditions. It estimates the posterior probability of vehicle arrival time recursively over the space
(in the direction of vehicle motion) through fusing spatial-dependent vehicle detection results across multiple
virtual sensors. It uses the spatial dependency of distributed sensors and Newton’s laws of motion to combine the
distributed sensor data to reduce vehicle detection uncertainties and estimate vehicle motion states (positions and
moving speed). Vehicle tracking is achieved by converting the estimated arrival times and their derivatives into
vehicle positions and speeds. Furthermore, the time differences between responses induced by vehicle wheels and
the magnitude of vehicle-induced quasi-static strain are calculated for estimating wheelbase length and vehicle
weight, respectively.

We evaluated TelecomTM through comprehensive field experiments on an approximately 900-meter road
with regular traffic. TelecomTM achieves a 90.18% two-way traffic detection accuracy, 27× and 5× error rate
reductions for vehicle position tracking and speed tracking, respectively, compared to a baseline method without
geo-localization, ±3.92% percent error (95% confidence interval) for wheelbase estimation, and ±11.98% percent
error (95% confidence interval) for weight estimation.
The main contributions of this work are:

• We introduce the TelecomTM system that uses pre-existing telecom fiber responses induced by vehicle
vibrations to enable fine-grained and ubiquitous detection, tracking, and characterization of each vehicle.
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Fig. 1. Illustration of the principle of DAS. A strain perturbation affecting the optical fiber caused by vibrations between 𝐴
and 𝐵 produces linearly proportional variations in the phase of the backscattered light.

• We analyze the telecom fiber’s dynamic strain responses to address the challenges of high uncertainties
in sensor properties and complex noise conditions through a Bayesian analysis approach. Our approach
efficiently characterizes the system and integrates the spatial dependency of distributed sensors to improve
vehicle detection, tracking, and characterization accuracy.

• We evaluate our system through real-world experiments and characterize the system’s performance with
various traffic conditions, vehicle types, traveling directions, and speeds.

The rest of the paper is organized as follows: Section 2 describes the physical foundations enabling TelecomTM.
We introduce our system in Section 3. Our real-world evaluation, its results, and the characterization of our
system’s performance are described in Section 4. Section 5 discusses related work and the differences between
our work and previous research. In Section 6, we conclude our work.

2 PHYSICAL FOUNDATIONS OF TELECOMTM
To provide a background understanding of the TelecomTM system, we begin with describing its physical founda-
tions, including the principles of distributed acoustic sensing (DAS) and an exhibition of vehicle-induced telecom
fiber vibration.

2.1 Principles of Distributed Acoustic Sensing
DAS based on the𝜙-OTDR technique [46] that uses a standard fiber cable as virtual axial strain sensors. Specifically,
an optoelectronic instrument called the interrogator unit repeatedly injects a laser pulse into a fiber cable. An
optical interferometry system measures the Rayleigh-backscattered light. The arrival time of the segmented
backscattered light can be mapped to the distance along the fiber because the speed of light in the fiber is known.
A strain perturbation in the fiber’s surroundings may cause a phase shift of the scattering centers. The phase
shift is quasi-linearly proportional to the total strain along fiber [12]. Therefore, the strain variations in different
fiber sections can be obtained by repeatedly measuring the phase shift. Figure 1 illustrates the principle of DAS.
By sending the laser pulses at a high frequency (e.g., 250 Hz for TelecomTM), the dynamic strain profile along the
fiber can be determined [22].
Besides the sampling rate, there are two important specifications of DAS systems: gauge length and channel

spacing. Gauge length is the length over which the phase shifts are measured. Channel spacing is the distance
between each virtual sensor. Selecting the gauge length and channel spacing is a trade-off: a longer gauge length
has a higher signal-to-noise ratio but a lower spatial resolution and vice versa. A finer channel spacing can
improve the spatial resolution but would have more overlapping sensing areas (i.e., requiring larger data storage)
for virtual sensors if the channel spacing is smaller than the gauge length. We chose a 10-meter gauge length and a
1-meter channel spacing in our system to obtain fine-grained traffic information with an adequate signal-to-noise
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Fig. 2. Vehicle-induced telecom fiber response in two virtual sensors having (a) bell-shaped response and (b) polarity-flipped
response.

ratio for accurate vehicle detection. In other words, we convert the telecom fiber cable into virtual sensors
spatially distributed every meter to measure the strain over each 10-meter section of the fiber.

2.2 Vehicle-Induced Telecom Fiber Vibration
When a vehicle passes over virtual sensors of the roadside telecom fiber cable, the interaction between the vehicle
and the road structure induces the telecom fiber cable to vibrate. The signal pattern of vehicle-induced telecom
fiber vibrations depends on the vehicle characteristics, fiber conduit properties, the cable surrounding conditions,
etc. There are mainly two components of signals produced by moving vehicles that are recorded by roadside
distributed acoustic sensors: 1) quasi-static signals (< 1 Hz) resulting from the ground deformation due to the
vehicle’s weight, and 2) surface waves (3 to 20 Hz) caused by the dynamic vehicle-road interaction due to the
roughness of the road (e.g., bumps). Note that vehicle-induced surface-waves are usually the strongest between
3∼20 Hz. From our observation, vehicles don’t excite evident 1∼3 Hz energy, which is relatively weak unless other
sources (e.g., earthquakes) exist. Previous studies [24, 56] have found that the quasi-static component dominates
the energy of vehicle-induced telecom fiber vibration and is theoretically described by the Flamant-Boussinesq
approximation [8, 10]. As a vehicle approaches the virtual sensor, ground deformation above the sensor increases,
and the fiber coupled to the earth is stretched, resulting in increased tension in the fiber. As the vehicle moves
away, ground deformation near the virtual sensor and the fiber tension decreases. As a result, the vehicle motion
creates a bell-shaped response when it passes a virtual sensor. Figure 2 (a) shows an example of the bell-shaped
response of a virtual sensor to a passing car that matches the theoretical telecom response. The signal peaks
at around 2.5 second when the car reaches the sensor. Positive amplitude indicates the fiber beneath the car is
under tension. Since the quasi-static signal created by a moving vehicle dominates the signal energy and is easy
to recognize, traffic volume and speed estimation approaches have been developed by detecting, extracting, and
localizing these quasi-static signals with the surface-wave component filtered out [8, 24, 47, 50, 57].
However, we observe that due to the unknown sensor properties and complex noise condition challenges

mentioned in Section 1, field data do not always match the theoretical vehicle-induced telecom fiber response.
First, moving vehicle locations estimated using quasi-static signals do not match the designed locations of virtual
sensors based on the maps/drawings of urban fiber installations. It is because these maps are often inaccurate
and do not take into account the slack in the fiber cable accumulated underground (e.g., spools in cabinets
and manholes). Figure 3 shows an example photo of fiber spooling in a manhole. There are around 100 meters
of fibers spooled in this manhole, resulting in a large estimation error of vehicle positions. We also observe
from field data that a polarity-flipped response (Figure 2 b) consistently occurs at some fiber subsections. The
polarity flipping phenomenon could be explained by the near-surface heterogeneity and/or fiber conduit property
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Fig. 3. An example photo showing fiber spooling.
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Fig. 4. Telecom fiber signal examples of (a) bell-shaped and (b) polarity-flipped response. Red triangle markers indicate
arrival times of vehicles. Vehicles are detected at local maximums for the bell-shaped response and at local minimums for
the polarity-flipped response.

changes that could lead to stress concentration reversing the fiber’s response from tension to compression. In
addition, telecom fiber responses have high-frequency and irregular signal backgrounds/trends due to noise
and non-vehicle-induced perturbations (e.g., environmental changes) in the surroundings of the telecom fiber
cable. Figure 4 shows two telecom fiber signals having (a) bell-shaped and (b) polarity-flipped responses. Red
triangle markers indicate the arrival of vehicles. We can observe that because of the polarity flipping and irregular
signal background phenomenons, conventional peak detection methods, which find local maxima or minima
by comparison of neighboring values, or baseline subtraction methods [7], which remove low-frequency or
harmonic signal background, may not work well for detecting and tracking vehicles.

To this end, we introduce our TelecomTM system in the next section, which geo-localizes every virtual sensor
and analyzes their signal patterns (bell-shaped or polarity-flipped response) by matching the vehicle’s position
signal with the corresponding vehicle-induced quasi-static signal in telecom fiber. TelecomTM overcomes the
challenge of large and complex noise conditions by fusing spatially dependent vehicle detection results across
multiple virtual sensors. It uses Newton’s laws and the spatial dependency of vehicle motion to reduce vehicle
detection uncertainty and estimate vehicle positions and speeds.
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Fig. 5. TelecomTM system overview.

3 TELECOMTM: TRAFFIC MONITORING SYSTEM USING PRE-EXISTING ROADSIDE TELECOM
FIBER CABLES

The main goal of TelecomTM is to develop a fine-grained and ubiquitous traffic monitoring system that (1) detects
and tracks vehicle motion and (2) characterizes vehicles (e.g., vehicle position, speed, wheelbase, and weight)
from telecom fiber responses.
TelecomTM consists of two modules, as shown in Figure 5. The TelecomTM System Characterization Module

(Section 3.1) conducts driving tests to estimate the geographic position and analyze the signal pattern of each
virtual sensor by matching the testing vehicle’s GPS recording with the vehicle-induced quasi-static signal in
the telecom fiber. In the second module (Section 3.2), telecom fiber responses are inputted to detect vehicles at
each virtual sensor using a prominence-based detection method whose parameters are determined using the
virtual sensor properties. Then, our system integrates vehicle detection results from spatially-distributed sensors
through Bayesian analysis. We estimate the posterior probability of vehicle arrival time using a spatial-domain
Bayesian filtering and smoothing algorithm. Our method combines multiple sensors’ information to reduce
vehicle detection uncertainties and estimate vehicle motion states (positions and speeds) based on the spatial
dependencies of the virtual sensors and Newton’s laws of motion. Finally, vehicle characteristics, including weight
and wheelbase, are estimated using the vehicle-induced quasi-static signals and the time difference between
vehicle wheel-induced responses.

3.1 TelecomTM System Characterization
The first module of our system is to characterize each virtual sensor to estimate their geographic locations and
analyze their signal patterns.

3.1.1 Virtual Sensor Geographic Localization. Accurate mapping of the virtual sensors to their geographic
locations is essential for all traffic monitoring applications discussed in the paper. We address the unknown
geo-location challenge by analyzing the telecom fiber response generated by a car with onboard GPS, which
is an easily scalable tool when the fiber cables are installed in proximity of public streets [57] (i.e., roadside).
In particular, we first conducted “tap” tests in the interrogator room (underground and without GPS signal) by
hitting the fiber for temporal synchronization between the TelecomTM system and the onboard GPS receiver.
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Fig. 6. Spatial-variations of telecom fiber signal characteristics: (a) signal pattern and (b) transmissibility (ratio between
virtual sensor response and vehicle’s weight). Signal properties of distributed virtual sensors have large spatial variations.

We then drove the testing car on the road under regular traffic. The most predominant quasi-static signal peaks
when the car is the closest to a virtual sensor. Based on the peaking time and the onboard GPS recording, we
can retrieve the geographic positions of every roadside virtual sensor. Also, to reduce GPS error, we run the
driving test several times and average the estimated virtual sensors’ geo-locations of all the tests. Note that this
characterization process can be done with any city maintenance vehicles, public transit vehicles, mail delivery
trucks, etc., which need to go around the city every day. Therefore, it is time- and cost-effective and does not
have any effect on regular traffic and telecommunication signals.

3.1.2 Vehicle-induced Telecom Fiber Signal Pattern Analysis. As mentioned in Section 2.2, telecom fiber responses
have various signal patterns, which require different methods and model parameters for detecting vehicles at
different virtual sensors. For the bell-shaped response, vehicle motion creates prominence of a peak and should
be detected at local maximums; for the polarity-flipped response, vehicle motion creates prominence of a valley
and should be detected at local minimums. Also, since the ratio between the virtual sensor’s response and vehicle-
induced force (i.e., transmissibility) is unknown, a universal vehicle detection method with the same parameters
(e.g., peak detection threshold) would fail to detect vehicles accurately. The signal pattern and transmissibility
are randomly varying along the fiber, and their distributions are difficult to predict. For example, Figure 6 shows
the spatially varied signal pattern and transmissibility along an around 900-meter long road section, having
1120 virtual sensors. 923 of them have bell-shaped responses; 197 of them have polarity-flipped responses. The
absolute value of transmissibility varies between 264 and 21704 of telecom fiber response magnitude per ton.
To address this heterogeneous and unknown signal characteristics challenge, during our driving tests, we also
estimate the transmissibility of each virtual sensor. We define the transmissibility, 𝑇𝑘 , of the 𝑘-th sensor as the
ratio between the prominence amplitude of the quasi-static signal and the testing vehicle weight. For bell-shaped
responses,𝑇𝑘 > 0, and for polarity-flipped responses,𝑇𝑘 < 0. In addition, by using the signal of our testing vehicle
passing over the fiber on the nearest lane and the physical model that describes the distribution of subsurface
stresses (Boussinesq’s theory), we can estimate the signal transmissibilities at further lanes without the need for
additional driving tests.

3.2 Bayesian Analysis Using Distributed Sensors
The second module of TelecomTM is a three-step Bayesian analysis approach. The per-sensor detection step
estimates the arrival times of vehicles at each virtual sensor by detecting the prominence of peaks or valleys in
time-domain signals. The second step integrates spatially dependent information across various adjacent virtual
sensors to reduce false positive detections and estimate vehicle motion states (positions and speeds). The third
step estimates the wheelbase lengths and weights of the tracked vehicles.
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3.2.1 Per-sensor Vehicle Detection. In this step, we detect vehicles by estimating vehicles’ arrival times at each
virtual sensor from the time-domain telecom fiber responses. As we discussed in Section 2.2, the quasi-static
component due to the vehicle’s weight dominates the energy of the signal. Therefore, we use a prominence-based
detection method to detect vehicle occurrence. The prominence of a peak measures how much the peak stands
out due to its intrinsic height and its relative location to other peaks. We use the prominence-based detection
method because it is more robust for detecting local minima or maxima of a signal having high-frequency
and irregular signal background. Specifically, we first smooth the data using the locally weighted smoothing
(LOESS) [5] with a smoothing span of a one-second window. Here we remove outliers and high-frequency noise
that could be incorrectly detected as prominence. In addition, our per-sensor detection method determines the
prominence detection threshold of each sensor using its transmissibility. The larger the transmissibility, the
larger the prominence threshold. It allows our method to be adaptive to sensors with heterogeneous properties.
Specifically, for sensors with 𝑇𝑘 > 0, the prominence of a peak larger than 𝑟0 × (|𝑇𝑘 |/𝑇0) within a one-second
window is detected as a vehicle, and for sensors with𝑇𝑘 ≤ 0, prominence of a valley is detected.𝑇0 is the minimum
absolute transmissibility (𝑇0 = min( |𝑇𝑘 |), for 𝑘 = 1, · · · , 𝐾). 𝐾 is the total number of virtual sensors. 𝑟0 is the
prominence threshold for vehicle detection at the sensor with the transmissibility of 𝑇0.

3.2.2 Spatial-Domain Bayesian Filtering and Smoothing for Vehicle Tracking. Although an efficient system char-
acterization is conducted through the driving tests mentioned in the first module of TelecomTM, the large and
complex noise conditions challenge would still cause false or missing detection of vehicles using only the per-
sensor detection method. For instance, the noise signals may be incorrectly recognized as vehicle-induced telecom
fiber signals or overwhelm the vehicle signals. Wrong or missing vehicle detection results can further affect the
accuracy of vehicle tracking and characterization.
To overcome the challenge, we develop a spatial-domain Bayesian filtering and smoothing algorithm that

fuses spatial-dependent vehicle detection results of distributed virtual sensors to improve vehicle detection and
tracking accuracy. Since vehicle motion is continuous in the spatial domain, our algorithm estimates vehicle
motion states based on Newton’s laws of motion. In particular, we first formulate our vehicle detection and
tracking problem as a spatial-domain state-space model. State-space model is a more compact and convenient
representation for multiple-input multiple-output dynamic systems compared to other representations, such as
the transfer function model and impulse response function model [20]. In addition, to use the spatial dependency
of distributed virtual sensors, our formulation considers the arrival time of a vehicle at every virtual sensor as
measurement. It is different from the conventional formulation of Bayesian filtering and smoothing for motion
tracking or navigation [39, 44, 59] whose measurement/observation is the position of the object at every timestep
and does not take into account the spatial dependency information. The vehicle arrival time at the 𝑘-th virtual
sensor, 𝑡 , and its derivative, ¤𝑡 , are described by the linear state space t𝑘 = [𝑡, ¤𝑡]𝑇 . The derivative of arrival time, ¤𝑡 ,
is the time for the vehicle to travel one meter. Based on Newton’s laws of motion, the state-space model is

t𝑘 = A𝑘 t𝑘−1 +w𝑘

𝑧𝑘 = Ct𝑘 + 𝑣𝑘
(1)

A𝑘 =

[
1 Δ𝑥𝑘
0 1

]
, C = [1, 0], w𝑘 ∼ N(0,Q𝑘 ), 𝑣𝑘 ∼ N(0, 𝜎𝑧)

Q𝑘 =

[ 1
4Δ𝑥

4
𝑘

1
2Δ𝑥

3
𝑘1

2Δ𝑥
3
𝑘

Δ𝑥2
𝑘

]
𝜎2¥𝑡 ,

where Δ𝑥𝑘 is the distance between the (𝑘 − 1)-th and the 𝑘-th virtual sensor projected on the road; 𝑧𝑘 is the
observed vehicle arrival time at virtual sensor 𝑘 ; w𝑘 is the process noise; v𝑘 is the observation noise; and 𝜎¥𝑡 and
𝜎𝑧 are the standard deviations of arrival time’s second derivative and that of the measurement noise, respectively.
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Fig. 7. Our Bayesian filtering and smoothing algorithm.

To estimate the vehicle motion state (described in the above state-spacemodel) frommultiple sensors’ noisy data,
we develop a Bayesian filtering and smoothing algorithm (as shown in Figure 7 and Algorithm 1). It consists of a
forward filtering pass and a backward smoothing pass. The forward pass estimates the filtered posterior probability
of the state estimate recursively using past observations; the backward pass computes the smoothed posterior
probability using all observations [3, 44]. Specifically, the forward pass of our algorithm estimates the posterior
probability of vehicle arrival time over space using vehicle detection results of previous and current virtual
sensors: 𝑝 (t𝑘 |𝑧1:𝑘 ). The forward pass has three phases: 1) state prediction phase, 2) measurement prediction phase,
and 3) state update phase. The state prediction phase uses the state estimate from the previous virtual sensors to
produce the state estimate at the current virtual sensor. Since we don’t have direct measurement/observation (i.e.,
the arrival time of the vehicle) at each virtual sensor, our algorithm has a measurement prediction phase that
predicts the measurement, 𝑧𝑘 , by finding the detection in the current virtual sensor having the largest probability
of the predicted arrival time:

𝑧𝑘 = argmax
𝑧∈D𝑘

𝑓 (𝑧; 𝑡𝑘 |𝑘−1, 𝜎𝑡,𝑘 |𝑘−1) (2)

where D𝑘 are per-sensor vehicle detection results for the virtual sensor 𝑘 ; 𝑓 (𝑧) is the probability density function
of the predicted arrival time following the Gaussian distribution: N(𝑧; 𝑡𝑘 |𝑘−1, 𝜎2𝑡,𝑘 |𝑘−1); 𝑡𝑘 |𝑘−1 and 𝜎𝑡,𝑘 |𝑘−1 are the
predicted arrival time estimate and its standard deviation, respectively. In other words, our algorithm tracks
the vehicle arriving at each virtual sensor by finding the closest vehicle detection to the predicted arrival time
estimate. Then, the state update phase updates the state estimate (i.e., a posteriori state estimate) using a weighted
average of the predicted state estimates and the measurement. The backward pass of our algorithm adopts the
Rauch-Tung-Striebel smoother [39] to estimate the posterior probability of vehicle arrival time using vehicle
detection results at all virtual sensors: 𝑝 (t𝑘 |𝑧1:𝐾 ). Here our algorithm reduces detection uncertainties by utilizing
the spatial dependency of the distributed sensors. Finally, vehicle motion state estimation or tracking is achieved
by converting arrival time and its derivative at every virtual sensor, [𝑡, ¤𝑡], into vehicle position and speed, [𝑥, 𝑣]
using the virtual sensors’ geographic locations estimated in our module one.

3.2.3 Vehicle Characterization. TelecomTM estimates vehicle wheelbase lengths and weights using the vehicle
speed estimation results and the quasi-static component of the vehicle-induced signals. To estimate the wheelbase
length, we use the high-frequency telecom fiber response (≥3 Hz) created by a vehicle’s two wheels passing a
bump, joint, or pothole. It creates clear impulse responses due to the interaction between the vehicle wheels
and the abrupt change in road profiles. Figure 8 shows an example of a virtual sensor response and its highpass
filtered signal (≥3 Hz) at a bridge-road joint. We can observe the vibration components created by the two wheels
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Algorithm 1 Spatial-domain Bayesian filtering and smoothing
Input: Vehicle detection results at every virtual sensor, D𝑘 , for 𝑘 = 1, · · · , 𝐾 ; Prior knowledge of standard deviations, 𝜎¥𝑡 and

𝜎𝑧
Output: Posterior probability of vehicle state, 𝑝 (t𝑘 |𝑧1:𝐾 )
1: #Forward filtering pass:
2: Initialization: initial guess of state estimate and estimate covariance, t0 |0 and P0 |0
3: for Virtual sensor 𝑘 = 1, · · · , 𝐾 do
4: #State prediction phase:
5: Calculate the predicted state estimate,

t̂𝑘 |𝑘−1 = A𝑘 t̂𝑘−1 |𝑘−1
6: Calculate the predicated state covariance,

P𝑘 |𝑘−1 = A𝑘P𝑘−1 |𝑘−1A
𝑇
𝑘
+ Q𝑘

7: Predict the state probability given previous measurement,

𝑝 (t𝑘 |𝑧1:𝑘−1) = N(t𝑘 ; t̂𝑘 |𝑘−1, P𝑘 |𝑘−1)
8: #Measurement prediction phase:
9: Find the vehicle detection of the𝑘-th virtual sensor having the largest probability of the predicted state using Equation (2)
10: #State update phase:
11: Calculate the updated state estimate,

t̂𝑘 |𝑘 =t̂𝑘 |𝑘−1 + P𝑘 |𝑘−1C
𝑇

× (CP𝑘 |𝑘−1C𝑇 + 𝜎𝑧)−1 (𝑧 − Ct̂𝑘 |𝑘−1)
12: Calculate the updated state covariance,

P𝑘 |𝑘 = (I − P𝑘 |𝑘−1C
𝑇 (CP𝑘 |𝑘−1C𝑇 + 𝜎𝑧)−1C)P𝑘 |𝑘−1

13: Update the state probability given previous and current measurement,

𝑝 (t𝑘 |𝑧1:𝑘 ) = N(t𝑘 ; t̂𝑘 |𝑘 , P𝑘 |𝑘 )
14: end for
15: #Backward smoothing pass:
16: Initialization: Smoothed state estimate and covariance at the last virtual sensor, t̂𝐾 |1:𝐾 = t̂𝐾 |𝐾 , P𝐾 |1:𝐾 = P𝐾 |𝐾
17: for Virtual sensor 𝑘 = 𝐾 − 1, · · · , 1 do
18: Calculate the smoothed state estimate,

t̂𝑘 |1:𝐾 = t̂𝑘 |𝑘 + P𝑘 |𝑘A
𝑇
𝑘+1P

−1
𝑘+1 |𝑘 (t̂𝑘+1 |1:𝐾 − t̂𝑘+1 |𝑘 )

19: Calculate the smoothed state covariance,

P𝑘 |1:𝐾 =P𝑘 |𝑘 + P𝑘 |𝑘A
𝑇
𝑘+1P

−1
𝑘+1 |𝑘

× (P𝑘+1 |1:𝐾 − P𝑘+1 |𝑘 ) (P𝑘 |𝑘A𝑇𝑘+1P
−1
𝑘+1 |𝑘 )

𝑇

20: Estimate the posterior state probability given all sensors’ measurement,

𝑝 (t𝑘 |𝑧1:𝐾 ) = N(t𝑘 ; t̂𝑘 |1:𝐾 , P𝑘 |1:𝐾 )
21: end for

have a repeating impulse response pattern. The time difference between the two wheel-induced responses can
be estimated by using the auto-correlation function to find the repeating patterns. Then, we can estimate the
wheelbase length by multiplying the time difference with the vehicle speed, 𝜏𝑚 × 𝑣 , where 𝜏𝑚 = argmax𝜏 𝑅𝑧𝑧 (𝜏)
is the time difference between wheel-induced telecom fiber response; 𝑅𝑧𝑧 (𝜏) is the auto-correlation function at
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Fig. 8. (a) Vehicle-induced telecom fiber responses and (b) its highpass filtered response at a bridge-road joint. Vehicle
wheel-induced vibration responses have a repeating impulse response pattern.
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Fig. 9. Quasi-static signals of (a) bell-shaped and (b) polarity-flipped responses for three different types of vehicle. Heavier
vehicle creates larger prominence amplitude.

lag 𝜏 of the highpass filtered response of the vehicle-induced telecom fiber vibration; and 𝑣 is the moving speed
of the vehicle.
Furthermore, by assuming the linear elasticity of the road and the near-surface structure, the prominence

amplitude of the quasi-static signal is approximately proportional to the moving vehicle’s weight. Figure 9 shows
the telecom fiber responses having bell-shaped and polarity-flipped signal patterns created by three different
types of vehicles moving in the same lane and measured by the same virtual sensor. We can observe that the
heavier the vehicle, the larger the prominence amplitude. Therefore, we estimate the moving vehicle’s weight by
computing the weighted average of quasi-static signal prominence, 1

𝐾

∑𝐾
𝑘=1 (𝑃𝑘/|𝑇𝑘 |), where 𝑃𝑘 is the prominence

amplitude of the vehicle’s quasi-static signal at virtual sensor 𝑘 .

4 REAL-WORLD EVALUATION
In this section, we describe the experimental setup and results evaluating the performance of TelecomTM, followed
by a characterization of the system’s performance.

4.1 Experimental Setup
We evaluate TelecomTM on a two-way two-lane road with pre-existing telecom fiber cables in San Jose, California.
TelecomTM responses were collected using an OptaSense QuantX interrogator [36] (as shown in Figure 10 a) at
a 250 Hz sampling rate, 10-meter gauge length, and 1-meter virtual sensor spacing. The interrogator recorded
dynamic strain responses from a roadside telecom fiber cable (an example photo of fiber conduits is shown in
Figure 10 b) along an around 900-meter road section of the East Julian St, San Jose, CA. Figure 11 shows the
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(a)

(b)

(c)

Fig. 10. Experimental setup: (a) the QUANTX interrogator [36], (b) an example photo of fiber conduits, and (c) GPS receiver
on the testing car.

Fig. 11. Locations of virtual sensors. The camera icon indicates the location of a camera. The dot line and numbers indicate
virtual sensors’ locations

location of the telecom fiber cable that has 1120 virtual sensors. The outbound traffic (with virtual sensor number
increasing in Figure 11) travels away from the interrogator, and is closer to the telecom fiber cable than inbound
direction traffic.

To estimate geographic locations of virtual sensors and provide ground-truth of vehicle positions, we installed
a GPS receiver that records its geographical position every second on a testing sedan vehicle (1.47 tons weight),
as shown in Figure 10 (c). We also logged the vehicle speed at a 100 Hz sampling rate through the Controller Area
Network (CAN) bus. In addition, a camera was placed close to the last virtual sensor (as shown in Figure 11) to
acquire ground-truth information on vehicle arrival times and vehicle models. We obtain wheelbase lengths and
weights of vehicles with the vehicle model information. With the supervision of staff from the City of San Jose,
we conducted two daytime experiments with 388 vehicles recorded in a 31-minute video and seven nighttime
experiments with our testing vehicle running through the testing road.
Our system was evaluated for vehicle detection, tracking, and wheelbase and weight estimations. It achieves

overall 90.18% accuracy for vehicle detection, 27× error rate reduction (averagemean absolute error (MAE) reduced
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Fig. 12. (a) Precision and (b) recall of detection results using only bell-shaped responses, polarity-flipped responses, or
using our method with all distributed sensors. Our method improves vehicle detection recall by fusing spatial dependency
information from distributed virtual sensors.

from 140.09 m to 5.16 m) for vehicle position estimation, 5× error rate reduction (average MAE reduced from
17.18 km/h to 3.57 km/h) for vehicle speed estimation compared to a baseline method that does not geo-localize
the virtual sensors through the driving test. The baseline method directly applies our spatial-domain Bayesian
analysis algorithm introduced in Section 3.2 to the telecom cable responses. In addition, TelecomTM achieves
±3.92% accuracy for wheelbase estimation, and ±11.98% percent error for weight estimation. The performance of
TelecomTM was found to remain consistent during evaluations conducted on weekdays and weekends, as well as
during daytime and nighttime, despite variations in temperature. However, the evaluations were limited to sunny
weather conditions only. We discuss our results in detail in the following subsections.

4.2 Vehicle Detection Results
We compare the vehicle detection results using TelecomTM with the ground truths captured using the camera.
Figure 12 shows the average precision and recall of detection results using only bell-shaped responses, polarity-
flipped responses, or using our TelecomTM method. All three cases achieve ≥ 95% precision for both inbound and
outbound directions and ≥ 95% recall for the outbound direction. Recall for the inbound direction is lower than
that for the outbound direction mainly due to the long distance from the inbound traffic to the telecom fiber
cable, which will be discussed in Section 4.5.1. The average recall for vehicle detection using the bell-shaped
response is 13% higher than that using the polarity-flipped response. It is because there are multiple factors
causing the polarity-flipping phenomenon, which has high uncertainties, resulting in the distinct signal patterns
of the polarity-flipped responses across various virtual sensors. Our TelecomTM method has been successful in
addressing this issue. It has a 1.6× improvement in error rate reduction (false negative rate reduced from 35% to
22%) by considering spatially dependent vehicle detection information of distributed virtual sensors.

4.3 Vehicle Tracking Results
We evaluated the effectiveness of TelecomTM for vehicle tracking by comparing the estimated travel distance
and speed with onboard GPS and CAN bus recordings. Figure 13 shows the telecom fiber response to the testing
vehicle plotted with the y-axis being the fiber distance to virtual sensors (i.e., before geo-localization) or the
distance along the road (i.e., after geo-localization). It can be observed that there is an around 100-meter gap
between virtual sensors 200 and 300. The gap in the data indicates the lack of fiber-soil coupling due to fiber
spooling, which can be corrected after geo-localization, as shown in Figure 13 (b). Figure 14 shows the ground
truth of vehicle location and speed and their estimations before and after geo-localization. Here we can observe
the big difference between ground truth and the estimations without geo-localization. To quantify the error,
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Gap due to 
fiber spooling

(a) (b)

Fig. 13. Telecom fiber response with the y-axis being (a) the fiber distance to virtual sensors or (b) the distance along the
road after geo-localization. Red dot curve in (b) shows our vehicle tracking result. Our method removed the signal gap (red
circle) due to fiber spooling and estimated the geographic locations of virtual sensors by matching the testing vehicle signal
and the corresponding telecom fiber response.
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Fig. 14. Vehicle (a) locations and (b) speeds ground truth (black curve) and estimations before (blue curve) and after (red
curve) geo-localization (geoloc).
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Fig. 15. Mean absolute value bar chart with a 95% confidence interval for vehicle (a) location and (b) speed estimations before
and after geo-localization (geoloc). The number above each bar indicates the mean absolute value. Our method improves the
vehicle location and speed estimation accuracy by geo-localizing each virtual sensor.

Figure 15 shows the mean absolute errors between ground truth and estimations of vehicle location and speed
before and after geo-localization. Our method has a 70× and an 18× error rate reduction for the outbound and
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Fig. 16. Multiple vehicle tracking. Red curves indicate vehicles tracked by our algorithm. Horizontal dash lines segment road
sections by intersections. Dashed line boxes and circles are two types of tracking errors identified and discussed in Section
4.3.

inbound direction vehicle location estimations, respectively; and a 3× and a 6× error rate reduction for the
two-direction vehicle speed estimations, respectively.

TelecomTM performs well for tracking multiple vehicles with daily and busy traffic conditions. Figure 16 shows
an example of our multiple vehicle tracking results. Since vehicle motions in intersections are complex and easy
to be overlapping, we segment the road into building blocks divided by intersections along the road, which are
indicated by the horizontal dash lines in the figure. We successfully tracked the two-way traffic with various
traffic patterns, including multiple vehicles traveling in opposite directions and trains of vehicles passing by in
the same direction. Here we also want to discuss two main types of inaccurate tracking results and the reasons
causing them. The first type is caused by heavy vehicles marked by white dashed line boxes. When a heavy car
is followed by several light vehicles moving across the instrumented road sections, a large quasi-static signal
caused by the heavy vehicle masks the quasi-static signals of nearby vehicles, making light vehicles’ tracking
difficult. We also identified the second type of inaccurate tracking marked by the yellow circles. When multiple
vehicles traveling from two directions meet, quasi-static signals created by them have overlapping and more
complicated superpositions, causing tracking errors. Especially, there are more missing tracking results in the
inbound direction as the traffic is further away from the telecom fiber cable compared to the outbound direction.

4.4 Vehicle Characterization Results
We evaluated TelecomTM’s vehicle characterization performance by comparing our wheelbase and weight
estimations with vehicles’ specifications. We identified the vehicle models using camera images and searched
online for their specifications. Figure 17 shows the high-frequency (> 3𝐻𝑧) responses of three different types of
vehicles, a sedan, a pickup truck, and a bus. It can be observed that with a similar moving speed, the larger the
vehicle size, the longer the time difference between the wheel-induced vibrations. Overall, our system achieves a
±3.92% percent error (95% confidence interval) for wheelbase length estimation, which has a 2× improvement in
error rate reduction (error reduced from ±8% to ±3.92%) compared to the commercial piezoelectric pavement
sensing system. Furthermore, since the actual weights of vehicles were not allowed to be measured during our
experiments, we compared our weight estimation with the vehicles’ curb weight which is the weight of the
vehicle, including a full tank of fuel and all standard equipment. Although it may not be equal to the actual
weight of the moving vehicle, it could reflect our estimation accuracy because there were no heavy trucks during
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Fig. 17. High-frequency responses (≥ 3 Hz) and the estimated wheelbase lengths of (a) a sedan, (b) a pickup truck, and (c) a
bus. Our system estimates wheelbase length by estimating the vehicle speed and time difference between the wheel-induced
vibration responses.

the experiments, and the payloads of the recorded vehicles are considered much smaller than their curb weights.
Overall, our system achieves a ±11.98% percent error (95% confidence interval) for weight estimation, which has
a 3% improvement in error rate reduction compared to the commercial piezoelectric pavement sensing systems.

4.5 System Characterization
In this subsection, we characterize our TelecomTM system’s performance by examining the effects of sensing
distance, vehicle types, crosstalking event, and vehicle moving speed.

4.5.1 Effect of Sensing Distance. Vehicle-induced vibrations attenuate as the distance between the vehicle and
fiber cable increases. Traffic in the lane farther from the telecom fiber cable induces smaller responses and has a
lower signal-to-noise ratio. To study the effect of sensing distance on vehicle detection and tracking performance,
we computed the vehicle detection accuracy, location and speed estimation results for different traffic directions.
The outbound traffic travels away from the interrogator, and it is closer to the telecom fiber cable than inbound
direction traffic. During our experiments, we recorded 182 inbound vehicles and 206 outbound vehicles. As shown
in Figure 12, detecting vehicles that travel inbound and outbound has similar precision but different recall. The
recall for inbound vehicle detection has an up to 45% accuracy reduction rate compared to that for outbound
vehicle detection. Also, Figure 15 shows the MAE of vehicle location and speed estimations for different traffic
directions. The location and speed estimations for outbound traffic have a 4.7× and a 1.5× improvement in error
rate reduction compared to that for inbound traffic. We found that due to the signal-to-noise ratio change, the
closer the distance between the traffic and the telecom fiber cable, the more accurate the vehicle detection and
tracking performance. To improve the accuracy for detecting and tracking vehicles in further traffic lanes or roads,
we can de-noise the vehicle-induced telecom cable responses to reduce interference among closely traveling
vehicles. For instance, works in [50, 55] de-convolve the simulated quasi-static strain response induced by the
vehicle from the telecom cable responses to compress the signals into sharp pulses and remove the background
noises.

4.5.2 Effect of Vehicle Types. Vehicles with different sizes, shapes, and weights induce different vibration sig-
nals in virtual sensors. We categorize vehicles in our experiments into four types based on their size: 223
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Fig. 18. Effect of vehicle types. (a) shows the true positive rate (TPR) of vehicle detection for different vehicle types. The
larger the size of a vehicle, the better the vehicle detection result. (b) and (c) show the percent error (95% confidence interval)
for wheelbase and vehicle weight estimations. Red dash lines indicate the percent error of current commercial piezoelectric
sensors.
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sedans/hatchbacks, 114 SUVs/vans, 57 pickup trucks, and 4 buses. Figure 18 (a) shows the true positive rate
(recall) of vehicle detection for different vehicle types moving in the inbound direction. We can observe that the
larger the vehicle size, the better the vehicle detection accuracy. It is because larger and heavier vehicles create
larger quasi-static responses and have a higher signal-to-noise ratio.

Furthermore, we also studied the effect of vehicle types on vehicle characterization performance. Figure 18 (b)
and (c) show the percent error (95% confidence interval) of wheelbase length and vehicle weight estimations
for different vehicle types. We observe that our system has similar wheelbase estimation errors for different
vehicle types. For vehicle weight estimation, we found that the estimation accuracy increases as the vehicle size
and weight increase since heavier vehicles at the same location would induce larger telecom cable response (i.e.,
higher signal-to-noise ratios).

4.5.3 Effect of Crosstalking Events. TelecomTM monitors trafficwith one-dimensional responses, the axial dynamic
strain of the telecom fiber. Telecom fiber responses induced by multiple vehicles from different lanes passing a
virtual sensor at the same time overlap and would be detected as one vehicle event. We define this overlapping as
the crosstalking event that mainly affects the inbound (longer sensing distance) vehicle detection performance.
During our experiments, 40% of inbound traffic are crosstalking events. Figure 19 shows the true positive rate of
vehicle detection with or without the crosstalking effect using a single sensor or using our TelecomTM method.
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Fig. 21. Effect of channel spacing. Multiple vehicle tracking. Mean absolute errors of vehicle location estimation with different
channel spacing values.

We can observe that for detection using a single sensor, crosstalking events reduce the true positive rate by 77%.
By leveraging the results from multiple adjacent virtual sensors, we mitigate the issue and improve the TPR from
12% to 54% for detecting vehicles having crosstalking.

4.5.4 Effect of Vehicle Moving Speed. We studied the effect of vehicle moving speed by investigating the vehicle
location estimation errors with respect to different speed ranges, as shown in Figure 20. Here we see that lower
and higher speeds have large MAE for vehicle location estimation. Vehicle moving at speed between 25 and 30
km/h has the smallest MAE, 0.6 m. The larger error for tracking slower vehicles would be because, with the
10-meter gauge length, the vehicle-induced vibration signals are smoothed out, which affects the sensitivity of
peak detection-based arrival time estimation for locating slower vehicles. The larger error for tracking faster
vehicles would be because these vehicles create larger dynamic responses that reduce the signal-to-noise ratio.
Horizontal dash lines in the figure indicate the wheelbase and total length of the testing sedan. Here we see that
the location estimations for all the speed ranges have smaller errors than the vehicle length, and the estimations
for the speed > 15 km/h have smaller errors than the wheelbase length. Our method has enough location
estimation resolution for tracking small vehicles, such as sedans, and for estimating wheelbases with high vehicle
speed.

4.5.5 Effect of Channel Spacing. We studied the effect of DAS channel spacing by calculating the mean absolute
errors of vehicle location estimation with different channel spacing values, as shown in Figure 21. We can observe
that the vehicle tracking error increases as the channel spacing increases. In our work, we first set the channel
spacing to be 1 meter, which is the finest spatial interval we can achieve. Then, we chose the gauge length that
makes sure vehicle-induced telecom vibrations are clearly visible in the DAS signals.

5 RELATED WORK
This section provides a review of related works in roadway traffic monitoring, including the state-of-the-art of
traffic sensing technologies and existing studies for traffic monitoring using pre-existing telecom fiber cables.

5.1 The State-of-the-art of Traffic Sensing Technologies
Much work has been done on traffic monitoring with sensing technologies, including traffic volume estimation,
speed estimation, vehicle classification, and weight estimation. The most common technologies are pavement
sensing systems, vision-based sensing systems [6, 40, 42], and crowd-sensing systems [17, 43, 61]. Pavement
sensing systems, such as inductive loops [4, 16, 18], piezoelectric sensors [16, 23, 60], and fiber optic sensors [49, 58],
capture traffic information through measuring the changes on the pavement, such as inductance of the coil,
pressure fluctuation, vibration, etc. Although such pavement sensing systems have been used for various traffic
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monitoring applications, their installation and maintenance require complicated field works that interrupt regular
traffic [2]. On the other hand, installing cameras to monitor road networks is cheaper and less disruptive than
pavement sensing systems. Also, many cameras are already installed on roadways for surveillance purposes [45].
However, such vision-based systems have line-of-sight restrictions, are sensitive to weather conditions, and bring
privacy concerns. Crowd-sensing approaches that use cell phone data or Vehicle-to-everything (V2X) data to
enable low-cost and efficient traffic monitoring by detecting the drivers’/passengers’ phones or the vehicles in
motion. However, such crowd-sensing systems cannot provide vehicle characterization information and raise
privacy concerns. In summary, the drawbacks of existing traffic monitoring systems hamper their effectiveness
in achieving fine-grained and ubiquitous traffic monitoring.

5.2 Traffic Monitoring Using Pre-existing Telecom Fiber Cables
Existing studies have explored traffic monitoring using telecom fiber cable in three main aspects, including 1)
human mobility characterization, 2) vehicle detection and counting, and preliminary work in 3) vehicle speed
estimation.

For human mobility characterization, previous studies have demonstrated the strong correlation between the
telecom fiber signal variations and the intensity of human activities, including footsteps, traffic, and construction
activities [24, 47]. When there are fewer activities on the sensing site (e.g., during the COVID-19 or spring break
of a school), a decrease of amplitude in low-frequency signals is observed. These studies validate the trend
by comparing the ground truth mobility data with the seismic noise level (indicated by the signal energy in
low-frequency bands) from telecom fiber signals.

For vehicle detection and counting, previous studies have introduced template-matching algorithm and deep
deconvolution models to capture the telecom fiber signal variations induced by drive-by vehicles [8, 24, 50, 52, 58].
These models capture the amplitude changes in the signals to predict the time when the vehicle presents. The
template-matching algorithm detects vehicles by comparing the signal with the standard pattern of a signal as the
vehicle occurs. The deep deconvolution model deconvolves the vehicle impulse responses from the quasi-static
distributed acoustic sensing recordings. Then, a beamforming algorithm is applied to the deconvolved signal
rather than the original DAS signal shows improvements in terms of the resolution in vehicle speed estimation,
and the detection accuracy.
In addition, preliminary work for vehicle speed estimation estimates the speed of a single-vehicle based on

the time interval between two adjacent locations of the same detected vehicle [57]. This preliminary work
characterizes the traffic-induced surface waves recorded by telecom fiber and compares it with vehicle onboard
sensors to validate the vehicle observation in telecom fiber signals.

While the previous work has validated the feasibility of using pre-existing telecom fiber-optic cables to monitor
traffic, these methods are exploratory and mainly focus on coarse-grained traffic flow and speed estimation.
In our work, we introduce a systematic approach for traffic monitoring using telecom fiber, which provides a
quantitative analysis of traffic data for accurate and fine-grained vehicle detection, tracking, and characterization.

6 CONCLUSION AND FUTURE WORKS
In conclusion, we introduced the TelecomTM system that uses pre-existing roadside telecom fiber cables to
achieve fine-grained and ubiquitous traffic monitoring at low cost with low maintenance. TelecomTM uses the
distributed acoustic sensing technique to turn telecom fiber cables into virtual strain sensors in a meter-scale
spatial resolution. It senses vehicle-induced near-surface vibrations to detect and track vehicles and estimate
vehicle positions, speeds, wheelbase lengths, and weights. To overcome the unknown and heterogeneous sensor
properties challenge of using this non-dedicated sensing system, we first estimated the geographic location
and analyzed the signal pattern of each virtual sensor by matching a testing vehicle’s position and quasi-static

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 64. Publication date: June 2023.



TelecomTM: A Fine-Grained and Ubiquitous Traffic Monitoring System Using Pre-Existing Telecom Cables as Sensors • 64:21

signals in the telecom fiber induced by its motion. Further, to overcome the challenge of large and complex
noise conditions, we developed a spatial-domain Bayesian filtering and smoothing algorithm that estimates the
posterior probability of vehicle arrival time at each virtual sensor. Our system can accurately track vehicle motion
by converting the estimated arrival time into vehicle positions and speeds. Vehicle wheelbase and weight are
estimated by analyzing the time difference between vehicle wheel-induced responses and the quasi-static strain.

We evaluated our system through real-world experiments and extensively characterized its performance with
different traffic conditions, vehicle types, sensing distance, and vehicle speeds. Our system detects two-way traffic
with 90.18% accuracy, tracks vehicles with 5.16-meter position estimation error and 3.57 km/h speed estimation
error, estimates vehicle wheelbase length with ±3.92% percent error, and estimates vehicle weight with ±11.98%
percent error.
Our vision of future works to generalize TelecomTM to multiple roadways with various environmental and

operational conditions is
1) Understanding Environmental Influences: Environmental influences, including the temperature, hu-

midity, and human activity disturbances on the road surfaces, vary over time and significantly affect
the resultant telecom fiber responses. To understand how these environmental factors influence traffic
monitoring performance, we plan to collect data under various situations in the long term. Further, we will
explore methods to reduce these influences to improve the robustness of our TelecomTM system.

2) Characterizing Noise and Uncertainties: The noise and uncertainties in the telecom fiber responses
come from various sources, including different types of conduits, coupling conditions, and soil properties
around the cable. To further improve the signal quality and prediction accuracy, we plan to characterize
the noise and uncertainties caused by each source by conducting controlled experiments with different
source combinations.

3) Exploring Complex Roadways: In real-life scenarios, the roadways may have more complex config-
urations than that of our evaluation site. Such configurations include curved and sloped road sections,
multiple lanes, etc. For future work, we will explore the capability of our system on these roadways and
develop solutions for more complex traffic settings.
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HierMUD: Hierarchical multi-task
unsupervised domain adaptation between
bridges for drive-by damage diagnosis

Jingxiao Liu1, Susu Xu2, Mario Bergés3 and Hae Young Noh1

Abstract

Monitoring bridges through vibration responses of drive-by vehicles enables efficient and low-cost bridge maintenance by

allowing each vehicle to inspect multiple bridges and eliminating the needs for installing and maintaining sensors on every

bridge. However, many existing drive-by monitoring approaches are based on supervised learning models that require

massive labeled data from every bridge. It is expensive and time-consuming, if not impossible, to obtain these labeled data.

Furthermore, directly applying a supervised learning model trained on one bridge to new bridges would result in low

accuracy due to the shift between different bridges’ data distributions. Moreover, when we have multiple tasks (e.g., damage
detection, localization, and quantification), the distribution shifts become more challenging than having only one task

because different tasks have distinct distribution shifts and varying task difficulties. To this end, we introduce HierMUD,

the first Hierarchical Multi-task Unsupervised Domain adaptation framework that transfers the damage diagnosis model

learned from one bridge to a new bridge without requiring any labels from the new bridge. Specifically, our framework

learns a hierarchical neural network model in an adversarial way to extract features that are informative to multiple tasks

and invariant across multiple bridges. To match distributions over multiple tasks, we design a new loss function based on a

newly derived generalization risk bound to adaptively assign higher weights to tasks with more shifted distributions. To

learn multiple tasks with varying task difficulties, we split them into easy-to-learn and hard-to-learn tasks based on their
distributions. Then, we formulate a feature hierarchy to utilize more learning resources to improve the hard-to-learn tasks’

performance. We evaluate our framework with experimental data from 2 bridges and 3 vehicles. We achieve up to 2X

better performance than baseline methods, including average accuracy of 95% for damage detection, 93% for localization,

and 0.38 lbs mean absolute error for quantification.

Keywords

Bridge health monitoring, indirect structural health monitoring, vehicle scanning method, vehicle-bridge interaction,

transfer Learning, unsupervised domain adaptation, domain adversarial learning, multi-task learning

Introduction

Bridges are key components of transportation infrastructure.

Aging bridges all over the world pose challenges to the

economy and public safety. According to the 2016 National

Bridge Inventory of the Federal Highway Administration,

139,466 of 614,387 bridges in the U.S. are structurally

deficient or functionally obsolete.1 The state of aging

bridges demands researchers to develop efficient and

scalable approaches for monitoring a large stock of bridges.

Currently, bridge maintenance is based on manual in-

spection,2 which is inefficient, incurs high labor costs, and

fails to detect damages in a timely manner. To address these

challenges, structural health monitoring techniques,3 where

structures are instrumented using sensors (e.g., strain gauge,

accelerometers, cameras, etc.) to collect structural perfor-

mance data, have been developed to achieve continuous and

autonomous bridge health monitoring (BHM). Yet, such

sensing methods are hard to scale up as they require on-site

installation and maintenance of sensors on every bridge and

1Stanford University, CA, USA
2Stony Brook University, NY, USA
3Carnegie Mellon University, PA, USA

Corresponding author:

Jingxiao Liu, Department of Civil & Environmental Engineering, Stanford

University, 473 Via Ortega Room 311, Stanford, CA 94305, USA.

Email: liujx@stanford.edu

http://crossmark.crossref.org/dialog/?doi=10.1177%2F14759217221081159&domain=pdf&date_stamp=2022-08-14


1942  Structural Health Monitoring 22(3)

cause interruptions to regular traffic for running tests and

maintaining instruments.4

To address the drawbacks of current BHM, drive-by

BHM approaches were proposed to use vibration data of a

vehicle passing over the bridge for diagnosing bridge

damage. Drive-by BHM is also referred to as the vehicle

scanning method5 or indirect structural health

monitoring.6–10 Vehicle vibrations contain information

about the vehicle-bridge interaction (VBI) and thus can

indirectly inform us of the dynamic characteristics of the

bridge for damage diagnosis.10,11 This is a scalable sensing

approach with low-cost and low-maintenance requirements

because each instrumented vehicle can efficiently monitor

multiple bridges. Also, there is no need for direct instal-

lations and on-site maintenance of sensors on every bridge.

Previous drive-by BHM focuses on estimating bridge

modal parameters (e.g., fundamental frequencies,11–13

mode shapes,14,15 and damping coefficients13,16) that can

be used for detecting and localizing bridge damage.

However, since the VBI system is a complex physical

system involving many types of noise and uncertainties

(e.g., environmental noise, vehicle operational uncer-

tainties, etc.), such modal analysis methods for drive-by

BHM are susceptible to them.10 This makes the modal

parameters’ estimation inaccurate and limits the ability of

drive-by BHM to diagnose bridge damage (e.g., localize

and quantify damage severity).

More recently, data-driven approaches use signal pro-

cessing and machine learning techniques to extract infor-

mative features from the vehicle acceleration

signals.6,7,10,13,17–23 The extracted features are more robust

to noise, enabling more sophisticated diagnoses such as

damage localization and quantification. However, such

data-driven approaches generally use supervised learning

models developed on available labeled data (i.e., a set of

bridges with known damage labels) that is expensive, if not

impossible, to obtain. This labeled data requirement is

further exacerbated by having multiple diagnostic tasks

(e.g., damage detection, localization, and quantification).

Furthermore, the standard supervised learning-based ap-

proaches learned using vehicle vibration data collected from

one bridge are inaccurate for monitoring other bridges

because data distributions of the vehicle passing over dif-

ferent bridges are shifted. Having to re-train for each new

bridge in multiple bridge monitoring is time-consuming and

costly. Therefore, for multiple bridge monitoring with

multiple diagnostic tasks, one needs to transfer or generalize

the multi-task damage diagnostic model learned from one

bridge to other bridges, in order to eliminate the need for

requiring training labeled data from every bridge in multiple

tasks.

To this end, we introduceHierMUD, a newHierarchical

Multi-task Unsupervised Domain adaptation framework

that transfers a model learned from one bridge data to

predict multiple diagnostic tasks (including damage de-

tection, localization, and quantification) in another bridge in

an unsupervised way. Specifically, HierMUD makes a

prediction for the target bridge, without any labels from the

target bridge in any of the tasks. We achieve this goal by

extracting features that are 1) informative to multiple tasks

(i.e., task-informative) and 2) invariant across the source

and target domains (i.e., domain-invariant).

Our framework is inspired by an unsupervised domain

adaptation (UDA) approach that has been developed in the

machine learning community to address the data distribu-

tion shift between two different domains, namely source and

target domains.24–29 In our work, we denote the bridge with

labeled data as “Source Domain,” and the new bridge of

interest without any labels as “Target Domain.” UDA fo-

cuses on the unsupervised learning tasks in the target do-

main, which transfers the model learned using source

domain data and labels (e.g., vehicle vibration data with the

corresponding bridge damage labels) to predict tasks in the

target domain without labels (e.g., vehicle vibration data

from other bridges without knowing damage labels). In

particular, domain adversarial learning algorithm extracts a

feature that simultaneously maximizes the damage diag-

nosis performance for the source domain based on source

domain labeled data while minimizing the performance of

classifying which domain the feature came from using both

source and target domain data.29–32 This algorithm can

better match complex data distributions between the source

and target domains by learning feature representations

through neural networks, when compared to other con-

ventional UDA approaches.

However, directly matching different domains’ data

distributions over each diagnostic task separately through

domain adversarial learning limits the overall performance

of drive-by BHM, which has multiple diagnostic tasks. This

is because these tasks are coupled/related with each other

and share damage-sensitive information. The prediction

performance of each task depends on that of other coupled

tasks.

Therefore, our algorithm integrates multi-task learning

(MTL) with domain-adversarial learning to fuse informa-

tion from different bridges and multiple diagnostic tasks for

effectively improving diagnostic accuracy and scalability of

drive-by BHM. MTL is helpful because it simultaneously

solves multiple learning tasks to improve the generalization

performance of all the tasks, when compared to training the

models for each task independently or sequentially (i.e.,

independent or sequential task learning).33–42

Yet, when integrating MTL and domain-adversarial

learning, two particular research challenges exist:

1) Distinct distribution shift: When we have multiple

damage diagnostic tasks, the distribution shift

problem becomes more challenging than having
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only one task because different tasks have distinct

shifted distributions between the source and target

domains. Therefore, it is important to develop ef-

ficient optimization strategies to find an optimal

trade-off for matching different domains’ distribu-

tions over multiple tasks.

2) Varying task difficulty: The learning difficulties of

different tasks vary with the complexity of mappings

from the vehicle vibration data distribution to the

damage label distributions. Some tasks (e.g., damage

quantification task) would have highly non-linear

mappings between data and label distributions and,

therefore, be more difficult to learn than other tasks

(i.e., hard-to-learn). Therefore, we need to distribute

learning resources (e.g., representation capacities)

according to the learning difficulty of tasks.

To address the distinct distribution shift challenge, we

introduce a new loss function that prioritizes domain ad-

aptations for tasks having more severe distribution shifts

between different domains through a soft-max objective

function. To formulate this new loss function, we first derive

a new generalization risk bound for multi-task UDA, by

optimizing which the new loss function is designed. Spe-

cifically, we minimize our loss function to jointly optimize

three components: 1) feature extractors, 2) task predictors,

and 3) domain classifiers. The parameters of task predictors

are optimized to predict task labels in the source domain

training set, which ensures that the extracted features are

task-informative. The parameters of feature extractors are

optimized with the domain classifiers in an adversarial way,

such that the best trained domain classifier cannot distin-

guish which domains the extracted features come from.

During the optimization, our new loss function adaptively

weighs more on minimizing the distribution divergence of

tasks having more shifted distributions between different

domains. In this way, the model is optimized to automat-

ically find a trade-off for matching different domains’

distributions over multiple tasks.

Further, to address the varying task difficulty challenge,

we develop hierarchical feature extractors to allocate more

learning resources to hard-to-learn tasks. We first split the

multiple tasks into easy-to-learn tasks (e.g., damage de-

tection and localization) and hard-to-learn tasks (e.g.,

damage quantification) based on their degrees of learning

difficulty. Specifically, we model the learning difficulty of

each task to be inversely proportional to performance in the

source domain (e.g., damage localization and quantification

accuracy in supervised learning settings). Then, the hier-

archical feature extractors learn two-level features: task-

shared and task-specific features. To achieve high prediction

accuracy for multiple tasks without creating a complex

model, we extract task-shared features from input data for

easy-to-learn tasks and then extract task-specific features

from the task-shared features for only the hard-to-learn

tasks. In this way, we allocate more learning resources

(learning deeper feature representations) to learn hard-to-

learn tasks, which improves the overall performance for all

the tasks.

We evaluate our framework on the drive-by BHM ap-

plication using lab-scale experiments with two structurally

different bridges and three vehicles of different weights. We

introduce damage by attaching a mass to the bridge as a

damage proxy. By modifying the location and size of the

attached mass, we can non-destructively assess the sensi-

tivity of a diagnostic algorithm to changes in the bridge.

This damage proxy has been used by researchers for val-

idating damage diagnostic algorithms prior to their use in

actual systems.
43–45 In the evaluation, we train our

framework using labeled data collected from a vehicle

passing over one bridge to diagnose damage in another

bridge with unlabeled vehicle vibration data. Our frame-

work outperforms five baselines without UDA, MTL, the

new loss function, or hierarchical structure.

In summary, this paper has three main contributions:

1) We introduce HierMUD, a new multi-task UDA

framework that transfers the model learned from one

bridge to achieve multiple damage diagnostic tasks

in another bridge without any labels from the target

bridge in any of the tasks. To the best of our

knowledge, this new framework is the first domain

adaptation framework for multi-task bridge moni-

toring. We have since released a PyTorch46 im-

plementation of HierMUD at https://github.com/

jingxiaoliu/HierMUD.

2) We derive a generalization risk bound that provides a

theoretical guarantee to achieve domain adaptation

on multiple learning tasks. This work bridges the

gaps between the theories and algorithms for multi-

task UDA. Based on this bound, we design a new

loss function to find a trade-off for matching dif-

ferent domains’ distributions over multiple tasks,

which addresses the distinct distribution shift

challenge.

3) We develop a hierarchical architecture for our multi-

task and domain-adversarial learning algorithm.

This hierarchical architecture ensures that the

framework accurately and efficiently transfers the

model for predicting multiple tasks in the target

domain, which addresses the varying task difficulty

challenge.

The remainder of this paper is divided into six sections.

In section 2, we study the MTL and data distribution shift

challenges in the drive-by BHM application. Section 3

derives the generalization risk bound for multi-task UDA.

Section 4 presents our HierMUD framework, which
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includes the description of our framework, loss function, and

algorithm design. Section 5 describes the evaluation of our

framework on the drive-by BHM application, following by

Section 6 that presents the evaluation results. Section 7 con-

cludes our work and provides discussions about future work.

Data distribution shift and multi-task

learning challenges for the drive-by bridge

health monitoring

In this section, we describe the physical insights that enable our

drive-by BHM and explain the associated challenges in

achieving this scalable BHM approach. We first characterize

the structural dynamics of the VBI system. Next, we study the

multi-task learning and data distribution shift challenges, re-

spectively, by proving the error propagation between multiple

damage diagnostic tasks and characterizing the shifting of the

joint distribution of vehicle vibration and damage labels.

Characterizing the structural dynamics of the

VBI system

To provide physical insights of drive-by BHM, we model

the VBI system, as shown in Figure 1, as a sprung mass

(representing the vehicle) traveling with a constant speed on

a simply supported beam (representing the bridge). We

assume the beam is of the Euler-Bernoulli type with a

constant cross section. We also assume that there is no

friction force between the ‘wheel’ and the beam. The

damage is simulated by attaching a mass (magnitude/se-

verity level: q) at location (l) on the beam. The added mass

changes the mass of the bridge and its dynamic charac-

teristics.47 Modifying the weight of the attached mass is a

non-destructive way of creating physical changes to the VBI

system to mimic structural damage.43–45

In our prior works,10,42 we have derived the theoretical

formulation of the VBI system in the frequency domain,

which is summarized in the following paragraphs.

The equations of motion for the vehicle and bridge in the

time domain are first derived as

mv€udyðtÞ þ kv
�

udyðtÞ � ydyðx ¼ vt,tÞ � ystðx ¼ vtÞ
�

þcv

h

_udyðtÞ � _ydyðx ¼ vt,tÞ � _ystðx ¼ vtÞ
i

¼ 0
(1)

ρA€ydyðx,tÞ þ q€ydyðl,tÞδðx� lÞ þ EIy0000dy ðx,tÞ

¼
�

�mvg þ kv
�

udyðtÞ � ydyðx ¼ vt,tÞ � ystðx ¼ vtÞ
�

þcv

h

_udyðtÞ � _ydyðx ¼ vt,tÞ � _ystðx ¼ vtÞ
io

δðx� vtÞ
(2)

wheremv, kv, cv, and u are themass, stiffness, damping coefficient,

and total displacement of the vehicle, respectively; ρ, A, E, I, and

yst are the density, sectional area, Young’s modulus, moment of

inertia, and the static displacement of the bridge, respectively; δ(x

� vt) is the Dirac delta function; and udy(t) and ydy(t) are the

dynamic displacements of vehicle and bridge, respectively.

Then the n-th mode frequency response of the vehicle’s

acceleration is

€U dy,nðωÞ ¼ €U dy,n

�

ω�2nπv

L

�

�
iπ4EI� i

�

ω�nπv

L

�2

L3

�

ρALþ2qsin2
�

nπl

L

��

2πmvL
3
�

ω�nπv

L

�2

sin
�nπ

2

�

× €Y dy,n

�

L

2
,ω�nπv

L

�

�
ffiffiffiffiffi

2π
p

g

�

Δ

�

ω�2nπv

L

�

� ΔðωÞ
�

(3)

where i is the imaginary number; Ydy,n (x, ω) is the n-th

mode frequency response function (FRF) of the bridge

element acceleration at the location x; andUdy,n(ω) and Δ(ω)

Figure 1. The vehicle-bridge interaction system with a surrogate damage simulated by attaching a mass having magnitude q at location l.
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are the n-th mode FRF of the vehicle acceleration and the

FRF of the Dirac delta function, respectively.

From Equation (3), we obtain the following important

physical understandings of the drive-by vehicle

vibration:

1) Non-linear property: Vehicle acceleration

ð €Udy,nðωÞÞ is a high-dimensional signal that has a

complex non-linear relationship with bridge prop-

erties (ρ, A, E, I) and damage parameters (q, l). Thus,

it is difficult to infer damage states for different

bridges by directly analyzing the raw vehicle signals.

It is important to model features that can represent

the non-linearity of the VBI system.

2) Coupled diagnostic tasks: Different damage loca-

tions (l) and severity levels (q) only vary the term

q sin2
�
nπl
L

�
. Let’s define the damage information as

d ¼ q sin2
�
nπl
L

�
, representing structural dynamic char-

acteristic changes due to damage. The damage lo-

calization and quantification tasks are coupled with

each other through the same damage information d,

and thus the estimation of them depends on each

other’s estimation.

We incorporate these physical insights of the VBI system

to develop our multi-task UDA framework. The non-linear

property instructs us to use non-linear models or extract

non-linear features from the vehicle vibrations for esti-

mating bridge damage. In this work, we use a neural

network-based model to non-linearly extract task-

informative features from vehicle vibration data.

Moreover, the coupled tasks property of the VBI system

informs us to use or extract the shared damage information

(e.g., task-shared features) instead of independently learn-

ing multiple diagnostic tasks. This is further discussed in the

following subsection.

Error propagation between multiple tasks for a

VBI system

The shared information among multiple tasks can be learned

simultaneously from multiple tasks or learned sequentially

from one task to the next. In this section, we illustrate that

simultaneous learning (i.e., MTL) is more accurate than

sequential learning through a theoretical study of the VBI

system. The study shows that the sequential learning

method results in a significant error propagation from the

previous task to the next.

For instance, if we localize and quantify the bridge

damage sequentially (localize the damage first and then

quantify the severity of the damage at the obtained damage

location), the estimation of damage severity q is

d=sin2
�
nπbl
L

�
, where bl is the estimated damage location.

Then, the propagation of error from the damage location

estimation to the severity estimation is

σq ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ
2
d

1

sin4
�
nπbl

�
L

�þ σ
2
l

4n2π2d2 cos2
�
nπbl

�
L

�

L2 sin6
�
nπbl

�
L

�

vuuuuut

(4)

where σq, σl, σd are errors of severity, location, and damage

information estimations, respectively. sin4ðnπbl=LÞ and

sin6ðnπbl=LÞ in the denominators are smaller than 1, which

makes the estimation error of q very large as their values

decrease. Especially, when the damage is close to the bridge

supports (i.e., jbl � L=2j→ L=2), it leads to sinðnπbl=LÞ→ 0

and σq → ∞. Thus, damage location estimation error

propagates, which results in a very inaccurate estimation of

damage severity level.

To this end, we solve multiple tasks simultaneously,

which can improve the overall accuracy by minimizing

error propagation and learning the shared information

(e.g., task-shared feature representations) from the cou-

pled tasks.

Besides simultaneously learning multiple tasks, a scal-

able drive-by BHM approach needs to work for multiple

domains (i.e., bridges). The following subsection discusses

the data distribution shift challenge for drive-by monitoring

of multiple bridges.

Data distribution shift for VBI systems

The joint distributions of vehicle vibrations and damage

labels are shifted as the vehicle passes by different bridges.

If we consider the process of the VBI system as a stochastic

process, according to Equation (3), the joint distributions of

the vehicle accelerations ð €U dy,nðωÞÞ and damage labels (q or

l) changes non-linearly with bridge properties (e.g., ρ, A, E,

I). An example of the shifting of these joint data distribu-

tions for different bridges is visualized in a low-dimensional

space in Figure 2. It shows a two-dimensional t-Distributed

Stochastic Neighbor Embedding (tSNE)48 visualization of

vehicle vibration data distributions for Bridges#1 and #2.

Each vibration signal is collected from a vehicle passing

over an 8-feet bridge model with a damage at the location (l)

of 2 feet, 4 feet, or 6 feet. The data for the two structurally

different bridges (Bridge#1 and #2) are represented by filled

and unfilled markers, respectively. More details of this

experiment and dataset are in Evaluation Section. We can

observe from Figure 2 that directly applying the model

learned from one bridge’s dataset (e.g., Bridge#1) to
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localize damage on the other bridge (e.g., Bridge#2) results

in a low prediction accuracy because of the joint distribution

shift.

To address the distribution shift challenge and achieve a

scalable drive-by BHM that is invariant across multiple

bridges (i.e., it can predict damage without requiring

training data from every bridge), we introduce a new multi-

task UDA approach. In the next section, we first investigate

the multi-task UDA problem theoretically through deriving

a generalization risk bound.

A generalization risk bound for multi-task

unsupervised domain adaptation

In this section, we derive the upper bound of the general-

ization risk for multi-task UDA problems to investigate the

theoretical guarantee of its performance on target domain

unseen data. The generalization risk (or error) of a model is

the difference between the empirical loss on the training set

and the expected loss on a test set, as defined in statistical

learning theory.49 In other words, it represents the ability of

the trained model to generalize from the training dataset to a

new unseen dataset. In our problem, the generalization risk

is defined to represent how accurately a classifier trained

using source domain labeled data and target domain un-

labeled data predicts class labels in the target domain.

Therefore, deriving the upper bound of the generalization

risk provides insights on how to develop learning algo-

rithms to efficiently optimize it.

We first derive a generalization risk bound for UDA and

then integrate it with the risk bound for MTL. Next, we

characterize the newly derived generalization risk bound to

provide insights to our multi-task UDA problem.

A generalization risk bound for unsupervised

domain adaptation

We first derive a new generalization risk bound for UDA by

representing the original data distribution in an intermediate

feature space, which has been ignored by the existing risk

bounds for UDA.31,32,50 Having a feature space enables the

modeling of task-shared feature representation when we

have multiple tasks. This results in a tighter generalization

risk bound for multi-task UDA than independently esti-

mating each task’s generalization risk bound.51 Yet, this

feature space requires us to estimate the discrepancy be-

tween the marginal feature distributions of the source and

target domains for obtaining the generalization risk bound,

which is introduced in this section.

We consider a classification task that labels input X as

belonging to different classes Y. We also consider mappings

X →
w

Z→
h

Y ,

where X, Z, and Y are random variables of input, feature

representation, and class label, which are taken from the

input, feature, and output space X ,Z, and Y, respectively.

The function w :X→Z is a k-dimension feature trans-

formation, and the function h :Z→Y is a hypothesis on

the feature space (i.e., a labeling function). Then, we have

a predictor h◦w, that is, (h◦w) (x) = h (w(x)), for every

x2X .

Figure 2. The 2D tSNE visualization of vibration data distributions of a vehicle passing over different bridges. The two coordinates are
the first and the second low-dimensional embeddings of the vehicle accelerations calculated by tSNE. Different colors represent

different damage locations on the bridge. Filled markers indicate bridge#1 data, and unfilled markers indicate bridge#2 data. This figure

shows that directly utilizing the model trained on one bridge’s (e.g., Bridge#1) dataset to predict damage locations of another bridge (e.g.,
Bridge#2) can result in very low accuracy due to data distribution shift.
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Further, we define a domain as a distribution on the input

spaceX and the output spaceY. UDA problems involve two

domains, a source domain DS and a target domain DT . We

denote DX
S , D

X
T , D

Y
S , and DY

T as the marginal data (X) and

label (Y) distributions in the source ðDSÞ and target ðDT Þ
domains, respectively. Note that we also have feature

representation distributions, DZ
S and DZ

T , in the source and

target domains. Mathematically, an unsupervised domain

adaptation algorithm has independent and identically dis-

tributed (i.i.d.) labeled source samples <XS ,YS > drawn

from DS and i.i.d. unlabeled target samples XT drawn from

DX
T , as shown below

<XS ,YS > ¼ fxi,yig
nS
i¼1 ∼DS;

XT ¼ fxig
nT
i¼1 ∼DX

T

where nS and nT are the number of samples in the source and

target domains, respectively. The goal of UDA is to learn h

and w with a low target domain risk under distribution DT ,

which is defined as: ϵT ðh+w,fT Þ ¼ Prx∼DX
T
ðh+wðxÞ ≠ fT ðxÞÞ,

where fT is the ground truth labeling function and

y ¼ fT ðxÞ for ðx,yÞ∼DT.

Since we do not have labeled data in the target do-

main, we cannot directly compute the target domain risk.

Therefore, the upper bound of the target domain risk is

estimated by the source domain risk and the discrepancy

between the marginal data distributions of the source

and target domains, DX
S and DX

T . The discrepancy be-

tween DX
S and DX

T is quantified through the HΔH-di-

vergence52 that measures distribution divergence with

finite samples of unlabeled data from DX
S and DX

T . It is

defined as

dHΔH

�
DX

S ,D
X
T

�
¼ 2 suph,h02H

����Prx∼DX
S

h
hðxÞ ≠ h0ðxÞ

i

�Prx∼DX
T

h
hðxÞ ≠ h0ðxÞ

i���,
(5)

where H is a hypothesis space, and HΔH is the symmetric

difference hypothesis; h0 and h are two samples of hy-

potheses randomly drawn from the hypothesis set H.

Then, we can derive the generalization bound for UDA

in Theorem 1.

Theorem 1. LetW be a hypothesis space onX with Vapnik-

Chervonenkis dimension (VC dimension) dW and H be a

hypothesis space on Z with VC dimension dH, where VC

dimension is a measure of the complexity of a set of

functions that a classification algorithm can learn.53 If XS

and XTare samples of size N from DX
S andDX

T , respectively,

and ZS and ZT follow distributionsDZ
S andD

Z
T , respectively,

then for any δ 2 (0, 1) with probability at least 1 � δ, for

every h2H and w2W

ϵTðh+w; fT Þ ≤ ϵSðh+w; fSÞ þ 2ϵSðh+w
∗, fSÞ

þ
1

2
dHΔHðZT ,ZSÞ

þO

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dH logð2NÞ þ logð2=δÞ

N

r !

þ
1

2
sup
bh2H

�
dbh,WΔW

ðXS ,XT Þ

�

þO

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dW logð2NÞ þ logð2=δÞ

N

r !

þϵT ðh
∗

+w∗; fTÞ þ ϵSðh
∗

+w∗; fSÞ,

(6)

where

w∗, h∗ ¼ argmin
w∗2W,h∗2H

ϵSðh+w; fSÞ þ ϵTðh+w; fT Þ,

dh,WΔW

�
DX

S ,D
X
T

�

¼ 2 sup
w,w02W

����Prx∼DX
T

�
h+wðxÞ ≠ h+w0ðxÞ

�

�Prx∼DX
S

�
h+wðxÞ ≠ h+w0ðxÞ

����

≤dh,WΔWðXS ,XTÞ

þO

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dW logð2NÞ þ logð2=δÞ

N

r !

:

(7)

Proof. See Appendix A.

We prove in Theorem 1 that the upper bound of the target

domain risk consists of five components:

1) The source domain risk

ϵSðh+w; fSÞ þ 2ϵSðh+w
∗; fSÞ,

which quantifies the error for estimating class labels

in the source domain.

2) The minimal risk

ϵT ðh
∗

+w∗; fT Þ þ ϵSðh
∗

+w∗; fSÞ,

which quantifies the error for estimating class labels

using the ideal joint hypothesis over the source and

target domains. It is the smallest error we can achieve

using the best predictor in the hypothesis set.
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3) The empirical symmetric divergence between mar-

ginal feature distributions

1

2
dHΔHðZT ,ZSÞ,

which quantifies the distribution difference between the

source and target domainmarginal feature distributions.

4) The supremum of empirical symmetric divergence

set between marginal data distributions

1

2
sup
bh2H

�
dbh,WΔW

ðXS ,XTÞ
�
,

which quantifies the distribution difference between the

source and target domain marginal data distributions.

5) The Big-O terms that measure the complexity of the

estimation of divergence.

Next, in the following subsection, we derive a gener-

alization risk bound for multi-task UDA problems by

considering the feature space Z being the task-shared

feature space for multiple tasks.

Integrating multi-task learning bound with the

unsupervised domain adaptation bound

We first consider multiple classification tasks that label

input Xm as belonging to different classes Ym, for m = 1, 2,

…, M, where M is the total number of tasks. The mappings

for this multi-task learning problem becomes

Xm →
w

Zm →
hm

Ym, form ¼ 1,2,…,M ,

where Xm, Zm, and Ym are the m-th task’s random variables of

input, feature representation, and class label, respectively,

which are taken from the input, feature, and output spaceX ,Z,

and Y, respectively. The function w is a task-shared k-

dimensional feature transformation, and the function hm is a

task-specific hypothesis for the m-th task on the feature space.

For each task, we have a predictor hm◦w. We define the task-

averaged true risk under the joint distribution ∏M
m¼1Dm as

εavgðw,h1,/,hM ; f1,…,fM Þ

¼ 1

M

XM

m¼1

Prx∼DX
m
ðhm+wðxÞ ≠ fmðxÞÞ,

(8)

where fm is the ground truth labeling function for the m-th

task and y = fm(x) for ðx,yÞ∼Dm. We also define the task-

averaged empirical risk as

ϵavg

�
bw,bh1,/,bhM ; Y

�

¼ 1

NM

XM

m¼1

XN

i¼1

I

�
bhm

�
bwðxm,iÞ

�
≠ ym,i

�
,

(9)

whereN is the total number of samples in each task, which is

assumed to be the same for each task, and Ið�Þ is the in-

dicator function. We define that ðX ,Y Þ ¼ ðX1,…,

XM ,Y1,…,YM Þ are i.i.d. samples drawn from the joint dis-

tribution ∏M
m¼1Dm. For the m-th task

ðXm,YmÞ ¼
�
xm,i,ym,i

�N

i¼1
∼Dm:

Further, we consider a multi-task UDA problem, which has

labeled samples ðX S ,Y SÞ ¼ ðXS,1,…,XS,M ,YS,1,…,YS,M Þ
drawn from a joint source domain ∏M

m¼1DS,m and unla-

beled samples X T ¼ ðXT ,1,…,XT ,M Þ drawn from a joint

target domain ∏M
m¼1DX

T ,m. The goal of multi-tasks UDA

is to learn h1, …, hM and w with a low target domain

task-averaged risk under the joint distribution

∏M
m¼1DX

T ,m, which is defined as: ϵavg,T (w, h1,…, hM; fT,1,

…, fT,M).

Our generalization risk bound for multi-task UDA is

built on our Theorem 1 by combining it with the risk

bound for multi-task learning. The multi-task learning

risk bound was introduced in the work of Maurer et al.,51

which showed that the upper bound of the task-averaged

risk consists of the task-averaged empirical risk, the

complexity measure relevant to the estimation of the

representation, and the complexity measure of esti-

mating task-specific predictors. Specifically, with

probability at least 1 � δ, where δ 2 (0, 1), in the draw of

ðX ,Y Þ ¼ ðX1,…,XM ,Y1,…,YM Þ∼∏M
m¼1Dm, it holds for

every w2W and every h1,…,hM 2H that

ϵavgðw,h1,/,hM ; f1,…,fM Þ ≤ ϵavg
�
bw,bh1,…,bhM ; Y

�

þc1

LbG
�
W

�
X

��

NM
þ c2

Qsupw2Wkw
�
X
�
k

N
ffiffiffiffiffi
M

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 logð2=δÞ

2NM

r
,

(10)

where L is the Lipschitz constant for h2H; c1 and c2
are universal constants; bGðWðX ÞÞ is the Gaussian aver-

age that measures the empirical complexity relevant

to the estimation of the feature representation; and

Q ¼ supz ≠ z02Z
1

kz�z0kEsuph2H
PN

i¼1γiðhðziÞ � hðz0iÞÞ, γi’s are

independent standard Gaussian random variables.
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Now, by integrating the multi-task learning risk bound in

Equation (10) with the unsupervised domain adaptation risk

bound in Theorem 1, we obtain the following theorem:

Theorem 2. Let DS,1,/DS,M and DX
T ,1,/DX

T ,M be proba-

bility measure on ðX ,YÞ. LetW be a hypothesis space onX
with VC dimension dW and H be a hypothesis space on Z
with VC dimension dH. Let δ 2 (0, 1). With probability at

least 1 � δ in the draw of ðX S ,Y SÞ∼∏M
m¼1DS,m,

X T ∼∏M
m¼1DX

T ,m (i.e., ðXS,m,YS,mÞ∼DS,m and XT ,m ∼DX
T ,m

for m = 1, …, M), and ZS , ZT that follow distributions

∏M
m¼1DZ

S,m and ∏M
m¼1DZ

T ,m, it holds for every w2W and

every h1,…,hM 2H that

ϵavg,T

�
w,h1,…,hM ; fT ,1,…,fT ,M

�
≤ ϵavg,S

�
bw,bh1,…,bhM ; Y S

�

þc1

LbG
�
W

�
X S

��

NM
þ c2

Qsupw2Wkw
�
X S

�
k

N
ffiffiffiffiffi
M

p

þ2ϵavg,S
�
w∗,bh1,…,bhM ; Y S

�
þ
2
ffiffiffiffiffi
2π

p bG
�
H
�
ZS

��

NM

þ1

2
dHΔH

�
ZS ,ZT

�
þO

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dH logð2NÞ þ logð2=δÞ

N

r !

þ sup
ĥ1/ĥM2H

�
1

2
dĥ1,…,ĥM ,WΔW

�
X S ,X T

�
�

þO
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dW logð2NÞ þ logð2=δÞ
N

r !

þϵavg,S

�
w∗,h∗

1,…,h∗M ; Y S

�

þϵavg,T

�
w∗,h∗1,…,h∗M ; fT ,1,…,fT ,M

�
,

(11)

where

w∗,h∗1,/,h∗M

¼ argmin
w∗2W,h∗

1
,…,h∗

M
2H

�
ϵavg,S

�
w,h1,…,hM ; Y S

�

þϵavg,T

�
w,h1,…,hM ; fT ,1,…,fT ,M

��
:

(12)

We show in Theorem 2 that the upper bound of task-

averaged target domain risk contains seven components:

1) The source domain empirical risks

ϵavg,S

�
bw,bh1,…,bhM ; Y S

�

þ2ϵavg,S

�
w∗,bh1,…,bhM ; Y S

�
,

(13)

2) the task-averaged minimal risks

ϵavg,S

�
w∗,h∗1,…,h∗M ;Y S

�

þϵavg,T

�
w∗,h∗1,…,h∗M ; fT ,1,…,fT ,M

�
,

(14)

3) the complexity measure relevant to the estimation of

the representation

c1

LbG
�
W
�
X S

��

NM
,

4) the complexity measure of estimating task-specific

predictors

c2

Qsupw2Wkw

�
X S

�
k

N
ffiffiffiffiffi
M

p þ
2
ffiffiffiffiffi
2π

p bG
�
H
�
ZS

��

NM
,

5) the empirical symmetric divergence between mar-

ginal feature distributions

1

2
dHΔH

�
ZS ,ZT

�
,

6) the supremum of empirical symmetric divergence

set (for multiple tasks) between marginal data

distributions

sup
ĥ1/ĥM2H

�
1

2
dĥ1 ,…,ĥM ,WΔW

�
X S ,X T

��
,

7) the Big-O complexity measures of the estimation of

divergence.

Once we determine the hypothesis sets H and W, the

task-averaged minimal risk and complexity terms are

fixed.50 Therefore, we can minimize the target domain risk

bound (Equation 11) by minimizing the sum of the source

domain empirical risks, the empirical divergence between

marginal data distributions, and the empirical divergence

between marginal feature distributions
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minimize

�
ϵavg,S

�
bw,bh1,…,bhM ; Y S

�

þ2ϵavg,S

�
w∗,bh1,…,bhM ; Y S

�

þ
1

2
dHΔH

�
ZS ,ZT

�

þ sup
bh1/bhM2H

�
1

2
dbh1 ,…,bhM ,WΔW

�
X S ,X T

��1
A

(15)

To efficiently solve Equation (15) that minimizes the

generalization risk bound for multi-task UDA, we interpret

and characterize the bound in the following subsection.

Characterizing the derived risk bound

We can learn two main insights of the new generalization

risk bound for multi-task UDA from Equation (15):

1) Feature divergence minimization: Some UDA

methods30, 32 minimize the empirical symmetric diver-

gences between marginal feature distributions (i.e.,
1
2
dHΔHðZS ,ZT Þ) to make the task-specific classifiers (i.e.,
h1, …, hM) invariant across domains. However, these

methods are not scalable as the number of tasks grows

because they require every task-specific classifier to be

domain-invariant. Therefore, our multi-task UDA ap-

proach avoids directlyminimizing the feature divergence,

which requires adapting classifiers of each task separately.

2) Data divergence minimization: Some UDA

methods31, 54 minimize the empirical symmetric di-

vergence between marginal data distributions (i.e.,

supbh1/bhM2HM

�
1
2
dbh1,…,bhM ,WΔW

ðX S ,X T Þ
�
) to extract

domain-invariant features. Such methods would be

successful and scalable if the feature distributions DZ
S

and DZ
T are matched because in this case the empirical

symmetric divergence between marginal feature distri-

butions (i.e., 1
2
dHΔHðZS ,ZT Þ) would be also very small

or even be zero. However, directly minimizing this

supremum divergence is difficult and data inefficient

under the MTL setting because different tasks have

distinct distribution shifts between the source and target

domains. Therefore, we introduce a new efficient op-

timization strategy to find an optimal trade-off for

minimizing the data divergence over multiple tasks.

In summary, to develop an algorithm that is scalable to the

number of tasks, we need tominimize the empirical divergence

between marginal data distributions to learn a feature mapping

that matches feature distributions between different domains.

Therefore, we can rewrite Equation (15) as

minimize

�
ϵavg,S

�
bw,bh1,…,bhM ; Y S

�

þ2ϵavg,S

�
w∗,bh1,…,bhM ; Y S

�

þ sup
bh1/bhM2H

�
1

2
dbh1,…,bhM ,WΔW

�
X S ,X T

��1
A

(16)

For a classification problem, minimizing the first two terms

in Equation (16) can be achieved by minimizing the cross-

entropy loss between predicted labels and ground truth

labels in source domain: bϵavg,S ¼

�
1

M

XM

m¼1

E
ðx,yÞe ðXS,m ,YS,mÞ

XCm

c¼1

Iðy ¼ cÞlogbhm
�
bwðxÞ

�
,

where Cm is the number of classes for the m-th tasks.

Further, if we consider bh1,…,bhM are hypotheses inde-

pendently drawn from the hypothesis classH, we can write

the last term in Equation (16) as

max
m2½M �

sup
bhm2H

�
1

2
dbhm ,WΔW

ðXS,m,XT ,mÞ

�
, (17)

without loss of generality. This means that we can minimize the

maximum divergence between marginal feature distributions

over all the tasks to achieve the minimization of the divergence

term in Equation (16). An approximation of the empirical

symmetric divergence between distributions is computed by

learning a domain discriminator (hm◦w) that distinguishes

samples from different domains31

dhm ,WΔWðXS,m,XT ,mÞ

¼ 2

0
B@1� min

w2WΔW

0
B@

1

N

X

xe XS,m

IðhmðwðxÞ ¼ 1Þ

þ
1

N

X

xe XT ,m

IðhmðwðxÞ ¼ 0Þ

1
CA

1
CA:

(18)

To this end, there are three ways to minimize Equation (16):

1) Hard-max objective: directly minimizing the maxi-

mum divergence over all M tasks

minimize

�
bϵavg,S

þmax
m2½M �

sup
bhm2H

�
1

2
dbhm ,WΔW

ðXS,m,XT ,mÞ

�1
A;

(19)
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2) Average objective: minimizing the average

divergence:

minimize

�
bϵavg,S

þ
1

2M

XM

m¼1

sup
bhm2H

�
dbhm ,WΔW

ðXS,m,XT ,mÞ

�1

A;

(20)

3) Soft-max objective: minimizing a soft maximum,

that is, a LogSumExp,55 of Equation (18)

minimize

 
bϵavg,S þ

1

2
log
XM

m¼1

exp

:

0

@ sup
ĥm2H

�
dĥm ,WΔWðXS,m,XT ,mÞ

�1

A

1

A
:

(21)

The hard-max objective is data inefficient because the gradient

of the max function is only non-zero for hm with the maximum

divergence, and the algorithm only updates its parameters based

on the gradient from one of theM tasks. The average objective

updates algorithm parameters based on the average gradient

from allM tasks. However, this objective considers each task as

equally contributing to updating the algorithm parameters,

which may not allocate enough computational and learning

resources to optimize taskswith larger divergence. The soft-max

objective combines the gradients from all the tasks and adap-

tively assigns the loss of task that have a larger divergencewith a

heavier weight.50 In this way, the model automatically applies

larger gradient magnitudes to tasks having more shifted dis-

tributions between different domains. As a result, we propose to

use the soft-max objective (Equation 21) to optimize the multi-

task UDA problem.

HierMUD: A hierarchical multi-task

unsupervised domain adaptation

framework

We now proceed to introduce our HierMUD framework that

transfers the model learned from a source domain to predict

multiple tasks on a target domain without any labels from

the target domain in any of the tasks. In our drive-by BHM

application, the two domains are vibration data and damage

information collected from a vehicle passing over two

structurally different bridges, and the multiple learning tasks

are damage diagnostic tasks, such as damage detection,

localization, and quantification. The overview flowchart of

our framework is shown in Figure 3. The framework

contains three modules: 1) a data pre-processing module, 2)

a multi-task UDAmodule, and 3) a target domain prediction

module. In the following subsections, we present each

module in detail.

Data pre-processing module

The data pre-processing module contains two steps: data

augmentation and initial processing. In the first step, to

avoid overfitting and data biases while providing sufficient

information of each class, we expand the size of the dataset

and introduce data variability by conducting data aug-

mentation, which improves the robustness of the learned

multi-task UDA model. Some widely utilized data aug-

mentation procedures include adding white noise, randomly

cropping matrix size, or randomly erasing samples from the

original data for each batch of training data.56 The proce-

dure is selected based on the prediction performance on the

validation set (e.g., for our drive-by BHM application, we

add white noise to augment the vibration data).

In the second step, we create the input to our multi-task

UDA module, including the source domain data with the

corresponding labels and the target domain data. Feature

transforms are applied to the raw input data to provide

information in other feature space. For example, a Fast

Fourier Transform can be used to convert the signal from its

original domain (time or space) to the frequency domain.

Short-Time Fourier Transform (STFT) or wavelet transform

can be used to convert the time or space domain signal to the

time–frequency domain. Specifically, in our drive-by BHM

application, we conduct data augmentation by adding white

noise to vehicle vibration signals. Then, we compute the

STFT of each vertical acceleration record of the vehicle

traveling over the bridge to preserve the time–frequency

domain information.

Multi-task unsupervised domain adaptation

module

In this module, we introduce our hierarchical multi-task

and domain adversarial learning algorithm (as shown in

Figure 4) that exploits the derived generalization risk bound

for multi-task UDA based on the theoretical study in the

previous section. This algorithm integrates domain adver-

sarial learning and hierarchical multi-task learning to

achieve an optimal trade-off between domain-invariance

and task-informativeness.

Our algorithm consists of three components: hierarchical

feature extractors (orange blocks), task predictors (blue

blocks), and domain classifiers (red blocks). Domain ad-

versarial learning utilizes the domain classifier to minimize

the domain discrepancy through an adversarial objective

(e.g., Equation 18) for training against the feature extractors,

which encourages the extracted feature to be domain-in-

variant.24 The architectures of each component are pre-

sented in the following paragraphs.
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Architecture of hierarchical feature extractors, task predictors,

and domain classifiers. Hierarchical feature extractors. The

hierarchical feature extractors extract domain-invariant and

task-informative features. To ensure domain-invariance, the

parameters of the extractors are optimized with domain

classifiers in an adversarial way to extract features that

cannot be differentiated by the domain classifiers (i.e.,

domain-invariant) while the domain classifiers are

optimized to best distinguish which domain the extracted

features come from.

To ensure task-informativeness, we implement hierar-

chical feature extractors that learn task-shared and task-

specific feature representations for tasks with different

learning difficulties. Inspired by human learning57,58 and

the work of Guo et al.,59we separate the total ofM tasks into

M1 easy-to-learn and M2 hard-to-learn tasks based on the

Figure 3. The flowchart for our HierMUD framework. The input to the framework is source domain data with the corresponding labels

and the unlabeled target domain data, and the framework outputs the predicted target domain labels. Black dash lines indicate source
domain data stream, solid red lines indicate target domain data stream, and the blue dash line indicates that we copy the multi-task

predictors pre-trained using source domain data to predict target domain tasks.

Figure 4. The architecture of our hierarchical multi-task and domain-adversarial learning algorithm. The red and black arrows between
blocks represent source and target domain data stream, respectively. Orange blocks are feature extractors, blue blocks are task

predictors, and red blocks are domain classifiers.
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task difficulty, which is inversely proportional to the

learning performance (e.g., prediction accuracy) in the

source domain. In particular, we train, respectively, M

classifiers with the same model complexity using source

domain data of the M tasks, and obtain testing accuracy

values, {p1, p2, …, pM}, for the M tasks. A threshold pt is

determined based on our domain knowledge and empirical

observations of the problem. We then consider tasks with

pm ≥ pt as easy-to-learn tasks, and tasks with pm ≤ pt as hard-

to-learn tasks. The choice of pt is application different and

relies on domain knowledge. A smaller pt would categorize

more tasks as hard-to-learn ones and distribute more

learning resources to these tasks, increasing the model

complexity, and vice versa. For example, in our drive-by

BHM application, the value of pt is 0.9, damage detection

and localization are considered as easy-to-learn tasks, and

damage quantification is considered as a hard-to-learn task.

Furthermore, we implement two types of feature ex-

tractors: one task-shared feature extractor and M2 task-

specific feature extractors. We denote W0 (�) as the task-

shared feature extractor with parameters θW0
, and Wm (�) as

the task-specific feature extractor for the m-th hard-to-learn

task with parameters θWm
, where m 2 {1, 2, …, M2}. The

source and target domain data after being processed in the

data pre-processing module, ðX S ,X T Þ, are input to the task-
shared feature extractor to extract task-shared features, ZS

and ZT , for the source and target domain, respectively. For

each hard-to-learn task, task-specific features, Zh
S,m and Zh

T ,m,

are extracted from the task-shared features using the cor-

responding task-specific feature extractor.

The task-shared feature extractor is implemented as a

deep convolutional neural network (CNN) that combines

convolutional layers and pooling layers to extract feature

representations. We utilize CNN to extract features because

it has an excellent performance in understanding spatial

hierarchies and structures of features in various resolu-

tions.55 Further, task-specific feature extractors are im-

plemented as deep fully connected neural networks,

consisting of multiple fully connected layers that map task-

shared features to task-specific features.

Task predictors. Task predictors are trained to ensure that

the extracted features from the hierarchical feature extractors

are task-informative. They are implemented as deep fully

connected neural networks that map features to task labels.

There are M task predictors for all the M learning tasks. We

denote Fm (�) as the task predictor for the m-th task with

parameters θFm
, wherem2 {1, 2,…,M}. In the training phase,

the input to the task predictor of each easy-to-learn task is the

task-shared feature in the source domain. The input to the task

predictor of each hard-to-learn task is the corresponding task-

specific feature in the source domain. Each predictor outputs

the predicted source domain labels, bY S,m, in each task.

Domain classifiers. Domain classifiers are trained to

distinguish which domain the extracted features are

from. We also have two types of domain classifiers: one

task-shared domain classifier and M2 task-specific domain

classifiers. We denote D0 (�) as the task-shared domain

classifier with parameters θD0
, andDm (�) as the task-specific

domain classifier for the m-th hard-to-learn task with pa-

rameters θDm
, where m 2 {1, 2, …, M2}. The task-shared

domain classifier takes the task-shared features in all M

tasks from the source domain or the target domain as input

and predicts if the feature sample comes from the source

domain or not (i.e., a binary classification). Each task-

specific domain classifier takes the task-specific features

for each task from the source domain or the target domain as

input and also classifies the feature sample into two classes

(as the source or the target domain).

We implement the domain adversarial learning by back-

propagation, inspired by Ganin et al.,31 using the gradient re-

versal layer (GRL). We use GRL because it can be easily in-

corporated into any existing neural network architecture that can

handle high-dimensional signals and multiple learning tasks. In

particular, each domain classifier is connected to the corre-

sponding feature extractor via aGRL thatmultiplies the gradient

by a negative constant during back-propagation updating. With

GRL, feature extractors and domain classifiers are trained in an

adversarial way, such that the extracted features are as indis-

tinguishable as possible for evenwell-trained domain classifiers.

Domain classifiers are implemented as deep fully -connected

neural networks that map feature to domain labels. One should

note that the architecture of domain classifiers is simpler than

that of task predictors to avoid overusing learning resources to

train domain classifiers over task predictors, which could reduce

task-informativeness of the extracted features.31

Loss function for hierarchical multi-task and domain-adversarial

learning algorithm. In this subsection, we present the loss

function for our hierarchical multi-task and domain-adversarial

learning algorithm, which minimizes the objective function in

Equation (21).

After considering the hierarchical structure, we can rewrite

the objective function of the optimization in Equation (21) as

min
θW0

,θW1
/,θWM2

,

θF1
,…,θFM ,

"
XM1

m¼1

λmLe,mðθW0
,θFmÞ

þ
1

M2

XM2

m¼1

λmþM1
Lh,m

�
θW0

,θWm
,θFmþM1

�

þλD0
log

XM

m¼1

exp

�
�min

θD0

LD0 ,mðθW0
,θD0

Þ

�

� min
θD1

,…,θDM

XM2

m¼1

λDm
LDm

ðθW0
,θWm

,θDm
Þ

#

,

(22)
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where Le,mðθW0
,θFm

Þ ¼ �Eðx,yÞ∼ ðXS,m,YS,mÞ

PCm

c¼1Iðy ¼ cÞ
logFmðW0ðxÞÞ is the cross-entropy loss for them-th easy-to-
learn task; Cm is the number of classes for the m-th task;

Lh,m ðθW0
,θWm

,θFmþM1
Þ ¼ �Eðx,yÞ∼ ðXS,m,YS,mÞ½

PCmþM1

c¼1 Iðy ¼ cÞ
logFmþM1

ðWmðW0ðxÞÞÞ� is the cross-entropy loss for

the m-th hard-to-learn tasks; LD0,mðθW0
,θD0

Þ ¼
�Ex ∼ XS,m

½logD0ðW0ðxÞÞ� � Ex∼XT ,m
½logð1� D0ðW0ðxÞÞÞ�Þ

is the task-shared domain classifier loss for the m-th tasks

(m 2 1, 2, …, M); LDm
ðθW0

,θWm
,θDm

Þ¼ �Ex∼XS,m

½logDmðWmðW0ðxÞÞÞ��Ex∼XT ,m
½logð1�DmðWmðW0

ðxÞÞÞÞ� is the task-specific domain classifier loss; λ1, …,

λM are hyper-parameters to represent the trade-off be-

tween easy-to-learn tasks and hard-to-learn tasks

weights; and λD0
,λD1

,…,λDM2
are hyper-parameters to

represent the trade-off between domain-invariance and

task-informativeness of features.

The minimax optimization problem in Equation (22) is

solved by finding the saddle point

bθW0
,bθW1

,…,bθWM2
,bθF1,…,bθFM

,bθD0
,bθD1

,…,bθDM
,

such that

�
bθW0

,bθW1
,…,bθWM2

,bθF1
,…,bθFM

�

¼ argmin
θW0

,θW1
/,θWM2

,

θF1 ,…,θFM

"
1

M1

XM1

m¼1

λmLe,mðθW0
,θFmÞ

þλh
1

M2

XM2

m¼1

λmþM1
Lh,m

�
θW0

,θWm
,θFmþM1

�

þλD0
log
XM

m¼1

exp

�
�min

θD0

LD0 ,mðθW0
,θD0

Þ

�

� min
θD1 ,…,θDM

XM2

m¼1

λDm
LDm

ðθW0
,θWm

,θDm
Þ

#

,

(23)

bθD0
¼ argmax

θD0

λD0
log
XM

m¼1

expð�LD0 ,mðθW0
,θD0

ÞÞ, (24)

bθDm
¼ argmin

θDm

λDm
LDm

�
bθW0

,bθWm
,θDm

�
, (25)

A saddle point defined by Equations (23)–(25) can

be found as a stationary point of the following

gradient updates: for updating hierarchical feature

extractors,

θW0
←θW0

� μ

 
1

M1

XM1

m¼1

λm
∂Le,m

∂θW0

þ
1

M2

XM2

m¼1

λmþM1

∂Lh,m

∂θW0

�λD0

XM

m¼1

wm

∂LD0 ,m

∂θW0

�
XM2

m¼1

λDm

∂LDm

∂θW0

!

,

(26)

θWm
←θWm

� μ

�
λmþM1

M2

∂Lh,m

∂θWm

� λDm

∂LDm

∂θWm

�
, (27)

for updating the m-th easy-to-learn task predictor, where m

2 {1, …, M1}

θFm←θFm � μ
λm

M1

∂Le,m

∂θFm
, (28)

for updating the m-th hard-to-learn task predictor, where m

2 {1, …, M2}

θFmþM1
←θFmþM1

� μ
λmþM1

M2

∂Le,m

∂θFmþM1

, (29)

for updating domain classifiers

θD0
←θD0

� μλD0

XM

m¼1

wm

∂LD0 ,m

∂θD0

, (30)

θDm
←θDm

� μλDm

∂LDm

∂θDm

, (31)

where μ is the learning rate;

wm ¼

exp

�
�min

θD0

LD0 ,mðθW0
,θD0

Þ

�

PM

m¼1exp

�
�min

θD0

LD0 ,mðθW0
,θD0

Þ

�

is the adaptive weight for the m-th task. Task with larger

distribution divergence has larger weight. The updates of

Equation (28)–(31) are similar to those of deep neural

network models using stochastic gradient descent (SGD).

For Equation (26) and (27), the difference between the

updates of them and SGD updates is that the gradients from

the domain classifiers are subtracted. This subtracted gra-

dient is accomplished by inserting the aforementioned GRL

between feature extractors and domain classifiers. Specif-

ically, the forward propagation of the GRL is the same as an

identity transformation, and during back-propagation, the

GRL changes the sign of the gradient (i.e., multiply it by a

negative constant) before passing it to the preceding layer.31

The optimization of our hierarchical multi-task and domain-

adversarial learning algorithm is summarized in Algorithm 1.
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Algorithm 1. Hierarchical multi-task and domain-adversarial learning algorithm

Input: - Training iterations: P;

- Batch size: K;

- Number of tasks: M;

- The first M1 tasks are easy-to-learn tasks, the last M2 tasks are hard-to-learn tasks, and M = M1 + M2.

- Number of classes for the tasks: Cm for m 2 1, …, M;

- Hyper-parameters: λ1,…,λM ,λD0
, λD1

,…, λDM2
.

Output: Neural network: fW0,D0,W1/, WM2
,F1,…,FM ,D1,…,DM2

g
1: Randomly initialize network parameters: θW0

,θD0
,θW1

/,θWM2
,θF1

,…,θFM
,θD1

,…,θDM2

2: for p from 1 to P do

3: # Forward pass

4: for m from 1 to M do

5: Sample K data points and label from the source domain DS,m for each task: (XS,m, YS,m).

6: Sample K data points from the target domain Dt for each task: XT,m.

7: Compute the task-shared feature for the source domain data: ZS,m = W0 (XS,m).

8: Compute the task-shared feature for the target domain data: ZT,m = W0 (XT,m).

9: end for

10: for m from 1 to M2 do

11: Compute the task-specific feature for the source domain hard-to-learn tasks: Zh
S,m ¼ WmðZS,mþM1

Þ.
12: Compute the task-specific feature for the target domain hard-to-learn tasks: Zh

T,m ¼ WmðZT ,mþM1
Þ.

13: end for

14: # Backward pass

15: Update the feature extractors and task predictors using equation (22):

�
bθW0

,bθW1
,…,bθWM2

,bθF1,…,bθFM
�

¼ argmin
θW0

,θW1
/,θWM2

,

θF1
,…,θFM

"
1

M1

XM1

m¼1

λmLe,mðθW0
,θFmÞ þ

1

M2

XM2

m¼1

λmþM1
Lh,m

�
θW0

,θWm
,θFmþM1

�

þλD0
log

XM

m¼1

exp

�
�min

θD0

LD0 ,mðθW0
,θD0

Þ

�

� min
θD1

,…,θDM

XM2

m¼1

λDm
LDm

ðθW0
,θWm

,θDm
Þ

�
,

(32)

16: Update the task-shared domain classifier: bθD0
¼ argmaxθD0log

PM
m¼1expð�LD0,mðθW0

,θD0
ÞÞ.

17: for m in 1: M2 do

18: Update the task-specific domain classifier: bθDm
¼ argminθDmλDm

LDm
ðbθW0

,bθWm
,θDm

Þ.
19: end for

20: end for



1956  Structural Health Monitoring 22(3)

Target domain prediction module

The architecture of the target domain prediction module is

shown in Figure 5. In this module, the extracted target

domain task-shared features are input to the pre-trained

easy-to-learn predictors to predict target domain labels in

the easy-to-learn tasks, and the extracted target domain task-

specific features are input to the pre-trained hard-to-learn

predictors to predict target domain labels in the hard-to-

learn tasks.

Evaluation

In this section, we evaluate our HierMUD framework for

drive-by BHM using data collected from lab-scale exper-

iments. The experiments are conducted on two structurally

different bridges using three vehicles of different weights.

Experimental setup and data description

A lab-scale VBI system, as shown in Figure 6, was em-

ployed to create the dataset. The collected dataset is sub-

jected to environmental noise (e.g. different temperatures

and humidity), electrical noise from the sensing system, and

the noise caused by the friction between vehicle wheels and

bridge surface. The experiments involved two 8-foot

bridges (B1 and B2) with different weights of 34.2 lb

and 43.0 lb, different dominant frequencies of 5.9 Hz and

7.7 Hz, and damping ratios of 0.13 and 0.07, respectively.

The data are collected from three small-scale vehicles (V1,

V2, and V3) with different weights of 10.6 lb, 11.6 lb, and

12.6 lb, respectively, that were driven over the bridge.

Vertical acceleration signals were collected from four ac-

celerometers mounted on each vehicle (front chassis, back

chassis, front wheel, and back wheel) while they moved

Figure 5. The architecture of our hierarchical multi-task and domain-adversarial learning algorithm in the target domain prediction
module.

Figure 6. (a) A vehicle (V1) moving at a controlled speed and (b) a bridge (B1) that the vehicle passes. Hook-and-loop fasteners are used
to attach the mass on (c) the vehicle and (d) the bridge.
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individually across the bridge at a constant speed (0.75 m/s).

The sampling rate of all sensors is 1600 Hz.

Damage proxy is introduced by adding mass at different

locations of the bridge. Hook-and-loop fasteners are used to

attach the mass on the vehicle and the bridge (as shown in

Figure 6). For varying damage severity, the magnitude of

the attached mass for each run ranged from 0.5 lb to 2.0 lb

with an interval of 0.5 lb. A heavier mass means more severe

damage since it induces more significant structural change

from the initial condition (i.e., healthy state). Each damage

severity level was induced at three different damage loca-

tions (l is every quarter of the bridge span, i.e., every 2

feet along the span). For each damage severity and location

scenario for each vehicle and bridge combination, the ex-

periments were repeated 30 times (i.e., 30 trials of a vehicle

passing a bridge). In total, the dataset includes 2 (bridges) ×

3 (vehicles) × [3 (damage locations) × 4 (damage severity

levels) + 1 (undamaged case)] × 30 (iterations) = 2340

(trials), which results in 2340 (trials) × 4 (sensors) = 9360

(records). Details of the experimental instrumentation can

be found in the work of Liu et al.10

In summary, our drive-by BHM problem has three tasks:

binary damage detection, 3-class damage localization, and

4-class damage quantification. For each damage diagnostic

task, two model transfers, from B1 to B2 and from B2 to B1,

using signals collected from each of the three vehicles (V1,

V2, and V3), are conducted, making a total of six

evaluations.

Setup of our HierMUD framework

In this subsection, we describe our data pre-processing

procedure and the setup of our HierMUD framework. We

first pre-processed the input data by conducting data aug-

mentation. Data augmentation adds white noise to vehicle

acceleration signals. The white noise has zero mean and

variance of mean squared magnitude of the vehicle accel-

eration signal. Then, we compute the short-time Fourier

transform (STFT) representation of each signal to preserve

the time–frequency domain information. We use the STFT

representation because the frequency spectrum is sensitive

to bridge characteristics and STFT allows us to preserve the

location information of the moving vehicle and the bridge

damage through its time–frequency domain representa-

tion.10 The size of each input data is C ×W × H, where C is

the number of sensor channels on the vehicle; W and H are

respectively the number of time segments and the sample

frequencies of the STFT representation. Particularly, in our

system, the original time-domain acceleration signal’s di-

mension is 4 × 4000, and the processed STFT data’s di-

mension is 4 × 64 × 64. Figure 7 shows an example of the

vehicle acceleration signal and its corresponding STFT

representation.

We consider damage detection and localization as easy-

to-learn tasks and damage quantification as a hard-to-learn

task. This is because we obtained higher supervised pre-

diction accuracy for damage detection and localization tasks

than that for the quantification task, and we observed that

the data distributions for different damage locations are

more separable than that for different damage severity

levels. We then develop the hierarchical architecture that

extracts task-shared features for all the tasks and further

task-specific features for the quantification task. Moreover,

the existence of damage (for damage detection task) is

represented by introducing an additional label within the

location predictor, instead of creating an additional binary

damage detection classifier that increases the model com-

plexity. After all, the overall architecture of the neural

network modules used in our HierMUDmodel are shown in

Figure 8 and Table 1. We optimize our HierMUD model

using a stochastic gradient descent optimizer with weight

decay, which encourages smaller weights of the networks by

adding an L2-regularization term to the loss to avoid

overfitting. The network architecture and hyper-parameters

are determined using the unsupervised hyper-parameter

selection method, which is described below. Based on

our experiments, the architecture shown in Table 1 provides

us with the best damage diagnosis results.

Baseline methods

We compare the performance of HierMUD with five

baseline methods described below:

1) MCNN is a multi-task convolutional neural network

model that directly applies the model trained using

source domain data to the target bridge without

applying any domain adaptation. The architecture of

MCNN lacks the red boxes (domain classifiers) in

Figure 8.

2) iUD is an independent task learning model with

UDA. It predicts damage location and severity levels

using two independent UDA models. The archi-

tecture of iUD does not have the task-specific feature

extractor, and instead it uses two independent do-

main adversarial neural networks (DANN)31 for

damage localization and quantification.

3) sUD is a sequential task learning model with UDA. It

predicts damage location and severity level step-by-

step instead of using multi-task learning. Specifi-

cally, sUD uses one DANN for damage localization,

and for each predicted damage location, it uses one

DANN for damage quantification.

4) MUD directly combines MTL and UDA. It predicts

damage location and severity level simultaneously,

but does not use the hierarchical structure and the
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Figure 8. The architecture of our multi-task and domain adversarial learning algorithm applied on the drive-by BHM.

Table 1. Detailed network architectures of HierMUD.

Network Layer Patch size Input size Activation

Task-shared feature extractor Convolution (2D) 64 × 5 × 5 4 × 64 × 64

Max pooling 2 × 2 64 × 60 × 60 LeakyReLU

Convolution (2D) 50 × 5 × 5 64 × 30 × 30

Max pooling 2 × 2 64 × 26 × 26 LeakyReLU

Convolution (2D) 50 × 3 × 3 50 × 13 × 13

Max pooling 2 × 2 50 × 11 × 11 LeakyReLU

Task-specific feature extractor Flatten 50 × 5 × 5

Full connection 1250 × 1250 1250 × 1 ReLU

Location predictors Flatten 50 × 5 × 5

Full connection 1250 × 100 100 × 1 ReLU

Full connection 100 × 4 100 × 1 Soft-max

Severity predictors Flatten 50 × 5 × 5

Full connection 1250 × 100 100 × 1 ReLU

Full connection 100 × 5 100 × 1 Soft-max

Task-shared and task-specific domain classifiers Flatten 50 × 5 × 5

Full connection 1250 × 2 1250 × 1 Soft-max

Figure 7. An example of the raw acceleration signal collected from a vehicle passing over a lab-scale bridge and its corresponding STFT

representation.
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soft-max objective. The architecture of MUD can be

found in Liu et al.60

5) HierMUD-a further adds the hierarchical structure to

MUD, but it optimizes the average objective—

Equation 20.

The differences of these methods are also summarized in

Table 2. Note that to have a fair comparison, components

(feature extractors, task predictors, and domain classifiers) of

each method have the same architecture as HierMUD

method.We also use the same strategy to train these methods,

which is described in the following section.

Unsupervised hyper-parameter selection

In this section, we describe an approach to fine-tune hyper-

parameters, including the learning rate, network architec-

ture, and trade-off hyper-parameters (as shown in Equation

22), for performing our multi-task and domain-adversarial

learning algorithm. Because there is no labeled data in the

target domain during the training phase, we select hyper-

parameters by conducting a reverse validation.31,61 In short,

the labeled source samples X S and unlabeled target samples

X T are split into training sets (X
0

S
and X

0

T
) which contain

90% of X S and X T (i.e., 8424 labeled data from the source

domain and 8424 unlabeled data from the target domain)

and the validation sets (X
V

S
and X

V

S
), where X

0

[X
V
¼ X

and they are mutually exclusive. The training sets X
0

S
and

X
0

T
are used to learn a target domain prediction model η(�).

We then learn another prediction model ηr (�) using unla-

beled target domain data, X
0

T
, with the predicted labels (η(x) for

x2X
0

T
). The reverse classifier ηr (�) is evaluated on the source

domain validation setX
V

S
. This evaluation process is conducted

for several times with different values of hyper-parameters.

Tuning the trade-off hyper-parameters (λ1,… , λM, λD0
, λD1

,

… , λDM2
) is important because they affect the convergence of

HierMUD’s training and damage diagnosis accuracy by

changing the magnitude of gradient from each component of

HierMUD. In particular, we observe that using relatively large

task-informativeness trade-off hyper-parameters (λm, for m 2

1, …, M) and relatively small domain-invariance trade-off

hyper-parameters (λD0
and λDm

, for m 2 1, …, M2) speeds up

the convergence of HierMUD’s training but reduces the target

domain prediction accuracy, and vice versa.

In our drive-by BHM problem, we set the hyper-

parameter for quantification loss λ2 to be one and tune

the hyper-parameter for localization loss λ1 by searching its

optimal value in the set {0.01, 0.1, 0.5, 1} that provides the

best reverse validation accuracy. For λD0
and λD1

, we tune

them by searching the values of them in the same set {0.01,

0.1, 0.5, 1}. Thus, in total, we have 4 × 4 × 4 = 64 possible

combinations of hyper-parameters. We also conduct 10-fold

cross-validation with each set of hyper-parameters and

choose the hyper-parameters that give the highest cross-

validation accuracy for the reverse classifier on the source

domain validation set. For our experiment, the best choices

of λ1, λ2, λD0
, and λD1

are 0.5, 1, 0.1, and 0.5, respectively.

Results and discussion

In this section, we present our evaluation results and discuss

our findings. Table 3 presents the results for knowledge

transfer from B1 to B2 and from B2 to B1 using each of the

three vehicles’ data. For the binary damage detection, we

report F1-scores as the performance metric because the

numbers of damaged and undamaged data samples are

imbalanced; For the 3-class damage localization, we report

classification accuracy (the number of correct predictions

divided by the total number of predictions made) as the

performance metric; For the damage quantification task, we

report the mean absolute error (MAE) between predictions

and ground truth damage severity. Note that we first obtain

damage severity estimation through the 4-class classifica-

tion and then compute MAE by taking the absolute dif-

ference between the predicted label and the ground truth.

MAE is chosen because it shows the degree of error rather

than classification accuracy (i.e., only showing correct vs

incorrect). There are six evaluations in total (for 2 bridges

and 3 vehicles), and each evaluation was conducted 10

times with different random seeds for splitting train and

validation sets and initializing model parameters. Therefore,

we have total 60 tests. Each column in Table 3 shows the

performance for each of the six evaluations. The last column

of the table provides the overall performance of all six

Table 2. The comparison of our method and baseline methods. MTL, ITL, STL, and UDA stand for multi-task learning, independent task
learning, sequential task learning, and unsupervised domain adaptation, respectively.

Method MTL ITL STL UDA Hierarchical structure Soft-max objective

MCNN 3

iUD 3 3

sUD 3 3

MUD 3 3

HierMUD-a 3 3 3

HierMUD (ours) 3 3 3 3
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evaluations. The numbers in each cell of the table are:

average performance (± 95% confidence interval). To show

the relationship between true damage values and predic-

tions, we also present normalized confusion matrices of our

approach for the damage quantification and localization

tasks in Figures 15 and 16 (in Appendix B), respectively.

Performance comparison with baseline methods

Except for the damage detection task for the evaluation

using V1 response to transfer model from B2 to B1, our

method (HierMUD) outperforms other baselines. Overall,

HierMUD has the best damage localization accuracy, which

is 93% on average. HierMUD also achieves the smallest

damage quantification error, which is 0.38 lbs on average

that is within one damage severity level of 0.5 lbs. The

average objective (HierMUD-a) has the best damage de-

tection F1-score (96%), followed by HierMUD (95%).

HierMUD is about twice as good as the baseline without

domain adaptation (MCNN) in all three diagnostic tasks and

1.5 times as good as other baselines (iUD, sUD, and MUD),

in the hard-to-learn quantification task. HierMUD achieves

the best 99% average F1-score (up to 100% in the best test) in

the damage detection task using signals collected from V2 for

model transfer from B1 to B2, the best 98% average accuracy

(up to 100% in the best test) in the damage localization task,

and the smallest 0.29 lbs average MAE (0.21 lbs in the best

test) in the damage quantification task using signals collected

from V3 for model transfer from B1 to B2.

Figures 9, 10, and 11 show the boxplots of performance

metric in damage detection, localization, and quantification

tasks, respectively. In each figure set, boxplot (a) shows the

overall 60 test results of our method and baselines. Boxplots

(b) and (c) present 30 test results for model transfer from B1

to B2 and from B2 to B1, respectively. Each box in the

boxplot shows five values, including minimum, maximum,

median, the first quartile, and the third quartile. In addition

to the results from Table 3, we observe that the results of our

method have smaller variance (i.e., smaller box in boxplots)

than that of baseline methods, which indicates a more stable

performance with different random initialization. Further-

more, for the damage quantification task using our method,

results for model transfer from B1 to B2 are better than those

for model transfer from B2 to B1. This difference is co-

incidental with or due to the fact that different model

transfer directions have distinct model generalizability (i.e.,

the model learned from B1 data is more generalizable and

easy to transfer than that learned from B2).

In summary, our method outperforms baselines in com-

prehensive laboratory evaluations, which shows the effec-

tiveness of combining domain adversarial, multi-task learning

with the hierarchical architecture and the soft-max objective.

Table 3. The performance of baseline methods and our method on the lab-scale VBI dataset. “A → B” indicates that we transfer
knowledge from the source domain A to the target domain B. The numbers in each cell are: average performance (confidence interval).

We bold the number that has the best result in each task.

Task Method
Vehicle 1 Vehicle 2 Vehicle 3

Overall

(Metric) B1 → B2 B2 → B1 B1 → B2 B2 → B1 B1 → B2 B2 → B1

MCNN 0.46 (±0.02) 0.54 (±0.08) 0.45 (±0.05) 0.53 (±0.07) 0.44 (±0.04) 0.51 (±0.08) 0.49 (±0.03)

Damage iUD 0.57 (±0.16) 0.83 (±0.19) 0.61 (±0.19) 0.98 (±0.01) 0.94 (±0.07) 0.84 (±0.19) 0.80 (±0.08)

Detection sUD 0.53 (±0.15) 0.97 (±0.03) 0.76 (±0.20) 0.97 (±0.03) 0.76 (±0.20) 0.84 (±0.19) 0.81 (±0.07)

(F1-score) MUD 0.91 (±0.05) 0.92 (±0.02) 0.98 (±0.02) 0.95 (±0.03) 0.92 (±0.07) 0.95 (±0.02) 0.94 (±0.02)

HierMUD-a 0.94 (±0.06) 0.93 (±0.04) 0.99 (±0.01) 0.94 (±0.03) 0.95 (±0.03) 0.97 (±0.02) 0.96 (±0.01)

HierMUD 0.92 (±0.04) 0.92 (±0.05) 0.99 (±0.01) 0.98 (±0.01) 0.96 (±0.02) 0.96 (±0.03) 0.95 (±0.01)

MCNN 0.35 (±0.05) 0.34 (±0.04) 0.38 (±0.07) 0.36 (±0.07) 0.40 (±0.04) 0.26 (±0.02) 0.35 (±0.02)

Damage iUD 0.62 (±0.13) 0.58 (±0.21) 0.61 (±0.15) 0.92 (±0.15) 0.90 (±0.09) 0.53 (±0.20) 0.69 (±0.08)

Localization sUD 0.70 (±0.08) 0.72 (±0.24) 0.49 (±0.14) 0.72 (±0.24) 0.86 (±0.11) 0.59 (±0.21) 0.68 (±0.08)

(Accuracy) MUD 0.85 (±0.12) 0.86 (±0.04) 0.84 (±0.10) 0.87 (±0.07) 0.95 (±0.04) 0.95 (±0.02) 0.89 (±0.03)

HierMUD-a 0.89 (±0.05) 0.88 (±0.05) 0.82 (±0.11) 0.91 (±0.04) 0.97 (±0.03) 0.90 (±0.09) 0.90 (±0.03)

HierMUD 0.92 (±0.03) 0.87 (±0.05) 0.92 (±0.06) 0.93 (±0.04) 0.98 (±0.01) 0.95 (±0.04) 0.93 (±0.02)

MCNN 0.70 (±0.12) 0.75 (±0.11) 0.76 (±0.11) 0.71 (±0.07) 0.73 (±0.06) 0.77 (±0.11) 0.74 (±0.04)

Damage iUD 0.59 (±0.11) 0.60 (±0.08) 0.52 (±0.07) 0.55 (±0.08) 0.47 (±0.04) 0.48 (±0.08) 0.53 (±0.03)

Quantification sUD 0.65 (±0.07) 0.63 (±0.06) 0.56 (±0.06) 0.57 (±0.08) 0.52 (±0.05) 0.58 (±0.06) 0.58 (±0.03)

(MAE, lbs) MUD 0.53 (±0.10) 0.55 (±0.10) 0.46 (±0.06) 0.49 (±0.11) 0.42 (±0.07) 0.41 (±0.12) 0.47 (±0.04)

HierMUD-a 0.54 (±0.10) 0.47 (±0.07) 0.38 (±0.05) 0.44 (±0.07) 0.40 (±0.11) 0.46 (±0.08) 0.44 (±0.04)

HierMUD 0.40 (±0.10) 0.45 (±0.09) 0.37 (±0.07) 0.43 (±0.09) 0.29 (±0.09) 0.36 (±0.07) 0.38 (±0.04)
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Characterizing the extracted feature distributions

In this section, we characterize the extracted features to

show the effect of domain adaptation on the distribution

of the extracted features. Figure 12 and 13 shows the

feature distributions plotted using tSNE to project fea-

ture distributions at different feature layers of the

network into a two-dimensional feature space. Figure 12

(a) shows the tSNE projection of the task-shared features

(ZS and ZT ) after domain adaptation for the damage

localization task; Figure 12 (b) shows the tSNE project

of the source and target domains’ task-specific features

(Zh

S
and Z

h

T
) after domain adaptation for the damage

quantification task. Different colors indicate different

Figure 9. The performance ((a) overall performance; (b) B1 to B2; (c) B2 to B1) of baseline methods and our method for damage
detection task on the lab-scale VBI dataset.

Figure 10. The performance ((a) overall performance; (b) B1 to B2; (c) B2 to B1) of baseline methods and our method for damage

localization task on the lab-scale VBI dataset.

Figure 11. The performance ((a) overall performance; (b) B1 to B2; (c) B2 to B1) of baseline methods and our method for damage
quantification task on the lab-scale VBI dataset. Note that our damage severity levels are 0.5, 1.0, 1.5, and 2.0 lbs.
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Figure 13. The 2D tSNE visualization of the task-shared features after domain adaptation in the damage quantification task for the

evaluation of model transfer from Bridge#1 (B1) to Bridge#2 (B2).

Figure 14. The losses of damage localization and quantification in the source domain, and the accuracy/F1-score of damage detection,
localization, and quantification in the target domain.

Figure 12. The 2D tSNE visualization of (a) the task-shared features after domain adaptation in the damage localization task and (b) the
task-specific features after domain adaptation in the damage quantification task for the evaluation of model transfer from Bridge#1 (B1)

to Bridge#2 (B2).



Liu et al. 1963

damage labels. Filled and unfilled markers represent features

of source and target domains, respectively. Comparing the

distributions of features before and after domain adaptation in

Figure 2 and 12, we observe that our domain adaptation

method successfully transformed the feature distributions of

the two domains to be much more similar to each other. Also,

comparing Figures 12 (a) and (b), the distributions of the

features are more similar and thus better matched for the

easy-to-learn damage localization task than that for the hard-

to-learn damage quantification task.

Further, Figure 13 shows the same tSNE projection of the

task-shared features (ZS and ZT ) but color-codedwith different

damage severity levels. The distributions of task-shared fea-

tures having the same damage severity label in Figure 13 (i.e.,

the markers with the same color) are more spread out than

those in Figure 12 (b), making features in Figure 13 more

difficult to be correctly classified. Therefore, task-specific

features are more task-informative than task-shared features

for the quantification task, which corresponds to our results

that using the task-specific hierarchical features outperforms

using the task-shared features for damage quantification.

Characterizing training process

To characterize the training process, we show the training losses

and testing accuracy for model transfer from B1 to B2 using V2

data in Figure 14. Blue curves are average losses of the two task

predictors in the source domain, and red curves are average

accuracy/F1-score of damage detection, localization, and

quantification in the target domain. The envelope covers loss or

accuracy for the 10 testswith different random initialization. The

figure shows that the two losses fluctuate and even increase

during early training steps (i.e., when the number of epochs is

small) due to domain adversarial learning. They converge to

small loss values after around 200 epochs. We also observe that

the quantification loss and accuracy have a large area of the

envelope because it is difficult to find optimized saddle points of

model parameters for this hard-to-learn quantification task.

Conclusion and future work

In this work, we introduce HierMUD, a new multi-task

unsupervised domain adaptation framework that uses drive-

by vehicle acceleration responses to diagnose structural

damage of multiple bridges without requiring labeled data

from every bridge. Our framework jointly optimizes hier-

archical feature extractors, damage predictors, and domain

classifiers in an adversarial way to extract features that are

task-informative and domain-invariant. To match distinct

data distributions over multiple tasks, we introduce a novel

loss function based on a new provable generalization risk

bound to adaptively provide a larger gradient magnitude on

matching tasks having more shifted distribution between the

source and target domains. To learn multiple tasks with

varying task difficulties, the feature extractor is designed to

formulate a feature hierarchy, which learns two-level fea-

tures: task-shared features are used for learning easy-to-learn

tasks, and task-specific features are further extracted from

task-shared features to learn hard-to-learn tasks. To the best of

our knowledge, this is the first framework to transfer the

model learned from one bridge to detect, localize, and

quantify damage to another (target) bridge without any labels

of the target bridge. We evaluate our framework on exper-

imental data collected from three vehicles passing over two

bridges individually. Our framework is up to 2X better than

baseline methods and has smaller prediction variance. It

achieves average accuracy values of 95% for damage de-

tection, 93% for damage localization, and MAE 0.38 lbs for

damage quantification.

In future work, we plan to investigate how the model

transfer direction affects the domain adaptation perfor-

mance. For instance, we will investigate what characteristics

of source domain bridges lead to a better performance when

the model is transferred to a target domain. In addition, we

intend to study how to transfer our multi-task damage di-

agnosis model between bridges with different structural

forms (e.g., truss bridge, suspension bridge, etc.). Moreover,

we believe this framework can be generalized to other multi-

task UDA problems beyond structural health monitoring.

Thus, we plan to apply our framework in other applications

(e.g., visual recognition, machine monitoring, etc.) to

further evaluate its robustness and effectiveness.
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identification of bridges using mobile sensors with sparse

vibration data. J Eng Mech 2020; 146(4): 04020011.

24. Zhang L and Gao X (2019) Transfer adaptation learning: A

decade survey. arXiv preprint arXiv:1903.04687.

25. Jiang J and Zhai C. Instance Weighting for Domain Adap-

tation in Nlp. ACL, 2007.

26. Pan SJ, Tsang IW, Kwok JT, et al. Domain adaptation via

transfer component analysis. IEEE Trans Neural Networks

2010; 22(2): 199–210.

27. Cao Y, LongM andWang J. Unsupervised domain adaptation

with distribution matching machines. In: Proceedings of the

AAAI Conference on Artificial Intelligence 2018; volume 32.

28. Luo YW, Ren CX, Dao-Qing D, et al. Unsupervised Domain

Adaptation via Discriminative Manifold Propagation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2020.

29. Xu S and Noh HY. Phymdan: Physics-informed knowledge

transfer between buildings for seismic damage diagnosis

through adversarial learning.Mech Syst Signal Process 2021;

151: 107374.

30. Saito K, Watanabe K, Ushiku Y, et al. Maximum classifier

discrepancy for unsupervised domain adaptation. In: Pro-

ceedings of the IEEE conference on computer vision and

pattern recognition 2018. pp. 3723–3732.

31. Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial

training of neural networks. J Machine Learn Res 2016;

17(1): 2096–2030.

32. Zhang Y, Liu T, Long M, et al (2019) Bridging theory and

algorithm for domain adaptation. arXiv preprint arXiv:

1904.05801.

33. Caruana R. Multitask learning. Machine Learning 1997;

28(1): 41–75.

34. Luong MT, Le QV, Sutskever I, et al (2015) Multi-task se-

quence to sequence learning. arXiv preprint arXiv:1511.06114.

35. Augenstein I, Ruder S and Søgaard A (2018) Multi-task

learning of pairwise sequence classification tasks over dis-

parate label spaces. arXiv preprint arXiv:1802.09913.



Liu et al. 1965

36. Dong D, Wu H, He W, et al. Multi-task learning for multiple

language translation. In: Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics and

the 7th International Joint Conference on Natural Language

Processing, Volume 1: Long Papers; 2015. pp. 1723–1732.

37. Hashimoto K, Xiong C, Tsuruoka Y, et al (2016) A joint

many-task model: Growing a neural network for multiple nlp

tasks. arXiv preprint arXiv:1611.01587.

38. Yang Y and Hospedales T (2016) Deep multi-task repre-

sentation learning: A tensor factorisation approach. arXiv

preprint arXiv:1605.06391.

39. Misra I, Shrivastava A, Gupta A, et al. Cross-stitch networks

for multi-task learning. In: Proceedings of the IEEE con-

ference on computer vision and pattern recognition 2016. pp.

3994–4003.

40. Jou B and Chang SF. Deep cross residual learning for mul-

titask visual recognition. In: Proceedings of the 24th ACM

international conference onMultimedia; 2016, pp. 998–1007.

41. Wan HP and Ni YQ. Bayesian multi-task learning method-

ology for reconstruction of structural health monitoring data.

Struct Health Monit 2019; 18(4): 1282–1309.

42. Liu J, Bergés M, Bielak J, et al. A damage localization and

quantification algorithm for indirect structural health monitoring

of bridges using multi-task learning. In: AIP Conference Pro-

ceedings, volume 2102. AIP Publishing LLC, 2019a, p. 090003.

43. Deraemaeker A and Worden K. A comparison of linear ap-

proaches to filter out environmental effects in structural health

monitoring. Mech Syst Signal Process 2018; 105: 1–15.

44. Taddei T, Penn JD, Yano M, et al. Simulation-based classifi-

cation; a model-order-reduction approach for structural health

monitoring. Arch Comput Methods Eng 2018; 25(1): 23–45.

45. Nasrollahi A, Deng W, Ma Z, et al. Multimodal structural

health monitoring based on active and passive sensing. Struct

Health Monit 2018; 17(2): 395–409.

46. Paszke A, Gross S, Chintala S, et al. Automatic Differenti-

ation in Pytorch, 2017.

47. Malekjafarian A, McGetrick PJ and OBrien EJ. A review of

indirect bridge monitoring using passing vehicles 2015.

Shock and Vibration 2015.

48. Van der Maaten L and Hinton G. Visualizing data using t-sne.

J Machine Learning Research 2008; 9(11).

49. Jakubovitz D, Giryes R and Rodrigues MR. Generalization

error in deep learning. In: Compressed Sensing and Its Ap-

plications. Springer; 2019, pp. 153–193.

50. Zhao H, Zhang S, Wu G, et al. Adversarial multiple source

domain adaptation. In: Advances in neural information

processing systems 2018. pp. 8559–8570.

51. Maurer A, Pontil M and Romera-Paredes B. The benefit of

multitask representation learning. J Machine Learn Res 2016;

17(1): 2853–2884.

52. Ben-David S, Blitzer J, Crammer K, et al. A theory of learning

from different domains. Machine Learning 2010; 79(1–2):

151–175.

53. Blumer A, Ehrenfeucht A, Haussler D, et al. Learnability and

the vapnik-chervonenkis dimension. J ACM (JACM) 1989;

36(4): 929–965.

54. Long M, Cao Y, Wang J, et al. Learning transferable features

with deep adaptation networks. In: International conference

on machine learning. PMLR, 2015, pp. 97–105.

55. Goodfellow I, Bengio Y, Courville A, et al. Deep Learning,

volume 1. Cambridge: MIT press, 2016.

56. Shorten C and Khoshgoftaar TM. A survey on image data

augmentation for deep learning. J Big Data 2019; 6(1): 1–48.

57. Kenny J, FluckA and Jetson T. Placing a value on academicwork:

The development and implementation of a time-based academic

workload model. Aust Universities’ Rev 2012; 54(2): 50–60.

58. Kenny JD and Fluck AE. The effectiveness of academic

workload models in an institution: a staff perspective. J

Higher Edu Pol Manag 2014; 36(6): 585–602.

59. Guo M, Haque A, Huang DA, et al (2018) Dynamic task pri-

oritization for multitask learning. In: Proceedings of the Euro-

pean Conference on Computer Vision (ECCV). pp. 270–287.

60. Liu J, Bergés M, Bielak J, et al (2020a) Knowledge transfer

between bridges for drive-by monitoring using adversarial

and multi-task learning. arXiv preprint arXiv:2006.03641.

61. Zhong E, Fan W, Yang Q, et al. Cross validation framework to

choose amongst models and datasets for transfer learning. In:

Joint European Conference on Machine Learning and Knowl-

edge Discovery in Databases. Springer, 2010, pp. 547–562.

Appendix A

Theorem 3. Let W be a hypothesis space on X with VC dimension dW and H be a hypothesis space on Z with VC

dimension dH. If XS and XT are samples of size N from D
X
S and DX

T , respectively, and ZS and ZT follow distributions DZ
S

and D
Z
T , respectively,, then for any δ 2 (0, 1) with probability at least 1 � δ, for every h2H and w2W
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Proof. This proof relies on the triangle inequality for classification error

Appendix B

Figures 15 and 16 show normalized confusion matrices of our HierMUD approach for the damage localization and

quantification tasks, respectively.
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Figure 15. Normalized confusion matrices of our HierMUD approach for the damage localization task. (a) V1, B1→B2, (b) V1, B2→B1,
(c) V2, B1→B2, (d) V2, B2→B1, (e) V3, B1→B2, (f) V3, B2→B1.
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Figure 16. Normalized confusion matrices of our HierMUD approach for the damage quantification task. (a) V1, B1→B2, (b) V1,
B2→B1, (c) V2, B1→B2, (d) V2, B2→B1, (e) V3, B1→B2, (f) V3, B2→B1.
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