
 
5 November 2023 
 
Civil Engineering  
Purdue University 
West Lafayette, IN 

Re: Tenure-Track Faculty Positions in the Lyles School of Civil Engineering 

To Whom It May Concern, 

I am pleased to apply to the associate professor position in Structural Engineering. I am currently 
a 6th year assistant professor in Structural Engineering at UW-Madison with a focus on steel 
structures. My research experience includes infrastructure resilience, data-driven design 
methods, physical experiments, and computational modeling. Details on my research areas and 
teaching philosophy are presented in the included statements. Details on my service 
commitments are presented in the included CV. More details on my funded research projects and 
education initiatives are available on my website https://ssirl.cee.wisc.edu/. Please feel free to 
contact me with any questions. 
 
Sincerely, 
 
Hannah Blum    
Email: hannah.blum@wisc.edu 
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Hannah Blum 
Assistant Professor and Alain H. Peyrot Fellow in Structural Engineering  

Department of Civil and Environmental Engineering 
University of Wisconsin-Madison 

hannah.blum@wisc.edu 
 
Professional Preparation 
University of Sydney    Civil Engineering    Ph.D., Jan 2017 
Johns Hopkins University   Civil Engineering    M.S.E., Dec 2012 
Johns Hopkins University   Civil Engineering     B.S., Dec 2010 
 
Appointments 
University of Wisconsin-Madison, WI, USA 
Aug 2018 – present     Assistant Professor, Dept. Civil & Environmental Engineering 
 
University of Sydney, NSW, Australia 
Sep 2016 – Dec 2017    Associate Lecturer, School of Civil Engineering 
 
Professional Licenses, Affiliations, and Service 
Professional Memberships 
American Society of Civil Engineers (ASCE)       2009 –  
American Institute of Steel Construction (AISC)      2011 –  
Structural Stability Research Council (SSRC)       2012, 2015 –  
Cold-Formed Steel Research Consortium (CFSRC) – Affiliated Investigator   2018 –   
Cold-Formed Steel Engineers Institute (CFSEI)      2019 – 
Australian Steel Institute (ASI)        2013 – 2018 
 
Voting Committee Membership 
AISC Technology Integration Committee       2022 –  
AISC Committee on Structural Stainless Steel      2018 –  
AISI Committee on Standards and Education Committee     2019 – 
 Subcommittee 22 – Stability and Combined Actions [Vice-Chair]   2023 –  
ASCE/SEI Standards Committee Stainless Steel Cold-Formed Sections Standards  2019 – 
SSRC Task Group 03: Stability of Steel Systems [Vice-Chair]    2021 –  
SSRC Task Group 05: Thin-Walled Structures [Vice-Chair]     2017 – 2021 
 
UW-Madison Service 
Faculty Advisor, AISC Student Steel Bridge Club      2019 –  
Women in Science and Engineering (WISE) dinner mentor     2019 – 
CEE Senior Capstone Judge         2022 –  
CEE alternate senator for the Faculty Senate      2019 – 2022  
 
Journal Reviewer 
Journal of Constructional Steel Research       2016 –  
Structures           2018 – 
Journal of Structural Engineering        2018 – 
Thin-Walled Structures         2019 – 
Engineering Structures         2020 – 
Architecture, Structures and Construction       2021 
 
Awards 
Alain H. Peyrot Fellowship (2018 – present)    UW-Madison 
Harvey Spangler Award for Innovative Teaching (2023)  College of Engineering, UW-Madison 
Terry Peshia Early Career Faculty Award (2023)   American Institute of Steel Construction 
McGuire Award for Junior Researchers – MAJR Medal (2022) Structural Stability Research Council 
Yoon Duk Kim Young Researcher Award (2021)    Structural Stability Research Council 
Yoon Duk Kim Young Researcher Award Hon. Mention (2020)  Structural Stability Research Council 
ASCE Exceed Fellow (2019)      American Society of Civil Engineers 

mailto:hannah.blum@wisc.edu
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Advancing Structural Steel Education Award (2018)   American Institute of Steel Construction 
Vinnakota Award (2016)      Structural Stability Research Council 
Wei-Wen Yu Student Scholar Award (2016) Wei-Wen Yu Center for CFS Structures 
William R. Kahl Scholarship Award (2010)  ACEC/MD 
 
Research Interests 
Steel, Cold-Formed Steel, Stainless-Steel Structures  Structural Stability and Reliability 
Data-Driven Structural Design     Virtual and Augmented Reality  
Finite Element Modeling & Experimental Methods   Historic Structures   
   
Teaching 
University of Wisconsin-Madison 
Steel Structures 1 (2021 – ); undergraduate course in the design and analysis of steel structures 
Steel Structures 2 (2019 – ): combined upper level undergraduate and graduate level course 
Structures Seminar (2021, 2023): graduate seminar in the structural engineering focus area 
Structural Reliability (2020): small graduate level course covering uncertainty in structural design 
 
University of Sydney 
Structural Mechanics (2017): undergraduate core course 
Steel Structures 1 (2017): undergraduate core course in design and analysis of steel structures 
 
Research Advisor 
Postdoctoral Scholars: 
2023 – current, Dr. Koh, UW-Madison, Various projects funded by the Steel Deck Institute 
 
PhD Candidates: 
2023 – current, Kim, UW-Madison, WN-Series Joist System Reliability 
2023 – current, Wang, UW-Madison, Metal Buildings Subjected to Tornadoes 
2022 – current, Cicek, UW-Madison, Steel Joist and Deck System Reliability 
2018 – 2022, Koh, UW-Madison, Augmenting Steel Design with Data-Driven and Adv. Analysis Approaches 
2019 – 2022, Sippel, UW-Madison, Structural Analysis with Non-Symmetric Cross Sections  
2018 – 2022, Xia, UW-Madison, Analytical and Computation Modeling of Temperature Dependent  

Material Properties, Residual Stress, and Torsional Behavior for Cold-Formed Steel Members 
 
Master (Research): 
2023 – current, Mustaq, UW-Madison, ⅞ inch Studs Welded Through Steel Deck: Full Beam 
2023 – current, Dutta, UW-Madison, Point Cloud Analysis of Historic Structures 
2023 – current, Mehendale, UW-Madison, Augmented Reality in Structural Steel Applications 
2022 – current, Alshammari, UW-Madison, Steel Joist and Deck System Reliability 
2020 – 2022, Laracuente, UW-Madison, Behavior of Concentrically Loaded Austenitic Stainless-Steel  

Unequal-Leg Angles 
2017, Univ. of Sydney, Parametric Study of Conn. Stiffness of Cold-Formed Steel Portal Frames 
 
Undergraduate: 
Fall 2023, UW-Madison, 1 student, Point-cloud analysis; 1 student, Vacuum box testing 
Spring 2023, UW-Madison, 1 student, Steel joist system reliability; 3 students, Vacuum box development 
Spring 2022, UW-Madison, 2 students, Stainless-steel compression members 
Fall 2021, UW-Madison, 1 student, Augmented reality in steel fabrication; 1 student, Residual  

stress testing; 1 student, Stainless-steel compression members 
Spring 2021, UW-Madison, 2 students, Pilot Study – Augmented reality in steel fabrication 
2019-2020, UW-Madison, 1 student, Low temp properties of cold-formed steel 
2018-2019, UW-Madison, 2-3 students, Virtual reality for steel structures education 
2017 Honours Thesis, Univ. of Sydney, 2 students, Experimental Investigation of Apex Connection  

Stiffness in Cold-Formed Steel Portal Frames 
 

Grants received 
Department of Defense – Engineering Research and Development Center 
 $3,443,495 (50%), Monitoring, Modeling, and Visualization of Historic Structures 
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National Science Foundation 
$212,344, 2021-2024, Collaborative Research: Assessment of Building Resiliency in Tornadoes  

Considering Transient Internal Pressure Effects, Award #2053364 
Steel Founders’ Society of America (SFSA) (Prime: Department of Defense) 
 $300,000, 2023-2025, Augmented Reality Implementation into Steel Foundry Applications 
American Institute of Steel Construction  

$104,265, 2021-2023, Augmented Reality Technology in Structural Steel Fabrication 
$150,000, 2024-2026, Unequal Leg Stainless Steel Angles Under Compression 

Steel Joist Institute  
$90,000, Jan 2024 – Dec 2024, Design of Shear Connectors Welded Through Steel Deck: Full Beam 

Testing to Validate ⅞ inch Studs 
$70,000, Nov 2023 – Oct 2024, Joist Bay system reliability 
$20,000, Sep 2022 – May 2023, Steel joist system reliability 
$7,000, Jan-Dec 2022, Modified slenderness ratio of joist chord members 
$23,153, Jan-Aug 2021, Analytical Study: Flexural-Torsional Buckling of Joist Chord Members 

Steel Deck Institute 
$25,000, May-Dec 2023, System Reliability of Steel Roof Deck 
$24,350, Jan-Jun 2023, Design of Shear Connectors Welded Through Steel Deck: A Reanalysis of  

Existing Data 
$27,000, Jan-Sep 2023, Develop and Construct Prototype Vacuum Box 
$8,200, May-Oct 2023, Inelastic Analysis and Design of Bare Steel Deck Diaphragms using  

Instantaneous Center Method 
New Millennium 
 $70,000, Jan-Dec 2024, WN-Series Joist System Reliability – Phase 1 
American Iron and Steel Institute, Small Projects  

$6,000, Summer 2023, System Reliability of Steel Roof Deck 
$6,000, Summer 2023, Inelastic Analysis and Design of Bare Steel Deck Diaphragms using  

Instantaneous Center Method 
$10,000, Summer 2021, CFS Strength Prediction for Bending & Torsion 
$10,000, Summer 2020, Tutorials for Analysis of Systems  

with Unsymmetrical Sections Using the Latest Version of MASTAN2 
$6,000, Summer 2020, Review of Int. CFS and Other Test Standards for Implementation Into AISI 

College of Engineering, University of Wisconsin-Madison, Educational Innovation 
 $48,831, 2019-2020, Virtual and Mixed Reality Teaching Lab for Engineering Education 
Wisconsin Alumni Research Foundation  

$50,861, 2023-2024, Architected meta-structures for resilient structural steel framing 
$44,663, 2022-2023, Experimental and numerical dataset requirements for machine learning-based  

structural design 
$42,833, 2021-2022, Fragility analysis of metal roof system subject to extreme wind loading 
$42,878, 2020-2021, Residual stress quantification in currently produced structural steel sections 
$39,137, 2019-2020, Eval. of current design codes for structural systems with unsymm. sections 

University of Wisconsin-Madison, Office of the Provost, Educational Innovation Small Grant 
$15,000, 2019-2020, Virtual Reality in Structural Engineering Education 
 

Publications [Google Scholar Profile] 
Journal Papers  
Laracuente, M.E., Sippel, E.J., and Blum, H.B., (202x). “Experimental investigation of fixed-ended hot-rolled 
austenitic stainless-steel unequal-leg angles under compression”, Structures (accepted). 
 
Ding, C., Xia, Y., Blum, H.B., Li, Z., Schafer, B.W., (202x). “Strength of bolted lap shear connections with 
advanced high strength steel sheets”, Journal of Structural Engineering (accepted, in press). 
 
Akchurin, D., Ding, C., Xia, Y., Blum, H.B., Schafer, B.W., Li, Z., (2023). “Family optimization of cold-formed 
steel lipped-channel sections with strength and stiffness constraints due to cross-sectional instabilities”, 
Thin-Walled Structures. https://doi.org/10.1016/j.tws.2023.111118 
 
Koh, H., Rosson, B.T., and Blum, H.B., (2023). “Stability analysis of stiffness reduction models on rotary- 
and non-rotary straightened W-shapes”, Journal of Constructional Steel Research. 

https://scholar.google.com/citations?hl=en&user=jzqzi44AAAAJ
https://doi.org/10.1016/j.tws.2023.111118
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https://doi.org/10.1016/j.jcsr.2023.108024  
 
Xia, Y., & Blum, H. B. (2023). “Subzero Material Properties of Advanced High-Strength Cold-Formed Steel 
Alloys,” Buildings, 13(2), 399. https://www.mdpi.com/2107188  
 
Sippel, E. J., Ziemian, R. D., & Blum, H. B. (2023). “Experimental Verification of Eccentrically Loaded Steel 
Joist Analysis with Nonsymmetric Sections,” Journal of Structural Engineering, 149(5), 04023027. 
https://doi.org/10.1061/JSENDH.STENG-11670  
 
Sippel, E.J., Ziemian, R.D., Blum, H.B., (2022). “Influence of torsional stiffness in double-angle open-web 
joist and joist girder chords,” Journal of Constructional Steel Research. 
https://doi.org/10.1016/j.jcsr.2022.107595  
 
Koh, H., and Blum, H.B., (2022). “Machine Learning-Based Sensitivity of Steel Frames with Highly 
Imbalanced and High-Dimensional Data,” Engineering Structures.  
https://doi.org/10.1016/j.engstruct.2022.114126  
 
Koh, H., and Blum, H.B., (2022). “A review of current practice for testing by analysis of cold-formed steel 
structures,” Structures. https://doi.org/10.1016/j.istruc.2022.01.017  
 
Xia, Y., Yan, X., Gernay, T., and Blum, H.B., (2022). “Elevated temperature and post-fire stress-strain 
modeling of advanced high-strength cold-formed steel alloys,” Journal of Constructional Steel Research. 
https://doi.org/10.1016/j.jcsr.2021.107116  
 
Sippel, E.J., Ziemian, R.D., Blum, H.B., (2021). “Structural analysis using line elements to model members 
with non-symmetric cross sections,” Thin-Walled Structures. https://doi.org/10.1016/j.tws.2021.108407   
 
Sippel, E.J., Blum, H.B., (2021). “Structural analysis of steel structures with non-symmetric members,” 
Engineering Structures. https://doi.org/10.1016/j.engstruct.2021.112739  
 
Chen, X., Blum, H.B., Roy, K., Pouladi, P., Uzzaman, A., and Lim, J.B.P., (2021). “Moment-resisting apex 
bracket of cold-formed steel portal frames: behaviour, capacity, and design,” Journal of Constructional Steel 
Research, 183, 106718. https://doi.org/10.1016/j.jcsr.2021.106718  
 
Xia, Y., Ding, C., Li, Z., Schafer, B.W., Blum, H.B., (2021). “Numerical modeling of stress-strain relationships 
for advanced high strength steels,” Journal of Constructional Steel Research, 182, 106687. 
https://doi.org/10.1016/j.jcsr.2021.106687  
 
Yan, X., Xia, Y., Blum, H. B., & Gernay, T. (2021). Post-fire mechanical properties of advanced high-strength 
cold-formed steel alloys. Thin-Walled Structures, 107293. https://doi.org/10.1016/j.tws.2020.107293  
 
Yan, X., Xia, Y., Blum, H. B., & Gernay, T. (2020). Elevated temperature material properties of advanced 
high strength steel alloys. Journal of Constructional Steel Research, 174, 106299. 
https://doi.org/10.1016/j.jcsr.2020.106299  
 
Blum, H. B., & Rasmussen, K. J. R. (2019). Experimental and numerical study of connection effects in long-
span cold-formed steel double channel portal frames. Journal of Constructional Steel Research, 155, 480-
491. https://doi.org/10.1016/j.jcsr.2018.11.013  
 
Blum, H. B., & Rasmussen, K. J. R. (2019). Experimental investigation of long-span cold-formed steel double 
channel portal frames. Journal of Constructional Steel Research, 155, 316-330.  
https://doi.org/10.1016/j.jcsr.2018.11.020  
 
Blum, H.B., Rasmussen, K.J.R. (2018). “Elastic Buckling of Columns with a Discrete Elastic Torsional 
Restraint.” Thin-Walled Structures, 129(502-511). https://doi.org/10.1016/j.tws.2018.01.008  
 
Blum, H. B., V. Z. Meimand, and B. W. Schafer (2014). "Flexural Bracing Requirements in Axially Loaded 
Cold-Formed Steel-Framed Walls." Practice Periodical on Structural Design and Construction, 20(4). 

https://doi.org/10.1016/j.jcsr.2023.108024
https://www.mdpi.com/2107188
https://doi.org/10.1061/JSENDH.STENG-11670
https://doi.org/10.1016/j.jcsr.2022.107595
https://doi.org/10.1016/j.engstruct.2022.114126
https://doi.org/10.1016/j.istruc.2022.01.017
https://doi.org/10.1016/j.jcsr.2021.107116
https://doi.org/10.1016/j.tws.2021.108407
https://doi.org/10.1016/j.engstruct.2021.112739
https://doi.org/10.1016/j.jcsr.2021.106718
https://doi.org/10.1016/j.jcsr.2021.106687
https://doi.org/10.1016/j.tws.2020.107293
https://doi.org/10.1016/j.jcsr.2020.106299
https://doi.org/10.1016/j.jcsr.2018.11.013
https://doi.org/10.1016/j.jcsr.2018.11.020
https://doi.org/10.1016/j.tws.2018.01.008
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https://ascelibrary.org/doi/10.1061/%28ASCE%29SC.1943-5576.0000242  
 
 
Conference Proceedings (* denotes presenting author) 
 
Blum, H.B.*, and Kraus, W., “Structural Steel Fabrication with Mixed Reality”, Proceedings Tenth European 
Conference of Steel and Composite Structures, Amsterdam, September 2023. 
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cepa.2575   
 
Koh, H., and Blum, H.B.*, “Shear connector design using data analytics approaches”, Proceedings Tenth 
European Conference of Steel and Composite Structures, Amsterdam, September 2023. 
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cepa.2561   
 
Koh, H.*, and Blum, H.B., “Data-driven buckling capacity prediction of normal- and high-strength steel 
hollow structural section columns”, Proceedings of Structural Stability Research Council Annual Stability 
Conference, Charlotte, NC, 2023. 
 
Sippel, E.J.*, and Blum, H.B., “Stability of stainless steel unequal-leg angles with imperfect supports”, 
Proceedings of Structural Stability Research Council Annual Stability Conference, Charlotte, NC, 2023. 
 
Laracuente, M.E., Sippel, E.J.*, and Blum, H.B., “Stability Considerations of Laser Fused Unequal-Leg Angle 
Stainless Steel Columns”, Proceedings of Structural Stability Research Council Annual Stability Conference, 
Charlotte, NC, 2023. 
 
Xia, Y., Glauz, R.S., Schafer, B.W.*, Seek, M., and Blum, H.B., “Cold-formed steel strength predictions for 
combined bending and torsion”, Proceedings of Structural Stability Research Council Annual Stability 
Conference, Charlotte, NC, 2023. 
 
Koh, H., Rosson, B.T. *, and Blum, H.B., “Exploring machine learning for the stability analysis of rotary-
straightened steel members with multiple stiffness reduction models”, Proceedings of The International 
Colloquium on Stability and Ductility of Steel Structures (SDSS), Aveiro, Portugal, September 2022. 
https://onlinelibrary.wiley.com/doi/10.1002/cepa.1843  
 
Sippel, E.J.*, Blum, H.B., “Virtual Reality Field Trip of a Steel Building Under Construction”, Proceedings of 
American Society of Engineering Education, Minneapolis, Minnesota, June 2022. 
https://peer.asee.org/40547  
 
Zhang, L.*, Moen, C.D., Blum, H.B., and Marks, B., (2022). “Structural Analysis in Virtual Reality for 
Education with MBLY,” Proceedings CFSRC Colloquium. http://jhir.library.jhu.edu/handle/1774.2/67719 
 
Koh, H.*, and Blum, H.B., "Calibration and validation of the hole-drilling method to measure residual 
stresses in advanced high-strength cold-formed steel members." Cold-Formed Steel Research Consortium 
(CFSRC) Colloquium, 2022. 

 
Xia, Y.*, Zhanjie L., and Blum, H.B., "Numerical study on residual stresses in press-braked advanced high-
strength cold-formed steel angles by finite element simulation." Cold-Formed Steel Research Consortium 
(CFSRC) Colloquium, 2022. 
 
Ding C.*, Xia Y., Akchurin D., Blum H.B., Li Z., Schafer B.W., "Structural Behavior of Advanced High 
Strength Steel: Ductility, Connections, Members." Cold-Formed Steel Research Consortium (CFSRC) 
Colloquium, 2022. 
 
Laracuente, M.E.*, Sippel, E.J., and Blum, H.B., “Stability considerations of unequal-leg stainless steel 
columns”, Proceedings of Structural Stability Research Council Annual Stability Conference, Denver, CO, 
2022. https://www.aisc.org/education/continuingeducation/education-archives/stability-considerations-of-
unequal-leg-angle-stainless-steel-columns/ 
 
Sippel, E.J.*, Ziemian, R.D., and Blum, H.B., “Buckling behavior of open web steel joists and joist girders”, 

https://ascelibrary.org/doi/10.1061/%28ASCE%29SC.1943-5576.0000242
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cepa.2575
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cepa.2561
https://onlinelibrary.wiley.com/doi/10.1002/cepa.1843
https://peer.asee.org/40547
http://jhir.library.jhu.edu/handle/1774.2/67719
https://www.aisc.org/education/continuingeducation/education-archives/stability-considerations-of-unequal-leg-angle-stainless-steel-columns/
https://www.aisc.org/education/continuingeducation/education-archives/stability-considerations-of-unequal-leg-angle-stainless-steel-columns/
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Proceedings of Structural Stability Research Council Annual Stability Conference, Denver, CO, 2022.  
 
Xia, Y.*, Schafer, B.W., and Blum, H.B., “Cold-formed steel strength predictions for torsion”, Proceedings of 
Structural Stability Research Council Annual Stability Conference, Denver, CO, 2022.  
 
Koh, H.*, Rosson, B.T., and Blum, H.B., “Stiffness reduction factor requirements for the stability analysis of 
rotary straightened W-shape members”, Proceedings of Structural Stability Research Council Annual 
Stability Conference, Denver, CO, 2022.  
 
Ding, C.*, Xia, Y., Akchurin, D., Li, Z., Blum, H.B., Schafer, B.W., “Simulation of Compressive Strength of 
Wall Studs Cold-Formed from Advanced High Strength Steels,” Proceedings of Structural Stability Research 
Council Annual Stability Conference, Denver, CO, 2022. 
 
Akchurin, D. *, Ding, C., Xia, Y., Blum, H.B., Schafer, B.W., Li, Z., “Optimization of cold-formed steel 
members considering reduced stiffness and strength due to cross-sectional instabilities,” Proceedings of 
Structural Stability Research Council Annual Stability Conference, Denver, CO, 2022. 
 
Xia, Y., Li, Z., Schafer, B.W., Blum, H.B.* (2021). “Experimental study on residual stresses in cold-formed 
advanced high-strength steel members”, Proceedings Ninth European Conference of Steel and Composite 
Structures, Sheffield, UK. 
 
Xia, Y.*, Yan, X., Gernay, T., Blum, H.B. (2021). “Experimental study of the behavior of HSLA and DP cold-
formed high-strength steels at elevated temperature”, Proceedings Ninth European Conference of Steel and 
Composite Structures, Sheffield, UK. 
 
Friis, O. B., H. B. Blum, H. C. Yildirim. "Evaluation of post-weld treated steel welds subject to mechanical 
loading." In Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations, 
Proceedings of the Tenth International Conference on Bridge Maintenance, Safety and Management 
(IABMAS 2020), pp. 3708-3713. CRC Press, 2021. 
 
Blum, H.B.*, and Moen, C.D. (2021). “Conducting a Column Buckling Test in 3D Virtual Reality”, Proc., SSRC 
Annual Stability Conference, Louisville, KY [online]. 
https://www.aisc.org/education/continuingeducation/education-archives/stability-of-columns-s8/ 
 
Blum, H.B.*, and Li, Z. (2021). “Sensitivity of design parameters on the stability of apex connections in 
cold‐formed steel portal frames”, Proc., SSRC Annual Stability Conference, Louisville, KY [online]. 
 
Sippel, E.J.*, Ziemian, R.D., Blum, H.B. (2021). “Experimental verification of eccentrically loaded steel joists 
with non‐symmetric sections”, Proc., SSRC Annual Stability Conference, Louisville, KY [online]. 
 
Yan, X.*, Xia, Y., Blum, H.B., and Gernay, T. (2020). “Experimental investigation of the behavior of 
martensitic high-strength steels at elevated temperature,” Proceedings Eleventh International Conference 
on Structures in Fire, Queensland, Australia [online]. 
 
Xia, Y., Sudhiwana, T., and Blum, H.B. (2020). “Experimental study on low temperature ductility of cold-
formed steel,” Proceedings CFSRC Colloquium. [no presentation] 
 
Xia, Y.*, Yan, X., Gernay, T., and Blum, H.B. (2020). “Modeling of stress-strain relationship of advanced 
high-strength cold-formed steel at elevated temperature,” Proceedings CFSRC Colloquium. 
 
Ding, C.*, Li, Z., Blum, H.B., Xia, Y., Schafer, B.W. (2020). “Ductility Demands on CFS Structural Connections 
for Advanced High Strength Steel,” Proceedings CFSRC Colloquium.  
 
Yan, X.*, Xia, Y., Blum, H.B., and Gernay, T. (2020). “Experimental Study on the High Temperature 
Properties of Advanced High-Strength Cold-formed Steels,” Proceedings CFSRC Colloquium.  
 
Sippel, E.J.*, and Blum, H.B. (2020). “System analysis of non-symmetric cold-formed steel cross-section 
members,” Proceedings CFSRC Colloquium.  

https://www.aisc.org/education/continuingeducation/education-archives/stability-of-columns-s8/


Curriculum Vitae  7 of 8 Dr. Hannah B. Blum 

 
Koh, H.*, and Blum, H.B. (2020). “A State-of-the-Art Review of Testing by Analysis in Cold-Formed Steel 
Design,” Proceedings CFSRC Colloquium. 
 
Sippel, E.J.*, Ziemian, R.D., Blum, H.B. (2020). “Analysis of non-symmetric cross-sections relative to the 
provisions of AISC 360-16.” Proc., SSRC Annual Stability Conference, SSRC, Atlanta, GA. [presentation 
canceled due to COVID19] 
 
Xia, Y.*, Blum, H.B. (2020). “Buckling mode characterization for high-strength cold-formed steel with in-
situ 3D scanning.” Proc., SSRC Annual Stability Conference, SSRC, Atlanta, GA. [presentation canceled due 
to COVID19] 
 
Xia, Y., Li, Z., Schafer, B.W., Blum, H.B.* (2019). “Material Property Characterization of Advanced High 
Strength Cold-Formed Steel.” Proc., Seventh International Conference on Structural Engineering, 
Mechanics, and Computation, Cape Town, South Africa. 
 
Blum, H.B.*, Li, Z. (2019). “Stability of apex connections in cold-formed steel portal frames.” Proc., SSRC 
Annual Stability Conference, SSRC, St. Louis, MO. 
 
Peng, J., Bendit, J., and Blum, H.B.* (2018). “Experimental study of apex connection stiffness and strength 
of cold-formed steel double channel portal frames.” Proc., Twenty-fourth International Specialty Conference 
on Cold-Formed Steel Structures, St. Louis, MO. 
 
Rasmussen, K.J.R.*, Blum, H.B., and Rinchen (2018). “Behaviour and Design of Cold-Formed Steel Portal 
Frames.” Proc., Eighth International Conference on Thin-Walled Structures, Lisbon, Portugal. 
 
Blum, H.B.*, Rasmussen, K.J.R. (2017). “Design Method for Columns with Intermediate Elastic Torsional 
Restraint.” Proc., SSRC Annual Stability Conference, SSRC, San Antonio, TX. 
 
Blum, H.B.*, Rasmussen, K.J.R. (2016). “Buckling and design of column with intermediate elastic torsional 
restraint.” Proc., SSRC Annual Stability Conference, SSRC, Orlando, FL. 
 
Blum, H.B.*, Rasmussen, K.J.R. (2016). “Experiments on column base stiffness of long-span cold-formed 
steel portal frames composed of double channels.” Proc., Twenty-third International Specialty Conference 
on Cold-Formed Steel Structures, Baltimore, MD. 
 
Blum, H.B.*, Rasmussen, K.J.R. (2016). “Experiments on long-span cold-formed steel portal frames 
composed of double channels.” Proc., Seventh International Conference on Coupled Instabilities in Metal 
Structures, Baltimore, MD. 
 
Blum, H.B.*, Rasmussen, K.J.R. (2016). “Finite element modeling and parametric study of cold-formed steel 
portal frames.” Proc., Sixth International Conference on Structural Engineering, Mechanics, and 
Computation, Cape Town, South Africa. 
 
Blum, H. B., V. Z. Meimand, and B. W. Schafer* (2013). "Bracing for Flexural Buckling in Cold-Formed Steel-
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Koh, H.*, and Blum, H.B., “The impact of data-driven design approaches on shear connector reliability,” 
Engineering Mechanics Institute Conference, Atlanta, GA, 2023. 
 
Koh, H.*, Rosson, B.T., and Blum, H.B., “Comparison of stiffness reduction factors for rotary-straightened 
and hot-rolled W-shape members,” Engineering Mechanics Institute Conference, Atlanta, GA, 2023. 
 
Blum, H.B.* and Kraus, W.*, “Supplementing Steel Bridge Fabrication with Immersive Augmented Reality,” 
10th International Symposium on Visualization in Transportation, Transportation Research Board, 
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columns,” Stainless Steel in Structures 6th International Experts Seminar, London, UK, 2022. 
 
Koh, H.*, and Blum, H.B. (2022). “Stability Analysis of Rotary-Straightened Steel Members with Multiple 
Stiffness Reduction Models using Machine Learning,” Engineering Mechanics Institute Conference, Baltimore, 
MD. 
 
Koh, H.*, and Blum, H.B. (2022). “Design of Structural Steel Hollow Sections Using Machine Learning 
Techniques,” Engineering Mechanics Institute Conference, Baltimore, MD. 
 
Sippel, E.J.*, and Blum, H.B. (2022). “Imperfection Analysis of In-Situ 3D Measurements of Stainless-Steel 
Unequal-Leg Angles for Computational Modeling,” Engineering Mechanics Institute Conference, Baltimore, 
MD. 
 
Blum, H.B.* and Kraus, W.* (2022). “Applications for Smart Glasses and Augmented Reality in Structural 
Steel.” North American Steel Construction Conference, Denver, CO. 
 
Xia, Y., and Blum, H.B.* (2021), “Material properties of advanced high-strength cold-formed steel alloys 
subjected to subzero temperatures,” 2021 Regional Conference on Permafrost and 19th International 
Conference on Cold Regions Engineering, Virtual Conference. 
 
Koh, H.*, and Blum, H.B. (2021). “Feature selection approach for sensitivity analysis of steel frames,” 
Engineering Mechanics Institute Conference, Virtual Event. 
 
Sippel, E.J.*, and Blum, H.B. (2021). “In-situ 3D deformation measurements and imperfection analysis of 
a steel joist,” Engineering Mechanics Institute Conference, Virtual Event. 
 
Yan, X.*, Xia, Y., Blum, H.B., and Gernay, T. (2021). “Characterization of advanced high-strength cold-
formed steel at elevated temperature and after cooling down,” Engineering Mechanics Institute Conference, 
Virtual Event. 
 
Koh, H.*, and Blum, H.B. (2021). “Analysis of uncertainty correlation on system behavior in steel frames 
Using Machine Learning Platform,” Probabilistic Mechanics & Reliability Conference, Virtual Event. 
 
Research Reports 
Blum, H.B. (2013). “Reliability-Based Design of Truss Structures by Advanced Analysis.” Research Report 
R936, Centre for Advanced Structural Engineering, School of Civil Engineering, The University of Sydney, 
Sydney, New South Wales, Australia. 
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The main theme of my teaching philosophy is strengthening student engagement to improve 
positive attitudes towards learning. Harnessing modern technology, especially technology of interest to 
students, boosts students’ engagement and involvement with the course content and increases their desire 
to participate and learn. Integrating technology in the form of immersive visualization, e.g., virtual and 
augmented reality, into the classroom changes how students interact with the teaching aids and interpret 
and analyze the lesson. This format of active learning has several benefits including the creation of more 
accessible lessons that reach students with diverse learning styles and the preparation of students for the 
technology they will encounter in their future careers. I structure my teaching to achieve the following four 
goals: 
 
Goal 1:  Equip students with problem-solving skills for addressing open-ended problems. 

Often in the classroom we provide students with practice problems that have only one correct 
answer. The students may become accustomed to this binary methodology - they are either correct or 
incorrect. The real-world problems, especially for those in engineering fields, may have multiple workable 
solutions, and the engineer must decide which solution is optimal based on a variety of factors and 
constrains, and even so, there might not be a clear single best solution. As we educate students, we must 
train them to feel comfortable with making educated assumptions based on the data available and 
uncertainties, logically stepping through a solution, and communicating their process to others through 
technical writing. To achieve this objective, I employ three practices in my courses: 

1. Scaffolding of practice problems. I scaffold my practice problems to guide students through the 
logical solution process. To help them get started on finding a solution, an outline is provided for 
the overall process. During problem solving, I pose questions in all steps in the outline to instill in 
them the need to use critical thinking at each step of the process. During class, I allow students to 
guide me through each step, without simply giving the answer. If a student provides an incorrect 
answer, I ask the class to explain why the proposed solution would not work. In this manner the 
students practice their problem solving and critical thinking skills. Overall, there is good 
participation from students in these discussions. In some instances, students find different paths to 
the same solution and can discuss amongst themselves which solution path was more efficient.  I 
engage this practice in CEE 445 (Steel Structures 1), CEE 545 (Steel Structures 2), and CEE 649 
(Special Topics: Structural Reliability).  

2. Emphasis on technical writing. At the end of each major unit in Steel Structures I (CEE 445), 
students are tasked with writing a technical report based on an in-class analysis activity. The focus 
is on communicating their process and reasoning through appropriate plots, figures, and data tables 
to demonstrate how their solution is feasible. Students are provided feedback and those who 
received an unsatisfactory report can resubmit for an improved grade. This helps them with honing 
their writing skills and prepares them for their future where there may be multiple viable solutions, 
and therefore it is crucial that they can document and explain their solution process to others to 
enable informed decisions.  

3. Collaboration with Professors of Practice. I strive to create end-of-semester open-ended design 
projects reflective of what graduates may encounter within their first few years in industry. For 
both CEE 445 and CEE 545 I have been working with Professors of Practice in the CEE department 
at UW-Madison, who offer interesting perspectives from their professional experiences. Student 
feedback indicated that the students felt it helped better prepare them for their careers. 

 
Goal 2: Provide students with interactive 3D visualization tools. 

We live in a three-dimensional world, yet often in education we teach in two-dimensions through 
printouts or slideshows. Some students are great at spatial visualization and can easily convert 2D images 
to 3D in their heads. This visualization skill is especially helpful in engineering fields; however, we should 
not limit engineering to only those with this innate skill set. Improved 3D visualization may help students 
achieve the lesson’s learning objectives as they can see physical behaviors in a realistic manner and can 
make the content more accessible to those who struggle with 3D visualization. To achieve this objective, I 
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led the development of two interactive teaching aids based on 3D visualization. These visualizations are 
used in my CEE 445 course. 

1. Virtual reality (VR) building plan matching game. This teaching aid helps students convert 2D 
building plans to a 3D realistic model of a building. The format is a virtual reality (VR) game, 
which many students are already comfortable and familiar with. Students are given immediate 
feedback during the game and helpful hints and tips to help them achieve the objective. 

2. Augmented reality (AR) bolted steel connection. This module helps students visualize 3D 
connection fracture failure modes. Furthermore, they can interact with the model to pull the 
fractured connection apart. The aim of this teaching aid is to improve identification of fracture 
patterns and identify areas in shear and tension through 3D visualization and interaction. 

I continue to develop interactive teaching aids, including a virtual reality tour of a metal building as part of 
the educational outreach aims of an NSF funded project. Additionally, I solicit feedback on the interactive 
teaching aids from students and other educators with the aim to revise and improve the teaching aids. 
 
Goal 3: Improve the availability of out-of-classroom activities. 

Students spend most of their educational career in the classroom and occasionally in hands-on labs 
or activities. One important feedback provided in graduation surveys is that they struggle to see the 
connections between classroom activities and the real world. Therefore, I aim to take my students on field 
trips directly related to our course content, which includes a steel fabricator visit for CEE 445 and a trip to 
a metal building manufacturer for CEE 545. For those who are unable to attend the scheduled physical field 
trip visit, I provide them with access to a virtual fabrication shop tour. The virtual tour is in 360° and can 
be viewed in a VR headset or on a screen and is fully narrated. Furthermore, field trips to construction sites 
are not always an option for a variety of reasons including safety, finances, availability, timing, disability 
access, etc. To ameliorate this, I led the development of a virtual reality field trip of a steel skyscraper under 
construction. The format of this teaching aid is a narrated 360° virtual reality tour. At each stop on the tour, 
the narrator explains a concept, and images pop up to show the students where to look or show supplemental 
graphics. I plan on continuing to integrate these virtual tours into Steel Structures Design courses as students 
have shown excitement with the tours. 
 
Goal 4: Incorporate modern tools, software, and technology to prepare students for their future careers. 

An important goal in the way I approach teaching is to provide students with a foundation to 
accurately use the tools of the trade based on their understanding of fundamentals. Structural engineers 
frequently use structural analysis software to analyze and design a structural system, however, the output 
is only as accurate as the user input and the user understanding of structural behavior. To achieve a balance, 
I use modern design tools in class, but emphasize the importance of understanding the input and checking 
and critiquing the results. Students in CEE 445 and CEE 545 use multiple structural analysis software 
packages so that they do not learn to use a single tool, but rather know how to apply their knowledge to use 
whichever tool is more appropriate for the job. Additionally, I have employed computational notebooks as 
a tool so students can dynamically analyze and interpret their results. A computational notebook combines 
code, equations, and narratives, etc., in one tool where the user can interact with the notebook by changing 
the input and directly noting the change in output. The teaching environment created with the use of 
computational notebooks helps them easily gauge how specific input parameters have a more significant 
effect on the system. This practice increases their understanding of structural system behavior and how 
uncertainties influence a structural analysis. This active learning approach is more effective than passive 
lectures and allows the student to take onus of their studies. 



References  Dr. Hannah B. Blum 

Page 1 of 1 
 

Dr. Benjamin Schafer 
Willard and Lillian Hackerman Professor of Civil and Systems Engineering 
Johns Hopkins University 
 

Website: https://engineering.jhu.edu/faculty/benjamin-schafer/  
Phone: 410-516-6265 
Email: schafer@jhu.edu 

 
 
Dr. Ronald Ziemian 
Presidential Professor of Civil & Environmental Engineering 
Bucknell University 
 

Website: https://www.bucknell.edu/fac-staff/ronald-ziemian  
Phone: 570-577-1784 
Email: ziemian@bucknell.edu 

 

 
Dr. Kim Rasmussen 
Challis Professor of Civil Engineering 
Chairman, Centre for Advanced Structural Engineering 
The University of Sydney 
 

Website: https://www.sydney.edu.au/engineering/about/our-people/academic-staff/kim-
rasmussen.html  
Phone: +61 2 9351 2125 
Email: kim.rasmussen@sydney.edu.au 

 
 
Dr. Barry Rosson 
Professor, Department of Civil, Environmental and Geomatics Engineering 
Florida Atlantic University 
 

Website: https://www.fau.edu/engineering/directory/faculty/rosson/   
Phone: 561-297-4554 
Email: rosson@fau.edu 

 
 
Dr. Tom Sputo 
Technical Director, Steel Deck Institute 
Master Lecturer Emeritus, University of Florida 
Consulting Structural Engineer, Sputo and Lammert Engineering, LLC, Gainesville, Florida 
 
 Website: https://www.essie.ufl.edu/people/name/thomas-sputo/ 

Phone: 352-317-3086 
Email: sputo@ufl.edu; tsputo50@gmail.com    

https://engineering.jhu.edu/faculty/benjamin-schafer/
mailto:schafer@jhu.edu
https://www.bucknell.edu/fac-staff/ronald-ziemian
mailto:ziemian@bucknell.edu
https://www.sydney.edu.au/engineering/about/our-people/academic-staff/kim-rasmussen.html
https://www.sydney.edu.au/engineering/about/our-people/academic-staff/kim-rasmussen.html
mailto:kim.rasmussen@sydney.edu.au
https://www.fau.edu/engineering/directory/faculty/rosson/
mailto:rosson@fau.edu
https://www.essie.ufl.edu/people/name/thomas-sputo/
mailto:sputo@ufl.edu
mailto:tsputo50@gmail.com


Research Statement  Dr. Hannah B. Blum 

Page 1 of 3 

It is my long-term career goal to develop the next generation of structural design methods for steel 
structures which will use data-driven approaches to account for uncertainty and safety and will optimize 
for performance objectives in the structural steel and cold-formed steel industries. This approach will enable 
engineers to create unique and efficient infrastructure, and most importantly, to advance the development 
of infrastructure that is resilient to extreme loads and natural hazards. My previous and current research 
focuses on the design and analysis of steel, cold-formed steel, and stainless-steel structures, structural 
stability, and structural reliability through computational modeling and experimental methods. My research 
portfolio encompasses both conventional structural engineering research and collaborative, multi-
disciplinary projects. To improve the structural design, analysis, and construction processes, I have begun 
to integrate new technology, including augmented reality and data-driven approaches. My research presents 
a novel combination of computational models, advanced system analysis, experimental work, and 
technology integration along with strong academia-industry partnerships. My four main research foci are 
described below.  
 
Resilient infrastructure subjected to hazards in a changing environment 

Natural hazard events, such as high wind events, are becoming more prevalent due to the changing 
environment. Furthermore, infrastructure may be prone to larger temperature variations under normal 
operating conditions. We need to prepare the next generation of infrastructure to withstand these increasing 
demands. My research group is currently investigating the resiliency of metal buildings, a common building 
system typically composed of steel members, subjected to transient internal pressure from tornadoes (NSF 
Award #2053364). This is a collaborative project in which my research team provides expertise in finite 
element modeling and steel structures and collaborates with a wind engineering team at Texas Tech 
University. Our aim is to determine how to make the structural system more resilient and reduce damage 
after tornadoes. We do this through advanced system modeling of steel structures accounting for uncertainty 
and interactions among the structural elements, incorporating the wind tunnel results from the wind research 
team. This collaborative project will benefit society by improving metal building designs, which are often 
used as critical infrastructure in rural areas. In addition to hazards from tornadoes, my group has also 
researched the material properties of advanced high strength cold-formed steel at both subzero and elevated 
temperatures to determine predictive equations which can be employed in advanced structural modeling. 
Subzero performance is important if infrastructure is to be built in high latitude regions, which are becoming 
more habitable as the earth warms. Elevated temperature characterization is critical in performance-based 
design when considering potential fire hazards. This research will help to advance the next generation of 
building materials. 

Historic structures must also be resilient in our changing climate. My group is part of 
multidisciplinary project with collaborations among structural engineering, geological engineering, and 
computer engineering researchers to develop a method for monitoring and assessing historic structures 
subjected to changing climate conditions. The project will focus on monitoring the sites using non-
destructive methods, robust finite element modeling of the infrastructure subjected to adverse climate 
conditions, and augmented reality visualization to assist with inspections. We are working with the 
Construction Engineering Research Lab, which is part of the Department of Defense.  
 
Comprehensive structural system analysis 

Structural system analysis, a type of analysis where the entire structural system including all 
members and connections is analyzed together to account for member interactions, can lead to improved 
performance over the conventional single-member analysis approach. Structural system analysis can lead 
to structures that are more cost competitive, predictable, and efficient. With the improvement in technology, 
robust computational modeling of structural systems is becoming easier and computationally cheaper. 
Accurate input, analysis capabilities, and confidence must be obtained to ensure acute computational model 
output. My group has worked on quantifying critical input required for advanced computational modeling 
and analysis and advanced modeling techniques required to advance the field through system analysis. 
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With regards to input, my team has worked on quantifying residual stresses in press-braked 
advanced high-strength cold-formed steel (AHSS) through sectioning, hole-drilling, and modeling 
approaches. Obtaining accurate residual stress measurements through experiments is often considered 
challenging but necessary for accurate design using a systems level analysis as residual stresses affect 
yielding and loss of member stiffness, which influences the behavior of the structural system. The residual 
stress values and distributions acquired during the project can be used for future robust finite element 
modeling of AHSS members and systems to help bring structural members composed of advanced high-
strength steels to the construction industry. High strength steels have a high strength-to-weight ratio and 
may be beneficial in lowering construction costs by reducing materials needs and transportation costs. 
 

With regards to analysis capabilities, my research group has evaluated the performance of a new 
line element to accurately model nonsymmetric behavior in steel members and systems, including steel 
joists with nonsymmetric loading conditions. A line element is the most widely used method of structural 
analysis for most structural design companies, however, the standard line element does not account for 
nonsymmetric behavior. This work was funded by the American Iron and Steel Institute and the Steel Joist 
Institute. To ensure confidence in the results, an experimental study was conducted to validate the finite 
element output on the steel joist system. The validated modeling approach has enabled industry to analyze 
their non-symmetric structural systems more accurately. 
 

With regards to structural reliability, my research group is working on a novel specification-driven 
effort to implement system reliability across steel joist and deck systems. Funded by the Steel Joist Institute 
and the Steel Deck Institute, we are investigating steel joist subsystem reliability to help uncover potential 
benefits of a reliability-driven design approach to open-web steel joist systems, beginning with the 
reliability of single joists. This will then be followed with system reliability of steel deck. Afterwards, the 
research will progress to joist roof systems. The system reliability approach considers measured 
uncertainties in the input parameters, and the robust computational models required for the analysis are 
validated and calibrated with experimental data. The results of this study will help improve both safety and 
efficiency of these steel-based structural systems. 
 
Integrating technology innovations in the structural steel industry 

My group implements new technologies and data-driven approaches into the structural design and 
construction processes. With regards to new technologies, we are evaluating the use of mixed reality to 
improve the efficiency and quality control of structural steel fabrication through interactive holograms that 
integrate key information from design files through a project funded by the American Institute of Steel 
Construction. The aim of the project is to augment the existing steel fabrication method by creating faster 
and more efficient quality control processes and proposing step-by-step guides for steel fabricators for 
complex connections and training of a rapidly changing workforce. Interest in this area is growing in the 
steel community, which resulted in a recently funded project by the Steel Founders’ Society of America 
(Prime: Department of Defense) to develop and implement this technology in a local steel foundry.  
 

Data-driven design approaches and big data can benefit the steel design industry if used 
appropriately. The Steel Deck Institute has funded my team to investigate data-driven approaches to parse 
a large shear connector database into groupings which may permit larger resistance factors in the design 
process, thereby improving the design efficiency. My team also investigated using machine learning to 
identify important features in a dataset considering the effects of highly imbalanced and high dimensional 
data commonly present in structures. Furthermore, we also investigated the comparison of conventional 
interpolation methods to machine learning methods to accurately predict the strength and failure modes of 
steel hollow section compression members from a large database grouped into experimental only, 
computational only, or combined. This information is crucial to advancing data-driven design approaches 
for a faster design process while ensuring adequate safety. 

 



Research Statement  Dr. Hannah B. Blum 

Page 3 of 3 

We are also examining how to scan structural steel components with a combined structured light 
and infrared laser scanner and measure geometric imperfections from the resulting 3D point clouds. 
Determining and quantifying specific geometric imperfections from dense 3D point clouds is nontrivial. 
Eventually, the geometric information can be used as input in finite element analyses. 
 
Advancing the steel industry through academia-industry partnerships 

My research group is active in several industry-funded projects that are updating design provisions 
to ensure adequate safety in newly designed structures. One project, funded by the American Iron and Steel 
Institute (AISI), involved a computational-based parametric study on commonly produced cold-formed C 
and Z cross-sections subjected to torsion and combined bending and torsion at various interaction levels. 
The parametric study results were shared with the relevant AISI subcommittee to update design provisions 
in the AISI Specification. Another project, supported by the American Institute of Steel Construction 
(AISC), evaluated the strength of stainless-steel unequal leg angle compression members. The project 
included imperfection analysis, member testing, residual stress measurement, and computational modeling 
to expand the test database. The collected data will be shared with AISC professional committees to produce 
updated design recommendations for the AISC Specification. A third project, funded by the Steel Joist 
Institute (SJI), investigated the interactions of back-to-back angles in steel joist and joist girder chord 
members relative to flexural-torsional buckling behavior, with the aim of determining appropriate design 
guidance for the failure mode of built-up joist chord members under compression for the SJI Specification. 
AISI also funded my group to conduct a comprehensive literature review of testing by analysis provisions 
across multiple fields and standards from a variety of countries with the aim to determine how to best 
implement testing by analysis into the AISI standards. These projects all aim to improve accurate modeling 
of non-symmetric members which is vital to advance data-driven design approaches and innovative design 
considerations.  
 
Future directions  

My future research directions with focus on three main areas: (1) infrastructure resilience to 
changing climates, (2) advanced visualization and extended reality in structural engineering, and (3) next 
generation structural design. Over the next few years, I would like to expand into investigating non-
structural energy-dissipating building elements to improve building resistance to high lateral loads (e.g., 
wind and earthquake) and additionally freeze/thaw effects on infrastructure. Later, I look forward to 
collaborating with multidisciplinary teams to solve big-picture infrastructure challenges regarding holistic 
system performance to meet the needs of a growing population. 

 
I am currently working on creating a new research center, R3: Holistic Steel Systems – Reliable, 

Robust, Responsible. The R3 initiative is a new industry-academia partnership to study steel design as a 
holistic system – including the impact of sustainability and resilience. The Center will focus its efforts on 
the integration of all of the three R’s into a holistic system, where the aspects of Responsibility are not 
considered separately as a Yes-No decision, but as a functional aspect of structural design. The Center will 
seek industry sponsors from both trade associations and individual manufacturers of steel and steel 
construction products. Funding from sponsors will be used to support pilot projects that will help gain 
external funding sources from government agencies. Later, the Center will expand and pursue non-industry 
funding sources to extend industry resources. There is currently interest among several industry groups, 
and I will be recruiting additional members over the next year. 
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A B S T R A C T   

Cold-formed steel components exist in a variety of structural systems including wall, floor, and roofing systems. A 
common feature of these cross sections is that they are often open and singly symmetric or point symmetric. 
While design requirements for these cross-sections account for the relevant effects resulting from their lack of 
symmetry, structural analysis programs do not always consider these effects. Engineers will use structural 
analysis programs to calculate the appropriate load sharing among members in the structural system. Accounting 
for the appropriate stiffness of each member and the related deformations is a vital component to determining 
the final distribution of bending moment, forces, and displacements. Many common structural analysis programs 
treat all sections as doubly symmetric without warping. Removing this assumption causes non-symmetric cross 
sections to exhibit nonplanar displacements and complicates the stability limits. The analysis of two structural 
systems composed of non-symmetric members was completed with varying member modeling assumptions 
utilizing multiple finite element software programs. A single channel portal frame was investigated that was 
subjected to simulated gravity load and wind loading with varying bracing support. Additionally, a roofing 
system with Z-section or channel purlins and channel bracing was investigated. The finite element analysis re
sults were compared among the various modeling assumptions and existing experiments where available. It was 
observed that good agreement between the doubly symmetric and the more complex analyses was obtained in 
some instances, particularly when the members were loaded to low levels and highly constrained. However when 
loading is closer to the elastic limits and members can more freely move out-of-plane, the inclusion of non- 
symmetric section properties becomes a critical factor in determining an accurate response for both internal 
forces and displacements. The variations between these different analysis methods were found to be difficult to 
predict due to the cumulative effect of the competing mechanical behaviors that could result in either conser
vative or unconservative responses when ignoring non-symmetric behavior.   

1. Introduction 

Thin-walled cold-formed steel sections are often not doubly sym
metric which results in complex structural behavior that cannot be fully 
defined by the base behavior introduced in a Mechanics of Materials 
course. The AISI Specification [1] identifies some of the complex 
behavior through the required design capacity provisions. These pro
visions include accounting for warping and the associated additional 
normal stresses, the effects of a nonconcentric shear center and centroid 
for a column buckling under axial load, and Wagner coefficients when 
defining the lateral torsional buckling capacity of a beam in bending. 
Other behaviors such as local and distortional buckling effects are also 
covered. 

In contrast, the requirements for an elastic structural analysis for 
demand and serviceability detailed in the AISI Specification [1] do not 
cover the same scope of behaviors. The requirements related to behavior 
are primarily focused on a two-dimensional evaluation of cold-formed 
steel structures. The minimum required behavior includes (1) flexural, 

shear, and axial member deformations as well as effects of connection 
deformations with (2) second-order effects highlighting the inclusion of 
P-δ (member) and P-Δ (system) effects. The consideration of twist, 
warping, or non-symmetric section properties is left to the discretion of 
the engineer. In the design phase, the impact of twist including warping 
effects and second-order twist effects is highlighted in a user note and 
commentary for the Direct Strength Method which indicates that 
ignoring these effects may underestimate elastic buckling capacities. 
Ziemian et al. [2] showed how the twisting of doubly symmetric sections 
can result in significantly different displacements and internal forces 
when ignoring warping effects. This response is amplified in non- 
symmetric sections as they are often either not loaded in alignment 
with a single principal axis or not loaded through the shear center which 
introduces an initial out-of-plane deformation including twist. 

In addition to engineering judgement for determining which 
modeling assumptions to utilize, an engineer is often limited by the 
abilities of the structural analysis software available to them. Many 
structural analysis programs utilize a line (beam) element that assumes a 
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doubly symmetric cross section with six degrees of freedom per end of 
the element [3,4] which results in linear torsion and the exclusion of 
warping effects [1]. Non-doubly symmetric cross sections employed in 
these programs commonly assume the member to behave as a doubly 
symmetric section in the principal orientation. Any specific non- 
symmetric section behavior is left to the user to attempt to model with 
some direction from design guides, help forums, and experience. Recent 
work by various researchers [5–9] has resulted in new line element 
formulations that remove the doubly symmetric assumption and related 
approximations and instead, directly account for the twisting effect 
associated with members with non-symmetric (singly symmetric, point 
symmetric, and asymmetric) sections. The work by Liu et al. [8] has 
been implemented into the structural analysis algorithms within 
MASTAN2 [10], along with additional tools to readily model these 
sections, and in part, provides a basis for this paper. 

Another important facet of the evaluation of structures is the 
connection behavior. Recent work has sought new ways to capture this 
response as even a simple rigid connection with thin-walled members 
provide challenging interactions at connection due to warping effects 
[11]. Shayan and Rasmussen [12] modeled connection behavior in 
doubly symmetric I-beams using line elements by adding springs to the 
fixed connection to simulate warping effects. Sapountzakis and Dikaros 
[13] modeled connection behavior directly using line elements by 
introducing a number of additional degrees of freedom to capture 
distortion. Hansen and Jönsson [14] isolated the connection behavior by 
using a hybrid modeling approach with shell elements to create the 
connection which was then transitioned to a less demanding line 
element for the remainder of the span. In non-symmetric sections, 
Hancock [15] and Rinchen et al. [16] noted the connection behavior was 
complicated further due to all internal forces not acting at a single 
concentric location which complicated the bimoment. 

The primary objective of this paper is to report on a study that 
compared results determined from analyses using different modeling 
approaches of structural systems with members comprised of non- 
symmetric sections. Solutions of a shell element model, a doubly sym
metric line element model, and a non-symmetric line element model are 
presented. This paper builds on the previous evaluation of single 
members including an angle, channel, and Z-section and a simple I-beam 
portal frame presented in Sippel et al. [17]. The systems presented in 
this paper include a single channel portal frame with connection dis
continuities and a roof system containing discretely braced cold-formed 
Z-section or channel purlins. 

2. Structural Analysis Methodology 

Many different options and methods are available to engineers to 
complete their structural analysis. A common approach for practicing 
engineers is to use a commercially available structural analysis program 
that implements a conventional line element that assumes a doubly 
symmetric cross section. If the engineer wants to avoid this assumption, 
an alternative would be to utilize finite element models created with 
shell or solid elements. However, even a small structure modeled this 
way would become unwieldy quite quickly. A preferable alternative 
would be to implement a line element evaluation that can readily ac
count for both symmetric and non-symmetric section within existing 
modeling procedures. 

The main focus of this study was to compare the analysis results of a 
structural system and not a program specific algorithm. Table 1 provides 
abbreviations of the analysis models employed based on the underlying 
model behavior. SAP2000 [18] and RFEM [19] were used represent an 
analysis in which members are assumed to have a doubly symmetric 
cross section and ignore warping effects. The default line (beam) 
element within each program, that utilize 12 degrees of freedom per 
element, were used. The use of both programs allowed for cross vali
dation of the results as there are possible variations in the underlying 
formulations. The analysis of non-symmetric cross sections was 
completed with the use of MASTAN2 [10] and Abaqus [20]. Within 
MASTAN2, the analysis models were completed with the default line 
element which permits the modeling of symmetric and non-symmetric 
section with its 14 degree of freedom line element. Of the multiple 
line elements in Abaqus, the B31OS line element [21] was utilized. 
Similar to MASTAN2, this element is a two node, three-dimensional 
open section element that includes warping effects. It differs from 
MASTAN2 in that integration is employed within each load increment to 
obtain the element stiffness matrices. Similar to the doubly symmetric 
analyzes, the use of both non-symmetric programs allowed for cross 
validation of a line element response while also allowing for verification 
of the results from the novel MASTAN2 approach. These line element 
models were also compared with SR4 shell element models that were 
created in Abaqus. 

With this study focused on the system behavior of non-symmetric 
sections, each of the structural analysis programs was first assessed for 
the ability to model minimum behavioral requirements. The verification 
started with two-dimensional, geometrically nonlinear analysis identi
fied through the commentary in the AISC Specification for Structural 
Steel Building [3] as AISC and AISI have similar base analysis re
quirements. It was noted that all of the structural analysis methods 
considered are capable of capturing consistent flexural, shear, and axial 
member deformations with consideration of P-δ and P-Δ effects with a 
summary provided in [17]. The next level of validation evaluated the 
three-dimensional analysis with twisting effects based on the advanced 
analysis example presented in the commentary of the AISC Specifica
tion. Each set of analysis results were in agreement with the reference 
solutions, which provided different results based on whether nonuni
form torsion (warping) was included in the evaluation. Ignoring the 
effects of warping is often considered conservative for the analysis of 
hot-rolled steel sections as discussed in Ziemian et al. [2] due to the 
softer twisting response. The exclusion of warping will cause increase 
initial rotations; however, it becomes difficult to predict the overall 
response as the increased rotation can cause unexpected changes to the 
expected load path [17]. After establishing a baseline behavior, a study 
of individual non-symmetric members was completed as discussed in 
[17]. Three example problems were introduced that identified specific 
non-symmetric section responses. The more sophisticated analyses were 
able to capture behaviors that were missed by the doubly symmetric 
evaluations. These behaviors included the translation of a non- 
symmetric section due to twist, buckling interactions with shear cen
ter offsets, and bi-axial bending responses. In these individual members, 
a primary factor driving the observed differences could often be noted; 
however, in a slightly more complex system, such as a mono-symmetric 
I-beam portal frame, the combined interactions quickly made it difficult 
to assign a cause to variations in displacement and moment reactions. 

The comparison of the structural systems in this study was primarily 
focused on the forces and displacements determined using each analysis 
method. This comparison also included consideration of stability while 
observing the same details. This investigation into stability was limited 
to behaviors captured by line elements, a primary component of this 
study. As a result, scenarios where local and distortional effects 
controlled the behavior were not evaluated with the various analysis 
methods. 

Table 1 
Analysis results labels.  

Program Analysis Element Label 

SAP2000 Doubly Symmetric line element without warping DS-1 
RFEM Doubly Symmetric line element without warping DS-2 

MASTAN2 Non-Symmetric line element with Warping NSW-1 
Abaqus Non-Symmetric line element with Warping NSW-2 
Abaqus Shell element Shell  
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3. Portal Frame 

3.1. Portal Frame Description 

The first example was of an experimental series of single bay, single 
channel portal frames tested by Baigent and Hancock [22]. The channel 
portal frames allowed for an investigation into the deformation of 
channels under combined loading. The combined loading response was 
of interest as previous investigations with lipped channels indicated that 
combined interactions required non-symmetric modeling to accurately 
capture the complete behavior [17]. 

The typical portal frame is described in [22] with more detailed in
formation provided in [23]. Fig. 1 shows the left-hand side of the frame 
geometry which would be mirrored about the centerline to obtain the 
full frame. The frame was subjected to three loading combinations 
illustrated in Fig. 2 representing vertical only loading (Case 1), trans
verse wind loading (Case 2), and longitudinal wind loading (Case 3) 
with one of two lateral support conditions. The first condition provided 
support at the external lateral bracing locations only, while the second 
condition provided support at the external and internal lateral bracing 
locations. The external lateral support was applied at the locations 
marked by a • in Fig. 1 to simulate purlins and girts. The addition of the 
interior supports at the locations marked with an ‘x’ simulated fly- 
bracing by introducing a torsional restraint to the channels due the 
second lateral support. The loading shown in Fig. 2 was applied at the 
same location as the external lateral support using suspended lead 
weights. The frame was constructed with lipped channels as the main 
members and custom bracket connections with the cross-section di
mensions shown in Fig. 3 [23]. The modulus of elasticity was taken as 
203 GPa with a Poisson’s ratio of 0.3. 

3.2. Portal Frame Modeling Details 

As part of their investigation, Baigent and Hancock [22] presented 
good agreement between the experiments and their models. As such, the 
models built in this study were constructed to best replicate major 
modeling features which primarily focused on the connections at the 
eave and apex. Baigent and Hancock treated the connection brackets as 
rigid links due to the significantly thicker and larger sections used which 
was similarly used in this study. The connection brackets were only 
bolted to the channel web which was modeled as a fixed connection 

allowing for the transfer of moments and forces with the warping 
unrestrainted in the connection or channel. Lastly, the original model 
accounted for the connection behavior at the middle of the channel web 
which was implemented in the various models. 

Following the geometry indicated in Fig. 1, the channel portal frame 
models were created with the channel members between rigid connec
tions. The channel members were assumed to extend between the center 
of the bolt group on each end. The base of each column was modeled as a 
hinge only free to rotate about the z-axis. In the physical experiment, 
brackets were attached to the flanges of the main channels and 
connection brackets to allow for the attachment of lateral supports and 
to apply the vertical loading. As a result, the support nodes were 
centered on the flange of the channel, 125 mm from the strong axis of 
the section. This node was then pinned in the z-direction. 

The line element models were readily created based on the above 
features. The necessary offsets were obtained using rigid links. Each 
model was meshed uniformly between critical dimensions with a 
reference size of 50 mm based on the mesh study completed as part of an 
earlier phase in this study [17]. 

The shell element models were created to replicate the same 
modeling assumptions as the line element models. The fixed but free to 
warp connection constraint at the ends of channels was created by a 
rigid tie along the web of the channel. The rigid tie on the web was 
extended along the length of the member as illustrated in Fig. 4 to ensure 
weak axis moment connection. The 60 mm extension of the rigid ties 
were aligned with the bolt position to approximate the internal cover 
plate at the eave and apex. The rigid tie at the web was readily inte
grated into a rigid assembly that included the supports at the column 
base and eave connections. Due to modeling constraints and the need to 
include two lateral supports at the apex connection, a shell element 
model of the apex was included as a deformable body. To approximate 
rigid deformation in this connection, this larger channel bracket was 
defined with a modulus of elasticity 10 times the standard value and a 
full depth stiffener at the lateral support locations. The remaining lateral 
supports and loading offsets were obtained using a 12 mm thick tab 
directly attached to the flat of the channel flange with the increased 
modulus of elasticity. The shell element model was meshed with a seed 
size of 2 mm. 

Fig. 1. Single channel portal frame geometry. Dimensions shown 
are symmetric. 

Fig. 2. Three loading scenarios applied to portal frame.  

Fig. 3. Cross-sectional dimensions of (a) lipped channel and (b) bracket.  
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The loading was applied to all models as point loads on the appro
priate nodes. This study was completed using an undeformed model 
because no initial imperfections was noted in the prior model evaluation 
[22] and the offset of the applied loading would introduce out-of-plane 
effects without additional imperfections. This decision was reinforced 
by the two sets of experimental results available for Case 1 with lateral 
supports exhibiting similar elastic responses prior to local failure of the 
channels with different imperfections. Since the actual failure mode of 
frames was local buckling in the channel members, no stability analysis 
was considered for this frame as the limiting behavior would not be 
captured by the line element analyses. 

This study considered the same loading procedure as the physical 
experiment with a preload step and then the full load incrementally 
applied. The initial preload was included as it applied loading to the 
frame in a slightly different distribution compared to the full load in
crements while still being a significant fraction of the total vertical load 
applied. The undeformed model was initially loaded with 175 N in the 
vertical direction and 10 N in the horizontal direction at each node 
corresponding to the loading directions shown in Fig. 2. After this initial 
step, the loading was increased at each node corresponding to the 
loading distribution indicated in Fig. 2. 

3.3. Portal Frame Results 

The available experimental data in [23] provided the in-plane 
deformation for most of the test configurations. As shown in Fig. 5, 

the shell analysis model was capable of reasonably modeling the main 
behavior of the frames while most line element models were stiffer. In 
this example where the frame is only laterally supported, the non- 
symmetric line element analyses captured a softer displacement 
response compared to the doubly symmetric evaluation. This different 
response between the doubly symmetric and non-symmetric evaluations 
could be observed in other load cases as well as shown for Case 3 for the 
lateral displacement, Fig. 6, and the vertical displacement, Fig. 7, of the 
rafter. The variation between the methods decreased as the channel 
members where more restrained with the addition of the internal lateral 
support. Similar results from Case 1 are highlighted in Table 2 which 
summarizes some results with absolute error to the shell model results 
provided in parentheses after the numeric value. Another significant 
change to the system shown in Table 2 was the out-of-plane behavior. 
With only the external restraint, the non-symmetric analyses displayed 
60% larger out-of-place displacement than the doubly symmetric 
behavior in Case 1. However once the internal restraint was added, 
minimal variation was observed in the different line element methods. 

The non-symmetric structural analysis procedures were reviewed 
since the results from this study were found to be stiffer than those from 
the modeling results plotted by [24]. The primary difference noted be
tween these methods was the transfer of forces at the connections, 
particularly bimoment. Both methods in this study and the previous 
work by Baigent and Hancock allow for the end of an element to be 
defined as continuous, fixed, or free for warping. The difference is the 
effects of bimoment due to changes in the cross section and orientation. 
The work by Baigent and Hancock included bimoment variations due to 
the offset shear center and bending moment and the compatibility with 
the adjacent connection bracket. This additional bimoment would 
introduce additional twist to the system which would cause additional 
weak-axis bending of the section due to the rotation of the section and 
thus an overall softer response. While not fully explored in this study, the 
free to warp (zero bimoment) condition at the end of the connection 
brackets resulted in a bimoment distribution within the channel per [24] 
that could not be reproduced within either of the non-symmetric line 

Fig. 4. Dimensions of channel (a) end bolted connection and (b) rigid 
tie model. 

Fig. 5. Vertical displacement at midspan of left rafter for Load Case 1 with 
external lateral support. 

Fig. 6. Lateral displacement at midspan of left rafter for Load Case 3 with (a) 
external lateral support and (b) internal and external lateral support. 
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elements in this study. The selected elements do not have an ability to 
relate applied forces at the end of the member to internal bimoments. 
The internal bimoment can only develop at a continuous or fixed 
warping condition. 

4. Roof System with Z-Section Purlins 

4.1. Roof System Description 

When assessing a structural design, an engineer will often utilize a 
general understanding of how the structure will behave to simplify the 
necessary evaluations. For example, an engineer may evaluate a roof 
purlin as an individual element and separately design the supporting 
beams and bracing. However, this process requires an assumption of the 
underlying response. In a roof system, the consideration of an unre
strained bending response with non-symmetric sections introduces 
additional biaxial bending and twisting effects which may not be 
considered in a simplified component analysis. To study the combined 
response of the entire system, the single slope roof shown in Fig. 8 was 
considered which included non-symmetric roof members supported by 
rolled I-beams. The cross-section designations that follow are listed by 
the equivalent metric size followed by the standard American section 
size. 

The four inclined W310x38.7 (W12x26) I-beams carry continuous Z- 
section purlins, 305Z76-254 M (1200Z300-100). As the design assumed 
no bracing from the roof deck, the purlins were considered discretely 
braced by channels, 203S70-144 M (800S275-57). A single channel 
brace at midspan was used based on work by Sputo et al. [25] that a 
single brace could provide adequate restraint. Fig. 9 depicts the stacked 
configuration of the purlin and I-beams as well as the angle, L51x51x3.2 
(L2x2x1/8), fly bracing included at the •’s in Fig. 8(a) which braced the 
I-beam bottom flanges. The I-beam and angle members were modeled 
with a modulus of elasticity of 200 GPa and the Z-section and channel 
members were modeled with a modulus of elasticity of 203 GPa. All 
members were modeled with a Poisson’s ratio of 0.3. 

The roof system was evaluated for the application of a downward 
vertical load simulating dead/live loading and an upward load 
perpendicular to the roof slope to simulate wind loading. This loading 
was applied as a uniform distributed load at the purlin centroid. The roof 
system was evaluated for two cases. Case 1 considered a finite 1.5 kN/m 
load to establish a baseline comparison point. Case 2 considered the 
elastic stability limits to identify the analysis behavior at high loading 
levels. 

Fig. 7. Vertical displacement at midspan of left rafter for Load Case 3 with (a) 
external lateral support and (b) internal and external lateral support. 

Table 2 
Analysis results for single channel portal frames at P = 500 N.  

Load Case 1 with Exterior Lateral Supports 

Results DS-1 DS-2 NSW-1 NSW-2 Shell Test 

Ux-2 (mm) -1.83 -1.82 -2.01 -2.04 -3.15 -2.78  
(41.9%) (42.2%) (36.2%) (35.2%)   

Uy-3 (mm) -3.45 -3.44 -5.53 -5.63 -8.34 -7.29  
(58.6%) (58.8%) (33.7%) (33.7%)   

My-1 (N-m) 27.2 27.2 -33.9 -34.7 -37.6 -  
(172%) (172%) (9.8%) (9.8%)   

Uz-3 (mm) -1.88 -1.88 -5.43 -5.43 -8.52 -  
(77.9%) (77.9%) (36.3%) (36.3%)   

Load Case 1 with Exterior and Interior Lateral Supports 
Results DS-1 DS-2 NSW-1 NSW-2 Shell Test 

Ux-2 (mm) -1.78 -1.80 -1.79 -1.82 -3.25 -2.61  
(45.2%) (44.6%) (44.9%) (44.0%)   

Uy-3 (mm) -3.45 -3.40 -3.50 -3.58 -6.40 -4.66  
(46.1%) (46.9%) (45.3%) (44.1%)   

My-1 (N-m) 27.1 27.1 -39.7 -40.2 -38.1 -  
(171%) (171%) (4.2%) (5.5%)   

Uz-3 (mm) -0.02 -0.03 -0.09 -0.09 -1.59 -  
(98.7%) (98.1%) (94.3%) (94.3%)   

Load Case 2 with Exterior Lateral Supports 
Results DS-1 DS-2 NSW-1 NSW-2 Shells Test 

Uy-3 (mm) -3.75 -3.72 -4.11 -4.12 -8.30 -8.14  
(54.8%) (55.2%) (50.5%) (50.4%)   

Fy-4 (N) -251 -251 -252 -249 -248 -  
(1.2%) (1.2%) (1.6%) (0.4%)   

Position Number: 1  = Left Column Base Connection, 2  = Left Eave, 3  =
Midspan of Left Rafter, & 4  = Right Column Base Connection. 

Fig. 8. Roof layout (a) Plan view (b) Section view.  
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4.2. Roof System Modeling Details 

Support reactions were only applied at the I-beams. All beam ends 
were supported in the vertical direction and lateral restraints were 
applied as shown in Fig. 8. The longitudinal reactions at the bottom of 
the I-beams allowed each beam line to resist wind pressure. Minimal 
reactions were applied in the transverse direction to provide stability. 
The ends of the I-beams were free to warp and torsional restraint was 
provided by the fly-bracing. 

The purlins were modeled as continuous members across the I- 
beams. Each support connection allowed for the transfer of shear, axial 
load, and torsion out of each purlin. The ends of the purlins were free to 
warp. The midspan channel bracing was treated as a torsional brace 
through a web only connection. This configuration only precluded the 
transfer of weak axis moment at the connection and allowed the ends of 
the channel to be free to warp. 

The continuous purlins were modeled in a prismatic condition with a 
constant cross section. Epstein et al. [26] investigated the design of 
purlins with continuous top flange bracing so that full cross section yield 
could be achieved for positive moment. A nonprismatic condition ac
counting for the lap length with increased stiffness was found to give 
conservative and more accurate results. The increased stiffness resulted 
in larger negative moments at the supports which was led to more 
critical conditions at the common limiting locations, either the end of 
the lap or at the support. A consequence of the nonprismatic modeling 
approach was that the maximum positive moment decreased as well. In 
this study, the long unbraced length of the purlin would preclude 
reaching full yield of the section in actual design. As a result, the 
maximum positive moment at midspan was considered a critical value 
and could be best obtained using a prismatic evaluation. 

The section properties of the cold-formed members were based on a 
thin-walled model with sharp corners. While common bend radii are 
available, the exact radius used by the reference manufacturer was not 
indicated. Variability was also found in the bend angle of the Z-section 
flange. As a result, this study opted for a simplified geometry to aid 
repeatability. 

The line element models were meshed with a seed of 200 mm for all 
members. The stacked geometry and offset connection shown in Fig. 9 
were obtained using rigid links. The distributed loading mentioned 
above was applied along the length of each element. 

The shell element model was meshed with a seed of 5 mm for all 
members. The I-beam restraints were applied to a rigid tie across the 
height of the web. Similarly, the purlin to I-beam connections included a 
rigid tie over the height of the purlin web to transfer shear forces along 
the full height of the member. These rigid ties were then connected to 
the top flange of the I-beam using a MPC constraint that allowed for the 
transfer of torsion but no other moments. The distributed load was 
applied as point loads at the centroid of the purlin based on the tributary 
length of the element. 

The evaluation of elastic stability needed as part of Case 2 was 
completed using a nonlinear static analysis in all analysis programs and 
an eigenbuckling analysis where possible. The nonlinear analyses were 
determined to have reached a maximum loading when an instability was 
observed. The onset of instability was identified by a significant change 

in deformations or if the model would fail to converge due to the 
instability. In either instance, the results were verified to have a similar 
loading and deformation response as the eigenbuckling analysis or to 
have indicated a negative or zero stiffness near failure. As the selected 
doubly symmetric structural analysis programs could not complete an 
eigenbuckling evaluation considering moments, conventional doubly 
symmetric elements ignoring warping were evaluated in MASTAN2 and 
Abaqus to confirm the underlying behavior. 

4.3. Roof System Results 

For this study, the primary results of interest are the forces and 
displacements of the various members. Based on the magnitude of 
loading alone though, it is difficult to have an understanding of how 
heavily loaded the structure is. To provide context, a demand capacity 
ratio for purlins based on the interaction of strong and weak axis 
moment was provided. While not detailed in this paper, the capacity 
limits of the purlin relative to the AISI Specification [1] were considered 
including combined effects from shear, web crippling, and torsion. A 
preliminary investigation considering these effects found that the 
moment demand capacity ratio was the limiting relationship and pro
vided a useful metric for how much additional loading could be expected 
to be supported by the roof. The values provided in Table 3 were 
determined using the Direct Strength Method with a 3 m unbraced 
length considering the principal orientation [27]. 

The results of the finite 1.5 kN/m loading were similar among all the 
analysis methods when comparing the maximum vertical deflections, 
the moment along the supporting I-beams, and the demand capacity 
ratio for the purlins considering major and minor axis bending at mid
span. A sampling of the results are shown in Table 3 with absolute error 
relative to the shell solution. An interesting result across all analysis 
methods was the change in moment at the supports. The largest mo
ments at the interior supports could be observed in the first purlin, 
which is labeled on the right side of Fig. 8(a), due to no differential 
displacements of the support beams. These interior support moments 
were found to decrease as the differential deflection of the I-beams 
increased as one moved away from the supports. This change resulted in 
larger positive moments at midspan which aligned with the prismatic 
model decision discussed earlier. 

The point symmetric geometry of the Z-section means that two 
different orientations, geometric or principal, can be considered for the 
section. Either orientation may be appropriate for moment comparison 
depending on the design approach taken with the geometric orientation 

Fig. 9. Kicker brace positioning.  

Table 3 
Analysis results for roof system with 1.5 kN/m distributed load.  

Downward Loading 

Results DS-1 DS-2 NSW-1 NSW-2 Shells 

Beam Mx (N-m) 59551 59600 59526 59197 60810  
(2.1%) (2.0%) (2.1%) (2.7%)  

Beam Uy (mm) 38.3 38.0 37.9 38.0 39.1  
(2.0%) (2.8%) (3.1%) (2.8%)  

Purlin Uy (mm) 41.0 40.6 40.7 40.9 43.5  
(5.7%) (6.7%) (6.4%) (6.0%)  

Purlin 1 Ratio 37.6% 35.9% 32.8% 33.0% 37.5% 
Purlin 4 Ratio 33.0% 28.7% 22.6% 23.1% 21.4% 

Uplift Loading 
Results DS-1 DS-2 NSW-1 NSW-2 Shells 

Beam Mx (N-m) 63297 63331 63193 62935 64420  
(1.7%) (1.7%) (1.9%) (2.3%)  

Beam Uy (mm) 40.9 40.5 40.3 40.4 41.7  
(1.9%) (2.9%) (3.4%) (3.1%)  

Purlin Uy (mm) 43.2 42.8 42.9 43.1 44.5  
(2.9%) (3.8%) (3.6%) (3.1%)  

Purlin 1 Ratio 36.2% 36.6% 35.1% 35.9% 34.2% 
Purlin 4 Ratio 45.5% 44.5% 43.1% 43.4% 44.4%  
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associated with the Effective Width Method and the principal orienta
tion with the Direct Strength Method. Therefore, the variation of 
moment in both orientations was evaluated with the results along the 
fourth purlin discussed as an example. The strong axis moment for both 
loading scenarios, in either orientation, were still in good agreement. 
However, variations existed in the weak axis moment distributions in 
both the geometric orientation, Fig. 10, and the principal orientation, 
Fig. 11, for the vertical loading. In either orientation, there was a 
consistent overestimate of the weak axis moment between the end of the 
member and the first brace in the doubly symmetric analyses. While 
vertical loading introduced an increased demand prior to the brace, a 
more complex variation in the weak axis moment was observed in the 
uplift load case as shown in Fig. 12 and Fig. 13. As the applied loading 
was aligned with the geometric orientation, Fig. 12 provides a helpful 
means to understand the response. The weak axis moment distribution is 
a combined response due to the torsional support reactions from braces 
and the I-beams and second-order twisting effects dues to the applied 
loading and lateral displacements. In the non-symmetric analyses, the 
increased torsional stiffness from including warping meant that minimal 
second-order twisting effects were included in the response. In contrast, 
the softer torsional stiffness of the doubly symmetric analyses allowed 
for significant second-order effects. This variation was amplified in the 
uplift case as the loading was oriented 7◦ further from the principal 
orientation than the vertical loading resulting in more initial lateral 
displacement to cause a larger second-order response. 

When evaluating the roof systems for elastic stability, the different 
analysis methods indicated significant variations in the controlling 
response as summarized in Table 4 for the nonlinear static analysis. The 
observed failure of the system in more sophisticated analyses methods 
was the full roof system buckling laterally for the vertical loading and 
the interior beams buckling under uplift as depicted in Fig. 14(a) and 
(b), respectively. The shell element model nonlinear analysis was in 
good agreement with the eigenbuckling evaluation which found limiting 
loads of 3.7 kN/m downwards and 3.3 kN/m in uplift. While identifying 
the same failure mode, the non-symmetric line element nonlinear ana
lyses found stability limits at slightly lower values in the downward 
loading scenario and slightly larger values in uplift which followed with 
the eigenbuckling results, 3.5 kN/m downwards and 3.8 kN/m in uplift. 
The doubly symmetric analyses introduced a different failure mode 
where the central channel braces were buckling due to the applied 
moment. In the eigenbuckling evaluation, the first channels were 
observed to buckle at loads of 1.3 kN/m downwards and 1.6 kN/m in 
uplift. In the nonlinear analysis, the system was able to accommodate 
multiple braces reaching the elastic limit as depicted by the eigen
buckling shown in Fig. 15. However, after the failure of three braces the 
purlins were not able to support additional loading to reach the stability 
limit of the full system. 

Fig. 10. Geometric weak axis moment from vertical loading along 4th purlin. 
Position  = 0 is the left side of Fig. 8a. 

Fig. 11. Principal weak axis moment from vertical loading along 4th purlin. 
Position  = 0 is the left side of Fig. 8a. 

Fig. 12. Geometric weak axis moment from uplift loading along 4th purlin. 
Position  = 0 is the left side of Fig. 8a. 

Fig. 13. Principal weak axis moment from uplift loading along 4th purlin. 
Position  = 0 is the left side of Fig. 8a. 

Table 4 
Maximum distributed load applied [kN/m].  

Case DS-1 DS-2 NSW-1 NSW-2 Shells 

Down 1.67 1.80 3.63 3.58 3.78 
Uplift 1.80 1.92 3.99 4.03 3.42  
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5. Roof System with Channel Purlins 

5.1. Roof System Overview 

The investigation into the roof system thus far has shown the 
importance of the appropriate evaluation of member stiffness to obtain 
accurate results. Prior results from an early part of this study [17] 
indicated that point symmetric Z-section variations could largely be 
attributed to warping stiffness effects. As such, it was desired to further 
investigate this system with channels to account for non-symmetric 
section properties related to a non-coincident shear center and 
centroid. As such, the single slope roof from the previous section was 
evaluated again with lipped channel purlins, 305Z51-300 M (1200C200- 
118), replacing the original Z-section purlins. 

The updated roof system was evaluated for the application of a 
downward vertical load simulating dead/live loading and an upward 
load perpendicular to the roof slope to simulate wind loading. This 
loading was applied as a set of discrete point loads at the locations 
shown in Fig. 16 with an ‘x’. The point loads were applied at the centroid 

of the channel for two different loading cases. Case 1 considered a finite 
1.5 kN load to establish a working load comparison point. Case 2 again 
considered the elastic stability limits of the consistent loading 
configuration. 

5.2. Roof System Modeling Details 

The updated roof system was modeled in line with the description in 
Section 4.2 with updates for the new purlin section and load distribu
tion. The updated channel purlins were similarly modeled as prismatic 
and continuous members across the support beams with discrete bracing 
supports. The centroid of the purlin was assumed to remain constant 
despite the change in cross section. 

In addition to the alterations described above, the other main 
modification to the line element models was to the NSW-2 model. An 
additional rigid link was defined to connect the origin of the section to 
the centroid where the point loads could be defined. 

The shell element model was constructed similarly with the purlin to 
beam connections still located at the web. The first major update was to 
shift the channel and angle braces down the slope of the roof to align 
with the new web location. The other addition was a rigid tie over the 
height of the web at each point load location. Each tie was connected to 
the centroid where the point load could then be applied and distributed 
across the shell model. 

5.3. Roof System Results 

The primary results of interest are the same as for the roof with Z- 
purlins: the internal forces and displacements of members. To provide 
similar context on the level of loading, a demand capacity ratio is pro
vided for the interaction of strong and weak axis moment. The necessary 
moment capacities were determined using the Direct Strength Method 
with a 3 m unbraced length. 

The 1.5 kN point load case for channel purlins presented consistent 
results among the different structural analysis methods. Table 5 sum
marizes a sampling of the maximum vertical deflection of the beams, the 
vertical deflection at the centroid of the purlin, the moment applied to 
the supporting beams, and the demand capacity ratio for the purlins 
considering strong and weak axis bending. Overall, the new roof was 
exhibiting greater variability in the deflection of the purlins. The vari
ation in the channel deformation between the doubly symmetric and 
more sophisticated analyses was attributed primarily to the introduction 
of different amounts of torsion in the different analyses. The more so
phisticated analyses were able to capture the initial loading eccentricity 
resulting from the difference between the shear center and centroid that 
was absent in the doubly symmetric analyses. 

Taking a closer look at the purlin, the moment diagrams again show 
variation between the different analysis methods. The strong axis 
moment was quite similar along the length of the purlin, but the doubly 
symmetric underestimated the maximum midspan moments as shown in 
Fig. 17. Similar to the Z-section, the more interesting behavior was 

Fig. 14. Roof system with Z-Section purlins buckling (a) due to downward 
vertical load and (b) due to uplift. 

Fig. 15. First 4 buckling modes using doubly symmetric analysis for roof sys
tem with Z-Section purlins due to downward vertical load. 

Fig. 16. Roof Point Load Location.  
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observed in the weak axis moment direction depicted for vertical 
loading in Fig. 18 and uplift in Fig. 19. Once again, the softer torsional 
stiffness in the doubly symmetric analyses are resulting in larger twisting 
of the cross section which causes larger second-order effects. In the 
fourth purlin, the doubly symmetric analyses was actually uncon
servative and completed missed a negative moment that developed near 
the applied load, shown in Fig. 20. Overall, the largest variations in the 
moments in the purlin were observed in the outer section between the 

last brace and the final support, especially in the weak axis. 
When evaluating the roof system for elastic stability, the channel 

purlins are susceptible to lateral torsional buckling failures under 

Table 5 
Analysis Results for Roof System with 1.5 kN Point Loads.  

Downward Loading 

Results DS-1 DS-2 NSW-1 NSW-2 Shells 

Beam Mx (N-m) 31214 31239 30821 30545 31315  
(0.3%) (0.2%) (1.6%) (2.5%)  

Beam Uy (mm) 7.4 7.4 7.6 7.7 8.0  
(7.5%) (7.5%) (5.0%) (3.8%)  

Purlin Uy (mm) 25.7 25.6 22.3 28.9 23.9  
(7.5%) (7.1%) (6.7%) (21%)  

Purlin 1 Ratio 69.5% 68.6% 67.8% 75.8% 64.9% 
Purlin 4 Ratio 69.4% 69.0% 67.7% 68.1% 70.5% 

Uplift Loading 
Results DS-1 DS-2 NSW-1 NSW-2 Shells 

Beam Mx (N-m) 12667 12660 12666 12690 12934  
(2.1%) (2.1%) (2.1%) (1.9%)  

Beam Uy (mm) 20.9 20.7 20.7 20.7 21.4  
(2.3%) (3.3%) (3.3%) (3.3%)  

Purlin Uy (mm) 13.5 13.4 13.7 17.5 14.2  
(4.9%) (5.6%) (3.5%) (23%)  

Purlin 1 Ratio 31.4% 31.3% 31.3% 32.8% 29.9% 
Purlin 4 Ratio 33.8% 33.8% 33.9% 33.9% 35%  

Fig. 17. Strong axis moment from vertical loading along the 5th purlin. Posi
tion  = 0 is the left side of Fig. 16. 

Fig. 18. Weak axis moment from vertical loading along 5th purlin. Position  =
0 is the left side of Fig. 16. 
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Fig. 19. Weak axis moment from uplift loading along 5th purlin. Position  =
0 is the left side of Fig. 16. 
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Fig. 20. Weak axis moment from uplift loading along 4th purlin. Position  =
0 is the left side of Fig. 16. 

Fig. 21. Roof system with channel purlins buckling (a) due to downward 
vertical load and (b) due to uplift. 
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vertical loading first while the uplift case is still controlled by the sup
port beam as depicted in Fig. 21. Once again, the different analysis 
methods indicated significant variations in the controlling response as 
summarized in Table 6 for the nonlinear static analysis. While 
completing the nonlinear evaluation of NSW-1 and NSW-2, both 
methods captured nonlinearly increasing deflections prior to the con
trolling failure of the roof system which was a global lateral response 
similar to the example in Section 4. A closer look comparing the 
displacement with the eigenbuckling behavior provided content for the 
apparent disagreement in buckling response noted in Fig. 21(a). The 
eigenbuckling evaluation using NSW-1 indicated 10 different purlin 
buckling modes between 6.1 kN and 7 kN where a system buckling 
response was observed. These buckling modes represented various 
deflection patterns in the purlins that canceled and amplified each other. 
Approaching this lower limit, localized large changes to the deflection 
pattern occurred; however, additional load could still be readily applied 
to the system. Only upon reaching the lateral beam buckling mode did 
the system fail. 

The numerous purlin buckling modes caused difficulties in deter
mining a stability limit for the nonlinear shell element analysis. In the 
shell evaluation, it was not possible to immediately determine the next 
stable orientation at the given load due to the purlin behavior, and as 
such required an arc length evaluation to gradually transition to the next 
stable orientation. The channels starting to buckle caused the outer 
support beams to move slightly laterally and a local rotation of a purlin. 
The nonlinear analysis was able to evaluate this behavior through two 
regions of brief negative stiffness until a stable configuration was found 
and the total applied loading increased. During the third iteration of this 
behavior, the analysis failed due to a near zero stiffness at the transition 
to a positive stiffness with small time steps resulting in the maximum 
value shown. 

Similar to the previous example in Section 4, the doubly symmetric 
analyses encountered a premature failure due to buckling of the channel 
braces. Once the braces began reaching their maximum load, the 
channel purlins began to deflect more which lead to failure. 

6. Discussion 

The evaluation of structural systems requires accounting for the 
appropriate load sharing and deformation of the components. The in
clusion of non-symmetric cross sections complicates this evaluation with 
more complex behavior including significant twisting effects in most 
applications. As shown in Section 3.3 with the modeling of the portal 
frame, a different structural response could be observed between the 
doubly symmetric and non-symmetric analyses when the channels were 
only laterally supported. With the channels more free to move, different 
deformations existed not only out-of-plane, but in-plane as well. When 
the channels were torsionally restrained by the addition of interior 
lateral supports, the variation in the deflection of the system nearly 
disappeared. While some torsion was still applied with exterior and 
interior lateral supports, the available restraints limited the ability of 
non-symmetric sections to move and helped to constrain the response to 
a single plane which improved agreement for the doubly symmetric 
analyses. However as loading and deflection increases, variations will 
begin to appear as observed in Fig. 13 where the different torsion be
haviors caused incorrect secondary weak-axis loading. This variation is 
at an extreme when considering the higher loading associated with 
elastic stability in the roof examples. Despite the agreement among the 
different analysis methods at the lower applied discrete load, eventually 

the applied load caused the inherent variations in the underlying models 
to start controlling the overall response resulting in significant differ
ences. The proper consideration of non-symmetric section properties 
becomes a critical factor under larger loading. 

The response of a structural system with non-symmetric behavior 
could not be readily predicted due to the interaction of competing fac
tors. As a consequence, the results of a doubly symmetric analysis 
including these sections could not easily be determined to be conser
vative or unconservative. In the roof system examples, the doubly 
symmetric analyses were slightly conservative at the lower loading 
levels. The softer twisting response in these non-symmetric sections 
resulted in minimal differences at the lower load level. When evaluating 
the stability of the system, the softer twisting response caused premature 
elastic failure at half the value of the expected ultimate load. In contrast, 
the doubly symmetric results of the portal frame captured an uncon
servative stiffer response than is expected. In this instance, the softer 
twisting response from ignoring warping did not cause larger rotations 
as it was accompanied with an underestimation of the additional 
torsional loading by not considering the shear center position. This 
localized interaction can often be readily discussed after the fact; how
ever, quantifying how significant each factor is beforehand is chal
lenging. As is, the most consistent ways to predict the response of a non- 
symmetric section to loading is either to directly account for the non- 
symmetric behavior or to directly limit the twist of the member to 
improve doubly symmetric predictions. 

7. Conclusion 

Comparisons are made with finite element analysis programs that 
use various formulations to model two structural systems with non- 
symmetric cross sections. As previous work showed the ability of these 
analysis methods to accurately model minimum structural analysis re
quirements, this investigation was able to focus on more complex ex
amples including structural systems. Evaluation of these examples 
highlighted the importance of the interacting twist and non-symmetric 
properties through the entire structural system. While specific compo
nents of the result could occasionally be attributed to the underlying 
model assumptions, it was difficult to predict the cumulative effect of 
the excluded behavior. The more freedom an element had to rotate the 
more critical it was to capture the true behaviour of non-symmetric 
response. This interaction was amplified when the loading increased 
causing greater deformations. Torsional restraint of non-symmetric 
cross sections was identified as a significant factor in achieving an 
appropriate response with a simplified analysis, but no specific recom
mendation was developed. As a result, it is recommended that additional 
guidance be developed and provided to engineers as to when the effects 
of twisting and non-symmetric section properties should be included in 
structural analysis. 
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A B S T R A C T

The machine learning-based feature selection approach is presented to estimate the effect of uncertainties
and identify failure modes of structures that incorporate a low failure probability and high-dimensional
uncertainties. As structures are designed to have few failures, a dataset classified based on the failure status
becomes imbalanced, which poses a challenge for the predictive modeling of machine learning classifiers.
Moreover, in order to improve the accuracy and efficiency of the model performance, it is necessary to
determine the critical factors and redundant factors, especially for a large feature set. This study benchmarks
the novel method for sensitivity analysis by using datasets that exacerbate the problems involved in class
imbalance and large number of input features. This study investigates two planar steel frames with spatially
uncorrelated properties between structural members. Geometric and material properties are considered as
uncertainties, such as material yield stress, Young’s modulus, frame sway, and residual stress. Six feature
importance techniques including ANOVA, mRMR, Spearman’s rank, impurity-based, permutation, and SHAP
are employed to measure the feature importance and identify parameters germane to the prediction of
structural failures. Logistic regression and decision tree models are trained on the important feature set, and
the predictive performance is evaluated. The use of the feature importance approach for structures with a low
probability of failure and a large number of uncertain parameters is validated by showing identical results
with the reliability-based sensitivity study and appropriate predictive accuracy.

1. Introduction

Structures have numerous variations and uncertainty in their prop-
erties, which may affect the load carrying capacity. A reliability-based
sensitivity analysis estimates how uncertainty in the input parameters
affects system performance by analyzing the dependence of the failure
probability on the inputs, which requires repeated evaluation of the
performance function, resulting in significant computational cost and
time. This challenge is exacerbated for large-scale engineering problems
which often carry a large quantity of uncertain parameters, which
for machine learning is referred to as a large dimension in a dataset.
Researchers have made efforts to improve the computational efficiency
of sensitivity analysis. For example, Wu [1] proposed the adaptive im-
portance sampling approach, which improves computational efficiency
by minimizing oversampling in the safe region of the limit-state surface.
The score function approach proposed by Rubinstein and Kroese [2]
estimates all sensitivities by the gradient and derivative of parameters.
The score function method does not require additional simulations
for reliability sensitivity analysis. Torii et al. [3] applied polynomial
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expansions to the performance function and its derivatives for the
probability of failure sensitivity analysis. Proppe [4] introduced the
local reliability sensitivity analysis using the moving particles method,
which estimates the failure probability based on the new locations of
the moved data points in the design space.

For high-dimensional data, it is difficult to make a right decision on
which features should be selected because of the curse of dimensional-
ity [5], which refers to the phenomenon arising from too many feature
variables that increase sparsity in data, storage space, and computa-
tional costs. The principal component analysis (PCA) [6,7] is commonly
used to mitigate high-dimensionality. However, PCA reduces the di-
mension by utilizing the correlation structure of random variables, thus
it does not perform well for independent variables. Feature selection
is one of the most crucial techniques in machine learning especially
for high-dimensional datasets [8] because it can filter out redundant
or irrelevant features. The success of feature selection techniques,
which enables meaningful predictors to be obtained and derives results
faster, has been proven by many researchers in various fields of study
[9–12]. However, the high-dimensional problems often accompany
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other issues emerging from the nature of data, such as imbalanced
classification [13,14]. Class imbalance refers to a problem in machine
learning classification where each class accounts for an unequal portion
of the data, which may lead to poor predictive performance. If a
classifier is applied on an imbalanced dataset, the classifier is biased to-
wards the majority class [15] and a trivial classifier learns the majority
class only and attributes the label to all instances, thereby no instance
for predicted minority class occurs [16]. As the failure probability
of structures can be estimated by the number of failures (minority
class) out of the total number of simulations including failure and safe
structures (majority class), datasets for structural design problems be-
come extremely imbalanced. When a structure is designed to have little
load redistribution, the target reliability index 𝛽𝑇 is 2.7 [17], which
corresponds to the failure probability 𝑃𝑓 of 3.5×10−3, derived from 𝛽 =
−Φ−1(𝑃𝑓 ), where Φ−1 = inverse standard normal cumulative density
function. Moreover, ASCE 7 [18] suggests using a target reliability
index between 3.0 and 4.0 for structural components subjected to dead,
live, and other loads except earthquake loads, depending on the risk
category from I through IV where category I represents the lowest level
of risk to human life. Likewise, a classification dataset for structural
design problems will be severely imbalanced, which is indicated from
the values of 𝛽𝑇 and 𝑃𝑓 . As structural design problems often include
an imbalanced dataset, it is challenging to select an adequate statistical
metric that provides informative and truthful results. This emphasizes
that the use of feature selection techniques on structural engineering
data with high-dimensionality and class imbalance should be explored,
in which there are rather limited studies.

In recent years, the interest in artificial intelligence has been grow-
ing in the field of structural engineering because it provides efficient
solutions to the problems in this field relative to traditional computa-
tional techniques. The use of artificial intelligence in steel structural
design has been focused on artificial neural networks for design of
steel members or connections such as compression members [19], steel
panels [20], steel connections [21,22], and cold-formed steel chan-
nels [23]. For reinforced concrete (RC) members or systems, machine
learning techniques are implemented to predict structural responses
such as the shear capacity of fiber RC beams [24], structural response
of RC deep beams [25], RC slabs [26], and RC columns under fire
resistance [27]. Data-driven machine learning approaches were used
for fragility, risk, and vulnerability assessment of a special steel mo-
ment resisting frame building [28,29] and RC building frames [30].
Also, machine learning approaches were used to identify failure modes
and rank the significant factors affecting the failure mode of RC mem-
bers [31], RC frames [32], and steel frames [33]. Data-driven design
approaches for structural design have recently been developed, but it
is desirable to determine if the approaches are viable before they are
implemented in practice. To that end, this study benchmarks feature
selection techniques on the structural analysis data that incorporate
a high imbalanced ratio, a larger set of uncertainties, and more data
points. The importance of benchmark studies has been emphasized in
the machine learning community [34,35]. Machines carry out tasks
based on learning from a given dataset, therefore the best algorithm
will not be the same for all the datasets [36]. Therefore, benchmarking
of the feature importance approach must be accomplished to draw
conclusions for the use of the approach in a wide range of structural
systems.

Koh and Blum [33] introduced the machine learning-based feature
selection framework for structural sensitivity analysis. This framework
measures the feature importance of all parameters and ranks them to
determine the important or redundant parameters for the prediction
of system failure. Two planar steel frames were investigated with the
consideration of uncertainties that affect steel frame behaviors, such
as yield stress, Young’s modulus, frame sway, and residual stress. The
frames have different failure modes and the ultimate frame strength
obtained from finite element analysis was used as the response variable.
The feature rankings derived by four feature importance techniques

showed identical order of factors resulting in the largest failure proba-
bility, which matched those obtained from the conventional sensitivity
analyses. It was demonstrated that the general procedure of the pro-
posed feature importance method can be used for sensitivity analysis.
The approach is efficient because all feature importances are estimated
from a single training. Moreover, variable space can be reduced by re-
moving irrelevant parameters to improve both computational efficiency
and accuracy.

The steel frames investigated in this study have the same layout
as for Koh and Blum [33] but have a different spatial correlation
scenario. Unlike the correlated scenario where all columns (or beams)
have the same properties, this study applies the uncorrelated scenario
where all structural members have different properties. Sensitivity
studies on structural systems with uncorrelated properties inform which
specific structural member largely influences the frame failure. How-
ever, the increased number of uncertainties poses additional challenges
in performing reliability sensitivity studies, which require repeated
evaluations of the performance function. Regarding the feature impor-
tance approach, a large set of uncertainties would make it difficult for
the feature importance method to derive consistent rankings between
various techniques. In general, the uncorrelated scenario contains a
fewer number of failures than the correlated scenario [37], therefore
the class-imbalanced ratio increases for the uncorrelated scenario. This
study aims to examine how the feature importance approach performs
for a structural sensitivity analysis when fitting high-dimensional and
extremely class-imbalanced data, which presents challenges in model
training for structural engineering problems.

This study implemented six existing feature importance methods to
measure the importance score. There are typically two categories in fea-
ture importance methods: (i) data analysis techniques that directly an-
alyze the data without model fitting to measure the feature importance
and (ii) model analysis techniques that identify important features
based on predictions from trained models [38]. (1) ANOVA (Analysis of
variance), (2) mRMR (minimal-redundancy–maximal-relevance) [39],
and (3) Spearman’s rank correlation coefficient [40] are utilized as data
analysis techniques. This study used a decision tree classifier [41] to
measure the feature importance by using model analysis techniques.
Model analysis techniques include two feature importance methods,
which are (4) impurity-based importance and (5) permutation impor-
tance, and (6) SHAP (SHapley Additive exPlanations) [42]. Based on
the measured feature importance, logistic regression [43] and decision
tree [41] models are fitted to predict whether a steel frame fails.
The predictive performance is evaluated by specificity, recall, and the
Matthews correlation coefficient [44]. The results are compared with
the reliability-based sensitivity analysis results to validate the feature
importance framework. Finally, the best feature importance technique
depending on the failure modes is discussed.

2. Machine learning techniques for the feature importance ap-
proach

The primary task of this study is to estimate the effect of uncertain-
ties on failure modes of steel frames using the machine learning-based
feature importance approach. In a high-dimensional dataset, it is im-
portant to determine the relevant features and remove the redundant
features in an effort to prevent overfitting of a model and reduce train-
ing time, thereby improving the model performance and computational
efficiency. This study measures the feature importance and compares
the critical features between the feature selection methods. Once the
feature rankings are derived from the feature importance techniques,
a classification model is employed to predict the failure status of a
structure by increasing the size of the feature set used for training.
The model accuracy of each feature importance method is measured
to determine how many features are informative or irrelevant for
identifying structural failures. The feature ranking as well as the model
performance are considered when evaluating the feature importance
techniques for structural sensitivity analysis.
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2.1. Feature importance techniques

Feature selection involves reducing the number of feature variables
to mitigate the curse of dimensionality. Feature selection improves the
computational efficiency of the machine learning model and reduces
the volume of feature space, which is a significant issue in a large
dataset. Moreover, the prediction performance can be improved by
removing redundant features that have a negative or no effect on
prediction. There is a large number of feature selection techniques that
estimate a feature importance score and provide the feature ranking
based on the score of all features. This study implemented four existing
feature importance methods to identify the most and least important
features in steel structures.

2.1.1. ANOVA
The ANOVA test compares the relationship between features and

response variables based on the value of F-statistic. The feature impor-
tance score 𝐽𝐴𝑁𝑂𝑉 𝐴 is equal to the value of F-statistic. The score can
be calculated by Eq. (1):

𝐽𝐴𝑁𝑂𝑉 𝐴(𝑥𝑖) =
∑𝑀

𝑚=1 𝑁𝑚(𝑥̄
(𝑖)
𝑚 − ̄̄𝑥(𝑖))∕(𝑀 − 1)

∑𝑀
𝑚=1(𝑁𝑚 − 1)𝑠2𝑚∕(𝑁 − 1)

(1)

where 𝑁𝑚 = the number of instances that 𝑦 = 𝑚, 𝑥̄(𝑖)𝑚 = the sample
mean of feature 𝑥𝑖 for class 𝑚, 𝑠2𝑚 = the sample variance of feature 𝑥𝑖
for class 𝑚, ̄̄𝑥(𝑖) = the grand mean of feature 𝑥𝑖, 𝑀 = the number of
classes, 𝑀 = 2 in a binary dataset, 𝑁 = the total number of instances.
The importance score is the ratio of between-group variance to within-
group variance, thus this technique assesses the difference between the
mean values of the corresponding feature 𝑥𝑖 between the classes. A
higher value of the F-statistic indicates a larger difference between the
mean values among the classes, thus the feature has a significant effect
on the classes. Note that ANOVA is always positive because it is based
on variance, which is always positive.

2.1.2. mRMR
The mRMR technique [39] ranks features by mutual information,

which considers both relevance and redundancy of features. The feature
relevance indicates a correlation with the response variable, and the
feature redundancy represents the information duplicated between fea-
tures. As the dataset is discrete not continuous, the mutual information
difference (MID) is used as the mRMR criterion, which can be estimated
by Eq. (2):

𝐽𝑚𝑅𝑀𝑅(𝑥𝑖) = 𝐼(𝑥𝑖, 𝑦) −
1
|𝑆|

∑

𝑥𝑗∈𝑆
𝐼(𝑥𝑖, 𝑥𝑗 ) (2)

where |𝑆| = the feature set size (number of features), 𝑆 = a feature set,
𝑥𝑗 = a feature not selected in the set 𝑆, and 𝐼 = the mutual information.
The first term represents the relevance of the feature 𝑥𝑖 about the
response variable 𝑦. The relevance is determined from the outcome
variable prediction. The second term estimates the redundancy, which
is measured within the selected features 𝑥𝑖 and 𝑥𝑗 . By intuition, a
feature with a negative 𝐽𝑚𝑅𝑀𝑅 value has a small relevance and large
redundancy, therefore, including it in model training would decrease
the predictive performance of the model.

2.1.3. Spearman’s rank
The Spearman’s rank correlation coefficient [40] measures a mono-

tonic nonlinear relationship between two variables, a feature 𝑥𝑖 and
the response variables 𝑦. The measured coefficient varies between
−1 as the perfect negative correlation and +1 as the perfect positive
correlation. A feature with the largest absolute value is considered the
most important.

2.1.4. Impurity-based importance
Impurity-based importance considers the node impurity in a tree

to estimate the importance. A node containing instances of one class
only is pure while a node with greater than or equal to two classes is
impure. The impurity-based feature importance can be computed by
Eq. (3) [45], which measures the impurities at a node 𝑗 before and
after splitting and then averages the impurity decrease by 𝑁 (𝑖), which
is the number of nodes in a tree split based on 𝑥𝑖. A negative feature
importance value (𝐽𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦) indicates that including it in model training
would decrease the predictive performance of the model.

𝐽𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑥𝑖) =
∑

𝑖∈𝑁 (𝑖) (Impurity before node 𝑘 − Impurity af ter node 𝑘)
|𝑁 (𝑖)

|

(3)

2.1.5. Permutation importance
Permutation importance measures the importance by removing a

single feature column in a dataset. First, a tree-based algorithm is fitted
to obtain the baseline model performance. After training the model, a
single feature column is randomly shuffled to remove the association
between the feature and the response variable. The performance of
the permuted model is evaluated and compared with the baseline
model performance. The difference in accuracy is considered to be the
importance score as shown in Eq. (4). The feature that results in the
largest Mean Decrease in Accuracy (MDA) is the most important. The
permutation method provides a negative score when a feature has no
effect and shuffled data are shown to be more accurate.
𝐽𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑥𝑖) = accuracy for dataset without permutation

− accuracy for permuted dataset of 𝑥𝑖
(4)

2.1.6. SHAP
The SHAP algorithm [42] identifies how much each feature con-

tributes to the response variable based on the predictions for linear
models trained on all feature subsets. The difference of the predictions
from the model 𝑓𝑆∪{𝑖} trained on a feature subset 𝑆 including a feature
𝑥𝑖 and another model 𝑓𝑆 excluding 𝑥𝑖 is interpreted as the effect of
𝑥𝑖. The SHAP importance score is a weighted average of all possible
differences, as shown in Eq. (5):

𝐽𝑆𝐻𝐴𝑃 (𝑥𝑖) =
∑

𝑆⊆𝐹∖𝑖

|𝑆|!(|𝐹 | − |𝑆| − 1)!
|𝐹 |!

[𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆 (𝑥𝑆 )] (5)

where 𝐹 = the set of all features, and 𝑆 = all feature subsets without
𝑥𝑖. Since all possible subsets are used to measure the SHAP score,
the computation time of the SHAP algorithm is expensive because
the model is repeatedly trained on all possible feature subsets. SHAP
measures the influence of features in terms of the prediction of either
positive (minority class) or negative (majority class) outcomes.

2.2. Classification-based techniques

Two classification models from different classification model fam-
ilies were used to evaluate the performance. The selected models
are logistic regression [43] from the regression-based classifier family
and a decision tree [41] from the tree-based classifier family. Deci-
sion tree and logistic regression classifiers are fast and use a small
amount of memory for training and prediction [46], indicating that
they are appropriate for high-dimensional data and easy to use and
interpret [47].

2.2.1. Logistic regression
Logistic regression [43] is trained using the top-𝑘 features obtained

from the feature importance methods, where 𝑘 = the number of impor-
tant features. Logistic regression is used for the classification problems,
which uses the logistic sigmoid function and transforms the output into
a probability value between 0 and 1 as follows in Eq. (6):

𝑃 (𝑌 = 𝑚) = 1
1 + exp(−(𝑤0 +

∑

𝑖∈𝑛 𝑤𝑖𝑥𝑖))
(6)
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where 𝑃 (𝑌 = 𝑚) is the probability of presence of Class 𝑚; Class 0
represents no failure and Class 1 represents failure in this study, 𝑤𝑖
= regression coefficients, 𝑥𝑖 = input features, and 𝑛 = the number of
input features.

A linear function is embedded in the logistic regression model,
which is given as the natural logarithm of the ratio of 𝑃 (𝑌 = 1) to
𝑃 (𝑌 = 0). Logistic regression estimates the regression coefficients by
minimizing the value of the ratio shown in Eq. (7).

log(
𝑃 (𝑌 = 1)

1 − 𝑃 (𝑌 = 1)
) = log(

𝑃 (𝑌 = 1)
𝑃 (𝑌 = 0)

) = 𝑤0 +
∑

𝑖∈𝑛
𝑤𝑖𝑥𝑖 (7)

Feature scaling was performed on the datasets used for training
a logistic regression classifier, which is sensitive to the location of
data points. A decision tree is scale-invariant because it trains the
model based on decision rules. Therefore, the datasets for the logistic
regression algorithm are transformed to a standardized scale, which has
a mean value = 0 and standard deviation = 1.

2.2.2. Decision tree
A tree-based classifier, decision tree [41], is used to measure the

performance in addition to estimate the feature importance score of the
model analysis techniques including impurity-based, permutation, and
SHAP. Decision tree continuously splits the data according to a certain
parameter such as impurity or entropy. Decision rules for splitting and
the leaf nodes are the final outcomes of the decision tree. The decision
tree algorithm used in this study splits the nodes based on entropy
(Eq. (8)) until all leaves are pure:

𝐻(𝑆) = −
𝑀
∑

𝑚=1
𝑝𝑚log2𝑝𝑚 (8)

where 𝑀 = the number of classes and 𝑝𝑚 = the probability of Class 𝑚
occurring in the data.

2.3. Evaluation metric

After training a model with a training set, the model performance
is evaluated by using a test set, which was not involved in training.
A confusion matrix provides a visualization of the model performance
and it is used as a performance measurement for a machine learning
classification problem. The confusion matrix for binary classification
consists of the four different cases as shown in Eq. (9):

𝑀 =
(

𝑇𝑃 𝐹𝑁
𝐹𝑃 𝑇𝑁

)

(9)

where True Positive (𝑇𝑃 ) = the number of actual positives that are
correctly predicted positives, True Negative (𝑇𝑁) = the number of
actual negatives that are correctly predicted negatives, False Negative
(𝐹𝑁) = the number of actual positives that are incorrectly predicted
negatives, and False Positive (𝐹𝑃 ) = the number of actual negatives
that are incorrectly predicted positives.

Several statistical rates can be computed based upon the values
given in the confusion matrix. For example, Accuracy is defined as the
ratio of the correctly predicted instances to all the instances, (𝑇𝑃 +
𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁). F1-score represents the harmonic mean
of precision and recall, where precision is 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 ) and recall is
𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁). Accuracy and F1-score are the most popular metrics,
but they lead to the overoptimistic inflated measures especially on
imbalanced datasets [48] because several classifiers learn towards the
majority class [15,16]. For instance, when a dataset has 0.01% minority
class and a model predicts all minority classes incorrectly, i.e., all
data points are classified as the majority class, the model accuracy
is 99.99%, which is nearly perfect. In structural engineering practice,
however, it is critical to identify structural failures (the minority class)
rather than safe structures (the majority class), thereby necessitating
using the right metric that can correctly predict both classes in a binary
classification.

This study employed three statistical measures to evaluate the per-
formance including specificity, recall, and the Matthews correlation
coefficients (MCC) [44]. For imbalanced class distributions, the ma-
jority class is typically referred to as the negative outcome and the
minority class is assigned to the positive outcome. Therefore, structural
failure is the positive outcome and no failure is the negative outcome.
Specificity is the probability that an actual negative will test negative
and is calculated by 𝑇𝑁∕(𝑇𝑁 + 𝐹𝑃 ), which is the true negative rate.
Specificity refers to how well a model identifies the frames which
have no failure. Recall, also called the true positive rate, is the ra-
tio of correct positive predictions to the total positive examples and
is computed by 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁). Recall informs how many positive
predictions are missed from the prediction. The MCC is a reliable
measure for imbalanced classification problems because it takes into
account the ratio between positive and negative outcomes, which are
not considered in both specificity and recall. The MCC is independent of
the class imbalance, thus can reduce misleading results on imbalanced
datasets [16]. The value of MCC varies between −1 and 1, similar
to other correlation coefficients. The score is high only when all four
categories in the confusion matrix are generated correctly. The MCC is
computed by:

𝑀𝐶𝐶 = 𝑇𝑃 ⋅ 𝑇𝑁 − 𝐹𝑃 ⋅ 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃 ) ⋅ (𝑇𝑃 + 𝐹𝑁) ⋅ (𝑇𝑁 + 𝐹𝑃 ) ⋅ (𝑇𝑁 + 𝐹𝑁)
(10)

3. Reliability-based sensitivity analysis

Existing steel design specifications [49–52] provide guidance for
inelastic analysis, also referred to as advanced analysis and GMNIA,
which directly considers geometric and material nonlinearities and
includes uncertainty in system, member, and connection strength and
stiffness. Estimating structural performance with certainty is challeng-
ing because of the inherent uncertainty in a structural system which
affects system performance. Reliability-based sensitivity analysis es-
timates the effect of an input variable by evaluating the structural
performance with the variable under consideration as random while all
other variables are at their nominal values. After repeated simulations
for each property under consideration, the probability of failure 𝑃𝑓
is estimated by 𝑛∕𝑁 [53] where 𝑛 = number of simulations which
resulted in failure and 𝑁 = total number of simulations. The system
reliability index 𝛽 is computed based on 𝑃𝑓 . Unlike a reliability analysis
which takes into account multiple random variables simultaneously, a
sensitivity analysis considers only one random variable per simulation
set to examine how the random variable affects the system behavior,
therefore the strength distribution might have a smaller COV compared
to that from a reliability analysis. The normal probability plot [54] is
used to estimate 𝑃𝑓 and 𝛽 when no failure cases occur.

Researchers have investigated the system reliability of various steel
structures estimated by considering uncertainties in the systems.
Buonopane [55] conducted a reliability sensitivity study on two steel
frames by considering uncertainties in yield strength, elastic modulus,
residual stress, and sway and bow imperfections. Szyniszewski [56]
investigated the effect of random geometric imperfections on progres-
sive collapse propagation by analyzing 3-D steel framed buildings with
uncorrelated geometric imperfections between structural members.
Shayan et al. [57] presented a probabilistic study regarding modeling
random geometric imperfections on regular and irregular sway and
braced planar steel frames. Thai et al. [58] evaluated the system
reliability of steel frames with semi-rigid connections. Uncertainties
in gravity loads, material properties, cross-sectional properties, and
connection properties were included in the reliability analysis. Zhang
et al. [59] examined the system reliability of five steel structures in-
cluding a beam, a portal frame, and three low-rise frames. Randomness
considered in the analysis includes gravity loads, material properties,
cross-sectional properties, and sway imperfection. Cardoso et al. [60]
calibrated the system reliability of cold-formed steel portal frames with
uncertain parameters in material properties, cross-section thickness,
joint properties, and geometric imperfections.
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Fig. 1. Frame layout.

4. Data collection

4.1. Structural system

Two example steel frames designed according to AISC 360 [50]
were analyzed in this study, which have the same layout but different
member sizes and loads, adopted from [61]. Studies of these frames
have been published in Zhang et al. [59] for Frame 1 and Buonopane
and Schafer [62] for Frame 2. Fig. 1 and Table 1 summarize the details
of the example frames including geometry and applied loads. The
frames were modeled in OpenSees [63] with displacement-based and
fiber-type elements, which were subdivided into 16 elements per mem-
ber. Connections were assumed to be fully-rigid, thereby disregarding
any potential flexibility in the connections. All cross-sections contained
the residual stress with the Galambos and Ketter pattern [64] and the
fiber distribution as shown in Fig. 3. The nominal peak compressive
residual stress value was 0.3𝐹𝑦𝑛, where 𝐹𝑦𝑛 = nominal material yield
strength of 248 MPa (36 ksi). Initial sway imperfection of ℎ/500 was
given to all columns in the frame, where ℎ is the story height.

Second-order inelastic push-down analyses were performed, in
which the applied load ratio is increased until the frame collapses.
The finite element (FE) analyses were first conducted with all nominal
properties to determine the nominal ultimate load ratio 𝜆, which is the
ratio of ultimate to factored design loads. Fig. 2 illustrates the load–
deformation curves and the location of highly yielded zones (≥ 75%
of cross-sectional area yielded). The numbers represent the ratio of
yielded cross-sectional area. The ultimate load ratios 𝜆 obtained from
the analyses are 1.08 for both frames, which indicated that they have a
limited capacity for load redistribution. Frame 1 failed by the instability
(global inelastic buckling) of the slender ground floor column C2.
Member C2 was partially yielded (53.5%) at the collapse limit, while
the other members were within their elastic limits at failure, which
matched the results presented in [59]. Frame 2 failed from a gradual
sequence of yielding, whereby multiple members had highly yielded
zones along the member length, which were B1, B2, B3, B4, C5, and
C6.

To verify the accuracy of the FE models, the analysis output with
nominal properties was compared to that from the previous studies [59,
62]. Load–deformation curves and yield ratios from Zhang et al. [59]
and the model in this study (Frame 1) were well matched to each other
as shown in Fig. 2a, where the number in parentheses indicates the
yield ratio recorded from Zhang et al. [59]. Next, a reliability analysis
considering the effect of uncertainties in geometric and material prop-
erties in addition to applied loads was also performed. The variations
of the loads are provided in Ellingwood et al. [65]. The resulting 𝛽
value was 2.79, which had an error of 1.4% with the 𝛽 results from the
previous study [59], thereby validating the model for Frame 1.

As for Frame 2, it was confirmed that the Frame 2 model can capture
the load–displacement curve when it follows the model description

Table 1
Member sizes and applied loads.

Element Frame 1 Frame 2

C1 W6 × 20 W12 × 14
C2 W14 × 82 W14 × 99
C3 W14 × 68 W14 × 82
C4 W6 × 8.5 W10 × 12
C5 W14 × 145 W14 × 109
C6 W14 × 145 W14 × 109
B1 W30 × 132 W27 × 84
B2 W36 × 182 W36 × 135
B3 W24 × 55 W18 × 40
B4 W30 × 116 W27 × 94
Loads (𝑃𝑜) 111.86 kN/m 109.45 kN/m

Fig. 2. Load–deformation curves and location of highly yielded zones: (a) Frame 1 (b)
Frame 2. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

provided in Buonopane and Schafer [62], where residual stresses and
sway imperfections were not included. As shown in Fig. 2b, the model
without consideration of residual stress (rs) and sway imperfections
(red line) had a load ratio of 1.70, which is within the range between
the maximum and the minimum load ratios of the Buonopane and
Schafer results (black line). This validates the modeling approach for
Frame 2 with the previously published results [62]. After validating
the model with nominal properties, residual stresses and sway imper-
fections were added into the model for Frame 2 and the resulting load
ratio was 1.08 (blue line). This indicates that residual stresses and sway
imperfections influence the capacity of Frame 2.

4.2. Uncertainty

The Monte Carlo sampling method is used to generate samples of
the uncertainties in material yield strength 𝐹𝑦, modulus of elasticity 𝐸,
sway imperfection, and residual stress. Table 2 summarizes the statis-
tical information of the uncertainties with referenced literature. Yield
strength and elastic modulus are modeled following the distributions
published in Bartlett et al. [66]. Nominal yield strength 𝐹𝑦𝑛 of 248 MPa
and nominal elastic modulus 𝐸𝑛 of 200 GPa are utilized to determine
the mean value of yield strength and elastic modulus, respectively. The
distribution of sway imperfection followed the distribution of Lindner
and Gietzelt [67]. The scale factor of maximum compressive residual
stress 𝑋 is modeled as a normal distribution provided in Shayan
et al. [68]. The random scale factor 𝑋 was multiplied by 0.3𝐹𝑦𝑛 to
consider the uncertainty of residual stress magnitudes in compression.
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Fig. 3. Residual stress pattern and fiber distribution.

Table 2
Description of feature variables.

Variable Mean COV Distribution References

𝐹𝑦 1.1𝐹𝑦𝑛 0.06 Lognormal Bartlett et al. [66]
E 𝐸𝑛 0.04 Lognormal Bartlett et al. [66]
Sway imperfection 1/770 0.875 Lognormal Lindner and Gietzelt [67]
𝑋 1.064 0.27 Normal Shayan et al. [68]

The peak tensile residual stress (𝜎𝑅𝑇 ) within a cross section was deter-
mined by the geometry and the peak compressive residual stress (𝜎𝑅𝐶 ),
as shown in (Fig. 3). 𝜎𝑅𝑇 includes 𝑋 indirectly because it is calculated
based on equilibrium. Once 𝜎𝑅𝐶 and 𝜎𝑅𝑇 are determined, the rest of
the residual stresses in the cross section were set based on the residual
stress pattern. The residual stress condition is constant along the length
of a member. To account for the maximum number of uncertainties
and to investigate the effect of each parameter on structural failure,
the frames are assumed as spatially uncorrelated, i.e., all structural
members have different random properties.

Cross-sectional imperfections, including web and flanges widths
and thicknesses, were considered as random variables in preliminary
studies using statistical information provided in Melcher et al. [69].
However, there were no observations of failure until 106 simulations
were performed. An extremely small COV for the strength distributions
occurred, likely due to the small COVs of the distributions of cross-
section dimensions. This indicates a negligible effect of randomness in
cross-sectional dimensions on the studied planar frames.

4.3. Dataset

As the structural members are uncorrelated, each individual mem-
ber had a different realization of the random properties. In other words,
there were no identical random values of the input variables shared
between all beams or all columns. Input feature variables consist of
thirty-three different parameters including ten different values each
of yield strength, elastic modulus, and residual stress and three sway
imperfections assigned to the three column locations — left, center, and
right. The response variable is the binary outputs based on the ultimate
load ratio 𝜆 obtained from the FE analysis containing random realiza-
tions of the input parameters. As the frame is designed according to
the inelastic method provided in AISC 360 [50], this study applied the
probability-based limit state design criteria 𝜆 = 1.0 as the classification
criteria of the dataset. If the ultimate load ratio is less than 1.0, the
frame experiences a structural failure and the observation is assigned
to Class 1. An ultimate load ratio greater than or equal to 1.0 indicates
that the frame is safe and the sample set is assigned to Class 0, which
means no failure. A total of 500,000 simulations were run for Frame 1
and 1,000,000 simulations for Frame 2. A small percent of simulations
had convergence issues and were excluded from the datasets. In total,

Frame 1 had 309 failures (Class 1) out of 498,050 labeled data points.
Frame 2 had 127 failures, which is less than that of Frame 1, out of the
total number of simulations, 903,272.

As discussed previously, a classification dataset for structural design
problems will be severely imbalanced, based on the selection of 𝛽𝑇
and the corresponding 𝑃𝑓 . A no-information rate, which describes how
much the dataset is imbalanced, is calculated by max(𝑛𝐶𝑙𝑎𝑠𝑠 0, 𝑛𝐶𝑙𝑎𝑠𝑠 1)
/ (𝑛𝐶𝑙𝑎𝑠𝑠 0 + 𝑛𝐶𝑙𝑎𝑠𝑠 1), where 𝑛𝐶𝑙𝑎𝑠𝑠 0 is the number of Class 0 examples
and 𝑛𝐶𝑙𝑎𝑠𝑠 1 is the number of Class 1 examples. Therefore, the no-
information rates of Frame 1 and Frame 2 are 99.94% and 99.99%,
respectively, approximately equal to 100%.

The data points for each frame were randomly assigned into equal
training and test sets, for a 50%–50% split between training and testing
datasets for each frame. As a general rule of thumb, a train-test
split for evaluating machine learning algorithms is 80%–20% or 70%–
30%, which has been utilized in previous studies [23–32]. However,
due to a small sample size of the minority class used in this study,
there could be cases of no observations for the minority in a test set
when a large training set is employed with conventional train-test split.
Therefore, this study increased the testing set size to 50% of the dataset
to observe both classes in the testing set and therefore evaluate the
model performance for both classes.

Imbalanced classification data leads to biased prediction toward
the majority class. Several sampling techniques have been developed
to address class imbalance problems such as undersampling and over-
sampling. Undersampling deletes examples from the majority class in
the training set, but it can pass over important information during
removal. Oversampling simply duplicates examples from the minority
class and certain examples can be dense at a specific location in the
sample space, thereby leading to overfitting due to the repetitively used
samples. This study employed one of the improved oversampling meth-
ods, Synthetic Minority Over-sampling Technique (SMOTE) proposed
by Chawla et al. [70], which is the most popular and perhaps most
successful oversampling technique [71,72] that creates new synthetic
data from the minority class rather than simply duplicating the data.
The minority class is oversampled to have the same number of samples
as the majority class. For example, Frame 2 had 7111 times greater
number of the majority class than the minority class. The new minority
class examples are generated 7111 times in a training set to equal the
number of majority class examples. The oversampled minority class
are not duplicates of the existing samples, but are derived using 𝑘-
nearest neighbors and interpolation parameters. Many studies [73–76]
have proven that the SMOTE approach is simple and computationally
efficient while providing superior performance.

5. Comparison of sensitivity analysis results

This section compares the sensitivity analysis results obtained by
the feature importance approach and the reliability sensitivity analysis.
For the reliability-based sensitivity study, 40,000 simulations for each
uncertainty under consideration were conducted. The feature name
consists of the structural member name following the property name.
Residual stress and sway imperfection are shortened to ‘rs’ and ‘sway’,
respectively. For example, E-B2 represents the elastic modulus of B2
and rs-C1 indicates the residual stress of C1. Sway imperfections at
the column locations – left, center, and right – are labeled as sway-C1,
sway-C2, and sway-C3, respectively.

Table 3 summarizes the reliability-based sensitivity analysis results
including statistics of strength, probability of failure, and reliability
index. Frame 1 has larger COVs than Frame 2, with a larger difference
for random elastic modulus and sway imperfection, which indicates
that Frame 1 is more sensitive to these factors. Although the nominal
ultimate strength was equal to 1.08 for both frames, Frame 1 has
smaller values of 𝛽 compared to those of Frame 2 due to the larger COVs
of Frame 1 resulting in a lower boundary of the strength distributions.
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Table 3
Reliability-based sensitivity results for Frames 1 and 2.

Frame 1 Frame 2

Strength Reliability Strength Reliability

Random variable Mean COV 𝛽 𝑃𝑓 Mean COV 𝛽 𝑃𝑓

Yield strength 1.13 0.034 3.41 3.3 × 10−4 1.16 0.031 3.79 7.5 × 10−5

Elastic modulus 1.07 0.007 9.01 ≈ 0 1.07 0.004 16.8 ≈ 0
Sway imperfection 1.01 0.030 2.65 4.0 × 10−3 1.08 0.011 3.51 2.3 × 10−4

Residual stress 1.07 0.003 27.7 ≈ 0 1.07 0.002 37.2 ≈ 0

5.1. Frame 1: instability of a single column

The results of the feature importance method are shown in Fig. 4.
The top row (Fig. 4a–c) shows the top ten feature rankings of Frame
1 derived from the data analysis methods including ANOVA, mRMR,
and Spearman’s rank. The feature orders obtained from the model
analysis techniques including impurity-based, permutation, and SHAP
are shown in the bottom row (Fig. 4d–f). As previously discussed in
Section 2, the feature importance techniques can derive either positive
or negative values or both. As the feature rankings show only ten
highly-ranked features, the negative scores are not included in the
figure except for Spearman’s rank (Fig. 4c), which rated the features
based on their feature importance value magnitude. Sway-C2 and Fy-C2
are top-ranked from all the feature importance methods. Sway-C3 or E-
C3 is third-ranked but has a negligible importance score in comparison
to the top two features. Although the order of the remainder of the
features is different between the various techniques, only the two
highly-ranked features have significant scores. In other words, only the
first two features are significant to the prediction of failure for Frame 1.
Most methods result in scores approximately equal to zero for the least
important features. Frame 1 fails by the inelastic instability of C2, and
this is reflected in the importance score results as the features related
to C2 are the most highly ranked.

From the results of Table 3, random sway imperfection resulted in
the lowest 𝛽 in Frame 1, followed by yield strength, elastic modulus,
and residual stress. A small elastic modulus and large sway imper-
fection increase lateral deflections, thereby increasing second-order
bending moments. As Frame 1 fails by the instability of C2, the frame
capacity is most influenced by the factors resulting in increased bending
moments.

Fig. 5 illustrates the scatter plots of input random properties versus
the frame strength based on the reliability-based sensitivity studies.
As shown in Fig. 5a, the yield strength of C2 and the frame strength
have a nearly perfect correlation, which indicates that the strength of
Frame 1 is controlled by C2. The yield strength of the other members
showed no correlation with frame strength. Fig. 5b and c show that
the frame strength has a weak correlation with the elastic modulus of
C3 and the residual stress of C2. The sway imperfection at the center
column (C2) has the most significant impact on the strength among the
three column positions – left (C1), center, and right (C3) – by showing
a strong positive correlation.

The highly-ranked features determined from the feature importance
methods are identical with the factors that resulted in a lower 𝛽
from the reliability-based sensitivity analysis. The feature rankings
determined by the feature importance framework showed that sway-
C2 and Fy-C2 are the most important features among the thirty-three
random properties. The third-ranked feature is either sway-C3 or E-
C3, which showed a positive correlation with the frame strength, but
less significant than sway-C2 and Fy-C2. Overall, the random properties
that have significant impacts on Frame 1’s capacity determined by the
reliability-based and machine learning-based sensitivity analyses are in
agreement.

5.2. Frame 2: progressive yielding

Fig. 6 shows the top ten feature rankings of Frame 2 derived by the
feature importance approach. As shown in Fig. 6a–c, the top-ranked
feature is either Fy-C6 or sway-C2, and the remaining order varies
for each data analysis technique, which identifies important features
without model fitting. However, the model analysis techniques, which
require model training to measure feature importance, derived the
same top four features including sway-C2, Fy-C6, Fy-B2, and sway-C3 in
descending order (Fig. 6d–f). The features ranked fourth through tenth
are similar between the model analysis methods. At least four yield
strengths are highly-ranked across all the methods, which indicates
that yield strength is an influential factor in the failure of Frame 2
and the failure mode is progressive yielding. As previously shown in
Fig. 2b, Frame 2 has six members that have critical impacts on the
system failure, including four beams and two columns. In particular,
B2 and C6 have two highly yielded zones each, and the yield strengths
of these members are top-ranked among all the yield strengths. The
feature importance results show the significant members in the system
in addition to the influential properties. Due to the complex failure
mode of Frame 2, the feature orders are not as straightforward as Frame
1, however the results indicate that the feature importance approach is
accurate for steel frames with various failure modes.

The reliability-based sensitivity study investigated the effects of
random properties on the frame strength. As shown in Fig. 7, the
properties that have a significant effect are identical with the features
that are highly ranked by the feature importance methods. Fig. 7a and b
show dents on the upper left side, and they occur when the value of the
B2 yield strength is the maximum or the minimum among all members,
respectively. Fig. 7c and d indicate that Frame 2’s strength has positive
correlations with elastic moduli of C2 and B2. As 𝑋 of C2 increases,
the frame strength decreases (Fig. 7e) because the presence of residual
stresses leads to the onset of yielding at a lower applied load [55].
Random elastic modulus and residual stress of C2 and B2 are correlated
with the frame strength but showed small COVs, which represents
less significant influence. The effects of random sway imperfection are
shown in Fig. 7f–h. The center columns sway have the most significant
impact on the frame strength than the sway of other columns. This
example illustrates that not all factors influence the system behavior,
and it is therefore unnecessary to assess the effects of each factor
individually, as is done in a reliability-based sensitivity analysis. On the
other hand, the feature importance approach analyzes all the factors at
once to estimate the effects on system behavior.

Overall, Frame 2 has smaller magnitudes of the importance scores
than for Frame 1. Moreover, Frame 1 has a large difference between
the two top-ranked features and the remainder of the features, while
the score difference between the features in Frame 2 is smaller. In other
words, the importance score of Frame 2 decreases smoothly from the
top to the bottom of the rankings. When a structural system fails by a
single member (Frame 1), the properties of that member has a critical
impact on the entire system. On the other hand, when various members
lead to a system failure, such as progressive yielding (Frame 2), the
properties of multiple members have a significant impact on the entire
system. A comparison of the importance values between Frame 1 and
Frame 2 indicates that the number of structural members involved in
system failure influences the magnitude of importance as well as the
number of features considered to be important.
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Fig. 4. Importance ranking of the top ten features of Frame 1 derived by data analysis methods (top row) and model analysis methods (bottom row).

Fig. 5. Scatter plots of Frame 1 strength versus random (a) 𝐹𝑦 of C2 (b) 𝐸 of C3 (c) 𝑋 of C2 (d) sway imperfection of C1 (e) C2 (f) C3.
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Fig. 6. Importance ranking of the top 10 features of Frame 2 derived by data analysis methods (top row) and model analysis methods (bottom row).

Fig. 7. Scatter plots of Frame 2 strength versus random (a) 𝐹𝑦 of C2 (b) 𝐹𝑦 of B2 (c) 𝐸 of C2 (d) 𝐸 of B2 (e) 𝑋 of C2 (f) sway imperfection of C1 (g) C2 (h) C3.
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6. Performance evaluation

The test set, which accounts for 50% of the dataset, is employed to
evaluate the models fitted on the training set. The accuracy metrics
include specificity and recall to measure the correct prediction of
Class 0 (no failure) and Class 1 (failure), respectively. In addition, the
Matthews correlation coefficient (MCC) is used, which is a suitable
metric for the imbalanced dataset.

The predictive performance of the machine learning models for
Frame 1 is shown in Fig. 8. The specificity curves for both logistic
regression and decision tree algorithms (Fig. 8a and b) show that the
specificity score reaches the nearly perfect value of approximately 1.0,
even with only a few features. In this study, specificity represents the
proportion of safe structures that are correctly predicted. The Frame 1
dataset is severely imbalanced with the no-information rate of 99.94%,
therefore the model performance measured by specificity shows in-
flated results due to the biased classification towards the majority class.
Recall is computed to evaluate how good a model is at detecting a
structural failure, which is the positive class. As it is critical to identify
system failure rather than safe structures in structural design practice,
recall is a more crucial measure than specificity in this study. Fig. 8c
shows the recall curve obtained from the logistic regression model.
When the feature set contains the top three features of the model
analysis techniques and ANOVA, which are sway-C2, Fy-C2, and sway-
C3, the recall score rapidly increases up to 0.77. Spearman and mRMR
ranked the sway imperfection of C3 at fourth and therefore the score
abruptly rises when the feature set increases to four. The recall curve
of the decision tree (Fig. 8d) shows the highest value when only two
or three features are selected. The outcome recall scores converge to a
lower score of 0.72 after reaching the peak point. This indicates that
bottom-ranked features could be removed to reduce the computational
effort without compromising model predictive performance to improve
the computational efficiency Fig. 8e and f show the outcome MCC
scores for the logistic regression and decision tree models, respectively.
The MCC curves have a similar shape as the recall curves; the logistic
regression model performance improves as the feature set increases,
and the decision tree model reaches the peak point when the feature
set is small. This indicates an overfitting issue which occurs when the
model is trained on a large feature set. Feature selection based on the
feature importance score can improve the overfitting by excluding the
redundant features from training. The least important features, which
are ranked after the fifteenth, could be removed to obtain a better
performance.

The model performance of Frame 2 measured by specificity is shown
in Fig. 9a and b. The specificity generates overoptimistic results due
to the high imbalanced ratio of 99.99%. When the yield strength of
C6 is ranked as the most important feature by ANOVA or Spearman,
the decision tree model shows the nearly-perfect score even though
the dataset includes only one feature (Fig. 9b). The lowest score of
specificity is 0.92, indicating that both logistic regression and deci-
sion tree models can identify safe structures with high accuracy. The
recall curves of Frame 2 are shown in Fig. 9c and d. The logistic
regression model can correctly predict the failure only when the sway
imperfection of C2 is included in the feature set. For example, the
recall curve of Spearman’s rank shows zeros until the feature set size
is seven because the feature ranking rated the sway imperfection of
C2 at seventh. The recall curve of the decision tree model (Fig. 9d)
shows a large variation between the data analysis methods because
they had completely different feature rankings. However, each curve
merges to about 0.32 as the number of features increases. The MCC
curve of the logistic regression model (Fig. 9e) shows a similar shape
as the recall curve because the specificity scores had a single value,
which is close to 1, regardless of the feature set size. The MCC values
of the decision tree model merge to 0.15, which is the score of the
entire feature set (Fig. 9f). When a high-dimensional dataset is used,
the class imbalance leads to additional challenges in misclassification

of the minority class [15]. As previously discussed in Section 4.3,
Frame 2 consisted of a larger sample space and a fewer number of
failures than for Frame 1. Moreover, the feature orders of Frame 2 were
inconsistent between the feature importance techniques, as multiple
features were significant to the prediction of system failure. The higher
imbalanced ratio and the complex failure mode of Frame 2 result in a
low performance measured by recall as well as the MCC. The extremely
imbalanced classification of Frame 2 led to a lower performance for
predicting structural failure because the machine learning classifiers
had only a few minority class examples to oversample in the training
set as well as to test the model prediction. The model performance,
which measures the prediction of minority class, can be improved by
obtaining more number of failures in a dataset or reducing the class
imbalanced ratio.

The six feature importance techniques showed similar performance
of Frame 1 measured by the MCC. The performance was improved after
containing the three top-ranked features (Fig. 8e and f). In Frame 2,
however, the model analysis methods showed more accurate results
than the data analysis methods. In particular, the permutation and
SHAP methods showed the best performance until the feature set size
increases to seven (Fig. 9f) because they ranked Fy-C5 and Fy-C2 at
fifth and sixth, respectively, whereas the impurity-based method ranked
Fy-C2 at seventh, and Fy-C5 and Fy-C2 have a significant influence
on the system failure of Frame 2. In summary, based on the feature
rankings and the model performance results of both frames, SHAP
and permutation methods are the best techniques for estimating the
importance of features.

7. Discussion of future work

Future research is recommended to fully validate and expand the
application of the methodology presented herein to other structural
systems.

(i) Additional machine learning models should be evaluated. Lo-
gistic regression and a decision tree, which are one of repre-
sentative regression-based and tree-based classifiers, were exam-
ined and they showed different performance curves as differ-
ent metrics were employed. Benchmark studies on the feature
importance approach with multiple machine learning methods
might be a potential way to generalize the presented sensitivity
analysis approach.

(ii) Machine learning models need to achieve a better prediction
for the minority class. This is highlighted for a frame with
a complex failure mode, which was progressive yielding for
Frame 2 in this study. The frame had both a larger imbalanced
ratio and dimension space than for Frame 1 with a simple
failure mode, instability of a single column. Future research may
include training a deep learning model to achieve high accu-
racy for high-dimensional data. In addition, dimension reduction
techniques such as generalized sliced inverse regression using
active learning [77] or feature selection techniques using deep
learning [78] can be utilized.

(iii) Studies on the correlations between the imbalanced ratio, data
space, and the degree of complexity in failure modes would help
enhance the presented approach. For a frame with a complicated
failure mode, which had a high imbalanced ratio, the number
of observations was increased to obtain more samples of the mi-
nority class in a dataset, therefore increasing the data complexity
and computational cost. Model development using data for struc-
tures with various failure modes, which would have different
imbalanced ratios and data space, would provide suggestions
for future implementation of machine learning-based structural
analysis.
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Fig. 8. Frame 1 specificity, recall, and MCC for logistic regression (left column) and decision tree (right column).

8. Conclusions

This study examined the feature importance approach using datasets
with a large number of uncertainties and severely imbalanced clas-
sification. Two designs of a non-symmetric planar steel frame were
investigated with uncertainties in material yield strength, Young’s mod-
ulus, sway imperfection, and residual stress. The dataset information
consisted of thirty-three uncorrelated uncertainties and the ultimate
load ratios obtained from the finite element analyses. A scarce number
of failures occurred, as is common in structural engineering design,

thus the datasets were extremely class-imbalanced with the two classes
being safe and fail. To observe the minority class in a test set split from
the severely imbalanced data, a 50%–50% split for training and test
sets were employed instead of the conventional train-test split ratio.
Feature importance techniques including ANOVA, mRMR, Spearman’s
rank, impurity-based, permutation, and SHAP were trained on the
high-dimensional and severely class-imbalanced datasets to identify
the important features. The important features identified using the
machine learning based feature importance approach were compared
with the results of a conventional reliability-based sensitivity study
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Fig. 9. Frame 2 specificity, recall, and MCC for logistic regression (left column) and decision tree (right column).

to identify factors which result in a lower system reliability index.
The SHAP and permutation methods showed the best performance
by ranking the same significant factors from the reliability-based sen-
sitivity results at the top of the features. The feature importance
method was not only shown to be straightforward in selecting the
significant features by comparing their importance scores, but also
in determining which structural members (e.g. specific columns and
beams) have large impacts on structural failure without additional
evaluation of performance. Overall, both methods identified the same
factors which reflected the system failure modes, thus validating that

machine learning techniques can be utilized in lieu of conventional
reliability-based sensitivity studies.

After rating the features according to the importance score, the
logistic regression and decision tree algorithms were trained to predict
the classes using the feature set containing the top-ranked features. The
overall performance showed that low-ranked features do not improve
or even deteriorate the prediction accuracy, which indicates that they
could be removed from the feature set to improve the computational
efficiency. The model performance evaluated by specificity showed
nearly-perfect performance for both frames because most examples
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were assigned to the majority class, safe structure. As for the failure
prediction, Frame 1, which failed by the global buckling of a single
column, showed good performance even with the highly imbalanced
classification. This study determined that the machine learning-based
sensitivity analysis can identify the influential features affecting system
failure even when there are high-dimensional uncertain parameters
and a highly imbalanced dataset, for a relatively simple failure mode.
However, for Frame 2 which had a complex failure mode of progressive
yielding in addition to an extremely low failure probability, it was
challenging to obtain the accurate prediction of the minority class. As
class-imbalanced data is inevitable in structural engineering, it is nec-
essary to be cautious in assessing the predictive accuracy of structures
with a complex failure mode and a failure probability approximately
equal to zero.
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