
Engineering Faculty Document No. 9-05

March 3, 2006

TO: The Faculty of the College of Engineering

FROM: The Faculty of the School of Electrical and Computer Engineering

RE: Title Changes to Graduate-Level Course

The faculty of the School of Electrical and Computer Engineering has approved the
following title changes of a graduate-level course. This action is now submitted to the
Engineering Faculty with a recommendation for approval.

From: ECE 663 Compiler Code Generation, Optimization, and Parallelization

To: ECE 663 Advanced Optimizing Compilers

ECE 663 Advanced Optimizing Compilers
Class 3, Lab 0, Credit 3
Offered fall of odd years
Prerequisites: ECE 573 and ECE 565

Course Description: This course presents the concepts and techniques to design and
implement advanced, optimizing compilers. The course includes topics in program
parallelization and scalar optimizations.

Reason: The title of this course was changed to better reflect the evolving course content.

Course History: The course has been and continues to be offered every two years.

Mark J.T. Smith

Professor and Head

Engineering Faculty Document No. 9-05

March 3, 2006

Page 1 of 1

Text: (Optional) Fischer and LeBlanc, Crafting a Compiler with C, Benjamin/Cummings,
1991, ISBN 0-8053-2166-7. Course notes and research papers will be used. Background
texts: Michale Wolfe, High Performance Compilers for Parallel Computing, Addison-
Wesley, ISBN 0-8053-2730-4. Utpal Banerjee, Dependence Analysis, Kluwer, ISBN 0-
7923-9809-2. Ken Kennedy and John R. Allen, Optimizing Compilers for Modern
Architectures: A Dependence-based
Approach, Morgan Kaufmann Publishers, ISBN 1558602860. Cooper and Torczon,
Engineering a Compiler, Morgan Kaufmann, 2004, ISBN 1-55860-698-X.

Course Outcomes:

A student who successfully fulfills the course requirements will have demonstrated an
ability to understand and use

- concepts and techniques of advanced optimizing compilers. In particular,
- the various passes of an optimizing compiler, including program analysis, dependence

analysis, enabling transformations, loop restructuring, instruction level parallelism,
parallel code generation, and issues in the compilation of object oriented languages,

- program analysis techniques used to determine the legality and profitability of
transformations,

- open research issues related to these techniques, known solutions, and differences
between alternative solutions,

- implementation methods and performance characteristics of these concepts and
techniques.

Assessment Methods:

There will be at least one midterm and a final exam. 50% of the final grade will reflect
the performance on a class project that each student will propose and conduct.

