TO: The Engineering Faculty

FROM: Department of Biomedical Engineering RE: Permanent Dual Level Course Number

The Department of Biomedical Engineering has approved the following course change. This action is now submitted to the Engineering Faculty with a recommendation for approval.

From:

BME 583 Biomaterials Sem. 2. Class 3, cr. 3. (Offered in alternate years.) Prerequisites: Permission of the instructor required

Course discusses principles of biomaterial design, synthesis, and evaluation for various tissues/organs of the body including orthopaedic/dental, cardiovascular, kidney, liver, lung, skin, nerve, and brain. Topics include fundamentals of materials science and engineering integrated into biology for the better regeneration of tissue.

To:

BME 583 Biomaterials Sem. 1. Class 3, cr. 3. (Offered in alternate years.) Prerequisites: Permission of the instructor required

Course discusses principles of biomaterial design, synthesis, and evaluation for various tissues/organs of the body including orthopaedic/dental, cardiovascular, kidney, liver, lung, skin, nerve, and brain. Topics include fundamentals of materials science and engineering integrated into biology for the better regeneration of tissue.

Reason: Biomedical Engineering is beginning to offer undergraduate courses and due to the distribution of the teaching load we request a change of semester for the course offering.

George R. Wodicka Professor and Head

Biomaterials

Supporting Documentation:

Course Instructor: Tom Webster

Offered: fall semester (even years)

Credit: 3

Course Objective:

To integrate materials science and engineering concepts with biology to educate students how to design successful biomaterials.

3. SYLLABUS:

<u>Topics</u>	No. of Lectures		
<u>Introduction to course</u>	1		
Structure of solids	3		
Atomic bonding, crystal structure, imperfect	ions		
<u>Characterization of materials</u>	4		
Mechanical properties, stress-strain behavior	•		
Viscoelasticity, thermal properties, phase dia	ngrams		
Strengthening mechanisms, surface properties	es		
Metallic implant materials	3		
Ceramic implant materials	3		
Polymeric implant materials	4		
Composites as biomaterials	2		
Structure-property relationships in biology	3		
Proteins, polysaccharides, mineralized tissue: bone/dentin			
Organ Transplants	3		
<u>Tissue response to biomaterials</u>	7		
Normal wound healing process, body response to implants			
Cell response to biomaterials	8		
Protein mediated cell adhesion			
<u>Student Presentations</u>	3		
Total	44		

4. SUGGESTED REFERENCE AND/OR TEXTBOOKS:

- 1. Park JB and Lakes RS: Biomaterials an Introduction. Plenum Press, New York, 1992.
- 2. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE: Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, New York, 1996.
- 3. Hudson JB: Surface Science. Butterworth-Heinemann, Boston, 1992.
- 4. Simon SR: Orthopaedic Basic Science. American Academy of Orthopaedic Surgeons, Rosemont, IL, 1994.
- 5. Fung YC: Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York, 1993.
- 6. Guyton AC and Hall JE: Textbook of Medical Physiology. W.B. Saunders Company, Philadelphia, 1996.

5. DOCUMENTATION ON PREVIOUS COURSE OFFERINGS:

	Fall 1999	Fall 2001	Fall 2003
Total Number of Students Enrolled	10	14	17
Total BME Students Enrolled	4	13	12
Course Evaluation	4.1/5.0	4.5/5.0	4.8/5.0