To: The Faculty of the College of Engineering
From: Division of Environmental and Ecological Engineering (EEE)
Subject: New Course EEE 69500

The faculty of the Division of Environmental and Ecological Engineering have approved the following new course to offer temporary courses to graduate students. This action is now submitted to the Engineering Faculty with a recommendation for approval.

EEE 69500 Experimental Courses
Sem. 1, 2. SS. Cr. 0-6.

Course description: Experimental courses at the graduate-level on a temporary basis to test the viability of offering the course on a permanent basis.

Reasons: The intent of this course is to provide a mechanism to offer experimental courses at the graduate-level separate from project or research-based experiences to allow for easier tracking.

Submitted by:

[Signature]

John W. Sutherland
Fehsenfeld Family Head
Environmental and Ecological Engineering

[ApprovalStamp]
PURDUE UNIVERSITY
REQUEST FOR ADDITION, EXPIRATION,
OR REVISION OF A GRADUATE COURSE
(50000-60000 LEVEL)

DEPARTMENT: Environmental and Ecological Engineering
EFFECTIVE SESSION: Spring 2017

INSTRUCTIONS: Please check the items below which describe the purpose of this request.

☐ 1. New course with supporting documents (complete proposal form)
☐ 2. Add existing course offered at another campus
☐ 3. Expansion of a course
☐ 4. Change in course number
☐ 5. Change in course title
☐ 6. Change in course credit type
☐ 7. Change in course attributes
☐ 8. Change in instructional hours
☐ 9. Change in course description
☐ 10. Change in course requisites
☐ 11. Change in semesters offered
☐ 12. Transfer from one department to another

PROPOSED:

Subject Abbreviation: EEE
Course Number: 56900
Long Title: Experimental Courses
Short Title: Experimental Courses

PROPOSED:

EXISTING:

Subject Abbreviation
Course Number

TERMS OFFERED:

Check All That Apply:
☐ Fall ☑ Spring ☑ Summer
CAMPUS(ES) INVOLVED:
☐ Calumet ☑ N. Central ☑ Tech Statewide
☐ Ft. Wayne ☑ Indianapolis ☑ W. Lafayette

CREDIT TYPE:

1. Fixed Credit: Cr. Hrs.:
2. Variable Credit Range: ☐
Minimum Cr. Hrs.:
Maximum Cr. Hrs.:

3. Equivalent Credit:
☐ Yes ☐ No

4. Thesis Credit:
☐ Yes ☐ No

COURSE ATTRIBUTES: Check All That Apply:

1. Pass/Not Pass Only:
2. Satisfactory/Unsatisfactory Only:
3. Repeatable:
4. Credit by Examination:
5. Fee:
☐ Coop ☐ Lab ☐ Rate Request:
6. Registration Approval Type:
7. Variable Title:
8. Honors:
9. Full Time Privilege:
10. Off Campus Experience:

COURSE DESCRIPTION (INCLUDE PREREQUISITES/RESTRICTIONS):

Topics vary. Arrange hours and credit. Permission of instructor required.

COURSE LEARNING OUTCOMES:

Learning outcomes will be designed by the instructor to meet a level of academic rigor consistent with the course level given the specific course content.

Calumet Department Head Date Calumet School Dean Date
Calumet Director of Graduate Studies Date

Fort Wayne Department Head Date Fort Wayne School Dean Date
Fort Wayne Director of Graduate Studies Date

Indianapolis Department Head Date Indianapolis School Dean Date
UPUI Associate Dean for Graduate Education Date

North Central Department Head Date North Central School Dean Date
North Central Director of Graduate Studies Date

West Lafayette Department Head Date West Lafayette College of Technology Date
Date Approved by Graduate Council Date

Graduate Area Committee Chairperson Date Graduate Dean Date
Graduate Council Secretary Date

OFFICE OF THE REGISTRAR

(Grad Form 40G [Excel format] - Does not include the Graduate Council's required supporting document. See pdf version of Form 40G)
Detailed Graduate Course Proposal for Academic Review

Note: The detailed course proposal is intended for academic review by the appropriate area committee of the Graduate Council. It supplements the Form 40G that is intended for administrative review of the Graduate School and Registrar.

To: Purdue University Graduate Council

From: Faculty Member: John W. Sutherland
 Department: Environmental and Ecological Engineering
 Campus: West Lafayette

Date: July 8, 2016

Subject: Proposal for New Graduate Course

Contact for information
 if questions arise:
 Name: Nina L. Robinson
 Phone: 67578
 Email: nlrobins@purdue.edi
 Address: POTR

Course Number: EEE 69500
Course Title: Experimental Courses
Short Title: Experimental Courses

Course Description:

Experimental courses at the graduate-level on a temporary basis to test the viability of offering the course on a permanent basis.
A. Justification for the Course

Justification of the need for the course

• There is a need to have a temporary course number that will allow the faculty in Environmental and Ecological Engineering (EEE) to develop new courses, assess their effectiveness and finalize their structure prior to obtaining a permanent course number.

Justification that course will be taught at a graduate level

• The target audience will be graduate students in engineering. We anticipate that the enrollment will vary from 10-20 depending on the subject matter. The courses will be taught at the graduate level so it is appropriate that it is a 60000 level course.

Justification of the demand for the course

• Anticipated enrollment
 o Undergraduate 0, undergraduates will not be allowed to take this class
 o Graduate 10-20, depending on the subject matter

Justification for online delivery

This class will not be taught online.
B. Learning Outcomes and Methods of Assessment

Since this will be a variable title class not all of the learning outcomes listed in the following will be in each course:

- Enhanced discipline knowledge for environmental and ecological engineering
- Enhancement of oral and written communication skills
- Development of critical and creative thinking in research
- Mastery of ethical research
- Professional Development

<table>
<thead>
<tr>
<th>Learning Outcomes</th>
<th>Assessment Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced discipline knowledge for environmental and ecological engineering</td>
<td>• Exams and quizzes</td>
</tr>
<tr>
<td>Enhancement of oral and written communication skills</td>
<td>• Class presentations (oral) and written assignments (written)</td>
</tr>
<tr>
<td>Development of critical and creative thinking in research</td>
<td>• Assessment and scoring of in class participation, assignments, class presentations</td>
</tr>
<tr>
<td>Mastery of ethical research</td>
<td>• Assessment and scoring of in class participation, assignments, class presentations</td>
</tr>
<tr>
<td>Professional Development</td>
<td>• Assessment and scoring of in class participation</td>
</tr>
</tbody>
</table>

- Since this is a variable title class, the assessment will vary by instructor.

Final Grading Criteria

Depending on the instructor this will vary. All of those assessments will be used with the exception of “Laboratory Exercises”.

Methods of Instruction

Depending on the instructor this will vary but those that will not be used have been removed.
C. Prerequisite(s)

- There are no course prerequisites. Students must have graduate standing.
 If no prerequisites, explain rationale:
- These are experimental classes so it is difficult to determine what courses would be prerequisites.
D. Course Instructor(s)

Various, all instructors will be members of the Purdue Graduate Faculty
E. Course Schedule or Outline

Option 1: Schedule Format

This is a course outline for a potential 600 level course in Advanced Aquatic Chemistry.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic(s)</th>
<th>Activity (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction and Overview Inorganic Composition of Natural Waters</td>
<td>• [Activity]</td>
</tr>
<tr>
<td></td>
<td>The Thermodynamic Basis for Equilibrium Chemistry</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The Thermodynamic Basis for Equilibrium Chemistry</td>
<td>• [Activity]</td>
</tr>
<tr>
<td>3</td>
<td>Activity-Concentration Relationships</td>
<td>• [Activity]</td>
</tr>
<tr>
<td>4</td>
<td>Fundamentals of Kinetics</td>
<td>• [Activity]</td>
</tr>
<tr>
<td>5</td>
<td>Fundamentals of Kinetics</td>
<td>• [Activity]</td>
</tr>
<tr>
<td>6</td>
<td>Solving Ionic Equilibrium Problems</td>
<td>• [Activity]</td>
</tr>
<tr>
<td>7</td>
<td>Solving Ionic Equilibrium Problems Acid-Base Systems</td>
<td>• [Activity]</td>
</tr>
<tr>
<td>8</td>
<td>Acid-Base Systems</td>
<td>• [Activity]</td>
</tr>
<tr>
<td>9</td>
<td>Complexation Reactions and Metal Ion Speciation</td>
<td>• [Activity]</td>
</tr>
<tr>
<td>10</td>
<td>Complexation Reactions and Metal Ion Speciation</td>
<td>• [Activity]</td>
</tr>
<tr>
<td>11</td>
<td>Solubility: Reactions of Solid Phases with Water</td>
<td>• [Activity]</td>
</tr>
<tr>
<td>12</td>
<td>Solubility: Reactions of Solid Phases with Water</td>
<td>• [Activity]</td>
</tr>
<tr>
<td>13</td>
<td>Redox Equilibria and Kinetics</td>
<td>• [Activity]</td>
</tr>
<tr>
<td>14</td>
<td>Redox Equilibria and Kinetics</td>
<td>• [Activity]</td>
</tr>
<tr>
<td>15</td>
<td>Special topics and review</td>
<td>• [Activity]</td>
</tr>
<tr>
<td>16</td>
<td>Not applicable</td>
<td>Final exam</td>
</tr>
</tbody>
</table>
F. Reading List (including course text)

Primary Reading List

This will vary by instructor, some of what may be used is outlined below.

- Reviews
- Journal Articles
- Other forms of communication

Secondary Reading List

See above
G. Library Resources

Reviews and journal articles required for this class will vary by instructor but this will be available free of charge and electronically through the Purdue Library. Links will be provided with class material.
H. Course Syllabus (now required)

EEE 69500 – Spring 201X
Advanced Aquatic Chemistry
Course Information and Syllabus

I. Administrative
Course Instructor

Graduate Faculty Member
Professor of Environmental and Ecological Engineerings
Division of Environmental and Ecological Engineering
Office: POTR 364
Phone: 765-49x-xxxx
Electronic mail: xxx@purdue.edu
Office hours: Wed.: 1:30-2:30 pm and Tue: 1 – 2 pm or by appointment.

Lecture time and location: Tues. and Thurs. 9:00 am -10:15 am; POTR 364

II. Instructional Resources
a) Course notes
b) Course handouts
c) Blackboard course pages
d) Engineering Library reserves and other material.
e) Companion website for Water Chemistry:

III. Student Performance and Work
The plus/minus grading system applies in this course (e.g., possible “B” grades are: B+, B, and B-).

Student performance will be evaluated as follows:
a) Two quizzes in class (15%)
b) Homework assignments (50%)
d) Final exam: 20%
e) Class participation (15%)

Make-up quizzes will not be granted for any reason; students must take the quizzes on the scheduled dates.

Students are encouraged to actively participate in each lecture, through questions, discussion, and written assignments. Class periods will often include short, written assignments that are completed and turned in during lecture.
IV. Course Outline
Complete the assigned readings before lecture.

<table>
<thead>
<tr>
<th>Week; Lecture Dates (Lecture number)</th>
<th>Reading</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1; 1/12, 1/14(1, 2)</td>
<td>Assigned reading 1</td>
<td>Introduction and Overview Inorganic Composition of Natural Waters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Thermodynamic Basis for Equilibrium Chemistry</td>
</tr>
<tr>
<td>2; 1/19, 1/16 (3, 4)</td>
<td>Assigned reading 3</td>
<td>The Thermodynamic Basis for Equilibrium Chemistry</td>
</tr>
<tr>
<td>3; 1/26, 1/28 (5,6)</td>
<td>Assigned reading 4</td>
<td>Activity-Concentration Relationships</td>
</tr>
<tr>
<td>4; 2/2, 2/7 (7-8)</td>
<td>Assigned reading 5</td>
<td>Fundamentals of Kinetics</td>
</tr>
<tr>
<td>5; 2/9, 2/11 (9,10)</td>
<td>Assigned reading 5</td>
<td>Fundamentals of Kinetics</td>
</tr>
<tr>
<td>6; 2/16, 2/18 (11,12)</td>
<td>Assigned reading 7</td>
<td>Solving Ionic Equilibrium Problems</td>
</tr>
<tr>
<td>7; 2/23, 2/25 (13,14)</td>
<td>Assigned reading 8</td>
<td>Solving Ionic Equilibrium Problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acid-Base Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quiz #1: 2/25</td>
</tr>
<tr>
<td>8; 3/1, 3/3(15,16)</td>
<td>Assigned reading 9</td>
<td>Complexation Reactions and Metal Ion Speciation</td>
</tr>
<tr>
<td>9; 3/8, 3/10 (17,18)</td>
<td>Assigned reading 9</td>
<td>Complexation Reactions and Metal Ion Speciation</td>
</tr>
<tr>
<td></td>
<td>Assigned reading 9</td>
<td>Complexation Reactions and Metal Ion Speciation</td>
</tr>
<tr>
<td>10; No lecture this week</td>
<td></td>
<td>Spring break</td>
</tr>
<tr>
<td>11; 3/22, 3/24 (19,20)</td>
<td>Assigned reading 10</td>
<td>Solubility: Reactions of Solid Phases with Water</td>
</tr>
<tr>
<td>12; 3/29, 3/31 (21, 22)</td>
<td>Assigned reading 10</td>
<td>Solubility: Reactions of Solid Phases with Water</td>
</tr>
<tr>
<td></td>
<td>Assigned reading 10</td>
<td>Solubility: Reactions of Solid Phases with Water</td>
</tr>
<tr>
<td>13; 4/5, 4/7 (23,24)</td>
<td>Assigned reading 10</td>
<td>Solubility: Reactions of Solid Phases with Water</td>
</tr>
<tr>
<td>14; 4/12, 4/14 (25,26)</td>
<td>Assigned reading 11</td>
<td>Redox Equilibria and Kinetics</td>
</tr>
<tr>
<td></td>
<td>Assigned reading 11</td>
<td>Redox Equilibria and Kinetics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quiz #2: 4/14</td>
</tr>
<tr>
<td>15; 4/19, 4/21 (27,28)</td>
<td>Assigned reading 11</td>
<td>Redox Equilibria and Kinetics</td>
</tr>
<tr>
<td>16; 4/26, 4/28 (29,30)</td>
<td></td>
<td>Special topics and review</td>
</tr>
<tr>
<td>17; Final Exam Week</td>
<td></td>
<td>Final exam period scheduled by the Registrar’s Office</td>
</tr>
</tbody>
</table>

Any student who needs an accommodation based on the impact of a disability should contact Graduate Faculty Member to discuss specific needs. Please contact the Disability Resource Center in room 830 Young Hall to coordinate reasonable accommodations for students with documented disabilities.

I. Academic dishonesty
Dishonest conduct as defined in Sections B.2.1 and B.2.2 of the University Regulations will be reported to the Dean of Students. Other penalties will also apply, depending on the nature of the misconduct.
Excerpt from the Purdue University policy:

_Purdue prohibits "dishonesty in connection with any University activity. Cheating, plagiarism, or knowingly furnishing false information to the University are examples of dishonesty." [Part 5, Section III-B-2-a, University Regulations] Furthermore, the University Senate has stipulated that "the commitment of acts of cheating, lying, and deceit in any of their diverse forms (such as the use of substitutes for taking examinations, the use of illegal cribs, plagiarism, and copying during examinations) is dishonest and must not be tolerated. Moreover, knowingly to aid and abet, directly or indirectly, other parties in committing dishonest acts is in itself dishonest." [University Senate Document 72-18, December 15, 1972]

Please also refer to Purdue's student guide for academic integrity: https://www.purdue.edu/odos/academic-integrity/

II. Emergency Planning

Purdue’s policy:

“In the event of a major campus emergency, course requirements, deadlines and grading percentages are subject to changes that may be necessitated by a revised semester calendar or other circumstances beyond the instructor’s control. Relevant changes to this course will be posted onto the course website or can be obtained by contacting the instructors or TAs via email or phone. You are expected to read your @purdue.edu email on a frequent basis.”

This syllabus is subject to change. The most current version will be posted on the course website on Blackboard.