REQUEST FOR ADDITION, EXPIRATION, OR REVISION OF AN UNDERGRADUATE COURSE
(10000-40000 LEVEL)

DEPARTMENT: Engineering Technology
EFFECTIVE SESSION: Spring 2012

INSTRUCTIONS: Please check the items below which describe the purpose of this request.

☐ 1. New course with supporting documents
☐ 2. Add existing course offered at another campus
☐ 3. Expiration of a course
☐ 4. Change in course number
☐ 5. Change in course title
☐ 6. Change in course credit type
☐ 7. Change in course attributes (department head signature only)
☐ 8. Change in instructional hours
☐ 9. Change in course description
☐ 10. Change in course requisites
☐ 11. Change in semesters offered (department head signature only)
☐ 12. Transfer from one department to another

PROPOSED:

Subject Abbreviation:
Course Number:
Title: Advanced C Programming

EXISTING:

Subject Abbreviation: ECE
Course Number: 26400

TERMS OFFERED:

Check All That Apply:
☐ Summer
☐ Fall
☐ Spring

CAMPUS(ES) INVOLVED:

Calumet
Cont Ed
Ft. Wayne
Indiana
N. Central
Tech Statewide
W. Lafayette

COURSE DESCRIPTION (INCLUDE REQUISITES/RESTRICTIONS):

Class 2, Cr 2. Prerequisites: ENGR 18100 or ENGR 195E

Continuation of a first programming course. Topics include files, structures, pointers, and the proper use of dynamic data structures.

*COURSE LEARNING OUTCOMES

Calumet Department Head Date
Calumet School Dean Date

Fort Wayne Department Head Date
Fort Wayne School Dean Date

Indiana School Department Head Date
Indianapolis School Dean Date

North Central Faculty Senate Chair Date
Vice Chancellor for Academic Affairs Date

West Lafayette Department Head Date
West Lafayette College School Dean Date

OFFICE OF THE REGISTRAR

10/3/11
Subject. (Brief description of proposed change, addition or deletion.)

New Bachelor of Science degree in Electrical & Computer Engineering (BS ECE).

Justification. (Briefly list main reasons for proposed change, addition or deletion.)

The freshman engineering program has existed at PNC for many years. Since being approved two years ago, the BS Mechanical Engineering degree, with a Minor in Electrical Engineering, has experienced strong enrollment. Currently, engineering students seeking to major in Electrical & Computer Engineering (ECE) must transfer to West Lafayette or Calumet. The proposed BS ECE Degree will retain many students who would otherwise transfer, thus increasing our enrollment and helping the students to lower the cost of their education.

Use the Current and Proposed spaces below for course changes only. Otherwise, mark "N/A".

Current: (Course changes: present catalog info.)

N/A. (New program.)

Proposed: (Course changes: new catalog information.)

See following pages for sample plan of study and list of West Lafayette courses that will be brought to PNC.

Course Objectives. (For new courses only. List main learning objectives. If lengthy, attach as separate page.)

Students successfully completing this program will:
(1) Have a well-rounded, quality undergraduate engineering education.
(2) Be able to apply applications of modern sciences and technologies.
(3) Provide engineering or internship services to local industry.
(4) Have been involved in undergraduate research activities.
(5) Have been involved in undergraduate engineering competitions and participate in local engineering societies.

Impact on Students. (State "N/A" if proposal will not greatly affect students.)

Substantial savings, compared to the cost of transferring to West Lafayette or commuting to Calumet.

Impact on University Resources. (State "N/A" if proposal will not require new resources, faculty or funds.)

Program will utilize the existing ECET laboratories and current full- and part-time engineering faculty.

Impact on other Academic Units. (State "N/A" if proposal will not affect other units.)

This new degree will help increase enrollment in several areas: Math, Physics, Chemistry and Humanities and Social Sciences.
Sample Plan of Study for BS-ECE Degree

<table>
<thead>
<tr>
<th>SEMESTER 1</th>
<th>CR</th>
<th>SEMESTER 2</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 167 Plane Analytic Geometry & Calculus I</td>
<td>5</td>
<td>MA 169 Plane Analytic Geometry & Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>CHM 115 General Chemistry</td>
<td>4</td>
<td>CHM 116 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101 English Composition I</td>
<td>3</td>
<td>PHYS 152 Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 171 Engineering Fundamentals I</td>
<td>5</td>
<td>ENGR 181 Engineering Fundamentals II</td>
<td>5</td>
</tr>
<tr>
<td>CREDIT HOURS</td>
<td>17</td>
<td>CREDIT HOURS</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 3</th>
<th>CR</th>
<th>SEMESTER 4</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 201 Linear Circuit Analysis I</td>
<td>3</td>
<td>ECE 202 Linear Circuit Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>ECE 207 Electronic Measurement Techniques</td>
<td>1</td>
<td>ECE 255 Intro. to Electronics Analysis & Design</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 261 Electricity and Optics</td>
<td>4</td>
<td>ECE 208 Electronic Design & Dev. Lab</td>
<td>1</td>
</tr>
<tr>
<td>MA 261 Multivariate Calculus</td>
<td>4</td>
<td>MA 262 Linear Algebra & Diff. Eqs.</td>
<td>4</td>
</tr>
<tr>
<td>ME 270 Basic Mechanics I</td>
<td>3</td>
<td>ECE 270 Intro. to Digital Sys. Design</td>
<td>4</td>
</tr>
<tr>
<td>Humanities/Social Science Elective</td>
<td>3</td>
<td>Humanities/Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>CREDIT HOURS</td>
<td>18</td>
<td>CREDIT HOURS</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 5</th>
<th>CR</th>
<th>SEMESTER 6</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 264 Advanced C programming</td>
<td>2</td>
<td>ECE 311 Electric and Magnetic Fields</td>
<td>3</td>
</tr>
<tr>
<td>ECE 323 Electro. & Motion Dev.Lab.</td>
<td>1</td>
<td>ECE 308 Systems Simulation and Control Lab</td>
<td>1</td>
</tr>
<tr>
<td>ECE 301 Signals and Systems</td>
<td>3</td>
<td>ECE 362 Microprocessor Systems & Interfacing</td>
<td>3</td>
</tr>
<tr>
<td>ECE 302 Prob. Methods in Elect. Engineering</td>
<td>3</td>
<td>Humanities/Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Science Elective</td>
<td>3</td>
<td>CREDIT HOURS</td>
<td>13</td>
</tr>
<tr>
<td>CREDIT HOURS</td>
<td>15</td>
<td>CREDIT HOURS</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER 7</th>
<th>CR</th>
<th>SEMESTER 8</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 402 EE Design Projects</td>
<td>3</td>
<td>ENGR 461 Engineering Design Exp.</td>
<td>3</td>
</tr>
<tr>
<td>ECE 440 Transmission of Information</td>
<td>4</td>
<td>ECE 438 Digital Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td>ENGR Elective</td>
<td>3</td>
<td>ENGR Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Science Elective</td>
<td>3</td>
<td>Humanities/Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>CREDIT HOURS</td>
<td>13</td>
<td>CREDIT HOURS</td>
<td>13</td>
</tr>
</tbody>
</table>

TOTAL CREDIT HOURS FOR DEGREE: 124
Courses to Be Brought from West Lafayette.

E 208 Electronic Devices and Design Laboratory
Lab. 3, Cr. 1. Prerequisite: ECE 207. Corequisites: ECE 255.
Laboratory experiments in the measurement of electronic device characteristics. Design of biasing networks, small signal amplifiers and switching circuits.

ECE 255 Electronic Circuit Analysis and Design
Class 3, Cr 3. Prerequisite: ECE 201.
Diode, bipolar transistor and FET circuit models for the design and analysis of electronic circuits. Single and multistage analysis and design; introduction to digital circuits. Computer aided design calculations, amplifier operating point design, and frequency response of single and multistage amplifiers. High frequency and low frequency designs are emphasized.

ECE 264 Advanced C Programming
Class 2, Cr. 2. Prerequisite: ENGR 181 or ENGR 195E.
Continuation of a first programming course. Topics include files, structures, pointers, and the proper use of dynamic data structures.

ECE 270 Introduction to Digital System Design
Class 3, Lab. 3, Cr. 4. Prerequisites: ECE 201 and ECE 207.
An introduction to digital system design, with an emphasis on practical design techniques and circuit implementation.

ECE 301 Signals and Systems
Class 3, Cr. 3. Prerequisite: ECE 202.
Classification, analysis and design of systems in both the time- and frequency-domains. Continuous-time linear systems: Fourier Series, Fourier Transform, bilateral Laplace Transform. Discrete-time linear systems: difference equations, Discrete-Time Fourier Transform, bilateral z-Transform. Sampling, quantization, and discrete-time processing of continuous-time signals. Discrete-time nonlinear systems: median-type filters, threshold decomposition. System design examples such as the compact disc player and AM radio.

ECE 302 Probabilistic Methods in Electrical and Computer Engineering
Class 3, Cr. 3. Prerequisite: MA 262. Corequisite: ECE 301.

ECE 308 Systems Simulation and Control Laboratory
Class 3, Cr. 1. Prerequisite: ECE 207. Corequisite: ECE 382
Instruction and laboratory exercises in the solution of differential equations that arise in the modeling of physical systems. Instruction in the principles of operation and design of linear control systems.

ECE 311 Electric and Magnetic Fields
Class 3, Cr. 3. Prerequisites: ECE 201, PHYS 261 & MA 262.
Continued study of vector calculus, electrostatics, magnetostatics, and Maxwell's Equations. Introduction to electromagnetic waves, transmission lines, and radiation from antennas.
Courses to Be Brought from West Lafayette (cont.).

ECE 321 Electromechanical Motion Devices
Class 3, Cr. 3. **Prerequisite:** ECE 202 or ECE 255.
The general theory of electromechanical motion devices relating electric variables and electromagnetic forces. The basic concepts and operational behavior of dc, induction, brushless dc, and stepper motors used in control applications are presented.

ECE 323 Electromechanical Motion Devices and Systems Laboratory
Lab. 3, Cr. 1. **Corequisite:** ECE 321.
Experiments closely coordinated with EE 321 involving measurement of fundamental parameters of various electromechanical devices using modern instrumentation techniques. Computer simulation is used to predict steady-state and dynamic operating characteristics. Comparison of predicted and measured performance is emphasized.

 ✓ **ECE 362 Microprocessor Systems and Interfacing**
Class: 3, Cr. Lab. 3, Cr. 4. **Prerequisites:** ECE 264 & ECE 270.
An introduction to microcontroller instruction sets, assembly language programming, microcontroller interfacing, microcontroller peripherals, and embedded system design.

ECE 382 Feedback System Analysis and Design
Class 3, Cr. 3. **Prerequisite:** ECE 202. **Corequisite:** ECE 308.
In this course classical concepts of feedback system analysis and associated compensation techniques are presented. In particular, the root locus, Bode diagram and Nyquist plot are used as determinants of stability.

✓ **E 402 EE Design Projects**
Class 1, Lab. 6, Cr. 3. **Prerequisite:** Senior standing.
Lecture sessions provide the student with background information on the design and management of projects. Formal lectures cover, for example, design for manufacturability, design for quality, test and evaluation, reliability and ethics, patents and copyrights, plus case studies. During the laboratory sessions the students work in teams on a challenging open-ended electrical engineering project that draws on previous course work. Projects routinely involve standard design facets (such as consideration of alternative solutions, feasibility considerations and detailed system descriptions) and include a number of realistic constraints (such as cost, safety, reliability, and aesthetics).

✓ **ECE 438 Digital Signal Processing with Applications**
Class 3, Lab. 3, Cr. 4. **Prerequisites:** ECE 301 & ECE 302.
The course is presented in three units. Foundations: the review of continuous-time and discrete-time signals, and spectral analysis; design of finite impulse response and infinite impulse response digital filters; processing of random signals. Speech processing: vocal tract models and characteristics of the speech waveform; short-time spectral analysis and synthesis; linear predictive coding. Image processing: two dimensional signals, systems, and spectral analysis; image enhancement; image coding; image reconstruction. The laboratory experiments are closely coordinated with each unit. Throughout the course, the integration of digital signal processing concepts in a design environment is emphasized.

✓ **ECE 440 Transmission of Information**
Class 3, Lab: 3, Cr.: 4. **Prerequisites:** ECE 301 & ECE 302.
Analysis and design of Analog and Digital Communication Systems. Emphasis on engineering applications of theory to communication system design. The laboratory introduces the use of advanced engineering workstations in the design and testing of communication systems.
Purdue University
Request for Addition, Expiration, or Revision of an Undergraduate Course
(10000-49999 Level)

Department: School of Electrical and Computer Engineering (EFD 6-12)
Effective Session: Fall 2012

Instructions: Please check the items below which describe the purpose of this request:

☐ 1. New course with supporting documents
☐ 2. Add existing course offered at another campus
☐ 3. Exploitation of a course
☐ 4. Change in course number
☐ 5. Change in course title
☒ 6. Change in course credit type
☐ 7. Change in course attributes (department head signature only)
☐ 8. Change in instructional hours
☐ 9. Change in course description
☐ 10. Change in course requisites
☐ 11. Change in semesters offered (department head signature only)
☐ 12. Transfer from one department to another

Proposed:

Subject Abbreviation: ECE

Existing:

Term Offered: Check All That Apply:
☐ Summer
☒ Fall
☐ Spring

Course Number: 26400

CAMPUS(S) Involved:
☒ Calumet
☐ Cont Ed
☐ Ft. Wayne
☒ Tech Statewide
☒ Indianapolis
☒ W. Lafayette

Abbreviated title will be entered by the Office of the Registrar. (30 characters only)

Credit Type
1. Fixed Credit: Cr. Hrs.
2. Variable Credit Range: (Check One)
 Minimum Cr. Hrs.
 Maximum Cr. Hrs.
3. Equivalent Credit: Yes

Schedule Type
Lecture
Discussion
Seminar
Lab Prep
Studio
Distance
Clinic
Experiential
Research
Ind. Study
Pract/Observer

Minutes Per Wk
Meetings Per Week
Weeks Offered
% of Credit
Allocated

Course Attributes: Check All That Apply
1. Pass/Not Pass Only
2. Satisfactory/Unsatisfactory Only
3. Repeatable
4. Credit by Examination
5. Special Fees
6. Registration Approval
 Department
 Instructor
7. Variable Title
8. Honors
9. Full Time Privilege
10. Off Campus Experience

Course Description (Include Prerequisites/Restrictions):
Prerequisites: CS 15000 Minimum Grade of C-
Restrictions: Must be enrolled in one of the following Colleges: School of Electrical and Computer Engineering, School of Biomedical Engineering

COURSE LEARNING OUTCOMES:
See attachment.

Calumet Department Head
Date
Calumet School Dean
Date
Fort Wayne Department Head
Date
Fort Wayne School Dean
Date
Indianapolis Department Head
Date
Indianapolis School Dean
Date
North Central Department Head
Date
North Central Chairperson
Date
West Lafayette Department Head
Date
West Lafayette Associate/Dean
Date
West Lafayette Registrar
Date

Office of the Registrar

LD
2/14/12
REQUEST FOR ADDITION, EXPIRATION, OR REVISION OF AN UNDERGRADUATE COURSE

DEPARTMENT: School of Electrical and Computer Engineering (EFD 6-12)
EFFECTIVE SESSION: Fall 2012

INSTRUCTIONS: Please check the items below which describe the purpose of this request.

- New course with supporting documents
- Add existing course or course offered at another campus
- Change in course title
- Change in course credits
- Change in course description
- Change in course credits
- Change in course prerequisites
- Change in semesters offered (department head signature only)
- Transfer from one department to another

PROPOSED

<table>
<thead>
<tr>
<th>Subject Abbreviation</th>
<th>Subject Abbreviation</th>
<th>Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced C Programming</td>
<td>ECE</td>
<td>26401</td>
</tr>
</tbody>
</table>

EXISTING

<table>
<thead>
<tr>
<th>Long Title</th>
<th>Short Title</th>
<th>Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced C Programming</td>
<td>Advanced C Programming</td>
<td>26401</td>
</tr>
</tbody>
</table>

TERMS OFFERED

<table>
<thead>
<tr>
<th>TERMS OFFERED</th>
<th>Check All That Apply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>Fall</td>
</tr>
</tbody>
</table>

CAMPUS(ES) INVOLVED

- Calumet
- Chicago
- Elkhart
- Fort Wayne
- Hammond
- Indiana State
- Lakecaster
- Northwest Indiana
- West Lafayette

COURSE ATTRIBUTES

- Registration Approval Type: Instructor

CREDIT TYPE

1. Fixed Credit: Cr. Hrs: 3
2. Variable Credit Range: Minimum Cr. Hrs
 (Check One) To
 - Or
 Maximum Cr. Hrs
3. Equivalent Credit: Yes

SCHEDULE TYPE

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Recitation</th>
<th>Presentation</th>
<th>Laboratory</th>
<th>Lab Prep</th>
<th>Studio</th>
<th>Distance</th>
<th>Clinic</th>
<th>Experiential</th>
<th>Research</th>
<th>Ind. Study</th>
<th>Paid/Observer</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

WEEKS OFFERED

<table>
<thead>
<tr>
<th>Weeks Offered</th>
<th>% of Credit Allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>100</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION

(Include Requisites/Restrictions)

- Prerequisite: CS 15600 Minimum Grade of C-
- Restrictions: Must be enrolled in one of the following Colleges: School of Electrical and Computer Engineering, School of Biomedical Engineering

COURSE LEARNING OUTCOMES

See attachment.

SIGNED OFF

- Calendar Department Head
 - Date
- Calendar School Dean
 - Date
- Fort Wayne Department Head
 - Date
- Fort Wayne School Dean
 - Date
- Indiana Department Head
 - Date
- Indiana School Dean
 - Date
- Northwest Indiana Department Head
 - Date
- Northwest Indiana Chancellor
 - Date
- North Central Department Head
 - Date
- North Central Chancellor
 - Date
- West Lafayette Department Head
 - Date
- West Lafayette Registrar
 - Date

OFFICE OF THE REGISTRAR
PURDUE UNIVERSITY

REQUEST FOR ADOPTION, EXPIRATION, OR REVISION OF AN UNDERGRADUATE COURSE

DEPARTMENT: School of Electrical and Computer Engineering (EFD 6-12)

EFFECTIVE SESSION: Fall 2012 (2013-14)

INSTRUCTIONS: Please check the item below which describe the purpose of this request.

<table>
<thead>
<tr>
<th>PROPOSED</th>
<th>EXISTING</th>
<th>TERMS OFFERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Abbreviation</td>
<td>Subject Abbreviation ECE</td>
<td>Check All That Apply</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Number 26409</td>
<td>Summer</td>
</tr>
<tr>
<td>Long Title Advanced C Programming</td>
<td>Short Title Advanced C Programming</td>
<td></td>
</tr>
</tbody>
</table>

CREDIT TYPE

<table>
<thead>
<tr>
<th>1. Fixed Credit: Cr. Hrs.</th>
<th>0</th>
<th>1. Pass/Not Pass Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Variable Credit Range:</td>
<td>Minimum Cr. Hrs.</td>
<td>Maximum Cr. Hrs.</td>
</tr>
<tr>
<td>(Check Only) To</td>
<td>Or</td>
<td></td>
</tr>
<tr>
<td>3. Equivalent Credit: Yes</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

COURSE ATTRIBUTES: Check All That Apply

<table>
<thead>
<tr>
<th>6. Registration Approval Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Instructor</td>
</tr>
<tr>
<td>8. Honors</td>
</tr>
<tr>
<td>9. Full Time Privilege</td>
</tr>
<tr>
<td>10. Off Campus Experience</td>
</tr>
</tbody>
</table>

SCHEDULE TYPE

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Minutes Per Week</th>
<th>Meets Per Week</th>
<th>Weeks Offered</th>
<th>% of Credit Allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3</td>
<td>16</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION (INCLUDE REQUISITES/RESTRICTIONS):

Prerequisite: CS 15900 Minimum Grade of C-

Restrictions: Must be enrolled in one of the following Colleges: School of Electrical and Computer Engineering, School of Biomedical Engineering

COURSE LEARNING OUTCOMES:

See attachment.

OFFICE OF THE REGISTRAR

[Signatures and dates from various departments and deans are present on the form.]
TO: The Faculty of the College of Engineering

FROM: The Faculty of the School of Electrical and Computer Engineering

RE: Change to Existing Undergraduate Course: ECE 26400, Advanced C Programming, change in credit hours.

The faculty of the School of Electrical and Computer Engineering has approved the following changes to an existing course. This action is now submitted to the Engineering Faculty with a recommendation for approval.

From: ECE 26400 Advanced C Programming
Sem. Fall and Spring; Cr. 2; Lecture 2.
Prerequisites: CS 15900, minimum grade of C-
Restrictions: Must be enrolled in one of the following: School of Electrical & Computer Engineering, School of Biomedical Engineering
Description: Continuation of a first programming course. Topics include files, structures, pointers, and the proper use of dynamic data structures.

To: ECE 26400 Advanced C Programming
Sem. Fall and Spring; Cr. 3; Lecture 3.
Prerequisites: CS 15900, minimum grade of C-
Restrictions: Must be enrolled in: School of Electrical & Computer Engineering, School of Biomedical Engineering
Description: Continuation of a first programming course. Topics include files, structures, pointers, and the proper use of dynamic data structures.

Reason: The Computer Engineering faculty in ECE has determined that two contact hours per week is insufficient to convey the course information.

[Signature]
on behalf of V. Balakrishnan, Head
School of Electrical and Computer Engineering

APPROVED FOR THE FACULTY
OF THE SCHOOLS OF ENGINEERING
BY THE ENGINEERING CURRICULUM COMMITTEE
ECC Minutes #15
Date 10/17/11
Chairman ECC K. Cipra
School of Electrical and Computer Engineering (EFD 6-12)

Course Learning Outcomes:

i) the ability to read and write C programs that uses files [1,4,a,b,c,e,k]

ii) the ability to read and write C programs that use structures [1,4,a,b,c,e,k]

iii) the ability to read and write C programs that use dynamic data structures [1,4,a,b,c,e,k]

iv) the ability to read and write C programs that use recursion [1,4,a,b,c,e,k]