TO: The Faculty of the College of Engineering

FROM: The Faculty of the School of Mechanical Engineering

RE: ME 26400 Introduction to Manufacturing for Mechanical Design – Permanent course number

The faculty of the School of Mechanical Engineering has approved a permanent course number (ME 26400) for the course "Introduction to Manufacturing for Mechanical Design." The action is now submitted to the Engineering Faculty with a recommendation for approval.

ME 26400: Introduction to Manufacturing for Mechanical Design Credits: 3 credits [2 (lectures) +1(lab)] Offered: Spring, Summer, and Fall Prerequisite: MFET 163

Description: Introduction to manufacturing processes for typical engineering materials. Basics of material properties and behavior for manufacturing processes. Material selection and manufacturing process selection for mechanical design. Hands-on projects in the lab reinforce the knowledge of manufacturing processes.

Learning Outcomes:

- 1. Understand material properties and behavior for design and manufacturing.
- 2. Gain a fundamental knowledge of manufacturing processes.
- 3. Gain knowledge of the practice of measurements and manufacturing processes through laboratory experiments.
- 4. Enhance knowledge on the selection of materials and manufacturing processes for product design.
- 5. Enhance technical communication skills through short technical lab reports.

Background: The faculty of Mechanical Engineering has determined that basic knowledge of manufacturing, and hands-on manufacturing skills are important for all students graduating with BS in Mechanical Engineering, and these skills should be introduced early in the BSME curriculum. To achieve this goal, the current ME 263: *Introduction to Mechanical Engineering Design, Innovation, and Entrepreneurship* will be replaced with the new course ME 264: *Introduction to Manufacturing for Mechanical Design*. The focus of this course will be on introducing the fundamentals of manufacturing in the context of the engineering design process. The design-related content in ME 263 will be moved to a new junior-level design course ME 364: *Mechanical Engineering Design*.

The course (ME 264) is currently being piloted as ME 297 IM with an enrolment of 39 students. It will be offered again as a pilot in Spring 2025. This EFD is only for requesting the permanent course number. A separate EFD will be submitted to update the ME plan of study.

Jitesh Panchal Associate Head for Undergraduate Studies Professor of Mechanical Engineering

ME 26400

Introduction to Manufacturing for Mechanical Design

Laboratory Experiments

Typical laboratory experiments will include, but are not limited to:

- 1. Basic Measurement Principles and Practice (Dimension, Tolerance, Surface Roughness, and Geometry)
- 2. Basic Operation of Machine Tools (Lathe and Milling Machine)
- 3. CNC programming and CNC machining
- 4. 3D printing
- 5. Finishing, component integration, assembly, inspection and test

COURSE NUMBER: ME 26400	COURSE TITLE: Introduction to Manufacturing for Mechanical			
	Design			
REQUIRED COURSE OR ELECTIVE COURSE: Required	TERMS OFFERED: Fall and Spring			
TEXTBOOK/REQUIRED MATERIAL:	PRE-REQUISITIES:			
TBD	MFET 163 Graphical Communication and Spatial Analysis			
COORDINATING FACULTY: Francisco Montalvo				
COURSE DESCRIPTION: Introduction to manufacturing	COURSE OUTCOMES [Related ME Program Outcomes in			
processes for typical engineering materials. Basics of material	brackets]:			
properties and behavior for manufacturing processes. Material	1. Understand material properties and behavior for design and			
selection and manufacturing process selection for mechanical	manufacturing [1,2]			
design. Hands-on projects in the lab reinforce the knowledge of	2. Gain a fundamental knowledge of manufacturing processes.			
manufacturing processes.	[2, 3]			
ASSESSMENTS TOOLS:	3. Gain knowledge of the practice of measurements and			
1. Homework	manufacturing processes through laboratory experiments. [2, 3]			
2. Lab reports	4. Enhance knowledge on the selection of materials and			
3. Group Assignments	manufacturing processes for product design [1,2, 3, 4, 5,7]			
4. Final Reports and Presentations	5. Enhance technical communication skills through short			
	technical lab reports. [3]			
NATURE OF DESIGN CONTENT: Choosing appropriate	RELATED ME PROGRAM OUTCOMES:			
materials and manufacturing processes for mechanical design;	1. Engineering fundamentals			
design for manufacturing.	2. Engineering design			
	3. Communication skills			
PROFESSIONAL COMPONENT:	4. Ethical/Prof. responsibilities			
1. Engineering Topics: Engineering Science – 40%	5. Teamwork skills			
Engineering Design – 60%	6. Experimental skills			
COMPUTER USAGE : The lab projects require students to	7. Knowledge acquisition			
write reports and conduct data analysis.				
COURSE STRUCTURE/SCHEDULE:				
Lecture - 2 days per week at 50 minutes				
Lab - 2 days per week at 110 and 50 minutes				
PREPARED BY: Martin Jun, Francisco Montalvo, Michael Sealy REVISION DATE: October 23, 2024				

Proposed Topics and Labs

Lecture	Торіс	Lab	Lab Group G1	Lab Group G2
1	Introduction to manufacturing	1A		
2	Dimensions, tolerances, and surfaces 1	1B	Lab introduction and team/group selection	
3	Dimensions, tolerances, and surfaces 2	2A	Metrology 1	Manual Machining 1
4	Machining Operations 1	2B	Manual Machining 1	Manual Machining 2
5	Labor Day	3A	Manual Machining 2	Metrology 1
6	Machining Operations 2	3B	Manual Machining 3	Manual Machining 3
7	Sheet-metalworking processes 1	4A	Optional 1: Woodworking/Welding	Sheet metalworking 1
8	Sheet-metalworking processes 2	4B	Metrology 2	Sheet metalworking 2
9	Woodworking	5A	Sheet metalworking 1	Optional 1: Woodworking/Welding
10	Materials for manufacturing 1	5B	Sheet metalworking 2	Metrology 2
11	Materials for manufacturing 2	6A	Mastercam 1	
12	CNC machining 1	6B	Mastercam 2	
13	CNC machining 2	7A	Mastercam 2	
14	Project introduction	7B	CNC Introduction to Turning	
15	Fall / Spring Break	8A	Fall / Spring Break	
16	Cutting tool technology	8B	No lab	
17	Quality, defect, inspection, go/no-go	9A	Mastercam 4	
18	Industry speaker - Quality/ GD&T	9B	CNC Introduction to Milling	
19	Design for manufacturability 1	10A	Metrology 3	
20	Design for manufacturability 2	10B	Project Operational Plan	
21	Joining: welding/soldering 1	11A	Project: Design and Manufacturing 1	
22	Joining: welding/soldering 2	11B	Project: Design and Manufacturing 2	
23	Joining: assembly (bolts, nuts, and screws)	12A	Project: Manufacturing 1	
24	Assembly and Component Integration 1	12B	Project: Manufacturing 2	
25	Assembly and Component Integration 2	13A	Project: Component Integration, Assembly, Testing, and Modification 1	
26	Laser cutting	13B	Project: Component Integration, Assembly, Testing, and Modification 2	
27	Industry speaker – Additive Manufacturing	14A	Project: Competition and Validation 1	
28	Additive manufacturing 1	14B	Project: Competition and Validation 2	
29	Additive manufacturing 2	15A	Thanksgiving Break / Project and Report Preparation	
30	Thanksgiving Break / No lecture	15B	No lab / Project and Report Preparation	
31	No lecture	16A	Project Presentation and Report	
32	No lecture	16B	Project Presentation and Report	