Elmore Family School of Electrical
and Computer Engineering

PRTuERaT TR

Engineering Faculty Document No. EFD 46-22
February 1, 2022

Memorandum

To: The College of Engineering Faculty

From: The Elmore Family School of Electrical and Computer Engineering

Re: Course modifications to ECE 46100 Software Engineering

The faculty of the Elmore Family School of Electrical and Computer Engineering has approved the changes
to the following undergraduate course. This action is now submitted to the Engineering Faculty with a
recommendation for approval.

FROM

ECE 46100 Software Engineering, Sem. 1, Class 3, Lab 0, Cr. 3.
Prerequisites: ECE 30862

Introduction to software engineering principles, with special emphasis on the process, methods,
and tools needed to develop and test quality software products and systems.

No learning outcomes listed in catalog.
TO:

ECE 30861 Software Engineering, Sem. 1, Class 3, Lab 0, Cr. 3.
Prerequisites: ECE 36800

Introduction to software engineering principles, with special emphasis on the process, methods,
and tools needed to develop and test quality software products and systems.

Learning Outcomes: i) an ability to conduct object-oriented design and use unified modeling
language. [1,3]; ii) an ability to understand different models of software development processes.
[1,2]; iii) an ability to analyze requirements and write project specifications. [1,2]; iv) an ability
to successfully develop a team software project on time and meet the specifications. [1, 2, 3, 4]

ELMORE FAMILY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
Materials Sciences and Electrical Engineering Building, Room 140

501 Northwestern Avenue, West Lafayette, IN 47907

Office: 765-494-3390

Reason: This course has not been offered for 10 years due to not having faculty to teach it; however,
students continue to express a high interest in this material. ECE now has faculty members to revise and
teach this course with listed updates. This course introduces students to the vocabulary, process, and mindset
of a software engineer or related fields (e.g. embedded systems), and provides a team-based software
engineering experience. In addition, skills in this course help prepare students for internships as well as full-
time positions as software engineers.

M’lﬁnd Ku%{
Associate Head of Teaching and Learning
Professor of Electrical and Computer Engineering

Page 2 of 2

Davis — ECE 461 Reboot — Lecture outline

Weeks Major Topics

1 Introduction, project description, team organization.

1 Core concepts in teamwork and tools (project management software,
version control, code review, bug tracking, etc.)

1 Introduction to project-relevant engineering infrastructure (web stack,
databases, query languages, big-data tools, etc.)

¥ Software engineering processes

2 Core software engineering activities: Requirements engineering; Design

1 Midterm project handoffs

2 Core software engineering activities: Validation; Maintenance

il Software release and maintenance

1 Ethics, reliability, and standards

1 Working with legacy software

1 Working with open-source software

1 Software 2.0 - Incorporating Al & machine learning

1 Project postmortems and presentations

Davis — ECE 461 Reboot — Old vs New

Summary
This is a proposal to re-boot ECE 46100 — Software Engineering.

The course was last offered ~2011. There is substantial student demand, particularly from the
(many) CompE students planning to go into software jobs in industry.

The proposal changes the course as follows:
- Change in preregs
- Different textbook. ,
- The lecture outline is changed — some reorganization, some new topics swapped in to
replace old ones. Details and justification are below.

My goal is to regularly offer undergraduate and graduate courses in Software Engineering. | am

currently offering the first edition of ECE 595—Advanced Software Engineering with ~10
undergrads and ~20 graduate students.

Course catalog entry

https://engineering.purdue.edu/ECE/Academics/Undergraduates/UGQO/Courselnfo/courselnfo?
courseid=402&show=true&type=undergrad

Change in prereq

Old: ECE 30862 (OOP)
Proposed: ECE 368 (Data structures)
Justification:
- Practical: ECE 30862 is no longer actively offered; Sam has been teaching ECE 395
variations instead. In contrast, ECE 368 is a “fixed point” in the curriculum.
- Pedagogical: The purpose of the prereq is to ensure that students have sufficient
programming experience. They should be “fluent” so that they can reason about higher-
level engineering concepts. Students who pass ECE 368 have demonstrated this skill.

Textbook
Existing Proposed Why
Required e Software e Software Pressman vs
Engineering: Engineering, Sommerville: | have
A Sommerville, gone over both
Practitioner’s Pearson 2016. texts (and several

Approach.
Pressman,
McGraw-Hill,
2004.

Software
Engineering at
Google, O'Reilly,
2020. (e-edition
available through
library)

others). | find
Sommerville much
more readable.

SE@Google: Free to
access. It gives a
deep dive into one
company’s specific
context, instead of
the “survey of
experiences at
many companies”
found in most SE
textbooks.

Recommended

Software
Design, From
Programming
to
Architecture.
Braude,
Wiley, 2004.

The mythical man
month: Essays on
Software
Engineering.
Brooks.

Design Patterns
(Gof4).

Head First Design
Patterns. O'Reilly.

| am not familiar
with the Braude
book, but students
don’t need another
600-page textbook.

The recommended
books cover (1)
essays and
reflctions on SE;
and (2) some
specific trouble
areas in detail.

Design patterns are
also treated in the
OOP elective (ECE
30862 and its
offspring). These
are a critical topic
and worth covering
in multiple places.
In ECE 461 the focus
will be more on
architectural
patterns than on
class-based
patterns.

Lecture outline

Week -Existing Proposed Notes
1 Introduction, project | Same
description and team
organization
2 Requirement analysis | Introduction to Show students the
and project project-relevant technical building
specification engineering blocks they need.
infrastructure (survey | The undergrad
of web stack, DB, curriculum does not
query languages, big- | cover most of this.
data tools, etc.) ECE 361 (taught as
ECE 495 for the last
2 semesters) did
but is being
replaced.
3 Version control and Core concepts in Show students the
bug tracking teamwork and tools | teamwork tools
(project they will need.
management, version
control, code review,
bug tracking, etc.)
4 Visual programming Software engineering | Give students
and user interface processes (waterfall | vocabulary and
- agile) define the
processes they
should be following
on their projects
5 OOP and UML Core activity #1: Moved down from
Requirements week 2
engineering
6 Software Core activity H#2: Moved down from
development process | Design (OOP & UML) | week 5
7 Open-source Midterm project Open-source

development model

presentations and
hand-offs

covered in week 13.

Instead, here, |
have the student
teams undergo a
reorganization. One
person will stay on
each project and

the rest will go to
another project.

This week is an
innovation —teach
the students about
‘bus factor’ and
how to onboard
new team members
and adapt to
someone else’s
code.

Midterm project
presentation

Core activity #3:
Validation (Test and
verification)

Project
presentation was
done in the
previous week.

Validation is moved
up from Week 11.

Team management

Core activity #4:
Maintenance

Team management
concepts were
covered much
earlier, so the
students could
manage their teams
well.

Maintenance was
somewhat covered
in the previous
edition.

10

Ethics, reliability, and
standard

Software metrics and
improvement

Ethics moved to the
next week.

Metrics &
improvement were
somewhat covered
in old week 14, but
this way the
students have more
time to apply the
concepts to their
projects.

11

Test and verification

Ethics, reliability, and
standards

Test is moved
earlier. Ethics is
moved a little later.

12

System integration

Working with legacy
software

Integration
concepts are
discussed during
Test week.

Legacy software is
part of a 2-week
sequence on
“software in the
wild”.

13

Estimation and
product metrics

Working with open-
source software

Metrics were
discussed in week
10.

0SS is part of a 2-
week sequence on
“software in the
wild”. Moved down
from old Week 7.

14

Software release and
post-release analysis

Software 2.0:
Incorporating
machine learning

Release and
analysis concepts
are somewhat
covered in week
week 10. The post-
release analysis is
handled via a
postmortem in
week 15.

Software 2.0
material is new.

15

Final project
presentation

Project presentations
and post-mortems

Similar, but
incorporates more
of the “post-release
analysis” aspects.

Questions

“This is an experiential learning course.” - What does this mean?

