TO: The Faculty of the College of Engineering
FROM: The School of Aeronautics and Astronautics
RE: New Undergraduate Course, AAE 33800 Thermal Sciences

The faculty of the School of Aeronautics and Astronautics have approved the following new course. This action is now submitted to the Engineering Faculty with a recommendation for approval.

AAE 33800 Thermal Sciences
Sem. 1 and 2, Class 3, cr. 3
Prerequisites: ME 20000 Minimum Grade of D-, AAE 20000 Minimum Grade of S
Co-requisite: AAE 33400

Description:
A fundamental course covering a range of topics selected from the disciplines of engineering thermodynamics, fluid mechanics, heat transfer and combustion, with an emphasis on their application to propulsion. This is an entry level course to prepare students for advanced analysis of propulsion and energy systems. Upon completion of this course, students are expected to be able to apply fundamental principles to perform thermodynamic analysis for thermophysical problems involving fluid flow, heat transfer and combustion.

Reason:
This course provides fundamental background for students interested in majoring or minoring in Propulsion within the AAE curriculum. Students interested in Aerodynamics may also have interest. The introduction of the course permits a more in-depth treatment of aerospace propulsion in higher level undergraduate courses (currently numbered AAE 37200 and AAE 43900) providing a solid basis for graduates of the program with expertise in the propulsion area. While the topics covered appear across a variety of undergraduate courses within COE, AAE student access to these courses is limited and would require students to take more credits than can be dedicated within the existing curriculum.

Tom I-P. Shih, Professor and Head
School of Aeronautics and Astronautics

Approved for the Faculty of the Schools of Engineering
By the Engineering Curriculum Committee
ECC Minutes 4/29/14
Date 4/29/14
Chairman ECC
AAE 33800 THERMAL SCIENCES

PROFESSOR HAIFENG WANG
Office: Armstrong Hall, Room 3214
Email: haifeng@purdue.edu
Web: http://engineering.purdue.edu/cepl
Office hours: ARMS 3214 unless instructed differently
11:00am-12:00pm Wednesday
11:00am-12:00pm Friday

COURSE DESCRIPTION:
A fundamental course covering a range of topics selected from the disciplines of engineering thermodynamics, fluid mechanics, heat transfer and combustion, with an emphasis on their application to propulsion. This is an entry level course to prepare students for advanced analysis of propulsion and energy systems. Upon completion of this course, students are expected to be able to apply fundamental principles to perform thermodynamic analysis for thermophysical problems involving fluid flow, heat transfer and combustion.

Prerequisites: ME 20000 Minimum Grade of D-, AAE 20000 Minimum Grade of S
Co-requisite: AAE 33400

COURSE GOALS:
Upon completion of this course, students are expected to be able to apply fundamental principles to perform thermodynamic analysis for thermophysical problems involving fluid flow, heat transfer and combustion.

LEARNING OBJECTIVES:
- Identify types of problems from thermo-fluid systems
- Perform heat conduction analysis for steady and unsteady problems;
- Perform analysis for radiation heat transfer;
- Develop deeper understanding of the laws of thermodynamics and their applications to various problems
- Apply fundamentals of fluid mechanics to various fluid flow problems
- Analyze convection heat transfer problems
- Conduct analysis of simple combustion systems such as adiabatic or chemical equilibrium.
- Analyze simple thermo-fluid systems using fundamentals we learn from the class
REQUIRED TEXTBOOK

COURSE REQUIREMENTS:
Students are required to attend all lectures, to engage in all class activities, to finish homework assignments, to take all exams. The final grade is an overall evaluation of the students’ achievements with respect to the course objectives, largely based on quantitative measures such as homework grades and exam grades. Other activities such as class attendance, engagement in class activities, constructive feedback account for a small percentage of the final grade.

OUTLINE

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–3</td>
<td>Introduction and Overview</td>
</tr>
<tr>
<td></td>
<td>Heat Conduction</td>
</tr>
<tr>
<td>4</td>
<td>Radiation Heat Transfer</td>
</tr>
<tr>
<td></td>
<td>Exam One</td>
</tr>
<tr>
<td>5–9</td>
<td>Laws of thermodynamics</td>
</tr>
<tr>
<td></td>
<td>Fluid mechanics</td>
</tr>
<tr>
<td></td>
<td>Convection heat transfer</td>
</tr>
<tr>
<td></td>
<td>Exam Two</td>
</tr>
<tr>
<td>10–14</td>
<td>Combustion</td>
</tr>
<tr>
<td></td>
<td>Final exam</td>
</tr>
</tbody>
</table>
PURDUE UNIVERSITY
REQUEST FOR ADDITION, EXPIRATION, OR REVISION OF AN UNDERGRADUATE COURSE
(10000-49999 LEVEL)

DEPARTMENT: School of Aeronautics and Astronautics

EFFECTIVE SESSION: Fall 2015

INSTRUCTIONS: Please check the items below which describe the purpose of this request.

- [] 1. New course with supporting documents
- [] 2. Add existing course offered at another campus
- [] 3. Expiration of a course
- [] 4. Change in course number
- [] 5. Change in course title
- [] 6. Change in course credit/term
- [] 7. Change in course attributes (department head signature only)
- [] 8. Change in instructional hours
- [] 9. Change in course description
- [] 10. Change in course requisites
- [] 11. Change in semesters offered (department head signature only)
- [] 12. Transfer from one department to another

PROPOSED:
- Subject Abbreviation: AAE
- Course Number: 33800
- Long Title: Thermal Sciences
- Short Title: Thermal Sciences

EXISTING:
- Subject Abbreviation
- Course Number
- Long Title
- Short Title

TERMS OFFERED
- Check All That Apply:
 - [] Fall
 - [] Spring
 - [] Summer

CAMPUS(ES) INVOLVED
- Calumet
- Cont Ed
- Ft. Wayne
- Tech Statewide
- Indianapolis
- N. Central
- W. Lafayette

CREDIT TYPE
1. Fixed Credit: Cr. Hrs. 3
2. Variable Credit Range: Minimum Cr. Hrs. (Check One) Or Maximum Cr. Hrs.
3. Equivalent Credit: Yes

<table>
<thead>
<tr>
<th>Schedule Type</th>
<th>Minutes Per Mtg</th>
<th>Meetings Per Week</th>
<th>Weeks Offered</th>
<th>% of Credit Allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>50</td>
<td>3</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>Recitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Prep</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiential</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind. Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pract/Observ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION (INCLUDE REQUISITES/RESTRICTIONS):
Prerequisites: ME 20000 Minimum Grade of D, AAE 20000 Minimum Grade of S, Co-requisite: AAE 33400. A fundamental course covering a range of topics selected from the disciplines of engineering thermodynamics, fluid mechanics, heat transfer and combustion, with an emphasis on their application to propulsion. This is an entry level course to prepare students for advanced analysis of propulsion and energy systems. Upon completion of this course, students are expected to be able to apply fundamental principles to perform thermodynamic analysis for thermophysical problems involving fluid flow, heat transfer and combustion.

COURSE LEARNING OUTCOMES:
An ability to identify types of problems from thermo-fluid systems. A deeper understanding of the laws of thermodynamics as applied to propulsion applications.
An ability to apply the fundamentals of fluid mechanics to fluid flow problems encountered in propulsion applications. An ability to perform analysis for conduction, convection and radiation heat transfer problems. An ability to conduct analysis of simple combustion systems, such as adiabatic or chemical equilibrium.

Calumet Department Head
- Date

Calumet School Dean
- Date

Fort Wayne Department Head
- Date

Fort Wayne School Dean
- Date

Indianapolis Department Head
- Date

Indianapolis School Dean
- Date

North Central Faculty Senate Chair
- Date

Vice Chancellor for Academic Affairs
- Date

West Lafayette Department Head
- Date

West Lafayette College/School Dean
- Date

West Lafayette Registrar
- Date