Engineering Faculty Document No. 15-03

September18, 2003

Page 1 of 3

TO: The Engineering Faculty

FROM: The Faculty of the Department of Biomedical Engineering

RE: New Undergraduate-Level Course

The faculty of the Department of Biomedical Engineering has approved the following new course. This action is now submitted to the Engineering Faculty with a recommendation for approval.

BME 202 Biomaterials

Sem. 2. Class 3, cr. 3.

Prerequisite: BME 205, ME 270 Corequisite: BME 206, BME 204

Covers the fundamentals of materials science and engineering concepts in a biological application context. Crystal structure, deformation of materials, characterization of materials, and performance of materials as implants. Integrated biological topics include bone physiology/anatomy, cells of bone, cell structure, and protein-mediated cell attachment. Emphasizes the unique biological criteria which must be considered when designing synthetic materials for implants.

Reason: Introducing students to the wide range of materials and properties which can be used to interact with physiological systems in a biomedical engineering context is important to understand and to develop implantable medical devices.

George Wodicka Professor and Head

September 18, 2003

Page 2 of 3

Supporting Documentation:

1.	Level: Undergraduate – sophomore year
----	---------------------------------------

2. Course Instructor: Thomas J. Webster

3. Course Outline:

<u>Topics in order</u> Structure (10 lectures):	<u>Lectures</u>
– Atomic bonding (1 lecture) / Crystal structure (2 lectures)	3
- Atoms of the same size / different size (1 lecture each)	3 2
- Imperfections in crystalline structures	3
– Definition of metals / ceramics / long-chain molecular	5
compounds / polymers / Composite material structure	2
compounds / porymers / composite indicinal sudctate	2
Processing (6 lectures):	
– Forging, rolling, extrusion, drawing, cold-working /	
Strengthening grain boundaries	3
– Strain aging / Fiber and Martensite strengthening / Annealing	5
and sintering / Strengthening of polymers and elastomers	3
and sintering / strengthening of polymers and elastomers	5
Characterization (16 lectures):	
– Stress-strain behavior / Mechanical failure / Tension,	
	2
compression, and bending tests	3 2 2 3
- Hardness, Torsion, Fracture toughness, and Fatigue testing	2
- Viscoelasticity	2
 Phase diagrams, Surface and Thermal Properties 	3
- Electrical and Optical properties, X-ray absorption	3
- Density, Porosity, Acoustic and ultrasonic properties,	
and Diffusion	3
Biological Applications (9 lectures):	
 Bone biology/physiology, Tissue response to implants 	3
- Tissue response to implants (cont.), Metallic and Ceramic	
implant materials	3
– Polymeric implant materials, Biological (natural) and	
Composite materials	3
•	
EXAMS	3
Total	44

Engineering Faculty Document No. 15-03

September18, 2003

Page 3 of 3

4. Text:

Ratner BD, Hoffman AS, Schoen FJ, Lemons JE: Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, New York, 1996.

5. Grading: based on exams, homework, quizzes, and computational assignments.