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This thesis presents the results of research to evaluate the effectiveness of modern control

strategies for the mitigation of earthquake induced hazards in building and bridge struc-

tures. Through a numerical example, a six story building structure with magnetorheologi-

cal (MR) dampers on the lower two floors is used to evaluate the performance of a number

of recently proposed semi-active control algorithms. The semi-active control algorithms

considered include the Lyapunov controller, decentralized bang-bang controller, modulat-

ed homogenous friction algorithm, and a clipped optimal controller. Through simulation

of the building structure using the El Centro earthquake, the reductions in inter-story



drifts, absolute accelerations, and relative displacements are examined and compared for

each semi-active control algorithm. 

In addition to the application of control for a building structure, control of a bridge struc-

ture is studied using purely passive, active, and semi-active control strategies. Linear and

nonlinear models are developed for a multi-span simply supported bridge. For the nonlin-

ear bridge model, two models, the bilinear and the Bouc-Wen, are considered to represent

the nonlinear behavior of the bearings. Through simulation, the behavior of each bearing

model is compared. A linear bridge model as well as a nonlinear bridge model using the

bilinear bearing model are used for the control study. Several device placement location

cases are considered to determine the most effective placement of devices. Using synthetic

ground motion records generated based on a modified approach to the spectrum compati-

ble ground acceleration approach, the bridge models are simulated for each control strate-

gy. Furthermore, bridge structural responses and bearing and control forces are compared

for each control algorithm. The most effective device placement is chosen and the effec-

tiveness of the purely passive, active, and semi-active control devices are compared.
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Chapter 1

Introduction

1.1 General Remarks

Catastrophic failures occur in civil engineering structures, such as buildings and bridges,

during seismic events. The costs of repairing and restoring these structures can be enor-

mous. For example, during the 1989 Loma Prieta Earthquake (6.9 Mw) approximately

21,500 building structures and 71 bridge structures were damaged resulting in 8.3 billion

dollars in direct losses (DIS, Inc., 2000). More recently, during the 1999 Izmit, Turkey

(M7.4) Earthquake it is estimated that at least 20,000 building structures collapsed or suf-

fered severe damage along with isolated bridge collapses at the fault crossing locations

(EQE, 1999).

There is a need within the civil engineering community to develop mitigation methods

that will be effective in reducing these earthquake hazards and costs. The application of

modern control strategies to civil engineering structures is being researched for use in con-

trolling structural responses due to seismic loading. In particular, passive, active, and

semi-active control strategies are being investigated.
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The focus of this thesis is on the application of various control strategies for building and

bridge structures. In particular, a number of semi-active control algorithms are examined

for use with multiple MR dampers to control a building structure. In addition, the effec-

tiveness of the addiction of control to a bridge structure is investigated using ideal passive,

active, and semi-active control strategies. 

1.2 Literature Review

For building structures, semi-active control systems have received a great deal of attention

in recent years. Semi-active devices are attractive because they combine the best features

of passive and active systems. Semi-active devices are characterized by their ability to dy-

namically vary their properties with a minimal amount of power (Housner et al., 1997;

Spencer and Sain, 1997). Because semi-active devices can only absorb or store vibratory

energy in a structure by reacting to its motion, they are considered to be stable (in a bound-

ed-input, bounded-output sense). Thus, semi-active devices are expected to offer effective

performance over a variety of amplitude and frequency ranges. 

Within the class of semi-active control devices, one of the most promising devices is the

magnetorheological (MR) damper. Magnetorheological (MR) dampers have, over the last

several years, been recognized as having a number of attractive characteristics for use in

vibration control applications (Kamath and Wereley, 1995, 1997a-b; Gordaninejad, 1999;

Weiss, et. al., 1994; Ginder, et. al., 1996; Spencer et al., 1997b; Spencer and Sain, 1997;

Dyke and Spencer, 1996; Dyke et al., 1998). MR fluids were developed in the 1940’s

(Winslow, 1947; Rainbow, 1948), and consist of a suspension of iron particles in a carrier

medium such as oil. Application of a magnetic field to the fluid causes the particles to

align and interparticle bonds increase the resistance of the fluid, turning the fluid into a

semi-solid (Weiss, et. al., 1994; Ginder, et. al., 1996). MR dampers are relatively inexpen-

sive to manufacture because the fluid properties are not sensitive to contaminants. Other

attractive features include their small power requirements, reliability, and stability. Re-

quiring only 20–50 watts of power, these devices can operate with a battery, eliminating
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the need for a large power source or generator. Because the device forces are adjusted by

varying the strength of the magnetic field, no mechanical valves are required, making a

highly reliable device. Additionally, the fluid itself responds in milliseconds, which allows

for the development of devices with a high bandwidth. 

MR dampers have demonstrated promise for civil engineering applications in both analyt-

ical and experimental studies. Spencer et al., (1997d) developed a phenomenological

model for an MR damper based on the Bouc-Wen hysteresis model (Wen, 1976). This

model was subsequently used to demonstrate the capabilities of MR dampers (Dyke et al.,

1996a–d). Further, Dyke, et al. (1998) conducted an experiment using a single MR damp-

er to control a three-story structure. An evaluation of these control strategies was conduct-

ed for use with a single MR damper (Dyke and Spencer, 1997). In a numerical example, a

linear multi-story building was controlled with a single MR damper. The results demon-

strated that the performance of the controlled system is highly dependent on the choice of

algorithm. Further studies have examined the effectiveness of the clipped-optimal control-

ler for multi-input MR control systems (Yi et al., 1998, 1999a,b; Dyke et al., 1999; Dyke

and Spencer, 1996). Additionally, a 20-ton MR damper is being tested at the University of

Notre Dame (Spencer et al., 1997b; Carlson and Spencer, 1996b). 

One challenge in the use of semi-active technology is in developing nonlinear control al-

gorithms that are appropriate for implementation in full-scale structures. A number of con-

trol algorithms have been adopted for semi-active systems. In one of the first examinations

of semi-active control, Karnopp et al. (1974) proposed a “skyhook” damper control algo-

rithm for a vehicle suspension system and demonstrated that this system offers improved

performance over a passive system when applied to a single-degree-of-freedom system.

Feng and Shinozukah (1990) developed a bang-bang controller for a hybrid controller on a

bridge. More recently a control strategy based on Lyapunov stability theory has been pro-

posed for ER dampers (Brogan, 1991; Leitmann, 1994). The goal of this algorithm is to re-

duce the responses by minimizing the rate of change of a Lyapunov function.

McClamroch and Gavin (1995) used a similar approach to develop a decentralized bang-
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bang controller. This control algorithm acts to minimize the total energy in the structure.

A modulated homogeneous friction algorithm (Inaudi, 1997) was developed for a variable

friction device. Clipped-optimal controllers have also been proposed and implemented for

semi-active systems (Sack and Patten, 1994; Sack et al., 1994; Dyke, 1996a–d).

The effective utilization of multiple control devices is an important step in the examina-

tion of semi-active control algorithms. A typical control system for a full-scale structure is

expected to have control devices distributed throughout a number of floors. Because of the

inherent nonlinear nature of these devices, one of the challenging aspects of utilizing this

technology to achieve high levels of performance is in the development of appropriate

control algorithms. The proper selection of a control algorithm may be dependent on the

type of nonlinearity present in the semi-active device, the available feedback measure-

ments, or the number of devices to be implemented in the structure. 

Promising research is also being conducted for the application of modern control strate-

gies to bridge structures. Bridges in the US are being used well beyond their design life-

time, and inexpensive and effective techniques are needed for maintaining the reliability

of such structures. For the protection of bridges, an important goal is to protect both super-

structure (deck, girder) and supporting structure (column, pier). Both analytical and exper-

imental studies have been conducted to evaluate the performance of numerous control

techniques for bridges.

Base isolation systems (passive systems), such as sliding isolation and elastomeric sys-

tems, have been used frequently in bridge structures. Base isolation systems have been

shown to reduce bridge deck acceleration responses and limit damage to piers supporting

the bridge deck (Nagarajaiah et al., 1993). A drawback of the sliding isolation systems,

however, is that for large earthquakes larger forces are transmitted with excessive bearing

displacement. One method that has proven effective in reducing bridge response from

earthquake motion is the use of hybrid protective systems, a combination of passive isola-

tion systems and active devices. In a hybrid system, the passive isolation system is used to



5

reduce the ground motion transmitted to the bridge girder, while the active devices are

used to further control the bridge responses (Yang et al., 1995). One type of hybrid protec-

tive system, rubber bearings and variable dampers, has been demonstrated to be very ef-

fective for protecting seismically-excited bridges (Kawashima et al., 1991, 1992;

Kawashima and Unjoh, 1994; Feng and Shinozuka, 1990; Yang et al., 1993, 1995). Fur-

thermore, another hybrid protective system, sliding bearings and variable dampers or actu-

ators, has also been investigated for the protection of seismically-excited structures (Feng

et al., 1991; Nagarajaiah et al., 1992, 1993; Riley et al., 1992; Reinhorn et al., 1993a,

1993b; Yang et al., 1993, 1995). 

Through a numerical simulation, Feng and Shinozuka (1990) compared the effectiveness

between the use of a passive isolator and a hybrid controller using a variable damper to re-

duce bridge vibration under earthquake loading. For the study, the hybrid system was

modeled as an elastic spring in parallel with a damper having a controllable viscous damp-

ing coefficient. Both a bang-bang and an instantaneous optimal semi-active controller

were developed for the hybrid controller. The results show that while the passive isolator

is able to reduce the response acceleration of the bridge girder, at the same time large rela-

tive displacements between the girder and the piers are produced. However, using the hy-

brid system and the proposed semi-active controllers, the displacements can be decreased

significantly over the passive control system with a slightly larger decrease in acceleration

also over the passive control system. Kawashima and Unjoh (1994) also investigated the

use of a variable damper to control bridge responses induced by an earthquake. Analytical

and experimental studies with two variable dampers installed between the deck and piers,

with the deck supported by elastic isolators (rubber bearings), were conducted to examine

the effectiveness of the variable damper. The analytical study revealed that the variable

damper was able to significantly reduce peak deck displacement and acceleration and

peak bending moment at the bottom of the piers over the uncontrolled case. The experi-

mental tests also confirmed the effectiveness of the variable damper in reducing bridge re-

sponses induced by earthquakes. 
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Through analytical and experimental studies, Nagarajaiah et al. (1993) investigate the use

of a hybrid control system for bridges using sliding bearings, with recentering springs, in

parallel with servo hydraulic actuators. A new control law with absolute acceleration feed-

back was developed to control the hybrid system. The results show that the hybrid system

is able to produce significantly reduced deck acceleration response while still maintaining

the sliding displacements within an acceptable range. Furthermore, these reductions are

evident regardless of the frequency content of the earthquake and for both large and mod-

erate earthquakes. When comparing the hybrid system to the passive system, Nagarajaiah

et al. (1993) show that the hybrid system is able to achieve greater reductions in deck ac-

celeration, however, deck relative displacement is slightly increased but still within an ac-

ceptable range. Also, by lowering the coefficient of friction of the sliding bearings for the

passive case, a greater reduction in deck acceleration can be achieved, but at the expense

of much larger deck relative displacements. Finally, through comparison with experimen-

tal tests, Nagarajaiah et al. (1993) confirm that the analytical model is able to reliably pre-

dict the responses of the system.

The advantages of two types of protective systems, (i) rubber bearings and variable damp-

ers and (ii) sliding bearings and actuators are presented through simulation in Yang et al.

(1995). Through a numerical example, a multi-degree of freedom bridge model using each

protective system is controlled using newly developed control methods. The results show

that the effectiveness of the sliding isolation system is improved greatly with the use of ac-

tuators. In addition, the hybrid system consisting of rubber bearings and variable dampers

also significantly improves the performance of seismically-excited bridges. However, in

comparison with the variable dampers, when replacing the variable dampers with passive

viscous dampers, the optimal passive damper is quite effective.

Recently, there has been promising research on the effectiveness of “smart” (semi-active)

devices, in particular the MR damper to control seismically induced bridge responses (Liu

et al., 2000; Nagarajaiah et al., 2000; Ramallo et al., 2000). Nagarajaiah et al. (2000) stud-

ied the performance of MR dampers in sliding isolated bridges subjected to near fault
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earthquake ground motions. Through experimental testing, a scaled single span sliding

isolated bridge model with four sliding bearings and one MR damper connected between

one pier and the deck was tested. Five different earthquakes, some of which were near

source, were used for the tests. In addition, the test cases included MR damper off (con-

stant 0 V), MR damper on (constant 4 V), and the controlled case where the voltage was

switched between 0 and 4 V. A new sliding mode controller was developed by the authors

to control the MR damper. The results showed that with the MR damper off the total force,

which is composed of the frictional force in the sliding isolation system, the MR damper

force, and the spring force, is decreased but bearing displacement is increased. Further-

more, with the MR damper always on, bearing displacement decreases but energy dissipa-

tion increases significantly. For the controlled case, less energy is dissipated and both

bearing displacement and total force are reduced.

The effectiveness of several base isolation strategies, including isolation systems with lead

rubber bearings and with smart dampers, is discussed in Ramallo et al. (2000). From the

results, the lead rubber bearing isolation systems, or passive systems, were shown to effec-

tively isolate the building in many cases, but were not optimal for the wide range of

ground motion. However, because of their ability to adapt to various excitations, the smart

damping systems were able achieve better response reductions.

Lui et al. (2000) perform open and closed loop control experimental tests, under both sim-

ple harmonic and simulated earthquake excitation, on a scaled bridge structure to demon-

strate the effectiveness of the MR dampers in suppressing bridge deck displacement with

respect to the base. The experimental structure is a 1/12-scaled two-span bridge with two

abutments at the base and MR dampers mounted on the underside of the bridge deck, at-

tached to one of the abutments. The results show that semi-active control is able to reduce

the relative displacement between the deck and the abutment, while also limiting peak

damper forces and deck acceleration. 
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This research will expand upon and compliment the previous research in the field in sever-

al ways. For example, the examination of semi-active control algorithms for the utilization

of multiple-control devices for implementation in a building structure will be investigated.

In particular, two MR dampers will be implemented in a building structure and various

semi-active control algorithms will be compared for their effectiveness in reducing build-

ing responses due to earthquake loading. In addition, purely passive, active, and semi-ac-

tive control strategies will be studied for use in a bridge. Furthermore, both a linear and

nonlinear bridge model will be used for the control study.

1.3 Objectives and Scope

The objective of this research is to investigate the effectiveness of various control strate-

gies for building and bridge structures in order to reduce seismic structural responses. The

background for the development of the ground motion records used in the control study of

a bridge structure as well as the control strategies used in the both the building and bridge

control studies will be discussed in Chapter 2. Chapter 3 presents a comparison of a num-

ber of recently proposed control algorithms to control a six story structure with MR damp-

ers on the lower two floors. In Chapter 4, the linear and nonlinear bridge models used in

the control study will be formulated. In addition, two nonlinear bearing models, a bilinear

model and a Bouc-Wen model (Wen, 1976) will be compared in Chapter 4. The effective-

ness of the control strategies for the linear and nonlinear bridge models will be addressed

in Chapter 5. Finally, Chapter 6 summarizes the research and gives recommendations for

future investigations. 
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Chapter 2

Background

For the bridge study, synthetic ground motion records were used to evaluate and compare

the effectiveness of the passive, active, and semi-active control strategies. The ground mo-

tion records were generated based on a modified approach to the spectrum compatible

ground acceleration approach (Clough and Penzien, 1993). The steps used in generating

the ground motion records will be described in this chapter along with background relat-

ing to the control strategies implemented in the building and bridge control studies.

2.1 Modified Spectrum Compatible Approach

The modified spectrum compatible approach generates ground motion records that are

compatible with a model response spectrum. The following steps were used to generate

the ground motion records:

1. Determine model response spectrum to be used.

For this study, the California Department of Transportation (CALTRANS) spectrum C, 

shown in Fig. 2-1, was used as the model response spectrum.
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FIGURE 2-1 CALTRANS-C Response Spectrum

2. Calculate two filtering functions,  and , given by

 and (2-1)

(2-2)

Where  and  are chosen based on the model response spectrum. Eq. 

(2-1) is the Kanai/Tajimi filter function which is a low-pass filter and Eq. (2-2) is a 

high-pass filter. The parameters and ξ1 are some characteristic ground frequency 

and damping ratio, respectively. Also, the parameters and ξ2 are chosen to produce 

the desired filtering of the very low frequencies (Clough and Penzien, 1993).

3. Calculate the power spectral density of the absolute ground acceleration, , by

(2-3)

(g)

H1 iωk( ) H2 iωk( )

H1 iωk( )
1 2 i ξ1

ωk

ω1
------ 

 ⋅ ⋅ ⋅+

1
ωk

ω1
------ 

  2
– 

  2 i ξ1
ωk

ω1
------ 

 ⋅ ⋅ ⋅+
-----------------------------------------------------------------------------=

H2 iωk( )

ωk

ω2
------ 

  2

1
ωk

ω2
------ 

  2
– 

  2 i ξ2
ωk

ω2
------ 

 ⋅ ⋅ ⋅+
-----------------------------------------------------------------------------=

ωk k ∆ω⋅= ∆ω

ω1

ω2

Sa ωk( )

Sa ωk( ) H1 iωk( ) H1∗ iωk( ) H2 iωk( ) H2∗ iωk( )××× So×=

Period (sec)

S a
(g

)
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where So is the intensity of the excitation and a (*) indicates complex conjugate.

4. Generate a synthetic time history using

(2-4)

Where  is a random variable uniformly distributed between 0 and 2π and t is time. 

5. Compute the pseudo-acceleration response spectrum of the generated time history for 

comparison with the model response spectrum.

2.1.1  Construction of Ground Motion Records

In constructing a time history, initial values for the parameters , , , , and So

were first selected. In addition,  and k were chosen as 0.5 and 50, respectively.With all

parameters defined, one synthetic time history was generated and its corresponding pseu-

do-acceleration response spectrum was computed, following steps 2-5 from above. The

generated pseudo-acceleration response spectrum was compared to the CALTRANS-C

model response spectrum given in step 1. Initially, the two spectrums were not an accept-

able match. Therefore, the parameters , , , , and So were adjusted and the pro-

cedure (steps 2-5) was repeated until a reasonable match was obtained with respect to the

model response spectrum. The final set of parameters was then used to generate a number

of different synthetic time histories to ensure that all of the corresponding pseudo-acceler-

ation response spectrum were indeed an acceptable match with the model response spec-

trum. Figure 2-2 shows two generated ground motions and a comparison of their psuedo-

acceleration response spectrum to the CALTRANS-C model response spectrum

a t( ) 4 Sa ωk( ) ∆ω⋅⋅ ωk t θk+⋅( )sin⋅
k
∑=

θk

ω1 ξ1 ω2 ξ2

∆ω

ω1 ξ1 ω2 ξ2
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.

FIGURE 2-2 Comparison of CALTRANS-C Response Spectrum and Synthetic 
Psuedo-Acceleration Response Spectrum

The final set of parameters was  = 10 radians/sec., ξ1 = 0.4,  =  0.1∗(2π) radians/

sec., ξ2 = 0.6, and So = 1/(45)^2. These parameters were used to generate all ground mo-

tion records used in the bridge control study.

2.2 Device Modeling and Control

Consider, for example, a seismically excited structure with n control devices. Assuming

that the forces provided by the control devices are adequate to keep the response of the

primary structure from exiting the linear region, the equation of motion can be written as
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(2-5)

where x is a vector of relative displacements of the floors of the structure,  is a one-di-

mensional ground acceleration,  is the vector of measured control forc-

es generated by the n control devices, Γ is a column vector of ones, and Λ is a vector

determined by the placement of the control devices in the structure. The state-space form

of this eqaution will take the following form

(2-6)

(2-7)

(2-8)

where xs is the state vector, y is the vector of measured outputs, z is the regulated output

vector, v is a vector of measurement noises, and A, B, E, Cy, Dy, Fy, Cz, Dz, and Fz are

matrices of appropriate dimension. 

In the bridge control study, passive, active, and semi-active control systems are imple-

mented and compared for a bridge structure. The passive, active, and semi-active devices

considered for the bridge control study are all modeled as ideal devices. As a result, the

device models do not included actuator dynamics or control-structure interaction. This

modeling is appropriate because the purpose of the bridge control study is to examine the

best possible performance for each class of systems. In addition, the control laws are

based on readily measurable responses to ensure that the control laws are implementable

on a physical system. For the seismically excited bridge structure this includes the abso-

lute acceleration of each bridge mass. The forces provided by the actuators are also mea-

sured in the semi-active case to determine the control action. The approach used to model

the ideal passive, active, and semi-active control devices for the bridge control study is de-

scribed in the following sections.

Msx·· Csx· Ksx+ + Λf MsΓx··g–=

x··g
f f1 f2 …fn, ,[ ]T=

x· s Axs Bf Ex··g+ +=

y Cyxs Dyf Fyx··g v+ + +=

z Czxs Dzf Fzx··g+ +=
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2.2.1  Passive Control 

A passive control device is a device that develops forces at the location of the device by

utilizing the motion of the structure. Through the forces developed, a passive control de-

vice reduces the energy dissipation demand on the structure by absorbing some of the in-

put energy (Soong and Dargush, 1997). Thus, a passive control device cannot add energy

to the structural system. Furthermore, a passive control device does not require an external

power supply. Examples of passive control devices, depicted in Figure 2-3, include vis-

cous fluid dampers, tuned mass dampers, and base isolation systems. 

FIGURE 2-3 Passive Control System Examples

A viscous fluid damper uses the flow of fluids to achieve the needed energy dissipation. A

tuned mass damper system consists of a spring and mass system attached to the main

structure. By tuning the natural frequency of the tuned mass damper to that of the excita-

tion, a tuned mass damper works to control unwanted vibration in the main structure. In a

structure with a base isolation system, the typical fixed-base design is replaced with an

isolation system, such as elastomeric (rubber) bearings, between the base of the building

and the ground. The effect of the base isolation system is to be stiff under vertical loads

and at the same time flexible under lateral loads. Therefore, the result is that the base iso-

lation system will reduce forces transmitted to the structure.

(a) Viscous Fluid 
Damper

m
k

(b) Tuned Mass 
Damper

(c) Base Isolation

c
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In the bridge control study, an ideal viscous damper is used as the passive control device.

A block diagram of an ideal viscous damper is shown in Figure 2-4 (Yi and Dyke, 2000).

FIGURE 2-4 Block Diagram of Ideal Passive System

The force f generated by the ith viscous damper is defined by (Yi and Dyke, 2000)

(2-9)

where c is the viscous damping coefficient and  is the relative velocity at the location

of the device. The damping coefficient c is varied to achieve optimal results. 

2.2.2  Active Control

With an active control device, actuators are used to generate the desired control forces. In

contrast to a passive control device, an active control device can add energy to the struc-

tural system. An active control device requires an external power supply to operate the ac-

tuators that will generate the forces to be applied to a structure. Feedback measurements of

the excitation and/or structural responses are used by an active control system to develop

the required control forces. The structural responses are measured using sensors mounted

at certain locations on the structure. Furthermore, a control algorithm uses the feedback

measurements to determine the appropriate control forces to be applied to the structure.

Control

x··g
Structure

f

Devices
x·d

(a) Passive

y

z

fi t( ) cx·d t( )–=

x·d t( )
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Some examples of active control devices, depicted in Figure 2-5, are active bracing sys-

tems, active mass damper systems, and active base isolation systems.

FIGURE 2-5 Active Control System Examples

For the bridge control study, the active devices are modeled as ideal force actuators. A

block diagram of an ideal active system is shown in Figure 2-6 (Yi and Dyke, 2000).

FIGURE 2-6 Block Diagram of Ideal Active System

The use of ideal active devices implies the ability of the actuators to instantaneously and

exactly supply the force commanded by the control algorithm. Thus, the force provided by

the ith active control device is given by (Yi and Dyke, 2000)

(2-10)

where  is the command force for the ith device determined by the control algorithm.

It should be noted that although actuator dynamics and/or control-structure interaction

(a) Active Bracing 
System

m

(b) Active Mass 
Damper

(c) Active Base 
Isolation
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will occur in the physical system, they are not considered in the ideal model of the active

device (Dyke et al., 1995). 

For seismically excited structures, the /LQG control law has been shown to be an ef-

fective control algorithm for the active device (Dyke et al., 1996d,e). For this control law,

the ground excitation  is taken to be a stationary white noise. Furthermore, the regulated

outputs, , are weighted with an infinite horizon performance index (cost function) given

by

(2-11)

where R is an identity matrix and the elements of the weighting matrix Q are selected to

appropriately weight the regulated outputs (Yi and Dyke, 2000). The weighting cases for

the regulated outputs and the corresponding Q matrices used for the bridge control study

are given in Table 2-1. Also, the measurement noise is assumed to be a identically distrib-

uted, statistically independent Gaussian white noise process with .

TABLE 2-1. Weighting Matrices for Control Designs in Bridge Study

Case Weighting Type Regulated Output Vector, z
Corresponding 

Weighting Matrix, 
Q

AA All bridge mass 
accelerations I5x5

AD All bridge mass 
displacements I5x5

EN Energy

ID Bridge deck inter-
mass displacements I4x4

H2

x··g
z
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--- E Czx Dzu+( )TQ Czx Dzu+( ) uTRu+{ } td( )

0

τ

∫=
τ ∞   →

Sx··gx··g
Svivi

⁄ γ 25= =

zT x··a1x··a2x··a3x··a4x··a5[ ]=

zT x1x2x3x4x5[ ]=

zT x1x2x3x4x5x·1x·2x·3x·4x·5[ ]= K 0
0 M

zT x1x2 x1x3– x2x3–[ ]=



18

The control law is of the form (Spencer et al., 1998b)

(2-12)

where  is the Kalman filter estimate of the state vector. The full state feedback gain ma-

trix  for the deterministic regulator problem is given by

(2-13)

where  is the solution of the algebraic Riccati equation given by

(2-14)

and

(2-15)

(2-16)

(2-17)

(2-18)

The MATLAB (1999) routine lqry.m within the control toolbox were used to calculate

.

The Kalman Filter optimal estimator is given by

(2-19)

(2-20)

where  is the solution of the algebraic Riccati equation given by

(2-21)
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Ñ BTP
˜

+( )=

P
˜

0 P
˜

Ã Ã
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and

(2-22)

(2-23)

(2-24)

(2-25)

The MATLAB routine lqew.m within the control toolbox was used to calculate . 

2.2.3  Semi-Active Control

A semi-active control device is a combination of passive and active control devices. Like

passive control devices, semi-active control devices generate forces as a result of the mo-

tion of the structure and cannot add energy to the structural system. However, like with an

active control device, feedback measurements of the excitation and/or structural system

are used by a controller to generate an appropriate signal for the semi-active device (Sy-

mans and Constantinou, 1995). In addition, only a small external power source is required

for operation of a semi-active control device. Examples of semi-active devices include

variable orifice dampers, variable friction dampers, and magnetorheological dampers.

These semi-active devices are implemented in the same manner as active control devices

as shown in Figure 2-7.
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FIGURE 2-7 Semi-Active Control Device Examples

The semi-active devices used in the bridge control study are considered to be ideal semi-

active devices. A block diagram of an ideal semi-active device is given in Figure 2-8 (Yi

and Dyke, 2000). The dashed line in the diagram represents the control force feedback

loop. This feedback loop is present because a semi-active control algorithm often uses a

measure of the control force produced by the semi-active device to generate the command

signal for the semi-active device. 

FIGURE 2-8 Block Diagram of Ideal Semi-Active Device

Ideal semi-active devices are considered to be purely dissipative devices and therefore ca-

pable of generating any control force that is in the second or fourth quadrants of the force

velocity plane (see Figure 2-9). 
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FIGURE 2-9 Graphical Representation of Control Force Determination

Thus the force provided by the ith semi-active device is given by (Yi and Dyke, 2000)

(2-26)

Numerous control algorithms have been developed for semi-active systems. The results of

recent studies have demonstrated that the performance of semi-active systems is highly

dependent on the choice of control algorithm (Dyke and Spencer, 1997; Jansen and Dyke,

1999, 2000). In chapter 3, various semi-active control algorithms will be developed and

implemented to control a building structure with MR dampers. 

2.3 Summary

For use with the bridge control study, described in detail later in chapters 4 and 5, synthet-

ic ground motion records were generated using a modified spectrum compatible approach.

The method of generating the synthetic time histories as well as the design of the ideal

passive, active, and semi-active control devices used for the analytical bridge control

study were described. In the next chapter, the development of a number of semi-active

control algorithms to control semi-active MR devices in buildings will be presented along

with a numerical example comparing and contrasting each algorithms effectiveness. 

Force 

Velocity 

fi(t)= uic(t)
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Chapter 3

Semi-Active Control Strategies for MR 
Dampers: A Comparative Study

The failure of building structures during earthquakes can be extremely devastating and

costly. As a result, there is a need for the development of effective mitigation methods for

application in buildings subjected to seismic loading. This chapter presents the results of a

study to evaluate the performance of a number of recently proposed semi-active control

algorithms for use with multiple MR dampers to control a seismically excited building

structure (Jansen and Dyke, 1999, 2000). Four recently proposed semi-active control algo-

rithms are discussed including the decentralized bang-bang controller, the Lyapunov con-

troller, the clipped-optimal controller, and the modulated homogeneous friction controller.

In addition to these, a related fifth algorithm, referred to herein as the maximum energy

dissipation algorithm, is also considered. Each algorithm is formulated for use with the

MR damper. Additionally, each algorithm uses measurements of the absolute acceleration

and device displacements for determining the control action to ensure that the algorithms

would be implementable on a physical structure. 

In a numerical example, a six-story building model with MR dampers on the bottom two

floors is used to compare the performance of the proposed control algorithms. This exam-

ple was selected to represent the experimental system in the Washington University Struc-
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tural Control and Earthquake Engineering Lab (http://www.seas.wustl.edu/research/

quake/). An experimentally-verified phenomenological model based on the Bouc-Wen

model is used to simulate the behavior of the MR damper. In simulation, an El Centro

earthquake is used to excite the system, and the reduction in the drifts, accelerations, and

relative displacements throughout the structure is examined.

3.1 Shear Mode Magnetorheological Damper Modeling

Magnetorheological dampers are semi-active devices that use magnetorheological fluids

to construct a versatile damping device. Because the strength of the magnetic field con-

trols the yield stress of the fluid, devices utilizing MR fluids are expected to be applicable

for a wide range of situations. For civil engineering applications MR devices are attractive

because they require only a battery for power and are quite reliable (Kamath and Wereley,

1995, 1997a-b; Kamath, et. al., 1996, 1997; Gordaninejad, 1999; Carlson and Spencer,

1996a-b; Spencer et al., 1997b; Yi et al., 1998, 1999; Dyke, et al. 1999a-b). Furthermore,

they are relatively inexpensive to manufacture and maintain, and their insensitivity to tem-

perature fluctuations makes them suitable for both indoor and outdoor applications (Carl-

son, 1994; Carlson and Weiss, 1994; Carlson, et. al. 1996). 

In Yi et al. (1998, 1999a,b) and Dyke et al. (1999), a prototype shear mode MR damper

obtained from the Lord Corporation was used for experimental testing (Jansen and Dyke,

2000). A schematic diagram of the prototype device is shown in Fig. 3-1.
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FIGURE 3-1 Schematic Diagram of a Shear Mode MR Damper

The device consists of two steel parallel plates. The dimensions of the device are

4.45 1.9 2.5 cm3 (1.75 0.75 1.0 in3). The magnetic field produced in the device is gen-

erated by an electromagnet consisting of a coil at one end of the device. Forces are gener-

ated when the moving plate, coated with a thin foam saturated with MR fluid, slides

between the two parallel plates. The outer plates of the device are 0.635 cm (0.25 in) apart,

and the force capacity of the device is dependent on the strength of the fluid and on the

size of the gap between the side plates and the center plate. A center plate with a thickness

of 0.495 cm (0.195 in) is employed, resulting in a gap of 0.071 cm (0.028 in). Each of the

control devices can generate a maximum force of 29 N, which is approximately 1.8% the

weight of the structure. 

Tests conducted on the experimental prototype MR damper are described in detail in Yi et

al. (1998, 1999a,b) and Dyke et al. (1999). In their tests, a hydraulic actuator was used to

drive the damper, and the displacement and force were measured. The velocities were cal-

culated using a central differences approximation. Furthermore, sinusoidal, triangular, and

square displacement command signals were used. Various constant and time-varying volt-

ages were applied to the prototype MR damper to observe the characteristics of the MR

damper. Yi et al. (1998, 1999a,b) and Dyke et al. (1999) obtained hysteresis loops for the

shear mode MR damper through their experimental testing. An example of the typical hys-

teresis loops obtained from the experimental testing are provided in Figure 3-2. The re-

sponse of the MR damper due to a 1.5 Hz sinusoid with an amplitude of 1.5 cm is shown

Coil
Front View Side View

× × × ×
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for constant voltage levels, 0 V, 1.0 V, 2.0 V, and 3.0 V, being applied to the pulse width

modulation circuit used with the MR damper. The force-displacement hysteresis loop is

shown in Fig. 3-2a and the force-velocity hysteresis loop is shown in Fig. 3-2b. Further

details on the experimental behavior and testing of the MR damper are provided in Yi et

al. (1998, 1999a,b) and Dyke, et al. (1999).

FIGURE 3-2 Typical Responses of the Shear Mode MR Damper

Appropriate modeling of the control devices is essential for the accurate prediction of the

behavior of the controlled system. The simple mechanical model shown in Fig. 3-3 was

developed and shown to accurately predict the behavior of a shear-mode MR damper over

a wide range of inputs (Yi, et al., 1998, 1999a,b; Dyke et a., 1999). This phenomenologi-

cal model was developed based on a previous model used for the MR damper. (Spencer et

al., 1997d). 
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(a) Force–Displacement Hysteresis Loop (b) Force–Velocity Hysteresis Loop
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FIGURE 3-3 Mechanical Model of the Parallel Plate MR Damper

The equations governing the force f predicted by this model are 

(3-1)

(3-2)

where z is an evolutionary variable that accounts for the history dependence of the re-

sponse. The model parameters depend on the voltage v to the current driver as follows

 and (3-3)

where u is given as the output of the first-order filter

. (3-4)

Eq. (3-4) is used to model the dynamics involved in reaching rheological equilibrium and

in driving the electromagnet in the MR damper (Yi et al, 1998, 1999a,b; Dyke et al.,

1999). This MR damper model is used to model the behavior of the MR damper herein.
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3.2 Control Algorithms

Consider a seismically excited structure controlled with n MR dampers. Assuming that the

forces provided by the control devices are adequate to keep the response of the primary

structure from exiting the linear region, the equations of motion can be written as

(3-5)

where x is a vector of the relative displacements of the floors of the structure,  is a one-

dimensional ground acceleration,  is the vector of measured control

forces, defined by Eqs. (3-1) - (3-4), generated by the n MR dampers, Γ is a column vector

of ones, and Λ is a vector determined by the placement of the MR dampers in the struc-

ture. This equation can be written in state-space form as 

(3-6)

(3-7)

where z is the state vector, y is the vector of measured outputs, and v is the measurement

noise vector. For these applications, the measurements typically available for control force

determination include the absolute acceleration of selected points on the structure, the dis-

placement of each control device, and a measurement of each control force. 

A variety of approaches have been proposed in the literature for the control of semi-active

devices. Subsequently, a selection of these approaches will be presented and evaluated in

a numerical example. In developing the control laws, note that it is not possible to directly

command the ith MR damper to generate a specified force, , because the response of the

MR damper is dependent on the local motion of the structure where the MR damper is at-

tached. However, the forces produced by the MR damper may be increased or decreased

by adjusting the value of the voltage applied to the current driver vi. Based on this obser-

vation in the model, the following guidelines are used in developing the control laws: i)

the control voltage to the ith device is restricted to the range , and ii) for a

Msx·· Csx· Ksx+ + Λf MsΓx··g–=

x··g
f f1 f2 …fn, ,[ ]T=

z· Az Bf Ex··g+ +=

y Cz Df v+ +=

fi
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fixed set of states, the magnitude of the applied force  increases when vi increases, and

decreases when vi decreases. Furthermore, the first order lag in the device model (repre-

senting the dynamics involved in the current driver and electromagnet) limits the rate at

which the MR effect is realized. Thus, in developing the control laws, one must consider

the fact that the force varies continuously even when a step command signal is applied. 

3.2.1  Control Based on Lyapunov Stability Theory 

In some cases it is possible to employ Lyapunov’s direct approach to stability analysis in

the design of a feedback controller (Brogan, 1991). The approach requires the use of a

Lyapunov function, denoted , which must be a positive definite function of the states

of the system, z. Let us assume that the origin is a stable equilibrium point. According to

Lyapunov stability theory, if the rate of change of the Lyapunov function, , is nega-

tive semi-definite, the origin is stable i.s.L. (in the sense of Lyapunov). Thus, in develop-

ing the control law, the goal is to choose control inputs for each device that will result in

making  as negative as possible. An infinite number of Lyapunov functions may be se-

lected, that may result in a variety of control laws. 

Leitmann (1994) applied Lyapunov’s direct approach for the design of a semi-active con-

troller. In this approach, a Lyapunov function is chosen of the form 

(3-8)

where  is the P-norm of the states defined by

(3-9)

and P is a real, symmetric, positive definite matrix. In the case of a linear system, to en-

sure  is negative definite, the matrix P is found using the Lyapunov equation 

(3-10)

fi
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for a positive definite matrix . The derivative of the Lyapunov function for a solution

of Eq. (3-6) is

(3-11)

The only term which can be directly effected by a change in the control voltage is the mid-

dle term which contains the force vector . Thus, the control law which will minimize 

is

(3-12)

where ( ) is the Heaviside step function,  is the measured force produced by the ith

MR damper, and  is the ith column of the  matrix in Eq. (3-6). Notice that this algo-

rithm is classified as a bang-bang controller, and is dependent on the sign of the measured

control force and the states of the system. To implement this algorithm, a Kalman filter is

used to estimate the states based on the available measurements (i.e., device displace-

ments, device forces, structural accelerations). Thus, in this algorithm, better performance

is expected when measurements of the responses of the full structure are used. However,

one challenge in the use of the Lyapunov algorithm is in the selection of an appropriate

 matrix. 

3.2.2  Decentralized Bang-Bang Control 

McClamroch and Gavin (1995) used a similar approach to develop the decentralized

bang-bang control law for use with an electrorheological damper. In this approach, the

Lyapunov function was chosen to represent the total vibratory energy in the structure (ki-

netic plus potential energy), as in 

(3-13)

Using Eq. (3-5), the rate of change of the Lyapunov function is then

QP
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(3-14)

In this expression, the only way to directly effect  is through the last term containing the

force vector . To control this term and make  as large and negative as possible (maxi-

mizing the rate at which energy is dissipated), the following control law is chosen 

(3-15)

where  is the ith column of the  matrix. Note that, because the only non-zero terms in

the  matrix are those corresponding to the location of the MR dampers, this control law

requires only measurements of the floor velocities and applied forces. Interestingly, when

any of the semi-active devices are located between the ground and first floor, the absolute

velocity of the first floor is required. When the control device is located in the upper

floors, the interstory velocity is needed. Therefore, to implement this control algorithm,

one would approximate the absolute velocity (obtain the pseudo velocity) by integrating

the absolute acceleration (Spencer et al., 1997a) using 

. (3-16)

3.2.3  Maximum Energy Dissipation 

This control algorithm is presented as a variation of the decentralized bang-bang approach

proposed by McClamroch and Gavin. In the decentralized bang-bang approach, the

Lyapunov function was chosen to represent the total vibratory energy in the system. Let us

instead consider a Lyapunov function which represents the relative vibratory energy in the

structure (i.e., without including the velocity of the ground in the kinetic energy term), as

in 

. (3-17)
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Using the same procedure applied to develop the decentralized bang-bang approach, the

term which can be directly effected by changes in the control voltage is identified and the

following control law is obtained 

(3-18)

where  is the ith column of the  matrix. Note that this equation is also a bang-bang

control law. As in the decentralized bang-bang approach, only local measurements (i.e.,

the velocity and control force) are required to implement this control law. Note that if the

semi-active device is not located on the first floor of the structure, the resulting control law

will be the same as in the decentralized bang-bang approach. However, if the control de-

vice is on the first floor, notice that the control action depends on the relative velocity

measurement rather than the absolute velocity which was used in the decentralized bang-

bang approach. Both a numerical differentiation of the measured device displacements,

and a subtraction of the absolute velocities using Eq. (3-16) were considered to determine

the relative velocities. Numerical differentiation of the measurements of the relative dis-

placement of the first floor was found to yield better results for this control algorithm and

was used in this study. 

Notice that the resulting control law will command the maximum voltage when the mea-

sured force and relative velocity are dissipating energy (producing large dissipative forc-

es), and command the minimum voltage when energy is not being dissipated (producing

small forces when the force is not dissipative). Thus, here it has been called the maximum

energy dissipation algorithm. 

3.2.4  Clipped-Optimal Control 

One algorithm that has been shown to be effective for use with the MR damper is a

clipped-optimal control approach, proposed by Dyke, et al. (1996c-e). The clipped-opti-

mal control approach is to design a linear optimal controller Kc(s) that calculates a vector

vi VmaxH x· TΛi fi–( )=

Λi Λ
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of desired control forces  based on the measured structural respons-

es y and the measured control force vector f applied to the structure, i.e., 

(3-19)

where { } is the Laplace transform. 

Because the force generated in the MR damper is dependent on the local responses of the

structural system, the desired optimal control force fci cannot always be produced by the

MR damper. Only the control voltage vi can be directly controlled to increase or decrease

the force produced by the device. Thus, a force feedback loop is incorporated to induce the

MR damper to generate approximately the desired optimal control force fci. 

To induce the MR damper to generate approximately the corresponding desired optimal

control force , the command signal  is selected as follows. When the ith MR damper

is providing the desired optimal force (i.e., ), the voltage applied to the damper

should remain at the present level. If the magnitude of the force produced by the damper is

smaller than the magnitude of the desired optimal force and the two forces have the same

sign, the voltage applied to the current driver is increased to the maximum level so as to

increase the force produced by the damper to match the desired control force. Otherwise,

the commanded voltage is set to zero. The algorithm for selecting the command signal for

the ith MR damper is graphically represented in Fig. 3-4 and can be stated as

(3-20)

fc fc1 fc2 …fcn, ,[ ]T=

fc L 1– Kc s( )L
y
f 

 
 

–
 
 
 

=

L ⋅

fci vi

fi fci=

vi Vmax H( fci fi–{ }fi)=
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FIGURE 3-4 Graphical Representation of Algorithm for                                               
Selecting the Command Signal 

Although a variety of approaches may be used to design the optimal controller, H2 /LQG

methods are advocated because of their successful application in previous studies. The ap-

proach to optimal control design is discussed in detail in (Dyke et al., 1996a-e).

3.2.5  Modulated Homogeneous Friction

Another semi-active control algorithm considered herein was originally proposed for use

with a variable friction damper (Inaudi, 1997). This algorithm is considered herein be-

cause there are strong similarities between the behavior of a variable friction device and of

the MR damper. In this approach, at every occurrence of a local extrema in the deforma-

tion of the device (i.e., when the relative velocity between the ends of the semi-active de-

vice is zero), the normal force applied at the frictional interface is updated to a new value.

The normal force, , is chosen to be proportional to the absolute value of the deforma-

tion of the semi-active device. The control law is written 

(3-21)

where  is a positive gain, and the operator P[ ] (referred to as the prior-local-peak oper-

ator) is defined as

vi V max=

fci

fi

vi 0=

vi 0=

vi 0=

vi 0=

vi V max=

Ni t( )

Ni t( ) gi P ∆i t( )[ ]=

gi ⋅
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, where , (3-22)

defining  as the most recent local extrema in the deformation of the ith device. 

Because this algorithm was developed for use with a variable friction device, the follow-

ing modifications were necessary to apply it to the MR damper: i) there is no need to

check if the force is greater than µNi (t), where µ is the coefficient of friction, because the

MR damper is not subject to static friction, and ii) a force feedback loop was implemented

to induce the MR damper to produce approximately the frictional force corresponding to

the desired normal force. Thus, the goal is to generate a desired control force with a mag-

nitude 

(3-23)

where the proportionality constant  has units of stiffness (N/cm). For further clarifica-

tion, Fig. 3-5 shows a plot of the typical desired control force produced by this algorithm

as a function of the device displacement.  is shown here as a dashed line be-

cause at each peak in the displacement, the magnitude of the desired control force is se-

lected according to this relationship.

FIGURE 3-5 Typical Desired Control Force Produced 
                                    with the Maximum Energy Dissipation Algorithm.

P ∆i t( )[ ] ∆i t s–( )= s min x 0:∆· i t x–( )=0≥{ }=

∆i t s–( )

fni µgi P ∆i t( )[ ] gni P ∆i t( )[ ]= =

gni

fni gni∆i=

fni

∆i

fni gni∆i=
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As in the clipped-optimal control law, because the force produced by the MR damper can-

not be directly commanded, a force feedback loop is used. The measured force is com-

pared to the desired force determined by Eq. (3-23), and the resulting control law is 

. (3-24)

An appropriate choice of  will keep the force fni within the operating envelope of each

MR damper a majority of the time, allowing the MR damper forces to closely approximate

the desired force of each device. However, the optimal value of  is dependent on the

amplitude of the ground excitation. Additionally, notice that this control law is quite

straightforward to implement because it requires only measurements of applied force and

the relative displacements of the control device. 

3.3 Numerical Example 

To evaluate these algorithms for use with the MR damper a numerical example is consid-

ered in which a model of a six-story building is controlled with four MR dampers. Two

devices are rigidly connected between the ground and the first floor, and two devices are

rigidly connected between the first and second floors, as shown in Fig. 3-6.

Each MR damper is capable of producing a force equal to 1.8% the weight of the entire

structure, and the maximum voltage input to the MR devices is  = 5V. The governing

equations can be written in the form of Eq. (3-5) by defining the mass of each floor, mi, as

0.227 N/(cm/sec2) (0.129 1b/(in/sec2)), the stiffness of each floor, ki, as 297 N/cm (169 lb/

in), and a damping ratio for each mode of 0.5%. This system is a simple representation of

the scaled, six-story, test structure that is being used for experimental control studies at the

Washington University Structural Control and Earthquake Engineering Laboratory. 

vi Vmax H(fni fi– )=

gni

gni

Vmax
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FIGURE 3-6 Schematic Diagram of the MR Damper Implementation. 

In this example, the structural measurements available for calculating the control action

include the absolute accelerations of the structure and the forces produced by the MR de-

vices (i.e., ). Thus, the governing equations can

be written in the form of Eqs. (3-6) - (3-7) by defining 

, , ,

, . 

The MR damper parameters used in this study are c0a = 0.0064 Nsec/cm, c0b = 0.0052

Nsec/cmV, αa = 8.66 N/cm, αb = 8.86 N/cmV, γ = 300 cm-2, β = 300 cm-2, A = 120, and n

= 2. These parameters were selected based on the identified model of the shear-mode pro-

totype MR damper tested at Washington University (Yi, et al., 1999a,b). 
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In simulation, the model of the structure is subjected to the NS component of the 1940 El

Centro earthquake. The simulations were performed in MATLAB (1999). Because the

building system considered is a scaled model, the amplitude of the earthquake was scaled

to ten percent of the full-scale earthquake to represent the magnitude of displacements that

would be observed in laboratory experiments with this structure. 

The various control algorithms were evaluated using a set of evaluation criteria based on

those used in the second generation linear control problem for buildings (Spencer et al.,

1997a). The first evaluation criterion is a measure of the normalized maximum floor dis-

placement relative to the ground, given as 

(3-25)

where  is the relative displacement of the ith floor over the entire response, and 

denotes the uncontrolled maximum displacement. The second evaluation criterion is a

measure of the reduction in the interstory drift. The maximum of the normalized interstory

drift is 

(3-26)

where  is the height of each floor (30 cm),  is the interstory drift of the above

ground floors over the response history, and  denotes the normalized peak interstory

drift in the uncontrolled response. The third evaluation criterion is a measure of the nor-

malized peak floor accelerations, given by 

(3-27)

J1 max
xi t( )

xmax
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=
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where the absolute accelerations of the ith floor, , are normalized by the peak uncon-

trolled floor acceleration, denoted . 

The final evaluation criteria considered in this study is a measure of the maximum control

force per device, normalized by the weight of the structure, given by 

(3-28)

where  is the total weight of the structure (1335 N). 

The corresponding uncontrolled responses are as follows:  = 1.313 cm,  =

0.00981 cm,  = 146.95 cm/sec2. The resulting evaluation criteria are presented in Ta-

ble 3-1 for the control algorithms considered. As indicated in the table, the numbers in pa-

rentheses indicate the percent reduction as compared to the best passive case.

Additionally, to compare the performance of the various control algorithms, the peak of

the interstory drift and absolute acceleration responses for all floors were examined. Fig.

3-7 shows the peak response profile of the entire structure for a variety of cases.

x··ai t( )

x··a
max

J4 max
fi t( )
W

------------ 
 =

t, i

W

xmax dn
max

x··a
max
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To compare the performance of the semi-active system to that of comparable passive sys-

tems, two cases are considered in which the MR dampers are used in a passive mode by

maintaining a constant voltage to the devices. The results of both a passive-off (0V) and

passive-on (5V) configuration are included. The passive-off system reduces the maximum

floor displacement, maximum interstory displacement, and maximum absolute accelera-

tion by 14%, 20%, and 10%, respectively, over the uncontrolled case. The passive-on sys-

tem is able to further reduce the maximum floor displacement and maximum interstory

displacement. However, notice that the passive-on system results in a larger acceleration

than the passive-off system. Figure 3-7 shows that this occurs because the passive-on sys-

TABLE 3-1. Normalized Controlled Maximum Responses 
due to Scaled El Centro Earthquake.

Control Strategy

Passive-Off 0.862 0.801 0.904 0.00292

Passive-On 0.506 0.696 1.41 0.0178

Lyapunov 
Controller A

0.686 (+35%)a

a. Numbers in parentheses indicate percent reduction as compared to the best passive case. Nega-
tive numbers correspond to a response reduction. 

0.788 (+13%) 0.756 (-16%) 0.0178

Lyapunov 
Controller B

0.326 (-35%) 0.548 (-21%) 1.39 (+53%) 0.0178

Decentralized 
Bang-Bang

0.449 (-11%) 0.791 (+13%) 1.00 (+11%) 0.0178

Maximum Energy 
Dissipation

0.548 (+8%) 0.620 (-11%) 1.06 (+17%) 0.0121

Clipped-Optimal A 0.631 (+24%) 0.640 (-8%) 0.636 (-29%) 0.01095

Clipped-Optimal B 0.405 (-20%) 0.547 (-21%) 1.25 (+38%) 0.0178

Modulated 
Homogeneous 

Friction

0.421 (-17%) 0.559 (-20%) 1.06 (+17%) 0.0178

J1 J2 J3 J4
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tem attempts to lock up the first two floors, increasing the drift of the upper floors, and in-

creasing the absolute acceleration of the lower floors of the structure.

FIGURE 3-7 Peak Responses of Each Floor of the Structure to the Scaled El Centro 
Earthquake

For the Lyapunov controller there is no standard method of selecting the  matrix,

therefore, several   matrices were arbitrarily chosen and tested. As mentioned

previously, the challenge in Lyapunov controller design is in the selection of . Thus, a

variety of combinations were tried, and two control designs that achieved good perfor-

mance are discussed herein. Lyapunov controller A uses a  matrix with nonzero values

in the first row of the matrix and reduces the absolute acceleration by 16.4% over the best

passive case. Figure 3-7 demonstrates that this algorithm reduces the peak absolute accel-

erations of all floors to about the same level. Lyapunov controller B uses a  matrix

with ones in the (7,1), (8,2), (9,3), (10,4), (11,5), and (12,6) positions. This design resulted

in a reduction of the maximum floor displacement and maximum interstory displacement

by 35.6% and 21.3% respectively over the best passive case. Figure 3-7 shows that the

peak drift at the lower floors is reduced significantly, without locking up these floors.
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Thus this control algorithm is able to achieve significant reductions in the drift throughout

the structure. 

The results obtained with the decentralized bang-bang controller show that this algorithm

is capable of reducing the maximum floor displacement by 11.3% over the passive results,

but is not very effective in reducing the maximum interstory displacement and absolute

accelerations of this structure. Notice from Figure 3-7 that this control algorithm allows

the first floor to displace significantly as in a base isolation system, but it locks up the sec-

ond floor of the structure, resulting in increased absolute accelerations in the lower floors.

Thus, the performance achieved with this device could be realized by removing the con-

trollable MR damper between the first and second floors and replacing it with a passive

device. 

Similarly, the maximum energy dissipation algorithm achieves results that are quite simi-

lar to that of the passive-on system. The maximum relative displacement achieved is

slightly larger than that of the passive-on system, although the maximum interstory drift is

marginally less than that of the passive-on system. The maximum acceleration is not lower

than that of the passive-off system. Therefore this control algorithm does not achieve sig-

nificantly better results than the passive systems. To achieve this performance level, a pas-

sive energy dissipation device could be used. Thus, this control algorithm is not

recommended. 

Two clipped-optimal control designs with different capabilities were considered. Clipped-

optimal controller A was designed by placing a moderate weighting (840 cm-2) on the rel-

ative displacements of all floors. Clipped-optimal controller B was designed by placing a

higher weighting (9000 cm-2) on the relative displacements of all floors. The results show

that clipped-optimal controller A appears to be quite effective in achieving significant re-

ductions in both the maximum absolute acceleration and interstory displacement over the

passive case. In fact, this controller achieves a 29.6% reduction in acceleration as com-

pared to the better passive case, resulting in the lowest acceleration of all cases considered
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here. Furthermore, Figure 3-7 indicates that the accelerations are reduced throughout the

structure. If further reductions in displacement are desired in the controller, clipped-opti-

mal control B achieves a reduction in the maximum floor displacement and maximum in-

terstory drift of 20% and 21.4% over the best passive cases, although the absolute

accelerations increased. Figure 3-7 shows that the drifts are quite small at the lower floors

and the maximum drift occurs at the third floor of the structure, although the drifts are

consistently lower than almost all of the other algorithms. Notice that the clipped-optimal

control algorithm allows the designer some versatility depending on the control objectives

for the particular structure under consideration. 

The modulated homogeneous friction algorithm was designed by choosing a value of 

of 470 N/cm for this example. This value was selected because it utilizes the full range of

forces for the MR device without saturating the range of the MR device. Thus, the desired

force is always proportional to the previous local extrema in the device displacement. The

results show that in this example the control algorithm achieves high levels of perfor-

mance. The relative displacement and interstory drifts are reduced by 16.8% and 19.7%

over the better passive case, although a small increase in the acceleration is observed. 

From Figure 3-7 observe that, in terms of absolute acceleration, most of the semi-active

controllers have qualitatively similar behavior in the upper floors. The smallest accelera-

tion response is achieved with clipped-optimal controller A, and the lowest interstory dis-

placement response is achieved with Lyapunov controller B and clipped-optimal

controller B, while the modulated homogeneous friction algorithm achieves quite similar

performance. 

3.4 Summary

A selection of recently proposed semi-active control algorithms have been evaluated for

application in a structural control system using multiple MR dampers. In a numerical ex-

ample a six-story structure was controlled using MR dampers on the lower two floors. The

gni
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responses of the system to a scaled El Centro earthquake excitation were found for each

controller through a simulation of the system. Each algorithm was implemented using

available measurements of the structural system, including device forces and absolute

structural accelerations. Each semi-active algorithm resulted in an improvement in perfor-

mance over the best passive controller in some way, although the resulting responses var-

ied greatly depending on the choice of control algorithm. Based on these results, three of

these control algorithms were found to be most suited for use with MR dampers in a multi-

input control system. The Lyapunov controller algorithm, the clipped-optimal algorithm,

and the modulated homogeneous friction algorithm all achieved significant reductions in

the responses. Lyapunov controller B and clipped-optimal controller B achieved virtually

identical reductions in maximum interstory displacement (21.4%). The reduction in abso-

lute acceleration was superior with clipped-optimal controller A (29.6%), and the reduc-

tion in relative displacement was superior with the Lyapunov controller B (35.6%).

Furthermore, both of these algorithms possess the flexibility to allow the control designer

to design for a range of control objectives. The modulated homogeneous friction algo-

rithm achieved significant reduction in the displacements and drifts, although an increase

in the accelerations was observed. 
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Chapter 4

Bridge and Bearing Models

In the same sense that it is desirable to control structural responses of building during

earthquakes, it also of interest to protect bridges. The bridge used for the control study was

modeled after a typical multi-span simply supported (MSSS) bridge. MSSS bridges are

common in the central and southwestern United States and few studies have looked at the

effects of retrofitting these bridges against the effects of earthquakes (DesRoches et al.,

2000). A two dimensional (2D) model of a typical MSSS bridge was developed by Geor-

gia Institute of Technology using DRAIN-2DX in order to study the seismic response

modification of the bridge model with several retrofit measures (DesRoches et al., 2000).

For this study, a 2D, five degree of freedom (5DOF) lumped mass bridge model based on

the DRAIN-2DX model, with elastomeric bearings, was developed using MATLAB. Two

basic bridge models, linear and nonlinear, were developed. The nonlinear bridge model

contained nonlinear models for the elastomeric bearings. The nonlinear bearing models

considered were a bilinear model and a Bouc-Wen model (Wen, 1976). This chapter de-

scribes the bridge and bearing models and provides a comparison of the bilinear and

Bouc-Wen bearing models. 
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4.1 Modeling of the Bridge

4.1.1  Linear Bridge Model

The 2D-5DOF lumped mass bridge model developed in MATLAB consists of three decks,

two columns, and six bearings. The bridge model shown in Fig. 4-1 is a linear model with

springs in the locations of the bearings. The stiffnesses of the springs, k1, k2, k3, k4, k5, and

k6, are that of the initial stiffness of the elastomeric bearing, 83.52 kip/in. The stiffness of

each column, kc, is 38.357 kip/in. The mass of the center bridge deck (m2) is 2.49354

kip sec2/in., and the mass of the outer bridge decks (m1 and m3) is 1.24626 kip sec2/in.

Furthermore, the mass of the columns (m4 and m5) is 0.26929 kip sec2/in. The gap be-

tween the bridge decks and between the decks and abutments is 4 in. Damping for the

bridge model is 0.3% of the stiffness.

FIGURE 4-1 Schematic of Linear Bridge Model

The equations of motion of the linear bridge from a ground excitation can be written as

(4-1)

where x is a vector of the displacements of the masses of the bridge relative to the ground,

 is a one-dimensional ground acceleration,  is a column vector of ones, and 

⋅ ⋅

⋅

m1 m2 m3

m4 m5

k1 k2 k3 k4 k5 k6

kc kc

Mx·· Cx· Kx+ + MΓx··g–=

x··g Γ



46

,  and

.

This equation can be written in state space form as 

(4-2)

(4-3)

where z is the state vector and y is the vector of measured outputs. For this model, the

states are the displacement and velocity of each mass relative to the ground, and the mea-

sured outputs are the relative displacement, relative velocity, and absolute acceleration of

each mass. Then the A, B, C, and D matrices can be defined by

, 

, and 

For the analytical study of the bridge model, a simulation was developed in SIMULINK

(1999). The simulation is shown in Figure 4-2.

M

1.25 0 0 0 0
0 2.49 0 0 0
0 0 1.25 0 0
0 0 0 0.27 0
0 0 0 0 0.27

= K

167 0 0 83.5– 0
0 167 0 83.5– 83.5–
0 0 167 0 83.5–

83.5– 83.5– 0 205.4 0
0 83.5– 83.5– 0 205.4

=

C

0.501 0 0 0.251– 0
0 0.501 0 0.251– 0.251–
0 0 0.501 0 0.251–

0.251– 0.251– 0 0.616 0
0 0.251– 0.251– 0 0.616

=

z· Az Bx··g+=

y Cz Dx··g+=

A 0 I

M 1– K– M 1– C–
= B 0

Γ
–=

C
I

M 1– K– M 1– C–
= D 0[ ]=
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FIGURE 4-2 Linear Bridge Model Simulation in SIMULINK

Using this simulation, the linear bridge model was excited with a number of time histories

in order to obtain the bridge responses of relative displacement, velocity, and absolute ac-

celeration of each mass. 

4.1.2  Nonlinear Bridge Model

To form a model of the bridge including the nonlinear bearing models, each spring ele-

ment is replaced with a bearing model, bilinear or Bouc-Wen. Fig. 4-3 shows a schematic

of the bridge model with the bearing elements, where B1, B2, B3, B4, B5, and B6 represent

bearing forces. 

FIGURE 4-3 Schematic of Nonlinear Bridge Model

The equation of motion of the bridge with the bearing elements will change to 

(4-4)

m1 m2 m3

m4 m5
kc kc

B1 B2 B3 B3 B4 B6

Mx·· Cx· Kx+ + Λbfb MΓx··g–=



48

where x is a vector of bridge mass displacements relative to the ground,  is a vector of

bearing forces ,  is defined from the contribution of each

bearing force as

,

M and C are the same as defined in the linear bridge model and the new stiffness matrix is

The equations governing the state space representation of the bridge with the nonlinear

bearing elements will change to

(4-5)

(4-6)

where z is as defined in Eqs. (4-2) and (4-3), y is a vector of the measured outputs of rela-

tive displacement, relative velocity, absolute acceleration, and bearing forces, and is a

vector of bearing forces. The A, B, C, and D matrices can then be defined as

, 

fb

fb1 fb2 fb3 fb4 fb5 fb6, , , , ,[ ]T( ) Λb

Λb

1 1– 0 0 0 0
0 0 1 1– 0 0
0 0 0 0 1 1
0 1 1– 0 0 0
0 0 0 1 1– 0

=

K

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 38.4 0
0 0 0 0 38.4

=

z· Az B
xg

ub

··
+=

y Cz D
xg

ub

··
+=

ub

A 0 I

M 1– K– M 1– C–
= B

0
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, and 

As with the linear bridge model, a simulation for the nonlinear bridge model was also de-

veloped in SIMULINK. A schematic of the nonlinear bridge model simulation is shown in

Figure 4-4.

FIGURE 4-4 Nonlinear Bridge Model Simulation in SIMULINK

When comparing the simulations for the linear and nonlinear bridge models, one differ-

ence is observed. The difference is the addition of the bearing models in the nonlinear

bridge model simulation. In Figure 4-4, the bearing models are contained within the dotted

oval. Here, the measured responses are the bridge mass relative displacements. Through a

feedback loop, the relative displacements of the bridge masses are fed into the bearing

models in order to generate the appropriate bearing forces. The bearing forces are then fed

back into the structural model of the nonlinear bridge. The nonlinear bearing models con-

sidered are the bilinear and the Bouc-Wen models. These bearing models will be de-

scribed in the next section.

C
I

M 1– K– M 1– C–
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4.2 Modeling of the Bearings 

4.2.1  Bilinear Bearing Model

A bilinear model can be used to represent the behavior of an elastomeric bearing. The bi-

linear model (Fig. 4-5) is based on three parameters, K1, K2, and Q (Kelly 1997). These

parameters are governed by the type and size of the bearing (DesRoches et al., 2000). For

the bearings in this study, K1 = 83.6 kip/in. and K2 = 0.333*K1 = 27.84 kip/in.

FIGURE 4-5 Bilinear Behavior

To model the bilinear behavior in MATLAB, a spring in parallel with the combination of

a spring in series with the backlash block from SIMULINK is used. Figure 4-6 shows a

schematic depicting the modeling of the bilinear bearing as well as the simulation devel-

oped in SIMULINK. The spring stiffnesses are the same as those defined above for the

elastomeric bearing. The spring stiffness, K1, represents the initial slope of the force dis-

placement behavior of the elastomeric bearing. Furthermore, the spring stiffness, K2-K1,

represents the change in slope when the elastomeric bearing begins yielding.

Force

Displacement

-D D

K2

Q
K1
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FIGURE 4-6 Modeling of Bilinear Bearing Model

The backlash element in SIMULINK is used to simplify a system in which there is a band

in which an input results in a zero output. Beyond this range of inputs, the output varies

linearly with additional inputs. Taking the initial input as 0, the only parameter that needs

to be defined when using the backlash block is the deadband (DBwidth), which refers to

the amount of side-to-side play in the system and is centered around the output (MATLAB

1999).

In order to determined an appropriate value for the deadband parameter and verify the

MATLAB model, a comparison was made between a bilinear bearing modeled in MAT-

LAB and one modeled in DRAIN-2DX using a bilinear element. A value of 44.8 was

found for DBwidth to achieve the desired behavior.

4.2.2  Bouc-Wen Bearing Model

A schematic of a bearing model based on the Bouc-Wen model (Wen, 1976) developed in

MATLAB is shown in Fig. 4-7.

f

x

K1

K2 - K1

(a) Schematic of Bilinear Bearing 
Model

(b) Bilinear Bearing Simulation in 
SIMULINK
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FIGURE 4-7 Bouc-Wen Bearing Model in MATLAB

The equations governing this model are the following

(4-7)

(4-8)

Where z is an evolutionary variable that accounts for the history dependence of the re-

sponse, kb1 and kb2 are stiffness parameters relating to the elastomeric bearing stiffness,

and α, β, n, A, and γ are model parameters corresponding to the bearing behavior. 

Determination of Bouc-Wen Model Parameters

Initially, in order to determine equivalent values for the parameters kb1, kb2, α, β, and γ,

the MATLAB Bouc-Wen model was compared to the DRAIN-2DX bilinear bearing mod-

el. The comparison was made by examining force-displacement curves for each model

generated using a sine wave signal. The first sine wave signal was chosen to have an am-

plitude of 5.5, which corresponds to the maximum amplitude achieved by the elastomeric

bearings in the DRAIN-2DX bridge model when the HT7545 earthquake is applied, and a

frequency of 0.8475 Hz, which is the first frequency of the DRAIN-2DX bridge model

with elastomeric bearings. The stiffness parameters along with the Bouc-Wen model pa-

rameters of α, β, and γ were varied in the MATLAB model until a good correspondence

between the force-displacement curves generated by the DRAIN-2DX bilinear model and

f

x

kb1

kb2

y

Bouc-Wen

f kb1y αz kb2 x y–( )+= =

z· γ x· y·– z z n 1–– β x· y·–( ) z n– A x· y·–( )+=



53

MATLAB Bouc-Wen model was achieved. This procedure resulted in the following set of

parameters: kb1 = 112.3 kips/in., kb2 = 0.33*kb1= 37.1 kips/in., α = 740, β = 0.5, γ = 125,

A = 0.2, and N = 2. This set of parameters was then used with several different sine wave

signals of varying amplitude and frequency to again compare the force-displacement

curves produced by the two models of the elastomeric bearing. Figure 4-8 shows a com-

parison of the two bearing models.

FIGURE 4-8 Comparison of MATLAB Bouc-Wen Model and DRAIN-2DX Bilinear 
Model with Different Sine Wave Inputs

As the figures show, the final set of parameters produces force-displacement curves for

the DRAIN-2DX bilinear model and MATLAB Bouc-Wen model of an elastomeric bear-

ing that correspond well when sine waves of differing amplitudes and frequencies are ap-

plied as the input signal. However, it will be shown later that when the MATLAB Bouc-

Wen bearing model is implemented in the bridge model, there is a dependency on frequen-

cy.
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4.3 Comparison of Bilinear and Bouc-Wen Models

With both the MATLAB bilinear and Bouc-Wen bearing models designed, these models

can be implemented into the bridge model for a comparison. The bilinear model is typical-

ly used to model the behavior of an elastomeric bearing. However, the Bouc-Wen model

can also model the nonlinear bearing behavior. The purpose of the comparison is to deter-

mine if the Bouc-Wen model is a better representation of the behavior of an elastomeric

bearing than the traditional bilinear model.

4.3.1  Ground Motion Records

The ground motion records used in this study were generated based on a modified ap-

proach to the spectrum compatible ground acceleration approach (Clough and Penzien,

1993) as described in Chapter 2. In order to analyze the responses of the nonlinear bridge

models, a set of three earthquakes was generated and each of the three earthquakes in the

set was scaled to produce new sets of earthquakes, each set with a different magnitude.

Three earthquakes were chosen for each set because that number of earthquakes would

give a representative sample of earthquakes. The first set of earthquakes, the linear case,

had an average peak acceleration of 2.34 in/sec^2 and excited the bridge within the linear

region. The second set of earthquakes, the moderate case, had an average peak accelera-

tion of 9.38 in/sec^2 and excited the bridge in the linear region much of the time with

some nonlinearity. The third set of earthquakes, the nonlinear case, had an average peak

acceleration of 37.92 in/sec^2 and excited the bridge in the highly nonlinear region. Table

4-1 summarizes the different test cases used for this study and Figure 4-9 shows the syn-

thetic time history for the moderate case.
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FIGURE 4-9 Synthetic Time Histories for Moderate Case

4.3.2  Evaluation Criteria

Nonlinear Bridge Model 1 will refer to the bridge model with the bearings represented by

the bilinear model; and Nonlinear Bridge Model 2 will refer to the bridge model with the

TABLE 4-1.  Test Cases

Case Behavior Avg. Peak Acceleration 
(in/sec^2)

Linear Linear 2.34

Moderate Linear with some 
non-linearity

9.38

Nonlinear High nonlinearity 37.92
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bearings represented by the Bouc-Wen model. Also, the Linear Bridge Model will refer to

the bridge model with springs to represent the bearings. 

To evaluate the performance of each bearing model, peak and RMS relative displacement,

relative velocity, and absolute acceleration responses were calculated for each bearing

model with each case of earthquake. The peak displacement Dpi (in.), velocity Vpi (in/sec),

and acceleration Api (in/sec^2) responses for the ith mass are defined by

(4-9)

(4-10)

(4-11)

Furthermore, the RMS displacement, velocity, and acceleration responses are defined by

(4-12)

(4-13)

(4-14)

where , , and  are the ith mass displacement, velocity, and acceleration, re-

spectively, and T is the length of the simulation. In addition, the bilinear and Bouc-Wen

models were evaluated for each mass by comparing the difference between peak and RMS

responses as defined by the criteria given in Eqs. (4-15) through (4-20).

Dpi max xi t( )=
t

Vpi max x· i t( )=
t

Api max x··i t( )=
t

Dri xi
2 t( )

t 1=

T

∑=

Vri x· i
2 t( )

t 1=

T

∑=

Ari x··i
2 t( )

t 1=

T

∑=

xi t( ) x· i t( ) x··i t( )
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(4-15)

(4-16)

(4-17)

(4-18)

(4-19)

(4-20)

Before comparing the nonlinear bridge models, the Linear Bridge Model and Nonlinear

Bridge Model 1 were compared for a linear case earthquake to verify the models. The re-

sult was that for a linear case earthquake the linear model and Nonlinear Bridge Model 1

responses were identical, indicating that the nonlinear model was correct. 

4.3.3  Results of Comparison

To again look at the dependence of the Bouc-Wen model on frequency and amplitude,

force-displacement curves for Nonlinear Bridge Models 1 and 2 were compared for vary-

ing amplitude and frequency sine waves. The amplitude was varied from 10 to 40 and the

frequency was varied from 0.8475 Hz, the first mode of the bridge, to 2 hz. Figure 4-10

shows the results of this analysis.

J1

Dpi( )bilinear Dpi( )bouc–[ ]

Dpi( )bilinear
--------------------------------------------------------------- 100×=

J2
Vpi( )bilinear Vpi( )bouc–[ ]

Vpi( )bilinear
-------------------------------------------------------------- 100×=

J3
Api( )bilinear Api( )bouc–[ ]

Api( )bilinear
-------------------------------------------------------------- 100×=

J4

Dri( )bilinear Dri( )bouc–[ ]

Dri( )bilinear
-------------------------------------------------------------- 100×=

J5
Vri( )bilinear Vri( )bouc–[ ]

Vri( )bilinear
------------------------------------------------------------- 100×=

J6

Ari( )bilinear Ari( )bouc–[ ]

Ari( )bilinear
------------------------------------------------------------- 100×=
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FIGURE 4-10 Comparison of MATLAB Bilinear and Bouc-Wen Models with             
           Different Sine Wave Inputs

As demonstrated in the graphs, the slope of the Bouc-Wen model changes with a change

in frequency. This same effect was also evident when using the synthetic ground motion

records. As a result, the stiffness parameter kb1 for the was modified to a value of 145.5

kips/in for the Bouc-Wen bearing model so that the force-displacement curves for the bi-

linear and Bouc-Wen bearing models had the same slope for the linear case of earth-

quakes. 

Nonlinear Bridge Models 1 and 2 were evaluated using the linear, moderate, and nonlinear

cases of earthquakes. Tables 4-2 through 4-7 show the comparison of the peak and RMS

responses using the evaluation criteria defined in the previous section; and Tables 4-8

through 4-19 give the peak and RMS responses for each case of earthquakes. 
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TABLE 4-2.  Percent Difference of Peak Responses: Linear Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5
R

ec
or

d 
1 J1 1.94 3.39 1.94 3.13 3.13

J2 -0.17 0.75 -0.17 1.93 1.93

J3 -1.37 0.78 -1.37 0.16 0.16

R
ec

or
d 

2 J1 -1.04 3.23 -1.04 1.93 1.93

J2 -3.58 0.93 -3.58 3.81 3.81

J3 -5.20 0.00 -5.20 -0.54 -0.54

R
ec

or
d 

3 J1 -3.35 0.05 -3.35 0.63 0.63

J2 -1.74 -0.48 -1.74 0.41 0.41

J3 -2.59 -0.39 -2.59 0.29 0.29

TABLE 4-3.  Percent Difference of Peak Responses: Moderate Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5

R
ec

or
d 

1 J1 14.18 16.36 14.18 15.72 15.72

J2 15.47 11.49 15.47 14.19 14.19

J3 12.69 4.61 12.69 48.86 48.86

R
ec

or
d 

2 J1 18.88 11.18 18.88 9.80 9.80

J2 13.82 4.02 13.82 19.63 19.63

J3 13.74 1.93 13.74 30.37 30.37

R
ec

or
d 

3 J1 6.55 11.44 6.55 11.90 11.90

J2 8.68 8.61 8.68 20.76 20.76

J3 4.19 5.29 4.19 38.20 38.20
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TABLE 4-4.  Percent Difference of Peak Responses: Nonlinear Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5
R

ec
or

d 
1 J1 17.43 -5.24 17.43 12.04 12.04

J2 12.71 1.76 12.71 -3.99 -3.99

J3 -6.88 -11.20 -6.88 38.82 38.82

R
ec

or
d 

2 J1 1.48 -5.19 1.48 -15.75 -15.75

J2 -9.77 -15.85 -9.77 -16.05 -16.05

J3 -9.58 -18.60 -9.58 17.22 17.22

R
ec

or
d 

3 J1 -3.63 -3.49 -3.63 -9.91 -9.91

J2 3.28 0.20 3.28 5.94 5.94

J3 -1.37 -13.84 -1.37 25.47 25.47

TABLE 4-5.  Percent Difference of RMS Responses: Linear Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5

R
ec

or
d 

1 J4 1.46 2.45 1.46 2.46 2.46

J5 -0.30 2.33 -0.30 2.35 2.35

J6 -2.53 2.05 -2.53 1.89 1.89

R
ec

or
d 

2 J4 1.80 3.26 1.80 3.28 3.28

J5 -0.90 3.10 -0.90 3.09 3.09

J6 -4.34 2.68 -4.34 2.45 2.45

R
ec

or
d 

3 J4 -1.37 -0.15 -1.37 -0.14 -0.14

J5 -2.68 -0.16 -2.68 -0.19 -0.19

J6 -4.48 -0.48 -4.48 -0.71 -0.71
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TABLE 4-6.  Percent Difference of RMS Responses: Moderate Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5
R

ec
or

d 
1 J4 12.85 14.36 12.85 14.48 14.48

J5 12.47 14.29 12.47 14.90 14.90

J6 10.50 14.02 10.50 21.15 21.15

R
ec

or
d 

2 J4 11.05 14.53 11.05 9.20 9.20

J5 13.48 9.27 13.48 9.92 9.92

J6 14.07 9.59 14.07 16.69 16.69

R
ec

or
d 

3 J4 18.47 18.76 18.47 19.05 19.05

J5 14.36 17.72 14.36 18.08 18.08

J6 11.40 17.40 11.40 20.67 20.67

TABLE 4-7.  Percent Difference of RMS Responses: Nonlinear Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5

R
ec

or
d 

1 J4 3.84 2.09 3.84 1.77 1.77

J5 2.88 -0.48 2.88 2.65 2.65

J6 2.56 -1.45 2.56 26.54 26.54

R
ec

or
d 

2 J4 9.51 3.53 9.51 -0.58 -0.58

J5 -1.60 0.76 -1.60 1.85 1.85

J6 -2.05 -0.14 -2.05 23.90 23.90

R
ec

or
d 

3 J4 6.93 -0.21 6.93 -3.78 -3.78

J5 0.90 -4.64 0.90 -0.30 -0.30

J6 2.16 -5.84 2.16 35.60 35.60
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TABLE 4-8.  Peak Responses for Bilinear Model: Linear Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5
R

ec
or

d 
1 Dpi 0.15 0.31 0.15 0.19 0.19

Vpi 1.10 1.68 1.10 1.01 1.01

Api 8.89 9.49 8.89 6.21 6.21

R
ec

or
d 

2 Dpi 0.16 0.38 0.16 0.23 0.23

Vpi 1.08 2.26 1.08 1.18 1.18

Api 8.03 11.93 8.03 6.67 6.67

R
ec

or
d 

3 Dpi 0.14 0.26 0.14 0.16 0.16

Vpi 0.95 1.48 0.95 0.97 0.97

Api 7.79 9.15 7.79 5.51 5.51

TABLE 4-9.  Peak Responses for Bouc-Wen Model: Linear Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5

R
ec

or
d 

1 Dpi 0.14 0.30 0.14 0.18 0.18

Vpi 1.10 1.67 1.10 0.99 0.99

Api 9.01 9.42 9.01 6.20 6.20

R
ec

or
d 

2 Dpi 0.16 0.37 0.16 0.22 0.22

Vpi 1.12 2.24 1.12 1.13 1.13

Api 8.45 11.93 8.45 6.70 6.70

R
ec

or
d 

3 Dpi 0.14 0.26 0.14 0.16 0.16

Vpi 0.97 1.49 0.97 0.97 0.97

Api 7.99 9.18 7.99 5.50 5.50
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TABLE 4-10.  Peak Responses for Bilinear Model: Moderate Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5
R

ec
or

d 
1 Dpi 0.51 1.04 0.51 0.61 0.61

Vpi 4.10 5.95 4.10 3.86 3.86

Api 28.59 29.82 28.59 37.12 37.12

R
ec

or
d 

2 Dpi 0.54 1.39 0.54 0.68 0.68

Vpi 3.78 7.28 3.78 4.47 4.47

Api 29.72 35.76 29.72 37.05 37.05

R
ec

or
d 

3 Dpi 0.51 0.95 0.51 0.58 0.58

Vpi 2.96 5.59 2.96 3.58 3.58

Api 27.39 30.65 27.39 29.29 29.29

TABLE 4-11.  Peak Responses for Bouc-Wen Model: Moderate Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5

R
ec

or
d 

1 Dpi 0.44 0.87 0.44 0.52 0.52

Vpi 3.46 5.26 3.46 3.32 3.32

Api 24.96 28.44 24.96 18.99 18.99

R
ec

or
d 

2 Dpi 0.44 1.24 0.44 0.61 0.61

Vpi 3.26 6.99 3.26 3.59 3.59

Api 25.64 35.07 25.64 25.80 25.80

R
ec

or
d 

3 Dpi 0.47 0.84 0.47 0.51 0.51

Vpi 2.70 5.11 2.70 2.83 2.83

Api 26.24 29.03 26.24 18.10 18.10
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TABLE 4-12.  Peak Responses for Bilinear Model: Nonlinear Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5
R

ec
or

d 
1 Dpi 1.33 1.97 1.33 1.27 1.27

Vpi 7.78 10.45 7.78 6.67 6.67

Api 53.43 45.59 53.43 78.85 78.85

R
ec

or
d 

2 Dpi 1.13 3.25 1.13 1.34 1.34

Vpi 7.09 13.81 7.09 6.67 6.67

Api 53.45 60.92 53.45 77.40 77.40

R
ec

or
d 

3 Dpi 1.28 2.96 1.28 1.34 1.34

Vpi 8.25 14.66 8.25 9.75 9.75

Api 53.13 58.69 53.13 77.84 77.84

TABLE 4-13.  Peak Responses for Bouc-Wen Model: Nonlinear Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5

R
ec

or
d 

1 Dpi 1.10 2.08 1.10 1.12 1.12

Vpi 6.80 10.27 6.80 6.94 6.94

Api 57.11 50.70 57.11 48.24 48.24

R
ec

or
d 

2 Dpi 1.12 3.42 1.12 1.55 1.55

Vpi 7.78 16.00 7.78 7.74 7.74

Api 58.57 72.25 58.57 64.07 64.07

R
ec

or
d 

3 Dpi 1.33 3.06 1.33 1.47 1.47

Vpi 7.98 14.63 7.98 9.17 9.17

Api 53.86 66.81 53.86 58.02 58.02
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TABLE 4-14.  RMS Responses for Bilinear Model: Linear Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5
R

ec
or

d 
1 Dri 8.75 22.30 8.75 12.82 12.82

Vri 56.36 120.83 56.36 69.35 69.35

Ari 457.17 654.85 457.17 377.64 377.64

R
ec

or
d 

2 Dri 9.13 23.37 9.13 13.45 13.45

Vri 58.04 126.18 58.04 72.52 72.52

Ari 463.29 683.74 463.29 395.10 395.10

R
ec

or
d 

3 Dri 8.16 20.53 8.16 11.80 11.80

Vri 53.80 111.45 53.80 63.96 63.96

Ari 448.33 606.35 448.33 350.07 350.07

TABLE 4-15.  RMS Responses for Bouc-Wen Model: Linear Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5

R
ec

or
d 

1 Dri 8.63 21.75 8.63 12.51 12.51

Vri 56.53 118.01 56.53 67.72 67.72

Ari 468.74 641.44 468.74 370.49 370.49

R
ec

or
d 

2 Dri 8.97 22.61 8.97 13.01 13.01

Vri 58.57 122.27 58.57 70.27 70.27

Ari 483.40 665.38 483.40 385.42 385.42

R
ec

or
d 

3 Dri 8.27 20.56 8.27 11.82 11.82

Vri 55.25 111.64 55.25 64.08 64.08

Ari 468.44 609.26 468.44 352.54 352.54
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TABLE 4-16.  RMS Responses for Bilinear Model: Moderate Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5
R

ec
or

d 
1 Dri 28.17 70.42 28.17 40.39 40.39

Vri 185.09 382.72 185.09 219.60 219.60

Ari 1559.70 2077.79 1559.70 1317.29 1317.29

R
ec

or
d 

2 Dri 26.74 64.52 26.74 34.38 34.38

Vri 202.93 330.01 202.93 189.00 189.00

Ari 1905.52 1839.07 1905.52 1208.36 1208.36

R
ec

or
d 

3 Dri 32.46 78.62 32.46 45.12 45.12

Vri 200.82 420.46 200.82 241.39 241.39

Ari 1665.80 2284.69 1665.80 1382.45 1382.45

TABLE 4-17.  RMS Responses for Bouc-Wen Model: Moderate Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5

R
ec

or
d 

1 Dri 24.55 60.31 24.55 34.54 34.54

Vri 162.00 328.05 162.00 186.87 186.87

Ari 1395.87 1786.54 1395.87 1038.70 1038.70

R
ec

or
d 

2 Dri 23.79 55.14 23.79 31.22 31.22

Vri 175.56 299.42 175.56 170.25 170.25

Ari 1637.47 1662.79 1637.47 1006.64 1006.64

R
ec

or
d 

3 Dri 26.47 63.87 26.47 36.52 36.52

Vri 171.98 345.95 171.98 197.74 197.74

Ari 1475.82 1887.19 1475.82 1096.73 1096.73



67

TABLE 4-18.  RMS Responses for Bilinear Model: Nonlinear Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5
R

ec
or

d 
1 Dri 62.49 141.13 62.49 78.16 78.16

Vri 380.94 712.34 380.94 410.03 410.03

Ari 3267.25 3686.53 3267.25 3573.23 3573.23

R
ec

or
d 

2 Dri 75.67 174.21 75.67 88.41 88.41

Vri 416.57 838.13 416.57 463.94 463.94

Ari 3375.52 4213.57 3375.52 3703.07 3703.07

R
ec

or
d 

3 Dri 63.40 147.42 63.40 74.58 74.58

Vri 380.72 721.29 380.72 404.55 404.55

Ari 3340.46 3647.78 3340.46 4084.32 4084.32

TABLE 4-19.  RMS Responses for Bouc-Wen Model: Nonlinear Case

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5

R
ec

or
d 

1 Dri 60.09 138.19 60.09 76.77 76.77

Vri 369.95 715.79 369.95 399.15 399.15

Ari 3183.61 3739.95 3183.61 2625.03 2625.03

R
ec

or
d 

2 Dri 68.48 168.05 68.48 88.92 88.92

Vri 423.22 831.76 423.22 455.35 455.35

Ari 3444.75 4219.65 3444.75 2817.93 2817.93

R
ec

or
d 

3 Dri 59.00 147.72 59.00 77.40 77.40

Vri 377.30 754.72 377.30 405.75 405.75

Ari 3268.34 3860.80 3268.34 2630.31 2630.31
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For the linear and nonlinear case of earthquakes, some Bouc-Wen model peak and RMS

bridge responses increased over the same bilinear model responses. However, for the

moderate earthquake case, all peak and RMS bridge responses from the Bouc-Wen model

decreased when compared with the bilinear model responses. Moreover, for the moderate

case the largest decrease in peak responses from the Bouc-Wen model over the bilinear

model was 48.9% for the acceleration of mass 4 and of mass 5. For the linear case, the de-

viation between the bilinear and Bouc-Wen peak responses was small, with the largest de-

viation being -5.2% for acceleration of mass 1 and of mass 3.

4.4 Summary

In this chapter, both linear and nonlinear bridge models have been developed for a multi

span simply supported bridge. For the nonlinear bridge model, the nonlinear bearing mod-

els considered were a bilinear model and a Bouc-Wen model (Wen, 1976). The modeling

of these nonlinear bearing models was also discussed in this chapter. Varying amplitudes

of earthquakes were used to evaluate and compare the bridge responses when using the bi-

linear and Bouc-Wen bearing models. However, when comparing the bridge responses

from the two bearing models, at this time, it cannot be determined which model, bilinear

or Bouc-Wen, is a better representation of the behavior of an elastomeric bearing. In order

to determine which model is a more accurate representation of the bearing behavior, ex-

perimental results from actual elastomeric bearings are needed. Experimental testing is

scheduled to be performed at Georgia Institute of Technology. In the next chapter, the

Linear Bridge Model and Nonlinear Bridge Model 1 will be used to compare the effective-

ness of passive, active, and semi-active control strategies.
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Chapter 5

Bridge Control Study

The linear and nonlinear bridge models developed in Chapter 4 of a multi-span simply

supported bridge are used here to evaluate different control strategies for the bridge. The

control strategies investigated are ideal passive, active, and semi-active control and were

designed as described in Chapter 2. The effectiveness of the addition of control devices is

evaluated by comparing bridge deck displacements for each control strategy. Furthermore,

several different device locations are considered. This chapter will modify the linear and

nonlinear bridge models presented in Chapter 4 for the addition of control. In addition,

through simulation, the effectiveness of control strategies for both the linear and nonlinear

bridge models will be compared.

5.1 Control Study for Linear Bridge Model

With the addition of n control devices to the linear bridge model, the equations of motion

will change to

(5-1)

where x is a vector of the displacements of the bridge masses relative to the ground,

 is a vector of the control forces generated by the n control devices,

Mx·· Cx· Kx+ + Λcfc MΓx··g–=

fc f1c f2c …fnc, ,[ ]T=
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 is a column vector of ones, and  is a matrix determined by the placement of the n

control devices. Furthermore, the M, C, and K matrices are the same as defined for the

linear bridge model in Chapter 4. Using this equation, the state space form can be written

(5-2)

(5-3)

where z is the state vector, y is the vector of measured outputs for determining the control

action and  is a vector of control forces. For this model, the state vector consists of the

displacement and velocity of each mass relative to the ground and the measured outputs

for determining the control action are the absolute acceleration and control forces. The A,

B, C, and D matrices can be redefined as

, , 

 and 

The mode shapes and natural frequencies of the uncontrolled bridge are given in Figure 

5-1.

Γ Λc

z· Az B
xg

uc

··
+=

y Cz D
xg

uc

··
+=

uc

A 0 I

M 1– K– M 1– C–
= B

0

Γ M 1– Λc

–=

C
I

M 1– K– M 1– C–
= D

0

0 M– 1– Λc

=
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FIGURE 5-1 Mode Shapes of Uncontrolled Bridge 

5.1.1  Ground Motion Records

The ground motion records used for simulation of the linear bridge were generated using

the modified spectrum compatible approach defined in Chapter 2. Three different ground

motion records of the same magnitude were utilized. Figure 5-2 shows the different time

histories. The magnitude of the three time histories is 0.26, 0.19, and 0.21 g, respectively,

and was determined such that the earthquakes excited the bridge model in the moderate re-

gion. Here the moderate region is defined as a region in which there is occasional impact-

ing between the decks and/or the deck and abutment during the simulation, but not

frequent impacting. 

(a) Mode 1: 0.847 hz

(b) Mode 2: 1.61 hz

(c) Mode 3: 1.70 hz

(d) Mode 4: 4.84 hz

(e) Mode 5: 4.56 hz
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FIGURE 5-2 Synthetic Time Histories

The responses of the bridge for the best device placement case were also evaluated for the

Kobe, Northridge, and El Centro Earthquakes in addition to the synthetic time histories.

The magnitude of the Kobe, Northridge, and El Centro Earthquakes was scaled to 0.29 g,

0.29 g, and 0.28 g, respectively, to achieve an excitation of the bridge in the moderate re-

gion.

Time (sec)

Synthetic Time History 1

A
cc

el
er

at
io

n 
(g

)

Time (sec)

Synthetic Time History 2

A
cc

el
er

at
io

n 
(g

)

Time (sec)

Synthetic Time History 3

A
cc

el
er

at
io

n 
(g

)

-

-

-

-

-

-



73

5.1.2  Simulation Test Cases 

In order to evaluate the effectiveness of control on the linear bridge model, several differ-

ent combinations of device placement were considered. Each device location case is sum-

marized in Table 5-1 and depicted in Figure 5-3. 

FIGURE 5-3 Placement of Control Devices for Each Location Case

All four location cases were evaluated for synthetic time history 1 from which the two

most promising device location cases were chosen and evaluated for the three generated

earthquakes. Furthermore, the best device location case chosen based on the three synthet-

ic time histories were also evaluated for the Kobe, Northridge, and El Centro earthquakes. 

TABLE 5-1. Location Cases for Control Device Placement

Location Case (#) Description

LOCEND (1) One device each is placed between the left abutment and 
deck 1 and deck3 and the right abutment. (2 devices total)

LOCMID (2) One device each is placed between deck 1 and deck 2 and 
between deck 2 and deck 3. (2 devices total)

LOC123 (3)
One device each is placed between the left abutment and 

deck1, deck 1 and deck2, and deck 2 and deck 3. (3 devices 
total)

LOCALL (4)
One device each is placed between the left abutment and 

deck1, deck 1 and deck2, deck 2 and deck 3, and deck 3 and 
the right abutment. (4 devices total)

m1 m2 m3

m4 m5

1,3,4 2,3,4 2,3,4 1,4
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The control strategies considered for the bridge were passive, active, and semi-active.

These control strategies were designed as described in Chapter 2. In addition, for the ac-

tive and semi-active control strategies, three weighting methods were tried. These weight-

ing methods are defined in Table 5-2.

5.1.3  Evaluation Criteria

For ease in comparison, the peak controlled responses for the passive, active, and semi-ac-

tive control strategies were normalized by the peak uncontrolled responses. Peak uncon-

trolled responses for synthetic time histories 1, 2, and 3 are given in Table 5-3 and for the

Kobe, Northridge, and El Centro earthquakes in Table 5-4.

TABLE 5-2. Responses Weighted in Control Design

Type Description

AA All bridge mass accelerations

AD All bridge mass displacement

EN Total bridge energy

TABLE 5-3. Peak Uncontrolled Responses for Synthetic Time Histories

Response Decks 1 & 3 Deck 2

 T
im

e 
H

is
to

ry
 1 Displacement (in) 5.27 11.17

Velocity (in/sec) 39.63 60.48

Acceleration (in/sec^2) 320.0 341.7

 T
im

e 
H

is
to

ry
 2 Displacement (in) 5.65 13.81

Velocity (in/sec) 38.96 81.31

Acceleration (in/sec^2) 289.2 429.4

 T
im

e 
H

is
to

ry
 3 Displacement (in) 4.93 9.23

Velocity (in/sec) 34.25 53.40

Acceleration (in/sec^2) 280.5 329.3
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It should be noted that because the bridge model is symmetric, decks 1 and 3 have the

same uncontrolled responses. 

The normalized peak relative displacement for each time history, can be defined by

(5-4)

where  is the relative displacement of the ith deck over the entire response, and 

denotes the uncontrolled maximum displacement of the ith deck. The normalized peak rel-

ative velocity can be defined by

(5-5)

TABLE 5-4. Peak Uncontrolled Responses for Recorded Earthquakes

Response Decks 1 & 3 Deck 2

K
ob

e
Displacement (in) 3.79 7.43

Velocity (in/sec) 26.40 42.47

Acceleration (in/sec^2) 213.2 241.7

N
or

th
ri

dg
e Displacement (in) 3.12 6.32

Velocity (in/sec) 20.52 30.91

Acceleration (in/sec^2) 170.0 205.3

E
L

 C
en

tr
o Displacement (in) 3.70 7.93

Velocity (in/sec) 26.32 43.63

Acceleration (in/sec^2) 200.2 261.3

Dpi max
xi t( )

xi
max

-------------
 
 
 

=
t

xi t( ) xi
max

Vpi max
x· i t( )

x· i
max

-------------
 
 
 

=
t
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where  is the relative velocity of the ith deck over the entire response, and  de-

notes the uncontrolled maximum velocity of the ith deck. Furthermore, the normalized

peak absolute acceleration can be defined by

(5-6)

where  is the absolute acceleration of the ith deck over the entire response, and

 denotes the uncontrolled maximum absolute acceleration of the ith deck.

In order to achieve no impacting between decks and decks and abutments, the response of

primary interest when comparing the effectiveness of the control strategies was relative

deck displacement. Thus, the performance of the control strategies were compared by de-

termining the minimum peak normalized relative deck displacement defined by

(5-7)

where  with the subscript numbers referring to the appropriate deck

section. The corresponding minimum peak normalized relative velocity and absolute ac-

celeration defined by

(5-8)

(5-9)

where  and  were also calculated. 

In addition to deck displacement, the control strategies were compared using peak control

force  and peak total force  defined by

 and (5-10)

(5-11)

x· i t( ) x· i
max

Api max
x··ai t( )

x··ai
max

----------------
 
 
 

=
t

x··ai t( )

x··ai
max

Dmin min Dp( )=

Dp Dp1 Dp2 Dp3
=

Vmin min Vp( )=

Amin min Ap( )=

Vp Vp1 Vp2 Vp3
= Ap Ap1 Ap2 Ap3

=

Fc max, FT max,

Fc max, max Fc
=

FT max, max FT
=
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where  and  can be written as

 and (5-12)

(5-13)

Here,  is the control force produced by the nth control device at time t of the simula-

tion and  is the bearing force at the location of the nth control device at time t of the

simulation. 

5.1.4  Results

Initially, all four location cases, LocEND, LocMID, Loc123, and LocALL, were simulated

for synthetic time history 1 using all three weighting cases, AA, AD, and EN. The two lo-

cation cases that produced the most promising results were LocMID and LocALL. Figure

5-4 shows plots of the peak normalized deck displacement versus peak total force for all

location cases and the EN weighting subjected to synthetic time history 1. Here, the peak

total force refers to the peak over all total forces, control plus bearing forces. Likewise, the

peak deck displacement is the peak deck displacement over all of the three bridge decks.

The graphs were generated by varying the amount of weighting for the passive, active, and

semi-active control strategies. Furthermore, the passive control case was limited by stabil-

ity of the controller. Thus, the line on the graphs corresponding to the passive case ends

when the control weighting causes the passive control system to go unstable. The vertical

and horizontal lines in the plots represent impact boundaries, with the location of no im-

pacting for each control case being in the direction of the arrows. 

FC FT

FC max f1c t( ) f2c t( ) …fnc t( )=
t

FT t( ) max f1c t( ) f2c t( ) …fnc t( ) f1b t( ) f2b t( ) …fnb t( )+=
t

fnc t( )

fnb t( )
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FIGURE 5-4 Peak Normalized Deck Displacement vs. Peak Total Force for All 
Location Cases with EN weighting

As the plots show for the LOCALL and LocMID cases, the active and semi-active control

strategies are able to achieve or exceed the minimum peak normalized deck displacement

achieved by the passive case at a comparable peak total force. On the other hand for the

Loc123 case, the active and semi-active control strategies require a larger total force to

achieve the same minimum peak normalized deck displacement as the passive case. More-

over, Loc123 requires an asymmetric placement of the control devices. The active and

semi-active control strategies for the LocEND case cannot achieve as low of a minimum

peak normalized deck displacement as the passive case. Therefore, since the location cas-

es of LocALL and LocMID produce the best results for synthetic time history 1, these two

location cases are also simulated for synthetic time histories 2 and 3. Again, all three

weighting cases are used. 
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The most effective control strategy was found to be the case in which the total energy of

the system is weighted (EN case). Figure 5-5 gives the plots of peak normalized deck dis-

placement versus peak total force for LocALL and all weighting cases using synthetic time

history 1. As can be seen from the plots, the EN weighting is able to achieve lower peak

normalized deck displacements for both the active and semi-active control strategies. The

same result is also evident with the LocMID case as well as synthetic time histories 2 and

3. Thus, the EN weighing case was chosen to be the best weighting method for the active

and semi-active control strategies and will be the only weighing case discussed in subse-

quent analyses using the synthetic time histories.

In order to determine the best device placement case from those chosen, LocMID or Lo-

cALL, the bridge deck responses as defined in Eqs. (5-7) through (5-9) were compared for

the passive, active, and semi-active control strategies. To compare the effectiveness of the

use of four control devices (LocALL) versus two control devices (LocMID), plots of peak

normalized deck displacement versus peak control force and peak total force are presented

in Figure 5-6. The results in Figure 5-6 are from synthetic time history 2. As the plots

show, for both location cases a lower peak normalized deck displacement is achieved for

the active and semi-active control strategies at a higher peak control force than for the pas-

sive case. However, the active and semi-active control strategies are able to achieve lower

peak normalized deck displacements over the passive case at the same peak total force.

Here, the peak total force, control force plus bearing force, would be more important be-

cause of its use in designing the bridge connections.
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FIGURE 5-5 Peak Normalized Deck Displacement vs. Peak Total Force for LocALL 
and all weighting cases Due to Synthetic Time History 1
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FIGURE 5-6 Force vs. Displacement Plots Due to Synthetic Time History 2 for 
LocMID and LocALL with the EN Weighting Case 

Moreover, with the use of four devices (LocALL) the active and semi-active control strate-

gies are able to achieve a lower minimum peak normalized deck displacement and lower

peak total force than the passive case. However, with the use of two devices (LocMID) the

active and semi-active control strategies are not able to out perform the passive case. 

Table 5-5 summarize the bridge deck responses obtained for the passive, active, and semi-

active control strategies using synthetic time history 2. The responses presented in Table
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5-5 are normalized by the uncontrolled responses reported earlier. For the passive case,

the results in the table represent the best reduction in relative deck displacement that can

be achieved. Furthermore, for the active and semi-active cases, the results in the table rep-

resent the best relative deck displacement that can be achieved with respect to a low total

force when compared to the total force requirement for the passive case. As indicated in

the table, the numbers in parenthesis represent the percent reduction over the passive case. 

a. Numbers in parentheses indicate percent reduction as compared to the passive case. Neg-
ative numbers correspond to a response reduction. 

As the numbers in the table indicate, the LocALL case is able to greatly reduce the deck re-

sponses of displacement, velocity, and acceleration with reductions over the passive case

of 78%, 76%, and 29%, respectively, for active control and 74%, 72%, and 19%, respec-

tively for semi-active control. In addition, peak total force is reduced over the passive case

by 12% with active control and 10% with semi-active control. On the other hand, the Loc-

MID case achieves an increase of all deck responses, except acceleration, over the passive

case for both active and semi-active control. Furthermore, there is a significant increase in

TABLE 5-5. Normalized Bridge Deck Responses for Loc23 and LocALL 
Due To Synthetic Time History 2

Dmin Vmin Amin Fc,max FT,max

L
oc

M
ID

Passive
(c = 11.82) 0.277 0.300 0.341 119.3 255.8

Active (EN)
(wt = 30)

0.309
(+12%)a

0.318
(+6%)

0.302
(-11%)

120.3
(+0.84%)

382.4
(+49%)

Semi-active 
(EN)

(wt = 60)
0.310

(+12%)
0.308

(+2.7%)
0.306

(-11%)
119.4
(0%)

377.0
(+32%)

L
oc

A
L

L

Passive
(c = 9.8201) 0.225 0.239 0.225 114.2 258.4

Active (EN)
(wt = 40,000) 

0.049
(-78%)

0.057
(-76%)

0.175
(-29%)

187.8
(+64%)

227.7
(-12%)

Semi-active 
(EN)

(wt = 7300)
0.058

(-74%)
0.066

(-72%)
0.183

(-19%)
186.0

(+63%)
231.9

(-10%)
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peak total force over the passive case with active and semi-active control. From these ob-

servations, it appears that the use of four devices (LocALL) is the better choice.

Here, it should be noted that the active and semi-active control strategies achieve similar

results, as demonstrated in Table 5-5. However, semi-active control systems have signifi-

cant advantages over active control systems. For example, an active control system can

add energy to the overall structural system, whereas a semiactive control system cannot.

Thus, a semi-active control system is considered to be stable (in a bounded-input, bound-

ed-output sense). Moreover, semi-active control systems only require a minimal amount

of power, such as a battery. As a result, semi-active control devices appear to be a more re-

liable choice over active control devices.

Previously, it was shown that the minimum peak normalized deck displacement produced

by synthetic time history 1 for the LocMID and LocALL cases was less for the active and

semi-active control strategies than for the passive case at the same total force requirement.

The same result is also evident for synthetic time histories 2 and 3. For example, if a total

force requirement of 275 kips is chosen for the LocALL case and 450 kips for the LocMID

case, a bar chart showing a comparison of the minimum peak normalized deck displace-

ment for each control strategy due to each synthetic time history can be produced and is

shown in Figure 5-7. As the figure shows, for the same total force requirement both active

and semi-active control achieve reduced peak normalized deck displacements over passive

control for both the LocMID and LocALL cases with all time histories. In addition, the bar

chart comparison shows that the LocALL case achieves a lower reduction of the peak nor-

malized deck displacement over the passive case than does the LocMID case. 
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FIGURE 5-7 Bar Chart Comparison of Minimum Peak Normalized Deck 
Displacement for LocMID and LocALL.
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To further investigate the best device placement case (LocALL) chosen based on simula-

tions using the synthetic time histories, the Kobe, Northridge, and El Centro earthquakes

were used in simulation to evaluate the bridge responses with the LocALL device place-

ment case. The results are presented in Table 5-6. For the active and semi-active cases, the

results in the table represent the best relative deck displacement that can be achieved with

respect to a low total force when compared to the total force requirement for the passive

case. Furthermore, as indicated in the table, the numbers in parenthesis represent the per-

cent reduction over the passive case.  

a. Numbers in parentheses indicate percent reduction as compared to the passive case. Neg-
ative numbers correspond to a response reduction. 

TABLE 5-6. Normalized Bridge Deck Responses for LocALL due to the 
Kobe, Northridge, and El Centro Earthquakes

Dmin Vmin Amin Fc,max FT,max

K
ob

e

Passive
(c = 9.8201) 0.402 0.540 0.438 292.4 140.8

Active (AA)
(wt = 20)

0.290
(-28%)a

0.378
(-30%)

0.216
(-51%)

293.2
(0%)

146.1
(+3.8%)

Semi-active 
(AA) 

(wt = 40)
0.296

(-26%)
0.379

(-30%)
0.227

(-48%)
289.5
(-1%)

153.9
(+9.3%)

N
or

th
ri

dg
e

Passive
(c = 9.8201) 0.461 0.585 0.445 254.4 117.9

Active (AD)
(wt = 4700) 

0.355
(-23%)

0.573
(-2.1%)

0.410
(-7.9%)

248.6
(-2.3%)

144.0
(+22%)

Semi-active 
(AD)

(wt = 4800)
0.369

(-20%)
0.551

(-5.8%)
0.410

(-7.9%)
248.6

(-2.3%)
147.0

(+25%)

E
l C

en
tr

o

Passive
(c = 9.8201) 0.570 0.374 0.421 299.1 109.1

Active (AD)
(wt = 4900) 

0.470
(-18%)

0.383
(+2.4%)

0.421
(0%)

290.7
(-2.8%)

145.1
(+33%)

Semi-active 
(AD)

(wt = 4100)
0.485

(-15%)
0.374
(0%)

0.421
(0%)

288.7
(-3.5%)

137.8
(+26%)
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As the results in the table indicate, significant reductions are achieved over the passive

case by the active and semi-active control strategies for all three recorded earthquakes.

The greatest reductions in relative displacement, velocity and absolute acceleration are ob-

tained for the Kobe earthquake with reductions of 28%, 30%, and 51%, respectively, for

the active case and 26%, 30%, and 48%, respectively for the semi-active case. Further-

more, the best control weighting method for the Kobe earthquake was the all mass acceler-

ation weighting (AA). However, for the Northridge and EL Centro earthquakes, the best

weighting method was the all mass displacement weighting (AD). 

5.2 Control Study of Nonlinear Bridge Model

The model considered for this control study is Nonlinear Bridge Model 1, using the bilin-

ear bearing model as described in Chapter 4. With the addition of n control devices to the

nonlinear bridge model, the equations of motion will change to

(5-14)

where x is a vector of the displacements of the bridge masses relative to the ground,  is

a vector of bearing forces ,  is a vector

of the control forces generated by the n control devices,  is a column vector of ones, 

is a matrix determined by the placement of the n control devices, and  is defined from

the contribution of each bearing force as

Furthermore, the M, C, and K matrices are the same as defined for the nonlinear bridge

model in Chapter 4. Using this equation, the state space form can be written

Mx·· Cx· Kx+ + Λbfb Λ+ cfc MΓx··g–=

fb

fb1 fb2 fb3 fb4 fb5 fb6, , , , ,[ ]T( ) fc f1c f2c …fnc, ,[ ]T=

Γ Λc

Λb

Λb

1 1– 0 0 0 0
0 0 1 1– 0 0
0 0 0 0 1 1
0 1 1– 0 0 0
0 0 0 1 1– 0

=
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(5-15)

(5-16)

where z is the state vector, y is the vector of measured outputs for determing the control

action,  is a vector of bearing forces, and  is a vector of control forces. For this mod-

el, the state vector consists of the displacement and velocity of each mass relative to the

ground and the measured outputs for determing the control action are the absolute acceler-

ation and control forces. The A, B, C, and D matrices can be redefined as

, , 

 and 

5.2.1  Ground Motion Records

The synthetic ground motion records used for simulation of the nonlinear bridge model

are the same as those described in Section 5.1.1 for the linear bridge model. Furthermore,

the Kobe and Northridge earthquakes were also considered and were scaled to 0.29g. 

5.2.2  Simulation Test Cases

In the control study of the linear bridge model, described in Section 5.1, the most effective

device placement case was LocALL. For the LocALL case, four total devices are utilized,

with one device each placed between the left abutment and deck 1, deck 1 and deck 2,
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deck 2 and deck 3, and deck 3 and the right abutment (refer to Section 5.1.2). Therefore,

the LocALL device location case is the only case evaluated for the nonlinear bridge model.

In addition, the weighting methods used for the active and semi-active control strategies

for the nonlinear bridge model are the same as those given in Table 5-2 used for the linear

bridge, except for the addition of one extra weighting case. The additional weighting case

used for the nonlinear bridge control study is the weighting of bridge inter-mass displace-

ments, ID. 

5.2.3  Evaluation Criteria

The evaluation criteria used for the control study of the nonlinear bridge model are the

same as those used for the control study of the linear bridge model and are described in

Section 5.1.3 and Eqs. (5-4) through (5-13). Peak uncontrolled responses for the nonlinear

bridge model using synthetic time histories 1, 2, and 3 are given in Table 5-7 and using the

Kobe and Northridge earthquakes are given in Table 5-8.

TABLE 5-7. Peak Uncontrolled Responses for Synthetic Time Histories

Response Decks 1 & 3 Deck 2

 T
im

e 
H

is
to

ry
 1 Displacement (in) 2.70 7.34

Velocity (in/sec) 17.63 31.58

Acceleration (in/sec^2) 89.0 125.5

 T
im

e 
H

is
to

ry
 2 Displacement (in) 2.92 6.84

Velocity (in/sec) 15.28 27.56

Acceleration (in/sec^2) 94.42 113.7

 T
im

e 
H

is
to

ry
 3 Displacement (in) 2.61 6.38

Velocity (in/sec) 15.26 29.25

Acceleration (in/sec^2) 90.58 111.7
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5.2.4  Results

In order to evaluate the effectiveness of the addition of control to the nonlinear bridge

model, the LocALL case was simulated for synthetic time histories 1, 2, and 3, and for the

Kobe and Northridge earthquakes. Furthermore, four weighting methods were considered,

AA, AD, EN, and ID. 

Figure 5-8 shows plots of the peak normalized deck displacement versus peak total force

for all weighting methods due to synthetic time history 2. As the plots demonstrate, the EN

weighting case for the active control strategy is able to achieve roughly the same mini-

mum peak normalized displacement when compared to the passive case at the same total

force requirement. However, the peak normalized displacement is increased with active

and semi-active control for the other weighting cases. Better results can be obtained when

comparing peak normalized deck displacement vs. peak control force for the passive, ac-

tive, and semi-active control strategies. Plots of peak normalized deck displacement vs.

peak control force are presented in Figure 5-9.

TABLE 5-8. Peak Uncontrolled Responses for Recorded Earthquakes

Response Decks 1 & 3 Deck 2

K
ob

e

Displacement (in) 2.42 5.24

Velocity (in/sec) 16.10 27.51

Acceleration (in/sec^2) 99.17 95.80
N

or
th

ri
dg

e Displacement (in) 2.70 7.57

Velocity (in/sec) 15.83 28.09

Acceleration (in/sec^2) 73.33 119.18
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FIGURE 5-8 Peak Normalized Deck Displacement vs. Peak Total Force Due to 
Synthetic Time History 2 for All Weighting Cases.

100 150 200 250
0.4

0.5

0.6

0.7

0.8

0.9

1

100 150 200 250
0

0.2

0.4

0.6

0.8

1

100 150 200 250
0

0.2

0.4

0.6

0.8

1
Passive    
Active     
Semi-Active

100 150 200 250
0

0.2

0.4

0.6

0.8

1

Impact bndrys. for 
passive &  active

Impact bndry. for semi-active

Impact bndrys. for
active & semi-active 

Impact 
bndry. for 
passive 

Impact 
bndry. for
pasive 

Impact bndrys. for 
active & semi-active 

Impact bndrys. for 
all control cases 

Peak Total Force (Kips) Peak Total Force (Kips)

Peak Total Force (Kips) Peak Total Force (Kips)

(a) AA Weighting (b) AD Weighting

(c) EN Weighting (d) ID Weighting

Pe
ak

 N
or

m
. D

ec
k 

D
is

pl
. (

in
.)

Pe
ak

 N
or

m
. D

ec
k 

D
is

pl
. (

in
.)

Pe
ak

 N
or

m
. D

ec
k 

D
is

pl
. (

in
.)

Pe
ak

 N
or

m
. D

ec
k 

D
is

pl
. (

in
.)



91

FIGURE 5-9 Peak Normalized Deck Displacement vs. Peak Control Force Due to 
Synthetic Time History 2 for All Weighting Cases.

From Figure 5-9, it is evident that with the ID weighting case the active and semi-active

control strategies are able to achieve a lower minimum peak normalized deck displace-

ment than the passive case with respect to the same control force requirement. Further-

more, the same is true for the active control strategy with the EN weighting case.

However, for the AA and AD weighting cases, the active and semi-active control strategies

are not able to out perform the passive control system.

Table 5-9 presents the bridge responses obtained for the passive, active, and semi-active

control strategies for synthetic time histories 1 and 2 and the Kobe earthquake.
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a. Numbers in parentheses indicate percent reduction as compared to the passive case. Neg-
ative numbers correspond to a response reduction. 

For the passive case, the results in the table represent the best reduction in relative deck

displacement that can be achieved. Furthermore, for the active and semi-active cases, the

results presented in the table for synthetic time history 1 and the Kobe earthquake repre-

sent the best relative deck displacement that can be achieved with respect to a comparable

total force when compared to the total force requirement for the passive case. The results

for the active and semi-active control strategies presented in the table for synthetic time

history 2 represent the best relative deck displacement that can be achieved with respect a

control force requirement comparable to that of the passive case. As indicated in the table,

the numbers in parenthesis represent the percent reduction over the passive case.

TABLE 5-9. Normalized Bridge Deck Responses for Nonlinear Bridge 
Model for Synthetic Time Histories 1 & 2 and the Kobe Earthquake.

Dmin Vmin Amin Fc,max FT,max
Sy

nt
he

tic
 T

im
e 

H
is

to
ry

 1
Passive

(c = 9.8201) 0.351 0.484 0.547 157.9 93.5

Active (ID)
(wt = 5600)

0.362
(+3.1%)a

0.477
(-1.4%)

0.587
(+7.3%)

157.9
(0%)

77.4
(-17.2)

Semi-active (ID) 
(wt = 950)

0.468
(+33%)

0.604
(+25%)

0.653
(+19%)

156.8
(0%)

74.9
(-20%)

Sy
nt

he
tic

 T
im

e 
H

is
to

ry
 2

Passive
(c = 8.4101) 0.516 0.587 0.673 168.5 86.7

Active (ID)
(wt = 8600) 

0.431
(-16%)

0.560
(-4.6%)

0.705
(+4.8%)

177.4
(+5.3%)

86.7
(0%)

Semi-active (ID)
(wt = 1100)

0.506
(-2%)

0.579
(-1.4%)

0.742
(+10%)

183.9
(+9.1%)

87.1
(0%)

K
ob

e

Passive
(c = 9.8201) 0.458 0.663 0.685 183.9 119.4

Active (AA)
(wt = 10) 

0.417
(-9%)

0.538
(-19%)

0.411
(-40%)

180.9
(-1.6%)

104.3
(-13%)

Semi-active 
(AA)

(wt = 0.37)
0.532

(+14%)
0.640

(-3.5%)
0.528

(-23%)
183.3
(0%)

111.0
(-7%)
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From the results presented in Table 5-9, the greatest reduction in relative deck displace-

ment occurred by weighting the deck inter-mass displacements (ID) giving a 16% and 2%

reduction over the passive case, respectively, for the active and semi-active control strate-

gies with synthetic time history 2. Furthermore, peak control force requirement for the ac-

tive and semi-active cases was the same as for the passive case, while peak total force

increased by a small amount for active and semi-active control. For the Kobe earthquake,

the all mass acceleration weighing case (AA) was most effective, giving a reduction in rel-

ative displacement, velocity, and absolute acceleration for the active case of 9%, 19%, and

40%, respectively. For the same weighting case and the Kobe earthquake with semi-active

control relative velocity and absolute acceleration were also reduced, however relative

displacement was increased. In addition, the peak total force requirement for the active

and semi-active control cases was the same as for the passive case, while peak control

force for active and semi-active was decreased over the passive case. 

5.3 Summary

In summary, a linear and nonlinear bridge model of a multi span simply supported bridge

was controlled using passive, active, and semi-active control strategies. Several device

placement location cases and weighting methods were evaluated. The results for the linear

bridge model demonstrated that the use of four devices (LocALL) produces the best re-

sponse reduction for the active and semi-active cases over the passive case. Also, for the

linear bridge model the most effective response weighting for the active and semi-active

control strategies when the synthetic time histories were used was found to be the case in

which the total energy of the system is weighted (EN case). However, when using the re-

corded earthquake time histories, Kobe, Northridge, and El Centro, with the linear bridge

model the most effective response weighting depended on the earthquake used. Moreover,

for the linear bridge model the two most effective response weighting methods for the

Kobe, Northridge, and El Centro earthquakes were the all mass acceleration weighting

(AA) and the all mass displacement weighting (AD). The effectiveness of control for the
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nonlinear bridge model was evaluated using LocALL and several weighting methods. The

results for the nonlinear bridge model demonstrated that the active and semi-active control

strategies could achieve reductions in bridge responses with the all mass acceleration

weighting (AA) and the deck inter-mass displacement weighting (ID). 
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Chapter 6

Conclusions and Recommendations

Devastating failures, requiring costly repairs, occur in civil engineering structures as a re-

sult of seismic events. Mitigation methods, such as the use of modern control techniques,

are key in reducing these earthquake induced failures in civil engineering structures. In

this research, numerous control strategies have been investigated for the reduction of

structural responses in buildings and bridges subjected to earthquake loading. In particu-

lar, the effectiveness of several semi-active control algorithms are compared for a building

structure. Also, a bridge structure is controlled using ideal passive, active, and semi-active

control and the resulting bridge responses are compared.

In the building control study, presented in Chapter 3, a variety of semi-active control algo-

rithms for use with multiple MR dampers are presented and evaluated through a numerical

example. The control algorithms examined are the Lyapunov controller, the decentralized

bang-bang controller, the maximum energy dissipation controller, the clipped-optimal

controller, and the modulated homogenous controller. To ensure that the algorithms would

be implementable on a physical structure, measurements of absolute acceleration and de-

vice placements are used for determining the control action for each algorithm. 
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To compare and contrast the performance of each control algorithm, a numerical example

consisting of a six-story building model with MR dampers on the bottom two floors is uti-

lized. The MR damper behavior is modeled after an experimentally-verified phenomeno-

logical model based on the Bouc-Wen model. Furthermore, the El Centro earthquake is

used, in simulation, to excite the structure and examine the reduction in drifts, accelera-

tions, and relative displacements throughout the building structure with each proposed

control algorithm.

The resulting building structural responses varied greatly depending on which semi-active

control algorithm was utilized. However, each algorithm in some way produced an im-

provement over the best passive controller. For reductions in absolute acceleration,

clipped-optimal controller A was most effective. On the other hand, Lyapunov controller

B was superior in reduction of relative displacement. In addition, significant reduction in

relative displacement and interstory drift was achieved with the modulated homogenous

friction algorithm, although an increase in absolute acceleration was observed. Overall,

the Lyapunov control algorithm, the clipped-optimal control algorithm, and the modulated

homogenous friction control algorithm were found to be most suited for use with the MR

damper in a multi-input control system. 

In addition to building structures, bridge structures are in need of protection during seis-

mic events. This research has investigated the use of ideal passive, active, and semi-active

devices in a bridge structure. The bridge structure is modeled after a multi-span simply

supported bridge with elastomeric bearings. Chapter 4 presents the linear and nonlinear

bridge and bearing models developed in MATLAB (1999). For the nonlinear bridge mod-

el, two nonlinear bearing models were considered, a bilinear model and a Bouc-Wen mod-

el. Through simulation, the bridge responses, namely peak and RMS bridge mass relative

displacement, velocity, and acceleration, were evaluated and compared for each bearing

model. Synthetic ground motion records, generated using a modified spectrum compatible

approach (Chapter 2), were used in the analysis. 
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In Chapter 5, the linear and nonlinear bridge model were used to evaluate the control strat-

egies of ideal passive, active, and semi-active. Design of the ideal passive, active, and

semi-active control devices was described in detail in Chapter 2. Through simulation, the

effectiveness of each control device was evaluated by comparing bridge deck responses,

namely relative displacement. Several device placement combinations were considered as

well as different response weighting methods for the active and semiactive control algo-

rithms. Furthermore, three synthetic earthquakes of magnitude 0.26, 0.19, and 0.21 g, re-

spectively, were used for the simulations. The Kobe, Northridge, and El Centro

earthquakes were also used. 

The best results for control of the linear bridge model were achieved with the use of 4 de-

vices (LocALL). When using the synthetic time histories with the linear bridge model, the

most effective weighing method was total system energy weighting (EN). In particular,

the active and semi-active control strategies were able to reduce bridge deck displacement

by 29% and 19%, respectively. Furthermore, peak total force was reduced over the passive

case by 12% and 10%, respectively, for the active and semi-active control strategies. With

the Kobe, Northridge, and El Centro earthquakes and the linear bridge model, the most ef-

fective weighting depended on the earthquake. For example, for the Kobe earthquake the

all mass acceleration weighing (AA) was best, whereas for the Northridge and El Centro

earthquakes the all mass displacement weighing (AD) was most effective. In particular,

active and semi-active control reductions in relative displacement were 28% and 26%, re-

spectively, for the Kobe earthquake.

Since the LocALL device placement case produced the most effective results for the linear

bridge model, this case was used to evaluate passive, active, and semi-active control strat-

egies for the nonlinear bridge model. The best weighting methods for active and semi-ac-

tive control with the nonlinear bridge model were the all mass acceleration weighting (AA)

and the deck inter-mass displacement weighting (ID). For example, using synthetic time

history 2, relative deck displacement was reduced by 16% and 2%, respectively for the ac-

tive and semi-active control strategies. Furthermore, for the Kobe earthquake relative deck
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displacement was decreased by 9% for active control, but slightly increased with semi-ac-

tive control.

Overall, this thesis has presented research for the application of modern control strategies

to building and bridge structures. Namely, the use of semi-active control algorithms with

multiple magnetorheological dampers in a building structure has been investigated. Fur-

thermore, ideal passive, active, and semi-active control strategies have been evaluated for

use in a bridge structure. To expand upon the application of control to the bridge structure,

further research should included the addition of control devices between the decks and

columns of the bridge. Furthermore, more research needs to be conducted to evaluate the

performance of the control strategies with the nonlinear bridge model. 
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