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Application of control technologies to structures is expected to be able to enhance a 
structure’s performance in response to natural hazards. Specifically, smart base isolation 
systems, which consist of a passive isolator at the base with controllable semiactive 
devices, attract much attention for efficacy and economical reasons. This study focuses on 
the development of control design strategies using physical knowledge of the system 
dynamics that had not been investigated systematically and applied for civil structures 
previously. Structural characteristics that are helpful to disclose structural properties yet are 
often ignored by civil engineers are integrated with these control techniques in both nodal 
and modal coordinates to construct indices for the determination of the control actions to 
take full advantage of their capabilities. A 3D base isolated building is employed for the 
demonstration and validation of these strategies. MR dampers are used as the smart control 
devices. Effective design for this complex system requires the use of control device and 
sensor placement techniques and optimal control weighting selection, which is achieved 
through the application of the structural physical properties. A correlation technique is 
proposed and is first applied for the placement problem to minimize redundancies. 
Controller order reduction is also examined for more implementable controllers, where 
both open-loop and closed-loop balancing are taken into account. Responses of this system 
to seven specified earthquakes demonstrate that the proposed strategies are effective for the 
control of the base isolation system. The modal approach is advocated because it has 
explicit physical interpretation and is more straightforward for the design engineer. 
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Chapter 1 

Introduction 

The primary focus of most model building codes is to ensure life safety for the design 

level ground shaking. The design of the seismic load resisting system is based on a pseudo 

seismic load using a reduction factor “R”. The same reduction factor applies to the entire 

building. Continued operation of a facility and reduction of economic losses associated 

with earthquake damage to the facility are secondary considerations. Economic losses 

sustained in previous earthquakes have highlighted the need for a design methodology that 

allows people to choose a desired level of seismic performance for buildings and 

nonstructural components when they are subjected to a specified level of ground motion. 

Performance based seismic design is such methodology that allows the building owner, 

architect, and engineer to work together to determine the appropriate levels of ground 

motion and performance objectives in order to meet the owner’s expectations. It delineates 

at least two levels performance to which structures can be designed including: (1) to 

prevent injury to the occupants and damage to the contents; and (2) to protect the integrity 

and function of the structure (Meirovitch and Stemple, 1997).  

Promising new systems have been developed which can be incorporated into structures 

to provide enhanced behavior for improved service and safety. These systems are known as 

control systems. By integrating real-time, mechanical force-generation devices within the 

structure, the structural system can respond intelligently to the specific excitation, and thus 

can achieve the desired performance in the most efficient way. One particular application 

of structural control systems, smart base isolation systems, is the subject of this dissertation. 

The following paragraphs will provide some background for control systems in general 

with a focus on their application to base isolated structures. 

Because of their simplicity, passive control strategies are relatively well understood 

and widely accepted by the engineering community. Passive systems rely on energy 

supplemental devices such as dampers, isolators, and absorbers to respond to the motion of 
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the structure to dissipate vibrational energy. Among passive control systems, base isolation 

systems are the most widely accepted, and they have been applied to many structures and 

types of equipment (Kelly et al., 1985; Tsai et al., 1989; Manolis et al., 1990; Naeim and 

Kelly, 1999; Nagarajaiah et al., 2000). However, passive approaches can only adapt to 

structural and loading changes in a narrow band and often need additional measures to help 

to overcome their inherent weaknesses. 

To date, extensive research has been conducted in the area of active structural control. 

Active control systems operate by using external energy supplied by the actuators to impart 

forces on the structure. The control action is determined by the measurement of structural 

responses. These systems have been installed in over twenty commercial buildings and 

more than ten bridges (Ni et al., 2002a,b). Active control applications in civil engineering 

structures were initially proposed and applied for seismic protection or seismic 

performance improvement in conventional (fixed base) structures (Kelly et al., 1987). 

However, some potential users of this technology are concerned with the stability, cost 

effectiveness, reliability, power requirements, etc. of active control. Cost considerations 

call for hybrid control, a blend of passive and active control. Under certain stringent design 

specifications when passive isolation can not ensure the desired performance, the 

introduction of active control systems along with passive isolation techniques constitutes a 

viable alternative (Inaudi et al., 1993a). The hybrid use of active schemes for base-isolated 

structures has been considered for many years (Fujita et al., 1988; Inaudi et al., 1990; 

Talbot et al., 1990;   Kobori et al., 1991). There are still some questions about power 

requirements and cost-effectiveness. 

Semiactive control systems offer an appealing alternative to both active and hybrid 

control. Semiactive devices have the ability to dynamically vary their properties, indicating 

they will be effective for a wide variety of disturbances. Additionally, they typically have 

low power requirements, eliminating the need for a large external power source. Moreover, 

they are inherently stable because they do not have the ability to input energy into the 

structural system. Both experimental and analytical studies have demonstrated that the 

performance of semiactive devices is superior to that of comparable passive systems. In 
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some cases, these devices also outperform comparable active systems (Dyke, 1996, Jansen 

and Dyke, 2000, Yoshida, 2003).  

Several algorithms and semiactive devices have been developed to be implemented in 

civil engineering structures. For near-term acceptance and implementation of this 

technology, we still require a greater understanding of the issues associated with the 

modeling and simulation of these devices and how to implement them in structures to best 

exploit their unique capabilities (Dyke et al., 2005). In this literature review, some of the 

recent accomplishments made by researchers in the US in the area of structural control 

using semiactive devices (specifically, MR dampers) will be summarized first. The second 

portion will turn toward some important control design issues (device placement and model 

reduction, etc.) and implementations of semiactive devices. The third portion of the 

literature review summarizes the recent work of smart base isolation problems using 

semiactive devices. 

 

1.1  Literature Review 

1.1.1  Semiactive Control Devices 

Semiactive devices are essentially passive devices that can be controlled. The promise 

of semiactive control has lead to research resulting in significant advances in semiactive 

devices. This section will summarize some of the recent research in the varied 

implementations of semiactive control systems for civil engineering structures. 

As an appealing alternative to their passive counterpart, semiactive tuned mass 

dampers (STMD) have gained recent recognition. STMD can be based on variable stiffness 

devices, controllable tuned sloshing dampers, and controllable tuned liquid column 

dampers. For instance, the design of next generation of liquid dampers has been studied at 

the NatHaz Modeling Laboratory at the University of Notre Dame (Yalla et al., 2000, 

2003). Nagarajaiah and Nadathur (2005) have also developed a novel STMD, with variable 

stiffness that has the advantage of continuously retuning its natural frequency in real time 

thus making it robust to changes in building stiffness and damping. This is based on a 
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semiactive continuously and independently variable stiffness (SAIVS) device that can vary 

the stiffness continuously and smoothly (Nagarajaiah et al., 1998).  

He et al. (2003) have also proposed a continuously sliding semiactive friction 

controller which dissipates vibratory energy using surface frictional forces.  Piezoelectric 

actuators have recently been integrated into a friction device to make the device semiactive 

in responding to structural responses (Chen and Chen, 2004b). A prototype damper was 

designed, characterized as shown in Figure 1-1(a), and successfully implemented on a ¼-

scale three-story building (Chen and Chen, 2004a) for effective reduction of the building 

response as illustrated in Figure 1-1(b). 
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Figure 1-1 (a) Force-Displacement Curve of Piezoelectric Friction Damper 

     (b) Acceleration at the Second Floor of a Three-Story Building 

 
Another new semiactive damping system is comprised of a novel variable 

amplification device (VAD) connected in series with a supplemental damper. When 

installed on a structure, the VAD is connected between a damping element and the 

structural frame (Figure 1-2). It consists of a series of gears mounted on parallel shafts. The 

amplification factors of the device are given by the ratio of the radii of any two gears in a 

pair. Therefore, changing the gear pair changes its amplification state. When the 

amplification state is selected via a semiactive control algorithm, forces may be delivered 

to the structure at various levels as required throughout the duration of a dynamic event. In 

this way, the VAD-damper system behaves like a semiactive control system even when a 

passive damper is used (Walsh 2005). 
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Figure 1-2 Schematic of the VAD-Damper System 

 
Much of the research in semiactive control has made use of control devices with 

variable mechanical parameters. However, it is also possible for energy to be dissipated 

electrically, using electric machines to facilitate electromechanical energy conversion, and 

then using controllable circuitry to regulate dissipation. Such electromechanical systems of 

devices are referred to as regenerative force actuation (RFA) networks. Unlike ordinary 

semiactive systems, RFA systems have the capability to store and reuse energy, as well as 

transmit energy from one device to another in actuation networks. Currently, RFA 

networks are being implemented in scale-model structural control experiments at Caltech 

(Scruggs and Iwan, 2004, 2005). 

Shape memory alloy (SMA) materials are capable of repeatedly absorbing large 

amounts of energy under a combination of loading and thermal cycles without exhibiting 

permanent deformation. This prominent property of SMA materials has made them a 

promising candidate for use in the design of alternative structural damping devices, which 

have attracted a great attention from civil engineering communities, especially for hazard 

mitigation applications. Recently, a SMA wire (SMAW) damper with tunable hysteretic 

behavior has been developed by Zhang and Zhu (2005) and the results of a numerical 

simulation study which involves a 3-story steel frame building used for the ASCE control 

benchmark study has demonstrated the effectiveness of the SMAW damper in controlling 

seismic responses of building structures.  
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Recently at the University of Nevada, Reno, researchers have designed, constructed 

and tested, a new modular, large-scale, magnetorheological fluid (MRF) by-pass damper 

for seismic mitigation applications (Wang et al., 2004; Gordaninejad et al., 2004a,b). The 

modular feature of the new MRF valve provides flexibility of adding as much force as 

needed to the damper with minimal modification to an existing passive damper. 

Magnetorheological (MR) dampers that use MR fluids to create controllable 

characteristics have recently become popular new semiactive control devices because they 

have the ability to generate large forces, offer high reliability, demand small power 

requirements, and respond in milliseconds. A phenomenological model for an MR damper 

was developed by Spencer et al. (1997) based on the Bouc-Wen hysteresis model (Wen 

1976) and then used to demonstrate the capabilities of MR dampers (Dyke et al. 1996a, b). 

Several other modeling techniques have been applied to small (1.5 kN) MR dampers (see, 

for example, Gavin et al. 2001; Chang and Roschke 1999; Wereley et al. 1999; Zhang and 

Roschke 1998; Xu et al. 2003). Models for larger scale (200 kN) devices were later 

developed and validated experimentally by Yang (2001) and Yang et al. (2002a, b) based 

on the Bouc-Wen model. MR devices of this size are now commercially available for 

implementation in civil engineering structures (Figure 1-3). MR devices built by Lord 

Corporation have also been applied recently to the National Museum of Emerging Science 

and Innovation in Tokyo, Japan, and to control cable vibration using constant command 

voltages (passive mode) in the Dongting Lake Bridge in China (Ko et al., 2002). 
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1.1.2  Control Design and Implementation 

The capabilities of a structural control system depend on a great deal more than device 

selection. The nonlinear nature of the control devices and the strong potential for nonlinear 

behavior in the structure itself under severe dynamic loads increase the challenge to the 

designers. Placement schemes must be employed to appropriately place the devices within 

the structure, and modern optimal control design for MIMO systems needs a reasonable 

order controller. This section focuses on current research in each of these topics. 

The nonlinear nature of semiactive devices and the broad range of nonlinearities 

exhibited by the various devices in this class pose a challenge to the control system 

designer. Some control algorithms have been developed for the various devices. Several of 

the most recent algorithms will be described in the following paragraphs.  

A supervisory fuzzy logic controller (SVFLC) has been developed by Symans and 

Reigles (2004) to optimize semiactive controllers for base isolation systems. The basic 

concept is to develop a supervisory controller to determine the more appropriate one of the 

two separate lower-level controllers. Numerical studies of the SVFLC were performed 

using the first generation of base isolation benchmark problems with controllable fluid 

viscous dampers used as control devices within the isolation system. The results from the 

numerical simulations are promising and experimental validation tests are planned for the 

near future. A performance evaluation study of various semiactive control strategies was 

recently completed (Reigles and Symans, 2005a, b). Results demonstrate that semiactive 

control can provide improved performance compared with passive control in many cases.  

Wilson and Abdullah (2005b) also developed a fuzzy controller to regulate the 

damping properties of MR dampers and to reduce floor displacements and accelerations in 

a SDOF seismically excited structure. In this study, two additional tuning strategies were 

employed (Wilson et al. 2005a), leading to the development of a gain-scheduled fuzzy 

controller and a self-tuning fuzzy controller. This mechanism involves the introduction of a 

fuzzy reasoning system to select appropriate parameters at each time step. Comparison with 

results obtained with the fuzzy controller with constant value (Wilson et al., 2005b) showed 

that tuning of these parameters can improve the controller’s performance. Numerical 

simulations showed that the fuzzy controller successfully reduced maximum and root-
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mean-square (RMS) responses of the structure under four different earthquake loads. 

Furthermore, this controller was found to outperform the control algorithm presented in Liu 

et al. (2001).  

Another strategy for application to active and semiactive control of structures excited 

by winds and earthquakes is the model predictive control (MPC) (Mei et al. 2001, 2002). 

MPC is employed to develop real-time, feed-forward and feedback control. The MPC 

scheme is based on the system response of an explicit prediction model to obtain the 

control action by minimizing an objective function. Optimization objectives include 

minimization of the difference between the predicted and reference response and 

minimization of the control effort subjected to constraints. The effectiveness of the control 

schemes is validated through small scale experiments on a shaking table. The design and 

development of the MPC scheme has been effectively implemented in structural control 

applications at the NatHaz Modeling Laboratory. 

Research has also been conducted at Caltech in the area of reliability-based structural 

control design.  Recent investigations have concentrated on the derivation of active control 

laws which explicitly minimize the probability of structural failure.  Here, “failure” is 

defined as the first-passage of the system trajectory across a generalized set of hyperplanes 

in the system response space.  Versions of the approach have been developed for the case 

with no structural model uncertainty, as well as for the case with uncertain model 

parameters with probabilistically-distributed values.  This concept is applied to an ASCE 

benchmark problem concerning an active base isolation system (Scruggs et al., 2005).  

Currently, the concept of reliability-based control design is being extended to nonlinear 

actuation systems, such as semiactive and regenerative systems. 

Since the design requirements for civil engineering structures are multi-objective, 

Yang et al. (2004a) developed a multi-objective control strategy using linear matrix 

inequality (LMI) approaches and applied them to various structural control benchmark 

problems. Yang et al. (2002) also proposed an optimal design approach for passive energy 

dissipation devices (PEDD). Based on active control theories, various active control 

theories have been used advantageously to design PEDDs in terms of optimal location and 

capacity. The 76-story, wind-excited benchmark concrete office tower (Yang et al., 2004 
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a,b)  proposed for Melbourne, Australia was designed to test these control algorithms and 

for the convenience of comparison.  

Controllable fluid dampers (including MR and ER devices) exhibit physical properties 

similar to a simple dashpot element: they dissipate energy from the system to which they 

are attached. Decentralized (McClamroch and Gavin, 1995) and neural network (Zhang 

and Roschke, 1998) based controllers have been employed in numerical studies with 

controllable fluid devices. However, the most successful strategy to date for control of 

systems using controllable fluid devices is the clipped optimal algorithm developed by 

Dyke, et al. (1996a,b). In this case a controller is designed based on linear control strategies 

as if the control device were active. However, a decision block and measured force 

feedback are integrated to appropriately adjust the control command to accommodate the 

device’s dissipative characteristics and the nonlinearities in the device behavior. This 

strategy has been used widely by other researchers (Yi et al., 1998; Jansen and Dyke, 2000; 

Yi et al., 2001). The efficacy has been demonstrated for various investigations, such as 

multiple device application (Jansen, et al, 1999). 

For the semiactive control approaches mentioned previously, dissipativity of the 

selected linear control theory is the leading factor that affects the performance of the smart 

damper. Johnson et al. (2002a,b, 2004) introduced two new dissipativity indices to quantify 

the dissipativity of a linear control algorithm. Also, using convex multi-objective 

optimization methods in linear matrix inequality (LMI) framework, a well-known control 

strategy, linear quadratic regulator (LQR) is redefined in a form that is suitable to be 

modified by one of the dissipativity constraints introduced. Therefore, this new 

representation of LQR allows one to design the controller, possibly with better dissipativity 

characteristics.  

Irregular structures are appealing for aesthetic reasons and often necessary for some 

facilities, but this is a source of damage in many such structures during earthquakes. If a 

structure has an asymmetric distribution of mass or stiffness, torsional motions may be 

coupled with lateral responses and result in amplification and stress concentration. Yoshida 

and Dyke (2005) have conducted research to utilize smart devices to control the responses 

of structures that are plan and vertically irregular. Experimental validation was first 
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conducted on a two-story, four-DOF structure in the laboratory. The experimental results 

demonstrate that the performance of the semiactive controller using MR dampers is 

significantly better than passive control system where constant voltages are applied to the 

MR dampers (Dyke et al., 1997; Yoshida, 2003). Numerical studies on full-scale structures 

were also performed to demonstrate the effectiveness of smart devices for this application 

(Yoshida et al., 2003; Yoshida et al., 2005). 

Other control algorithms include a continuously sliding semiactive friction controller 

(He et al., 2003), and bridge connections between adjacent civil structures with the control 

forces developed based on Fixed Point Theory (Richardson et al., 2003). The effectiveness 

of the algorithms in decreasing the structural vibration has been verified on selected 

structures.  

It is obvious that the number and location of sensors and actuators have greater 

influence upon the closed-loop performance than any specific control law itself because the 

issue directly links to the structural performance and the control effort. This issue is 

especially important for 3D, multi-story buildings with lateral-torsional behavior, because 

not only does the vertical distribution across the building height but also the horizontal 

distribution at floor levels are essential for structural performance. These problems become 

more critical when the number of control devices and sensors increases and the mode 

shapes becomes more complicated.  

Researchers have studied the problem of optimal placement using different 

methodologies. Geromel (1989) presented a procedure of convex analysis and global 

optimization for actuator location using LMI. Oliveira and Geromel (2000) proposed a 

linear output feedback controller design with joint selection of sensor and actuator.  

The technique mostly mentioned and cited in the literature is the genetic algorithm 

(GA). Using GA, the placement of collocated sensors / control devices is coded into a 

genetic string known as a chromosome. Subsets of the chromosomes, known as genes, 

contribute in different ways to the chromosome’s ‘fitness’. The aim of the GA is to produce 

chromosomes with increasing fitness. It does so by generating successive chromosome 

populations using features of the fittest chromosomes from previous populations. The final 

population of chromosomes contains information about the best controller locations. 
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Abdullah (2001) proposed a genetic algorithm (GA) with a gradient-based optimization 

technique to simultaneously place control devices and determine the optimal gains for each 

controller. The proposed method is compared with a previous study using sequential 

placement (Abdullah, 1999). Tan et al (2005c) further extended the concepts to propose an 

integrated H2/LQG design and placement approach using GA. The advantage of this 

approach lies in its flexibility and practicality for design. Design objectives, disturbance 

characteristics, actuator dynamics, and control resources (limitations) can all be integrated 

into the placement/design procedure. Each control design is evaluated by calculating its 

performance index, and the strings which yield the best fitness are kept. 

The development of optimal methods of designing controllers with order constraints is 

an interesting topic. High order controllers are sometimes difficult to implement due to 

hardware and software limitations. A wide variety of techniques exist for generating 

reduced-order controllers. The classical control ideas allow the design of non-optimal, low-

order controllers. Reduced-order approximation of SISO controllers can be accomplished 

by removing poles and zeros. This technique can be extended to MIMO systems, but is 

presented primarily to increase intuitive understanding of controller approximation.  

The computation of the H∞-norm is of particular importance in the validation of 

reduced-order models. In the literature various iterative methods for the calculation of this 

norm have been proposed. The problem is usually considered by using linear matrix 

inequalities (LMI), where the main focus is on solving a non-convex optimization problem 

(Gahinet et al., 1994; Iwasaki et al., 1995). Watanabe et al. (2002) proposed and studied the 

structure of algorithms for deriving the H∞ reduced controllers for both continuous and 

discrete time systems. The reduction in order is related to unstable transmission zeros of the 

subsystem from disturbance inputs to measurement outputs. In the case where the 

subsystem has no infinite zeros, the resulting order of the H∞ controller is lower than that of 

the existing reduced-order H∞ controller designs which are based on reduced-order 

observer design. Furthermore, the mechanism of the controller order reduction is analyzed 

on the basis of the two Riccati equations approach.  

A method for reduced-order controller approximation based on balanced realizations 

can be directly applied to MIMO controllers. Balanced reduction relies on the internal 



12 

 

balancing of the controllability and observability grammians to eliminate weakly 

observable and controllable modes (Moore, 1981). Fortuna et al. (1993a) presented some 

results relative to the parameterization of SISO discrete-time models in open-loop balanced 

form. Given the singular values, the results allow discrete-time, open-loop balanced 

systems to be obtained. The problem of the closed-loop balancing of discrete-time systems 

was addressed later (Fortuna et al., 1993b). In this work a new nonlinear matrix equation of 

the cross-Riccati type is introduced. The equation allows the right balancing of discrete-

time MIMO systems, avoiding the solution of the two traditional Riccati equations for the 

Kalman filter and the LQ regulator. Some characteristic properties of the cross-Riccati 

equation are also proven and a method is suggested to obtain approximations of discrete-

time models, by using the equation introduced, which appears suitable for the 

approximation of LQG compensators.  

The reduction of the order of an LQG controller is considered by Nunnari et al. (1994). 

The proposed approach takes advantage of the formulation of the stability of the closed-

loop system as a structured perturbation problem of a linear state space system.  

A system can be expressed in either a nodal or a modal representation. Structural 

analysis and testing usually gives preference to the modal representation, due to its 

compactness, simplicity, and explicit physical interpretation. Also, many useful structural 

characteristics are properly exposed only in modal coordinates (Gawronski, 1998). The 

modal control method allows one to unveil structural characteristics and gives insights into 

the control laws. Also, it makes it easier to design control laws. To date, numerous 

procedures and algorithms concerning modal control or pole assignment have been 

proposed in literature (Yang, 1982; Lu, 2001; Lu and Chung, 2001). The modal approach is 

more pertinent and useful in many engineering applications, such as actuator and sensor 

placement, model reduction, pole assignment, etc. It usually has more explicit physical 

interpretation as well. However, one must be careful to properly consider the effects of 

modeling errors at high frequencies, often called “spillover”, when using modal control. 

This phnomenon can severely degrade the system performance and even generate 

instabilities in the controlled system when an active controller is used (Mark, 1978; Cho et 

al., 2005). Some methods of mitigating the spillover effect for semiactive systems were 
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discussed by Bhatia (2001) and Whalen et al. (2002). Additionally, Dyke (1996a) discussed 

a technique to avoid exerting significant control effort at the higher frequencies based on 

the examination of the loop gain transfer function (see also, Dyke et al., 1996d; Dyke et al., 

1996e). 

 

1.1.3  Smart Base Isolation 

Because semiactively controlled base isolation systems combine the best features of 

passive and active control, they appear to have significant potential to advance the 

acceptance of structural control as a viable means for dynamic hazard mitigation (Park et 

al., 2003). Makris (1997) showed that the use of friction-type forces (rigid-plastic behavior) 

such as those provided by electrorheological (ER) dampers could reduce displacements 

while keeping accelerations at low levels for both near-field and far-field earthquakes. 

Another particular promising class of semiactive control devices for smart base isolation 

systems is found in magnetorheological (MR) dampers. These devices offer mechanical 

simplicity, low operating power requirements, environmental robustness, and demonstrated 

potential for developing forces sufficient for full scale applications. 

A number of numerical and experimental studies have shown that smart base isolation 

using MR dampers could achieve notable decreases in base drifts over comparable passive 

systems with no accompanying increase in base shears or in accelerations. In the United 

States, these applications on buildings can be found in Barbat et al. (1995), Ramallo et al.  

(2002), Ahmadi et al. (2005),  and Ribakov et  al. (2002); on bridges, there are Agrawal et 

al. (2003),  He et al. (2005), Tan and Agrawal (2005a,b), and Sahasrabudehe et al.(2005). 

Research on semiactive control of base isolations systems has also been considered 

extensively in Japan (Midorikawa et al., 2004) and China (Xia et al., 2005). 

To progress toward the goal of multi-level performance based design for varying load 

conditions, analytical and design techniques, evaluation procedures, and suitable test cases 

are needed to demonstrate and examine the reliability in a consistent manner. Thus, the 

ASCE Committee on Structural Control has recently developed a base isolated benchmark 

problem. The objective of this benchmark study is to provide a systematic and standardized 

means by which competing control strategies, including devices, algorithms, sensors, etc., 
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can be evaluated in terms of their ability to achieve specific performance objectives. The 

benchmark model is an eight story base isolated building with lateral-torsional behavior. 

The framework of this benchmark study has been provided, from problem definition to 

sample control system design. The first paper defines the benchmark problem (Narasimhan 

et al., 2004), the second paper includes sample controllers for linear and friction isolation 

(Nagarajaiah and Narasimhan, 2005), and the third paper provides a sample controller for 

the bilinear isolation (Erkus et al. 2004). These studies are intended to serve as a guide to 

the participants to investigate systematically the performance of smart base isolation 

systems.  

 

1.2  Objectives of this Research  

The purpose of this research is to examine the behavior and design of a smart base 

isolation system and to bring together effective control and placement methods to 

synthesize controllers that can take advantage of the unique characteristics of this problem. 

Effective control techniques that use physical knowledge of the system, specifically the 

special modal characteristics of a structure, for the design of the control law are sought. 

These approaches are expected to be more acceptable to current practicing civil engineers, 

while facilitating specific design objectives. Optimization of the control device and sensor 

locations is also important in the design of a cost-effective system (i.e. maximum control 

effect using minimal effort and fewer devices) for this class of system.  

Because smart base isolation systems are considered to be economical and effective 

for earthquake protection, a controllable base isolation system is considered here to 

demonstrate and assess the placement techniques and control design strategies proposed 

herein. Naturally, the base isolation benchmark problem is adopted because the 

mathematical model has been well established and is interesting to the research community. 

This benchmark problem is complex and challenging due to the coupled 3D motions and 

the clear benefits and tradeoffs in the performance of the system. It consists of an eight-

story, three dimensional, base isolated, bi-directionally excited building, and the building is 

both planar and vertically irregular. In addition to control algorithms and devices, 3D 
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dynamics, lateral-torsional behavior and effective device placement are factors that must be 

considered to achieve effective performance. MR dampers are the semiactive device used 

throughout this dissertation.  

The reminder of this section will introduce the strategies employed herein in the 

synthesis of an approach to controlling civil engineering structures: modal structural 

dynamics, control concepts and methods (such as system norms, grammians), device 

placement, and controller order reduction.  

The modal method can facilitate effective control design. Modal control is especially 

desirable in the vibration control of civil engineering structures, which are usually large in 

size and involve hundreds or even thousands of degrees of freedom. Their response is 

usually dominated by a few modes. Therefore, the responses of the structures can be 

effectively suppressed by merely controlling a few modes of the system. Modal 

representation can be approximately balanced (open-loop and closed-loop) using 

appropriate scale factors. These concepts are employed herein. 

Though GA techniques can find good results in device placement, these techniques do 

not necessarily yield the optimal solution (Silva and Lopes Jr., 2002). This approach can 

also be time-consuming because computation of the objective function to find the best 

control design already involves the controller design. Thus, for each candidate location, the 

controller must be synthesized and its performance must be evaluated. However, it is well 

known that the degree of controllability and observability of a linear system is conveniently 

captured by the singular values of the grammians. These singular values have a wide range 

of applications. This study will integrate controllability-observability based measures, 

system Hankel singular norms, into the problem of control design for determination of 

effective device and sensor placement. The adoption of this approach eliminates the need to 

evaluate the performance of the candidate location for placement, and it is applicable to the 

case where performance / measurement and sensors / control devices are not collocated. 

Among many candidate control algorithms, LQG control is adopted in this study 

because of its many advantages, effectiveness, and successful previous application in civil 

engineering problems (Dyke, 1996a, Dyke et al., 1996b,c). There have been many 

investigations into the analysis and design of LQG controllers. Good insight into the variety 
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of approaches can be obtained from Kwakernaak and Silvan (1972), Maciejowski (1989), 

and Furuta et al. (1988). Controller order reduction in this study is achieved through the so 

called LQG-balanced model, where the solutions of the two Ricatti equations of LQG 

algorithm are equal and diagonal. These solutions are important factors to determine the 

mode / state importance. 

The synthesis of physical behavior with control design concepts gives new insights 

into the potential of the control laws. This study will examine the performance of smart 

base isolation systems with various controllers for seven specified earthquakes using the 

proposed approaches. The performance of the system is assessed using certain common 

evaluation criteria. Comparisons are made between the nodal and modal approaches. The 

resulting properties of these concepts and information disclosed by the modal approach will 

be demonstrated through simulations. 

 

1.3  Organization of This Dissertation 

This dissertation is organized as follows: 

Chapter 1 reviews the background of this study and the related work done by previous 

researchers.  

Chapter 2 presents a number of concepts essential in structural control and to this study 

in particular. First, various structural modal representations are introduced with the 

illustrations of signal flow diagrams. Then, the important concepts such as controllability 

and observability, grammians, Hankel singular norms, etc. are introduced in both algebraic 

and geometric ways. Their closed-form approximations are summarized herein. The 

connection between balanced model and modal coordinates is given. A simple example 

demonstrates the computations of some of these measures. 

Chapter 3 describes the structural model to be used for illustration of the techniques 

synthesized in this study: the base isolation benchmark building. The construction of the 

three-dimension mathematical model and design unknowns, constraints and performance 

criteria are provided in detail. Also, the optimal passive systems are identified for both the 

1D system and 3D cases. 
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Chapter 4 proposes a method for control device and sensor placement. The placement 

indices adopted are based on Hankel singular values which reflect a system’s controllability 

and observability properties despite similarity transformations. Placement indices for each 

mode and location are arranged in matrices, and location indices are normalized 

considering the importance of all control devices / sensors to a single mode. A membership 

index is introduced to reject highly correlated locations. 

Chapter 5 reviews the LQG control law in the nodal coordinates, as well as the 

phenomenological modeling and clipped-optimal control of MR dampers. The LQG 

weighting matrix is determined using the controllability / observability properties and the 

closed-loop stability requirements. Optimal weighting values are determined by numerical 

simulations resulting in weighting trade-off plots referred to herein as q-maps. Finally, the 

responses are provided for the controlled benchmark structure when subjected to the 

earthquakes. 

Chapter 6 introduces the modal LQG approach, the LQG-balanced model reduction 

and their closed-form approximations. The close relationships between the weightings and 

the pole locations are demonstrated in examples, and performance with different 

weightings is given. It turns out that the application of the modal approach is very 

straightforward in use, and very effective in suppressing earthquake responses. 
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Chapter 2 

Modal Approach for Structural Dynamics and Control 

The synthesis of feedback control systems and the analysis of their response 

characteristics are often considerably simplified when the plant and control matrices in the 

matrix state equation have particular forms. Because equations of motion of a system are 

usually obtained from Newton’s 2nd law with structural conditions as the independent 

variables, state equations are thus conveniently expressed using displacement and velocity 

dependent at structural locations. The use of these as state variables is also referred to as 

using nodal coordinates. As state variables are not unique; the nodal system can be 

converted to other forms by a means of linear similarity transformation. State variables that 

are commonly used in control system design are defined through modal displacements and 

their derivatives. Systems with such state variables are said to use modal coordinates. 

Modal state variables are not unique either. Modal state variables can be phase 

variables, or any linear combinations of them. Particularly, the transformation can be 

selected such that the state matrix A  is rewritten in diagonal or block diagonal forms. 

There are many advantages of having a diagonal A  matrix. For example, in this form  

is also diagonal and is easily obtained; the equations are uncoupled, and so on. The 

advantages become more prominent for multi-input-multi-output (MIMO) systems. 

teA

To provide background needed to understand the remaining chapters of this 

dissertation, this chapter introduces several forms of modal representations, their 

application in the study of controllability/observability and model reduction, and structural 

properties that can be exposed when systems are expressed in modal coordinates. Finally, 

an example is presented to illustrate the computations relevant to the study of 

controllability and observability of base isolation systems using a modal approach. 
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2.1  Modal Structural Models 

2.1.1 Signal Flow Diagrams of Nodal Form and Modal Form 

A general linear, constant coefficient differential equation takes the form 
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where the superscript in parentheses denotes the order of differentiation with respect to 

time higher than 2, y  represents the output, and u  represents the input. Selecting state 

variables as phase variables defined by 
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it follows that 
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Defining a state vector as [ ]Tnxxx L21=x , the resulting state equations using phase 

variables is 
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In equation (2-4), the state matrix (the coefficient matrix of the state vector) has values of 1 

in the super-diagonal and the negative of the coefficients of the original differential 

equation in the nth row. This is referred to as the companion matrix form (Barnett, 1975). 

Equations of motion of structures are second order differential equations. Consider a 

MDOF system without external disturbances that is expressed in the nodal state-space form 

of 

 

BuAxx +=&                                                      (2-5a) 

uDxCy yy +=                                                  (2-5b) 

 

where  is the state vector,  is the vector of structural displacement, u  is 

the vector of control inputs. The state matrix A  is in the well-known block companion 

form of 
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where , C , and K  are the mass, damping and stiffness of the structure, respectively.  M

A signal flow diagram of the nodal equation (2-5) is shown in Figure 2-1, where the 

Laplace transformation of variables is represented by capital letters, and the initial 

conditions of the state variables for Laplace transform are assumed to be zero. 
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Figure 2-1 Signal Flow Diagram of a System in Nodal Form 
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In nodal form all equations are coupled, so the equations must be expressed using 

vector phase variables. Figure 2-1 shows both the multifold signal flow paths and the states. 

This form of representation generally is not conveniently physically controlled. 

As state variables are not unique, the equations can be expressed in other forms 

through a similarity transformation, as mentioned previously. Let T  be the transformation 

matrix transforming the state vector x  to a new state vector x , that is, xTx = . 

Substituting xTx =  into the state equation (2-5) produces  

 

BuxATxT +=& .                                                    (2-7) 

Thus 

BuTxATTx 11 −− +=&                                                (2-8) 

 

and the corresponding output equation is 

 

uDxTCy yy += .                                                  (2-9) 

 

It is clear that the eigenvalues are invariant for this type of linear transformation. When 

 is diagonal (or block diagonal), the system equations are written as ATT 1−

  

uBxAx mm +=&                                                  (2-10a) 

uDxCy mm +=                                                   (2-10b) 

 

where , ,  and  are modal state matrices, and mA mB mC mD

 

ATTΛA 1−==m ,   ,   BTB 1−=m TCC y=m ,   .                  (2-11) yDD =m

 

The system has the state-space representation denoted by the triple  (matrix 

 is invariant in linear similarity transformation) and is independently obtained from 

equation (2-10) and (2-11) such that  
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where i = 1, 2, …, n is the ith mode. 

Suppose the eigenvalues iλ  are distinct. If the diagonal elements are eigenvalues, i.e., 
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then the transformation matrix T  for it is called the modal matrix. The corresponding state 

variables are called canonical variables. When  is not in this form, T  is just called 

the transformation matrix. If the state matrix  has distinct eigenvalues, the modal matrix 

is easily obtained by   

ATT 1−

A
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and this is referred to as the Vandermond matrix (Barnett, 1975).  

There are several other methods to obtain the modal matrix . When  is selected so 

that  contains only unit elements, equation (2-10) takes the form 

T T

BTB 1−=m

 

ubxAx mm +=&                                                  (2-15) 

 

where . In the case of equation (2-15), if [ T
m 11 L=b ] 0D =m , the signal flow graph of 

equation (2-15) is shown in Figure 2-2, where  represents the Laplace transform of )(, sY im
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the contribution of the ith mode to the output, and  represents the output gain of the ith 

mode (the coefficient of the ith partial fraction of the transfer function).  is the feed-

forward path gain, which appears only when the denominator and numerator of the transfer 

function are of the same order. 

imC ,

nC

 
Figure 2-2 Signal Flow Diagram of a System in Jordan Form for Distinct Roots 

 

Figure 2-2 and equation (2-15) correspond to the Jordan form of the system. Due to 

decoupled modes, the signals flow in parallel branches. Each branch only involves scalar 

values and can be represented by a first-order differential equation and transfer function of 

the form (D’Azzo and Houpis, 1988) 
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where   denotes the transfer function matrix.  )(sGi

An advantage to using parallel form is that, when the state matrix is diagonal, the 

diagonal elements provide information regarding the structural modes, i.e., the eigenvalues 

or frequencies. Parallel forms are easier to employ for examining control action. The state 

variables for a diagonal state matrix are canonical variables or their combinations (modal 
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coordinates). Manipulation of these equations is referred to as the modal approach in 

contrast to the manipulation using nodal coordinates (equation (2-5) and Figure (2-1)). 

 

2.1.2 Transformation between Modal Forms 

In the previous section, a general modal form was introduced in which the diagonal 

entries are the system eigenvalues. However, there are other means to decouple the 

equations. This section introduces other forms for modal representations and the 

transformations between them. 

When decoupling a set of differential equations, it is most common to use modal 

decomposition to differential equations instead of using state equations. It results in a set of 

 independent equations for each modal displacement  as in n q

 

ubqqq iiiiiii =++ 22 ωωζ &&&                                           (2-17) 

 

where iζ  is the ith modal damping ratio, and iω  the ith natural frequency.  

Assuming the system is underdamped, the eigenvalues are idii j ,2,1 ωωζλ ±−= , where 

2
, 1 iiid ζωω −= . Introducing the state vector [ ]Tiii qq &=x  for the ith equation, the state 

matrices corresponding to the equation governing the ith mode are 
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This form is denoted modal form 1 herein.  is in companion form. The signal flow 

diagram for this form of the equation is shown in Figure 2-3. 

im,A

The entire system is decoupled for this expression, i.e.,  is diagonal with each of 

the diagonal terms as . So the signal flow diagram is still shown in parallel. But each 

equation in modal form 1 is expressed using phase variables, so the signal flow for each 

branch is still multifold. This form is still not conveniently physically controlled. 

mA

im,A
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1/s 1/s

Figure 2-3 Signal Flow Diagram of Modal Form 1 

 

Now transform the individual equation from the companion form (modal form 1) to 

diagonal form, with the complex-conjugate eigenvalues on the diagonal as  
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In this study, this form of  is referred to as modal form 3. To transform modal form 1 to 

modal form 3, we use the transformation 

mA

iii xTx ,13= , where  is the Vandermonde 

matrix 

i,13T
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The simulation diagram for one mode (equation (2-19)) is like Figure 2-2 but with 

complex-valued parameters, which is shown in Figure 2-4. 
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Ym,1(s) 

 
Figure 2-4 Signal Flow Diagram of Modal Form 3 for a Pair of Complex Mode 

 

The complex quantities increase the difficulty when obtaining mathematical solutions. 

Thus, it is desirable to perform another transformation in order to obtain representation 

which contains only real quantities. It is necessary to apply an additional transformation so 

that modal form 3 (equation (2-19)) changes into modal form 2, i.e., 
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The transformation matrix needed is 
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With this modification the two vibration modes produced by the two sets of the complex 

eigenvalues are decoupled. Note that the column vectors contained in  are for the 

conjugate eigenvalues 

32T

1,11 djωωζ ±−  and 2,22 djωωζ ±−  and are also conjugates. The 

simulation diagram for modal form 2 is shown in Figure 2-5. 
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Figure 2-5 Signal Flow Diagram of Modal Form 2 for a Pair of Complex Mode  

 

Note that only real quantities appear. Also, the two modes have not been isolated. This 

result is an advantage for complex-conjugate roots (D’Azzo and Houpis, 1988). 

Assuming small damping values, i.e., idi ,ωω ≅ , the transformation matrix from modal 

form 2 to modal form 1 is 
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Other modal forms are not introduced herein because they are not relevant to the study. 

In this study, form 1 is used throughout chapters 3 and 5, while chapters 4 and 6 primarily 

consider form 2. Each modal form can be transferred to any others using approximate 

transformation matrices.  

Note that for MDOF systems, modal form 3 is obtained from the decoupled 

differential equations. The entire state matrix is block diagonal, and the state vector is given 

by . If the state matrix is obtained from the matrix of 

decoupled equations, or transformed from nodal state matrices, the state vector would be 

. To rearrange the states into the former modal form, 

a transformation matrix needs to be applied. This matrix is (Gawronski, 1998) 

[ T
nn qqqqqq &LL&& 2211 ]
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where  is an n-element row vector with all elements equal to zero except the ith which is 

equal to one. Then with 

ie

[ T
nxxxx L21= ] , the modal state-space representation has a 

triple  characterized by the block diagonal matrix , and the related input 

and output matrices 

),,( mmm CBA mA
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where , , and  are 2×2, 2×s, and r×2 blocks, respectively. The three modal 

forms introduced before are summarized here 
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where iiiioi qqq ωζ &+≅  (for small damping) and [ ]Tnxxx L1= .  
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2.2  Controllability and Observability 

2.2.1  Definitions 

Controllability and observability are structural properties of a dynamic system that 

carry useful information for structural testing and control, yet are often overlooked by 

structural engineers. A structure is controllable if the installed actuators together have the 

capability to excite all its structural modes. It is observable if the installed sensors have the 

ability to measure the motions of all its structural modes. In other words, controllability and 

observability indicate how well the states can be “reached” by inputs and how well the 

states can be “recovered” from outputs, respectively. For state feedback control, 

controllability ensures the assignability of the eigenvalues of the closed-loop state matrix 

(Dullerud and Paganini, 2000). Uncontrollable eigenvalues cannot be modified by adding 

control no matter which gain is used for feedback. Steady-state optimal control is possible 

if either the plant is stable, or the plant is both controllable and observable (Burl, 1999).  

Controllability, as a coupling between the inputs and the states, involves the system 

matrix  and the input matrix B . Observability, as a coupling between the states and 

outputs, involves the system matrix A  and the output matrix . Generally, two criteria 

are used to determine the system’s controllability and observability properties. The first 

criterion is related to the rank of the controllability or observability matrices. An LTI 

system with s inputs is completely controllable (c.c.) if and only if the n × sn matrix 

A

yC

 

[ ]BABAABBQ 12 −= n
c L                                    (2-27) 

 

has rank n. An LTI system with r outputs is completely observable (c.o.) if and only if the 

rn× n matrix 
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has rank n. For SISO systems, if either  or  does not have full rank (singular), an 

appropriate linear transformation can be used to transform the system into a staircase 

structure where the controllable (observable) and uncontrollable (unobservable) states are 

separated. Eliminating all uncontrollable and unobservable states, the resulting 

representation contains only controllable or observable states. The representation is referred 

to as a minimal realization. 

cQ oQ

The above criterion, although simple, has two serious drawbacks. First, the answer to 

the controllability and observability question is either yes or no. If the system is not c.c., it 

would be misleading to call it “uncontrollable”, since the implication of the definition is 

that for a non- c.c. system there are only certain states which cannot be reached by any 

choice of control (Barnett, 1975). Moreover,  and  can typically be considered full-

rank given a sufficiently low tolerance, but some states might be too weakly represented to 

be practically controlled or observed. Second, these criteria are useful only for a system of 

small dimensions. Assume, for example, that the system is of dimension n = 100. In order 

to answer the controllability and observability question one has to find powers of A  up to 

99 and  for a 100×100 matrix is a task that easily results in numerical overflow.  

cQ oQ

99A

The alternative approach is to use grammians to determine the system properties. 

Grammians express the controllability and observability properties qualitatively, and avoid 

numerical difficulties. The controllability and observability grammians are defined as 
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dtee tTt
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Alternatively, the grammians can be determined from the following Lyapunov equations 

 

0BBAWAW =++ TT
cc   and                  (2-30) 0CCAWWA yy =++ T

oo
T

 

For stable , the grammians  and  are positive definite. Equations (2-30) show that 

the controllability grammian is the stable covariance of the states if the input to the system 

A cW oW
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),( BA  is a white Gaussian noise (Franklin et. al., 2002). Similarly, the observability 

grammian is the stable covariance of the states if the input to the system  is a 

white Gaussian noise (Franklin et. al., 2002). This is one physical interpretation of the 

grammians. 

),( TT
yCA

Grammians do vary with coordinate systems. But the eigenvalues of the product of the 

grammians are invariant under linear transformations. These invariants are called Hankel 

singular values of the system, denoted by iγ , i.e., 

 

)( ocii WWλγ =                                              (2-31) 

 

where (.)λ  denotes the eigenvalue. These values reflect the combined controllability and 

observability of individual states of the balanced model. If a given iγ  is small compared to 

the others, the corresponding state has the interpretation of being weakly controllable and 

observable.  

System norms serve as measures of a system “size”. In this capacity, they are used in 

model reduction and in actuator/sensor placement strategies. Three system norms, ,  

, and Hankel, are introduced below.  

2H

∞H

Let  be the transfer function of the structure. The  

norm is defined as 

mmm j BAICG 1)()( −−= ωω 2H
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= ωωω
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2
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2
GGG                              (2-32) 

 

where * denotes complex conjugate. A convenient way to determine the numerical value of 

the  norm is to use (Gawronski, 1998) 2H

 

)(
2 c

Ttr WCCG yy=  or  )(
2 o

Ttr BWBG = .                    (2-33) 
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The  norm is defined as ∞H

 

)))(((max max ωσ
ω

GG =
∞

                                    (2-34) 

 

where ))((max ωσ G  is the largest singular value of )(ωG . The  norm is the peak of the 

transfer function magnitude for SISO (single-input-single-output) systems. 

∞H

The Hankel norm is a measure of the effect of the past input on the future output, or 

the amount of energy stored in and subsequently retrieved from the system (Boyd and 

Barratt, 1991). It is given by  

 

( )( ) 2/1
max coh

G WWλ= .                                      (2-35) 

 

Equation (2-35) shows that the Hankel norm is the largest Hankel singular value, i.e., 

maxγ=
h

G .  

 

2.2.2  Properties in Modal Coordinates 

The modal state-space representation has specific controllability and observability 

properties, and its grammians are of a specific form. These forms and properties hold for 

flexible structures (Here, flexible structures refer to linear systems that have finite 

dimensions, non-clustered and small real-part poles.) with small dampings ( 1<<iζ , i = 1, 

2, …, n.). For proofs, refer to Gawronski (1998). 

 

1. In modal coordinates, the controllability and observability grammians are diagonally 

dominant, i.e., 

 

)( 2, IW icc wdiag≅ ,  ,         i = 1, …, n                    (2-36a) 0>ciw

)( 2, IW ioo wdiag≅  , ,          i = 1, …, n                   (2-36b) 0>ciw
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where  and  are the modal controllability and observability coefficients. The 

approximate Hankel singular values are obtained as a geometric mean of the modal 

controllability and observability 

icw , iow ,

ioici ww ,,=γ . Because grammians are solutions to 

Lyapunov equations (equation 2-30), this property means that under a white noise, the 

modes are almost independent. 

 

2. In modal coordinates, the dominant diagonal entries can be obtained by approximation 

with a closed-form formula, as in 
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2,
,

B
= ,  

ii

im
ocw

ωζ4

2

2,
,

C
= ,  

ii

imim
i ωζ

γ
4

2,2, CB
=                          (2-37) 

 

where the 
2

.  denotes the 2-norm. 

Note that, for application to the determination of modal norms, the modal equivalent 

output matrix  is defined as mC iqmiimqim CCC ,,, / &+= ω  for the output equation 

. qCqCy &&qmmq +=

This property is very appealing because, on the one hand, the computation of 

grammians is greatly simplified without the involvement of . On the other hand, these 

equations show that the controllability grammian of the ith mode is proportional to the 

square of the ith modal input gain. Similarly, the observability grammian of the ith mode is 

proportional to the square of the ith modal output gain. They are both inversely 

proportional to the ith modal damping and frequency. The Hankel singular value is the 

geometric mean of the two. Input gains are dependent on actuator location and output gains 

on selected sensor location. This property is useful for the future study of actuator and 

sensor placement. 

mA

 

3. Consider the ith mode in state-space form , or the second-order form ),,( ,,, imimim CBA

),,,( iiii cbζω , and let  be the transfer function of the mmm j BAICG 1)()( −−= ωω
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structure. Then the  norm,  norm, and the Hankel norm  have the following 

expressions and relationships: 

2H ∞H hH
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2 iiihii GGG ωζ≅≅

∞
                                      (2-39) 
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22
.                                           (2-40) 

 

These equations indicate the superposition property of modal transfer functions, and thus, 

of the norms. They also show that the Hankel norm is about half of the peak value of the 

transfer function. 

 

2.3  Grammian Ellipsoids and Balanced Model Reduction 

Given a system, it is often necessary to reduce the order of a state-space realization, 

while keeping the system input-output properties approximately the same. A reduced-order 

model is obtained by truncating the states. It is reasonable to assume that the states that are 

only weakly coupled to both the input and the output can be deleted from the model 

without greatly impacting the input-output behavior of the system. However, deleting the 

weakly coupled states is not straightforward. As the modal state matrix can be partitioned 

into separate modes, model reduction can be achieved through modal truncation with 

explicit knowledge of which modes and states are retained. For example, using modal 

forms, the system representation can be partitioned as 
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where the subscript r denotes “retained” while the subscript t denotes “truncated”.  

States may be strongly coupled to the input, but only weakly coupled to the output, or 

vice versa. This phenomenon can be described geometrically. Consider the system given by 

equations (2-5a, b), with the conditions 0)( =−∞x  and 0)0( xx = . The solution of this 

equation is . One can define the controllability and observability operators  

and  that define the maps of  and  as 

0xC A
y

τ−e cψ

oψ 0)( xu →t )(0 tyx →

 

τττ dec )(:
0

Buuψ A∫ ∞−

−→   or   0xuψ =c ,  0≤t                          (2-43) 

00: xCxψ A
y

τ−→ eo   or   yxψ =0o ,                               (2-44) 0≥t

 

From equation (2-35), the Hankel norm is the largest eigenvalue of the Hankel operator 

. The controllability and observability operators relate to the grammians as 

(Dullerud and Paganini, 2000) 

coh ψψΓ =
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It can be seen that  is a solution to 0
1xWψu −= c

T
copt 0xuψ =c . Also, for a general u  in this 

set, optuu ≥  (Dullerud and Paganini, 2000), i.e., if we want to reach a state , then 

 is the most economical input in terms of energy. This input energy is 

given by 

0x

0
1xWψu −= c

T
copt

 

0
1

00
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0
12

, xWxxWψxWψu −−− == c
T

c
T
cc

T
copt                       (2-46) 

 

where .  denotes the inner product. 

To consider a geometric interpretation of the controllability grammian, the question is, 

what are the final states uψx c=0  that can result from an input u  of unit norm? The 
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answer is that all the states reachable with 1≤u  are given by , where cc xW 2/1 1≤cx , if 

the pair  is controllable. This outcome can be proven from two perspectives: On the 

one hand, examine the vector  with 

),( BA

uψWx ccc
2/1= 1≤u . It has the norm 

 

1,, 212/12/12 ≤≤== − uuψWψuuψWuψWx cc
T
cccccc .                  (2-47) 

 

On the other hand, choose the input of minimum norm that gives , it yields ccc xWuψ 2/1=

 

1)()( 22/112/12
≤== −

cccc
T

ccopt xxWWxWu .                        (2-48) 

 

This means that  has unit length. Notice that the norm squared of any such states is 

. Such reachable states also contain directional information. Define the set 

cx

cc
T
c xWx

 

{ }1:2/1 == ccccE xxW                                            (2-49) 

 

which is a collection of all such states, where  is in the n-dimensional vector space. 

Because  is positive semi-definite, this set represents an ellipsoid, and is depicted two 

dimensionally in Figure 2-6. This shape is named as the controllability ellipsoid. It tells us 

the reachable state norms associated with a particular direction in state space. The length of 

the principle axes (maximum eigenvalue) represents the strongest controllability, and the 

corresponding eigenvector represents the direction with the “strongest” controllability. 

cx

cW

 
Figure 2-6 Controllability Ellipsoid 
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For observability, let us examine the energy associated with the output 0xψy o=  

starting from an initial condition . It is given by 0x

 

0000000
2 ,,, xWxxWxxψψxxψxψy o

T
ooo

T
ooo ==== .            (2-50) 

 

If only the states 1=ox  are considered, then clearly some states will yield higher output 

norms than others. Therefore, the observability grammian measures “how observable” a 

given initial condition is. This idea can be described geometrically considering the vectors 

 with oo xW 2/1 1=ox . Similar to the controllability ellipsoid, define the set 

 

{ }1: 00
2/1 == xxWooE                                         (2-51) 

 

These vectors depict the observability ellipsoid, where  is in the n-dimensional vector 

space. It tells us the output norm associated with a particular direction in state space. The 

eigenvalues represent the length in the principal axes, and eigenvectors represent the 

direction of the principal axes.  

0x

From above discussions, we can conclude that the states corresponding to small 

eigenvalues of the grammians are not very controllable or observable. However, the weak 

observable states might be very controllable because the controllability and observability 

ellipsoids might be aligned orthogonally, as shown in Figure 2-7 (Dullerud and Paganini, 

2000).  

 
Figure 2-7 Unbalanced System Ellipsoids  
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Therefore, model reduction is usually performed in a balanced state-space representation. 

The idea of “balancing” the state-space representation of a system can be credited to Moore 

(1981). In a balanced state-space representation, the individual states have the same degree 

of controllability and observability, i.e., they are equally strongly coupled to both the input 

and the output, and thus states can be deleted when this coupling is weak. 

A Moore-balanced model has exactly aligned ellipsoids such that the most controllable 

states are also the most observable states. It can be obtained by changing the base to the 

state space of the system. Let T  be the transformation matrix of the original state such that 

xTx = ; the controllability and observability grammians associated with this new 

realization are 

 
T

cc TTWW =~ ,   11)(~ −−= TWTW o
T

o .                               (2-52) 

 

Through singular value decomposition techniques (see, for instance, Burl 1999), a bTT =  

can be found such that 

 

ΓWW == oc
~~ ,  and ),,( 1 ndiag γγ L=Γ                             (2-53) 

 

where 0>iγ  is the ith Hankel singular value of the system. The resulting system 

representation with equal and diagonal grammians is called open-loop-balanced realization, 

or Moore-balanced representation. Balanced realizations are widely used for model-order-

reduction, because the states corresponding to small diagonal grammians (or Hankel 

singular values) are weakly controllable and observable and thus can be truncated, while 

the most important input-output characteristics of the original system can be retained. This 

model-reduction method is referred to as balanced truncation. 

The balanced realization is not strictly unique, but the subspace of the state space 

associated with each singular value is invariant for all balanced realizations. Multiple 

balanced realizations can only be obtained by sign changes in the state basis, and by 

rotations of the bases for subspaces associated with repeated singular values. Therefore, the 
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reduced order controller generated by truncating the states of a balance realization 

associated with a given set of singular values is unique (Burl, 1999). 

As the grammians are diagonally dominant, the transformation matrix from the modal 

to the balanced coordinates must be diagonally dominant itself. The system matrix in the 

balanced coordinates is therefore diagonally dominant. Actually, the matrix  in modal 

form 2 can be a balanced state matrix, as the fourth property states (Gawronski, 1998): 

mA

 

4. In a balanced representation the system matrix  is block diagonally dominant with 

 blocks on the diagonal, and ,  are divided into 

mbA

22× mbB mbC s×2  and 2×r  blocks as 
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mbB  and  can be obtained using the same transformation matrix.  mbC

The question that arises here is, can the modal representation be almost-balanced in the 

sense that its grammians are almost equal and diagonally dominant, i.e., oc WWΓ ≅≅ , by 

a simple manipulation? The answer is yes. An almost-balanced model can be obtained by 

scaling matrix  and  only, leaving  unchanged, as stated in the fifth property: mB mC mA

 

5. By scaling the modal representation , one obtains an almost balanced 

representation , such that its grammians are almost equal and 

diagonally dominant as in 

),,( mmm CBA

),,( ababab CBA

 

xTx abab = , and mab AA = , ,mabab BTB 1−= abmab TCC = .                (2-55) 

 

Here the transformation matrix  is a diagonal matrix abT
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The advantage of the modal approach is apparent. The almost-balanced representation 

can be obtained using a closed-form equation, and thus tedious computation is avoided. 

Moreover, the diagonal form 2 matrix  remains unchanged, which provides more 

convenience and insight for researchers to examine the structural properties. 

mA

The computations utilizing the above definitions and properties are illustrated in the 

example below. 

 

2.4 Illustrative Example 

An example of a five-story building model given by Kelly et al. (1987) and used for 

the study of smart isolation by Ramallo et al (2002), is adopted here to illustrate the 

controllability/observability properties and model reduction techniques using modal form 

2. Control devices are installed at the base level. The structural parameters of the five-DOF 

fixed-base structure and base and bearings are given in Table 2-1 and shown in Figure 2-8.  

 
Figure 2-8 Six-Story Building Model 
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Table 2-1 Structural Model Parameter (Kelly et al., 1987) 

Floor Stiffness Damping Natural Natural 
masses(kg) coefficient(kN/m) coefficient(kN.s/m) frequencies(Hz) periods(sec)
mb = 6800 kb = 232 cb = 3.74 0.3978 2.5138 
m1 = 5897 k1 = 33732 c1 = 67 5.4647 0.1830 
m2 = 5897 k2 = 29093 c2 = 58 10.2932 0.0972 
m3 = 5897 k3 = 28621 c3 = 57 14.7186 0.0679 
m4 = 5897 k4 = 24954 c4 = 50 18.3980 0.0544 
m5 = 5897 k5 = 19059 c5 = 38 21.3127 0.0469 

 

bk  and  are so chosen such that the isolation mode period is 2.5 sec and the isolation 

mode damping ratio is 2%. To examine the observability properties, the displacements with 

respect to the ground and the absolute accelerations of all floors are selected as outputs. 

bc

The rank of a matrix can be readily computed using the Matlab routine rank.m. For 

this example, the dimensions of  and  are 12 by 12, while their ranks are 6 and 10 

respectively using the default tolerance. However, further computations show that the ranks 

are actually full when smaller, more appropriate tolerances are selected. So the system is 

completely controllable (c.c.) and completely observable (c.o.), but there are weakly 

controllable and observable states that could not be detected with larger tolerances. The 

information is all that  and  can provide.  

cQ oQ

cQ oQ

Unlike the  and  matrices, grammians carry more qualitative information. Table 

2-2 gives the eigenvalues of the grammians and the eigenvectors corresponding to the first 

two dominant eigenvalues. It shows that there are five dominant states for both 

controllability and observability. However, the principal directions of the dominant states 

for the two grammians are not aligned. Apparently, model reduction cannot be performed 

on this unbalanced model.  

cQ oQ

For the nodal representation, the balanced realization can be computed manually using 

equation (2-53), where the transformation matrix  is obtained using the singular value 

decomposition technique. Here Matlab routine balreal.m is used to perform the calculations 

required. Hankel singular values are provided by balreal.m as well. So, the equal values of 

the grammians for the balanced realization can be obtained. The transformation matrix  

bT
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=bT  

 
    0.0071    0.0011    0.0006    0.0002    -0.0002   -0.0004   0.0006   0.0006   0.0006   0.0006   0.0006   0.0006 
    0.0046   -0.0016   -0.0022  -0.0027   -0.0031   -0.0034   0.0006   0.0005   0.0005   0.0005   0.0005   0.0005 
    0.1208   0.0374   0.0024   -0.0288   -0.0554    -0.0736  0.0026   0.0019   0.0008   -0.0005  -0.0019  -0.0030 
   -0.0511  -0.0856   -0.0463   0.0068   0.0636   0.1101    0.0027   0.0015   0.0004   -0.0007   -0.0016  -0.0022 
   -0.3393   0.1827   0.1977   0.0692   -0.0392   -0.0732   -0.0035  -0.0001   0.0037   0.0039   0.0004   -0.0044 
   -0.0909  -0.2244  0.2056   0.3207    0.0775   -0.2899    0.0041   -0.0018   -0.0026   -0.0005  0.0008   0.0001 
   -0.4182  0.5262  -0.1386   -0.0122   0.2404   -0.1991   -0.0035    0.0061   0.0021   -0.0049  -0.0034   0.0037 
    0.3757  -0.2988  -0.5010  0.3449   0.3823   -0.3019   -0.0039   0.0040   -0.0019   0.0010    0.0044   -0.0036 
    0.2229  -0.1257  -0.1179  -0.5071   0.9907   -0.4620    0.0028   -0.0088   0.0073   0.0004   -0.0020   0.0003 
    0.5979  -1.1902   0.5805   0.3069   -0.3847   0.0906   -0.0032   0.0003    0.0036   0.0051    -0.0106   0.0047 
    0.1517  -0.9818  2.2386   -2.4256   1.3506   -0.3338   -0.0025   0.0063   -0.0034   -0.0045   0.0066  -0.0025 
   -0.5277  1.2478  -0.9714   -0.0557   0.5519   -0.2455   0.0012    0.0055   -0.0187   0.0201   -0.0104   0.0023 
 

The resulting diagonal entries of the controllability and observability grammians are 

thus (×10-3): 0.8756  0.8418,   0.5996  0.5584,  0.3030  0.2729,  0.1760  0.1581,  0.0827  

0.0756,  0.0252  0.0236. These grammians show that there are states that are weakly 

controllable and observable, and only a few states can be strongly affected by the control 

action. 

 

Table 2-2 Eigenvalues and Dominant Eigenvectors of the Controllability 

and Observability Grammians 

Controllability Observability 
Eigenvalues  Eigenvector 1 Eigenvector 2 Eigenvalues Eigenvector 1  Eigenvector 2 

(10-7) (10-8) (10-8) (106) (103) (103) 

0.0000 0.0000 0.0001 0.0000 -0.0091 -0.0138 
0.0000 0.0001 0.0001 0.0002 0.0046 -0.0453 
0.0000 0.0001 0.0001 0.0002 -0.0236 0.0541 
0.0000 0.0001 0.0001 0.0002 0.0106 -2.0254 
0.0000 0.0001 0.0000 0.0002 -1.5470 3.6980 
0.0001 0.0000 -0.0001 0.0002 1.5647 -1.6673 
0.0004 0.3379 0.3467 0.0003 -0.0348 -0.0358 
0.0012 0.3459 0.3547 0.2794 -0.0309 -0.0319 
0.0031 0.3610 0.3699 1.0384 -0.0323 -0.0336 
0.0140 0.3827 0.3899 2.1424 -0.0348 -0.0418 

0.0362 (2) 0.4133 0.4075 3.3499 (2) -0.0432 0.2167 
0.2265 (1) 0.4467 0.4133 4.5026 (1) 0.2061 -0.0432 

 

If six states are retained and the other six truncated, the balanced truncation model is 
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bA  =  

               x1            x2            x3           x4            x5           x6 

  x1    -0.0506     2.501    0.4136    0.5377   -0.1546    0.2435 
  x2     -2.505    -0.0519   0.4138    0.659    -0.1242    0.3008 
  x3    -0.6925   -0.7175    -1.209    34.51     -1.012      2.782 
  x4    -0.7644   -0.8726    -34.63   -1.378     -1.505      3.874 
  x5     0.5037    0.5098     3.172      3.76      -2.895     -68.72 
  x6    -0.6916   -0.7336    -4.905   -5.918      69.81     -6.013 
 

bB  =      
               u1 

 x1    0.00941 
 x2    0.00935 
 x3    0.03808 
 x4    0.03922 
 x5   -0.04189 
 x6     0.05729 

 

bC  matrix is 12×6 and  matrix is 12×1. They are given by bD

Cb =  
                 x1                   x2                 x3                x4                   x5                  x6 
   y1     0.0005726   -0.0006004   1.995e-005  -1.602e-005    -5.766e-006  -5.556e-006 
   y2     0.0005757   -0.0006039   1.542e-005  -1.275e-005    -4.291e-007  -5.007e-008 
   y3     0.0005783   -0.0006073   7.677e-006  -5.494e-006    2.992e-006    6.979e-006 
   y4     0.0005803     -0.00061    -3.664e-007   4.022e-006    2.16e-006      8.283e-006 
   y5     0.0005817   -0.0006121  -7.822e-006   1.446e-005   -1.533e-007    1.951e-006 
   y6     0.0005827   -0.0006134  -1.336e-005   2.306e-005   -1.366e-006   -8.388e-006 
   y7     -0.005012      0.00223     -0.02424        0.01473            0.0287         0.02244 
   y8     -0.004298     0.003034       -0.014          0.01604          -0.01084       0.006249 
   y9     -0.003563      0.00385     -0.001455      0.01047           -0.02456      -0.02512 
   y10    -0.003236     0.004228     0.007951     -0.001165        -0.01071      -0.03196 
   y11    -0.003152     0.004352      0.01486      -0.01525          0.004909      -0.00725 
   y12    -0.003138     0.004396       0.0195       -0.02685          0.008501       0.03216  
Db =            u1 
                  
   y1    3.805e-009 
   y2   -3.579e-009 
   y3   -2.231e-009 
   y4    3.186e-011 
   y5    8.458e-010 
   y6    6.745e-010 
   y7     0.0001083 
   y8    5.402e-005 
   y9    3.794e-006 
   y10  -1.084e-005 
   y11   -5.44e-006 
   y12   3.047e-006  

 

The natural frequencies and periods of the reduced model can be obtained from the 

eigenvalues of the matrix . They are 0.3978 Hz (2.5137 sec), 5.4740 Hz (0.1827 sec), 

11.1145 Hz (0.0900 sec), which are the first three modes corresponding to the original 

bA
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isolation system: 0.3978 Hz (2.5137 sec), 5.4647 Hz (0.1830 sec), 10.2932 Hz (0.0972 

sec). Notice that the 2nd and the 3rd modes deviate some from the original model. This can 

be clearly seen from the open-loop poles of the building and the reduced model (Figure 2-

9), where the green dots represent the poles of full-order model and red ones the poles of 

the reduce-order model. 

 

 
Figure 2-9 Poles of the Full-Order and Nodal Reduced-Order Models  

 

Using the modal representation, the above process can be simplified. The 

controllability grammians computed in closed-form approximation (equations (2-36) and 

(2-37)) are ( ): 2628.3  140.27  30.806  10.383  5.0889  2.1031 and the observability 

grammians are: 28.045  236.66  247.74  249.91  250.14  250.75. 

1110−×

Consequently, the Hankel singular values are ( ): 0.8585  0.5762  0.2763  0.1611   

0.1128  0.0726. These approximate values are very close to the accurate values from the 

balanced model computation. So model truncation using the approximate method is not 

expected to cause significant errors for this system.  

310−×

Using modal form 2, the state-space matrix,  
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=mA  

 
-0.0492  2.499  0 0 0 0 0 0 0 0 0 0 
-2.499  -0.0492    0 0 0 0 0 0 0 0 0 0 
  0 0       -1.244    34.313 0 0 0 0 0 0 0 0 
  0 0       -34.313   -1.244 0 0 0 0 0 0 0 0 
  0 0  0 0      -4.220    64.536 0 0 0 0 0 0 
  0 0  0 0    -64.536     -4.220 0 0 0 0 0 0 
  0 0  0 0 0 0      -8.554    92.083 0 0 0 0 
  0 0  0 0 0 0     -92.083    -8.554 0 0 0 0 
  0 0  0 0 0 0 0 0     -13.355    114.82 0 0 
  0 0  0 0 0 0 0 0     -114.82   -13.355 0 0 
  0 0  0 0 0 0 0 0 0 0    -17.877   132.71 
  0 0  0 0 0 0 0 0 0 0    -132.71   -17.88 

 

mA  is block-diagonal and is arranged by the frequencies in ascending order. However, the 

model represented by the triple  is not balanced. To obtain an almost-

balanced model, only matrices  and  need to be scaled using the easily formed 

matrix , while matrix remains  unchanged. The transformation matrix  is 

),,( mmm CBA

mB mC

abT mA abT

Tab = 
 
     0.0055       0          
         0    0.0055          
                           0.0016      0   
                               0    0.0016    
                                                 0.0011      0   
                                                     0    0.0011     
                                                                       0.0008       0   
                                                                           0    0.0008          
                                                                                             0.0007       0       
                                                                                                 0    0.0007        
                                                                                                                   0.0005       0 
                                                                                                                       0    0.0005 

 
If we want to retain, say, the first three modes, it is necessary to eliminate the last six 

columns of  and , and the last six rows and   and . The reduced model with 

the almost-balanced truncation will retain the modes exactly from the original system, as 

shown in Figure 2-10. It shows that the reduced-order model retains exactly the modes 

desired. 

mA abC mA abB
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Figure 2-10 Poles of the Full-Order and Modal Reduced-Order Models 

 

The grammians and singular values in this example show that, for a base isolation 

system with the control force applied at the base mass, the lower frequency modes are 

strongly controllable and observable, whereas the higher frequency modes are weakly 

controllable and observable. This conclusion coincides with engineering practice, i.e., for a 

base isolated building, it is easier to control the translational motion than to control the 

inter-story drifts if the force is applied at the base mass. 

It is of interest to examine how the controllability and observability properties change 

with the degree of isolation. More simulations show that highly isolated buildings (with 

smaller  values) have stronger controllability and observability in the lower modes 

(especially the isolation mode), but their higher modes are less controllable and observable. 

Increasing the  value has the reverse effect. However, if  is too large, neither lower 

modes nor higher modes are controllable. These results are understandable. For a base 

isolated building, the isolation mode dominates its dynamic behavior, so control devices 

are more efficient in controlling the base drift and sensors are more efficient in detecting 

bk

bk bk
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the dominant responses instead of secondary responses of higher modes. As the bearing 

stiffness  grows larger, the structural system becomes more rigid, higher modes 

participate more and so their response becomes more detectable. However, if the structure 

is as rigid as a fixed-base structure, the control devices and sensors at the base would not 

have any significant effects on the building. 

bk

Accelerometers are more practical for civil engineering structures. Note that the 

observability grammian does not depend on the feed-through term , which is introduced 

by the absolute accelerations as measured responses. The output for the accelerometers is in 

the form , and the transfer function is  

instead of . As is shown in the equations (2-38), (2-39) and (2-

40), the norms of the modes equipped with accelerometers should be re-scaled if 

accelerometer dynamics is crucial to the study. 

yD

uDxCy yy += mmmm j DBAICG +−= −1)()( ωω

mmm j BAICG 1)()( −−= ωω

 

2.5 Summary 

This chapter introduces the background knowledge of this study, modal structural 

models and the concepts of the controllability and observability. The advantages of using 

modal models for control application are extensively stated. An important base to perform 

model reduction, the open-loop balancing technique is explained in depth using the 

geometric description of controllability and observability ellipsoids. The computations 

regarding the controllability and observability are illustrated using a six-story base isolated 

building model, and the controllability and observability properties for general base 

isolation systems are discussed. 

 



48 

 

Chapter 3 

The Isolation System of the Benchmark Building 

3.1  Description of the Smart Base Isolation Benchmark Problem 

The application of active schemes to base isolation systems are considered to be an 

effective way to enhance their performance. However, the relative merits of these schemes 

have not been investigated systematically on a benchmark problem. Due to the 

effectiveness of the fixed base building benchmark effort (Spencer et al., 1998a, b; Ohtori 

et al., 2004), the ASCE Committee on Structural Control voted to develop a new smart 

base isolation benchmark problem for use by the international research community to 

evaluate their competing control strategies, including the control devices, algorithms, and 

sensors, etc. As is introduced in the Introduction, the framework of this benchmark study 

has been provided, from problem definition (Narasimhan et al. 2004) to sample control 

system design (Nagarajaiah et al., 2005; Erkus et al., 2004). These sample designs are not 

competitive but are intended to serve as a guide to the participants. 

Based on the input from the ASCE Committee on Structural Control, Narasimhan and 

Nagarajaiah (2002, 2004) have developed a 3D model of the entire system. The benchmark 

model is an eight story base isolated building with lateral-torsional behavior. It is similar to 

existing buildings in Los Angeles, California. This building is 270.4 ft (81.9 m) by 178 ft 

(53.9 m) in plan and 116 ft (35.1 m) in elevation. The floor plan is L-shaped and has 

setbacks above the fifth floor. Metal decking and a grid of steel beams support all concrete 

floor slabs. The superstructure is supported on a reinforced concrete base slab, which is 

integrated with the underneath concrete beams and drop panels at the bottom of the 

columns. The isolators are connected between these drop panels and footings. The 

developed 3D model has the capability to model three different commonly used base 

isolation systems: linear elastomeric systems with low damping or supplementary damping, 

friction systems, and bilinear or nonlinear-elastomeric systems. Any combination of these 
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can be considered as well. The nominal isolation system consists of 61 friction pendulum 

bearings and 31 linear elastomeric bearings. The sample controller positions and the 

nominal isolation system are shown in Figure 3-1. Participants may replace the nominal 

bearings with other types of bearings, develop their own device models, and place their 

devices at their desired locations.  

 

 
 

Figure 3-1 Plan View of the Fundamental Level and the Nominal Bearing Locations 
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Figure 3-2 shows the elevation view of the asymmetric model subjected to 

bidirectional ground excitations and the coordinate system that determines the relative 

location of the center of the masses and stiffnesses. 

 

 
 

Figure 3-2 Elevation View of the Asymmetric Base Isolated Benchmark Building 

 

When subjected to earthquake excitations, multistory buildings with eccentric centers 

of mass and resistance respond with coupled lateral-torsional motion to earthquake ground 

motion, even when the motion is uniform over the base and contains no rotational 

components (Chopra, 1977). Although coupled lateral-torsional response is reduced in base 

isolated structures compared to conventional designs (Skinner et al., 1993), it cannot be 

overlooked in practical design due to the fact that torsional response can cause excessive 

displacements at the corner bearings and lead to instabilities in the bearings. Analysis of 

such buildings requires torsional degrees of freedom in addition to translational degrees of 

freedom. The floors and the base of the building are assumed to be infinitely rigid in plane. 

Hence, a 3D building with 3 degrees of freedom (DOFs) per floor at the center of mass is 

assumed to adequately represent the elastic superstructure. The combined model of the 

superstructure (24 DOFs) and isolation system (3 DOFs) consists of 27 DOFs.  
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Base isolation buildings are designed such that the superstructure remains elastic. The 

localized nonlinearities at the isolation level allow the superstructure to be modeled by a 

condensed linear elastic system. The elastic superstructure is not assumed to be a shear 

building but a fully three dimensional building, so in modeling the superstructure, it is the 

eigenvalues and eigenvectors for the fixed base condition instead of the stiffness matrix 

that are provided. The equations of motion are developed in such a way that the fixed-base 

properties are used for modeling the linear superstructure. Damping ratios are assumed to 

be 5% in all fixed-base modes. The masses of the floors are shown in Table 3-1 and the 

computed natural periods for the first nine fixed modes are shown in Table 3-2. Other 

parameters of the building that are to be used in this study are shown in Appendix A. 

 

Table 3-1 Floor Masses of the Benchmark Building 

Floor base 1 2 3 4 5 6 7 8 
Mass (kN-s2/m) 3565.73 2051 2051 2051 2051 2051 2057 2247 2580

 

Table 3-2 First Nine Natural Periods of the Superstructure 

 N-S(x-direction) E-W (y-direction) Torsion (r-direction)
Mode 1 2 3 1 2 3 1 2 3 

Period (sec) 0.78 0.27 0.15 0.89 0.28 0.15 0.66 0.21 0.12 
 

In this benchmark study, no control devices are allowed to be installed within the 

superstructure. Control devices may only be installed at the base level. Each isolation 

bearing and control device is modeled explicitly using the specified model, and the forces 

in the bearings and the devices are transformed to the center of the mass of the base using 

the rigid base slab assumption.  

The benchmark problem also proposed seven earthquakes to be used to evaluate the 

performance of the candidate controllers designed by the participants. These earthquakes 

are the Newhall, Sylmar, El Centro, Rinaldi, Kobe, Ji-ji, and Erzincan, all containing fault-

normal (FN) and fault-parallel (FP) components. 

A set of evaluation criteria that is particularly relevant for base isolated structures have 

been developed to compare various control strategies. The definitions of six of the 
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performance indices that will be used in this study are shown in Table 3-3, where ^ denotes 

the uncontrolled (passively isolated) system. RMS denotes “root mean square”. 

 

Table 3-3  Performance Indices (Normalized) to be Used in This Study 
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For more details refer to Narasimhan et al. (2004) and the problem definition provided 

on the website: http://www.usc.edu/dept/civil_eng/johnsone/baseisobench/ .  

This chapter focuses on the selection of the linear elastomeric bearings only, which are 

placed at all 92 locations. The 3D dynamics for asymmetrical buildings has been studied 

extensively by (Narasimhan et al., 1991). In light of the 3D dynamics proposed by that 

study, and taking into account of the assumptions made above, the equations of motion of 

the superstructure and base are expressed in the form (Narasimhan et al., 2004) 

 

⎪⎩

⎪
⎨
⎧

++−−=+++
+−=++

)]([
)(

bg
T

gbcbbbbbb

bgsss

YXΓZMΓXΓMfYKYCYM
YXMΓKZZCZM

s
&&&&&&&&&&&

&&&&&&&
             (3-1) 

 

where , , and K  are the mass, damping and stiffness of the superstructure, 

respectively. The subscript b denotes the base and c denotes the controller. , , and 

 are the mass, damping and stiffness of the base, respectively.  is the vector of the 

control force.  represents the ground acceleration vector,  is the displacement of the 

superstructure with respect to the base,  is the displacement with respect the ground, and 

 is the absolute displacement. The coordinates have the relationship 

M C

bM bC

bK cf

gX&& sZ

bY

X

http://www.usc.edu/dept/civil_eng/johnsone/baseisobench/
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gbsbgss ΓXΓYZYXΓZX ++=++= )(                           (3-2) 

 

where  is the influence coefficient matrix of the disturbance, i. e., 

resulting displacements and rotations at the center of mass of each floor due to a unit 

displacement and rotation of the center of mass of the base. In this case the entry of ith 

floor in  is  

[ T
178 ΓΓΓΓ L= ]
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Γ                                               (3-3) 

 

that is, unlike the symmetric case, 33×≠ IΓ i , where  and  are the offsets of the center 

of the mass of the ith floor in the x- and y-directions with respect to the base, respectively. 

ix iy

The mass matrices M  and  are diagonal. The damping and stiffness matrices of the 

substructure are given by 

bM
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where  and  are the 3×3 damping and stiffness matrices of the ith bearing, and  is 

the total number of the bearings. The bearings have only axial force components. Therefore 

the third column and row of each   and  is zero.  is a matrix related to the 

location of the bearings, as in 

is
iC is

iK nb

is
iC is

iK bΓ

 

[ ]is
nb

is
b rrΓ L1=                                              (3-6) 

and 
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where  is the coordinate of the ith bearing.  ),( is
i

is
i yx

Let Φ  be the mass-normalized eigenvector matrix of the superstructure, i.e., ΦηZs = . 

Then equations of the superstructure can be written in modal form as 

 

)(~~
b

T YXMΓΦηKηCη g
&&&&&&& +−=++                                      (3-8) 

 

where  is the vector of modal coordinates of the superstructure with respect to the base,  

and 

η

C~  and K~  are normalized damping and stiffness of the superstructure, respectively.  

Equations (3-1) have a similar form to equations characterizing structures with 

multiple support excitations. Both cases have the effects of asymmetry. For the analysis of 

such problems, the equations should include the degrees of freedom at supports in the states 

(Chopra, 1999). Rewriting equation (3-1) in modal coordinate form (Erkus et al., 2004), it 

follows that 
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}Let  be the state vector; the equation can be written in state 

space form as 

{ TT
b

TT
b

T YηYηq &&=
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where 
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and  is a matrix related to the location of the controller, as in cΓ
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where  are the coordinates of the ith control device, and nc  is the total number of 

control devices. 
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The measurement output and regulated output equations take the forms 

 

vxEuDqCy g +++= &&yyy                                          (3-16) 

gxEuDqCz &&zzz ++=                                              (3-17) 

 

where  is the vector of measurement noise. Here, the measured output vector v y  includes 

the accelerations of the floors of the structure and any additional measurements used for 

feedback in the control system. The regulated output vector z  may consist of any linear 
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combination of the states of the system and components of the control input vector , 

depending on the control objectives.  

u

The outputs (i.e., measurements) in this study are all corner outputs. Consider the 

outputs as corner inter-story drifts and absolute floor accelerations. The output vector is in 

the form of 
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accelerations. The state-space equation matrices for this set of outputs are given by 
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Here,  are the coordinates of the jth corner of the ith floor in the x- and y-

directions, respectively, and nc

),( j
i

j
i YX

r  is the number of the corners. It is also assumed that the 

number of the corners for all floors is the same and is equal to ncr . If they were not equal, 

the equations would be modified accordingly. 

 

3.2  Optimal Linear Isolation System 

A base isolation system has the effect of producing low acceleration levels and small 

relative motions under strong ground motions at the cost of large absolute deformations at 

the isolation level. In an isolation system, the bearing stiffness  defines how “soft” the 

isolation system may be designed and how effectively it controls the floor accelerations. 

The introduction of damping (  or 

bk

bc bξ ) in the isolation mode increases the energy 

dissipation capacity and reduces the deformation demand in low-frequency ground 

motions. However, isolator energy dissipation has adverse effects on floor accelerations 

(Inaudi et al., 1993b). The purpose of isolation system design is to find a trade-off between 

the base deformation and the floor accelerations for various  and . Studies show that 

such a point does exist. Given the characteristics of the primary structure, there is an 

optimal value of damping for minimizing the acceleration response. This fact puts 

boundaries on the dynamic performance achievable by passive isolation (Inaudi et al, 

1993b). Based on this fact, the “optimal” passive system is defined as the system which 

produces minimal floor acceleration responses while rendering acceptable deformation in 

the isolation system. 

bk bc

Before studying the complex three-dimensional benchmark building, its equivalent 

one-dimensional counterpart is investigated first in the following section. 

   

3.2.1  Isolation System for a One-Dimensional Model 

The structural parameters in the y-direction (E-W) are shown in Table 3-4. The first 

three calculated natural frequencies are 1.42 Hz, 3.68 Hz, 5.92 Hz. The corresponding 

natural periods are 0.70 sec, 0.27 sec, and 0.17 sec. The damping ratios are assumed to be 
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5% in all modes. The weight of the base plate is 3565.73 kN-s2/m. All bearings are 

assumed to be linear. The total stiffness and damping ratio of the bearings are to be 

designed. 

 

Table 3-4 Parameters of the 1D Base Isolated Benchmark Building 

Story 8 7 6 5 4 3 2 1 
Weight (kN)  10435 13949 14935 19803 20081 20136 21994 25253

Total stiffness 24902 24558 26190 27904 37249 36929 41564 46216
 

The optimal bearing parameters are to be determined for a white-noise excitation in 

this section. Inaudi and Kelly (1992) have indicated that the optimum damping values for 

minimizing peak acceleration response are approximately equal to those that minimize the 

mean-square acceleration response with only minor variation. The stable RMS responses to 

white noise can be obtained from a Lyapunov equation (Soong et al., 1996) and the 

solution can be obtained using the Matlab routine lyap2.m within the control toolbox. The 

optimal pair of  is selected from a series of curves of the maximum RMS 

accelerations versus the maximum RMS base displacement relative to the ground (referred 

to as base drift) for various   and . 

),( bb ck

bk bc

Figure 3-3 shows the curves of maximum RMS acceleration (top floor) versus the 

RMS base drift of the one-dimensional model with varying bearing parameters to white 

noise with magnitude of S0 = π. Each curve represents the RMS response with same 

stiffness but different damping values. The values in this figure are not important because 

they change proportionally with S0 for the linear system. It can be seen that larger  

curves are always located at higher positions where accelerations are larger. However, for 

each  there is an optimal damping ratio at which floor acceleration reaches its minimum. 

These curves are obtained for a white noise. Ground accelerations in reality are band-

limited, typically having dominant periods within 0.1~1 sec, with maximum severity often 

in the range of 0.2~0.6 sec (Skinner et al., 1993). However, Inaudi et al. (1993b) showed 

that the optimal damping parameter is not sensitive to the frequency content of the 

excitation, where the white-noise was filtered by Kanai-Tajimi filters. 

bk

bk
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Figure 3-3 Maximum RMS of Base Drift -Acceleration Curves of the 1D System 

 

For base isolation systems,  is usually determined such that the fundamental period 

of the isolated structure is beyond the frequency range of most earthquakes (0.1 ~1 sec). 

The sample designs provided in the benchmark papers (Narasimhan et al., 2004; Erkus et 

al., 2004) designed the structure with the fundamental period of 3.0 sec, corresponding to 

 kN/m in this model, and a damping ratio of 6% at the base level. This point is 

marked by a square in Figure 3-3. However, the optimum damping ratio for this  is 15%, 

as marked by the circle. 

bk

000,80=bk

bk

To examine if active control can further improve the performance of the selected 

optimal passive system, an LQG controller is applied to the optimal passive system. Equal 

weighting is put on each of the floor accelerations, while weighting on the base drift is 85 

times of the weightings on accelerations. The performance of three systems is shown in 

Figure 3-4, including the passive system used in the benchmark paper (square), the optimal 

passive system determined from Figure 3-3 for the same  (circle), and the system with 

an active controller applied on this optimal passive system with various weightings 

bk
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(crosses). The various crosses shown each represent different weightings (0 ~ 8×108), and 

consequently, different control forces. 

 

 
Figure 3-4 Maximum RMS Responses of the Actively Controlled System 

 

The upper plot shows the RMS base acceleration versus RMS base drift. The lower 

plot shows the RMS accelerations (floors 2 to 8) versus RMS inter-story drifts. The blue 

curve represents the second floor, red the third floor, and so on. Apparently, the circle is 

lower, left to the square in both plots, indicating that all responses (the base drift, base and 

roof acceleration, and inter-story drift) of the optimal passive system are smaller than the 

responses using the  pair proposed in the sample design (Nagarajaiah and 

Narasimhan, 2005). Starting from a weighting of zero, the controlled system further 

improves the optimal passive system. However, performance is not improved in proportion 

to the weights. For a certain weight (the apex of the parabola), the base drift reaches the 

minimum while accelerations and inter-story drifts are low. This weight is the design 

weight for the active control system. 

),( bb ck
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3.2.2  Isolation System for the 3D Building 

Similar to the 1D case, the maximum RMS accelerations versus maximum RMS base 

drifts of the 3D building to two-directional white noise disturbances (S0 = π) are computed 

and plotted in Figure 3-5. A curve represents a constant  bearing system. Arrows show 

the direction of increasing  or . 

bk

bk bc

 

 
Figure 3-5 Maximum RMS of the Base Drift - Acceleration Curves of the 3D system 

 

Similarly, optimal damping coefficients  exist for each . The determination of  

relies on the earthquake statistical properties, because seismic design is up to the excitation 

the structure will experience. As seven design earthquakes have been provided for this 

benchmark problem, their response spectra are computed and plotted. Figure 3-6 shows the 

bc bk bk

%10=ξ  damped response spectra.  
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Figure 3-6 10% Damped Response Spectra of the Design Earthquakes 

 

The dominant periods of these earthquakes are from about 1 sec to nearly 2 sec. The 

Ji-Ji earthquake is exceptionally extreme. Figure 3-6 shows that SDOF systems that have 

natural periods longer than 2 sec could shift their dynamics out of the high acceleration 

response region.  

Most isolation periods of base-isolated buildings are between 2 and 3 sec, though some 

stiff isolation systems results in isolation as low as 0.6 sec (Makris, 1997). Although highly 

isolated structures (smaller  or longer period) are preferable for decreasing accelerations, 

the base deformations are usually so large that they lead to bearing damage. More control 

effort is required to decrease the deformation. For the eight-story building, fundamental 

periods of 2.28 sec (x-), 2.18 sec (y-), and 1.86 sec (r-), corresponding to  kN/m 

(the blue line) in Figure 3-5, is an appropriate design choice. At this period, the 

bk

2119=bk

%10=ξ  
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SDOF system will experience 15-55 cm base displacement, and specifically, 35 cm for the 

Newhall earthquake. With smart control force applied, the displacements are hopefully 

limited to 45 cm for most damaging near-field earthquakes. In Figure 3-5, the optimal 

damping for the  kN/m curve should be the tenth point from right (circled in 

Figure 3-5), corresponding to a damping coefficient of 

2119=bk

44.241=bc  kN.sec/m and damping 

ratios of %7.141 =ξ  (x-direction), %9.142 =ξ sec (y-direction), and %9.173 =ξ  (r-

direction). It is appropriate for a traditional passive isolation design for near-source 

protection. The damping ratios are less than 20%, so it is reasonable if additional damping 

from an MR damper is to be applied on this passive optimal system. 

Large bearing dampings also increase the modal damping ratios of the first flexible 

modes to %7.124 =ξ  (x-direction), %0.125 =ξ  sec (y-direction), and %2.136 =ξ  (r-

direction) from 5%, respectively. Damping ratios of other modes do not change 

significantly. It is important to keep this fact in mind because the approximate methods to 

be used later have relatively larger errors to highly damped modes. 

 

3.3  Summary 

This chapter introduces the smart base isolation benchmark problem, its equations of 

motion, state and output equations, evaluation criteria and other constraints to be 

considered. Further, the optimal passive base isolation system is also defined and a method 

to design the optimal passive system is proposed. The design procedures are illustrated for 

the one-dimensional system and then applied to the three-dimensional system. 
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Chapter 4 

Actuator and Sensor Placement Using Modal Approach 

A large number of techniques for the optimal placement of sensors and actuators in a 

vibration control system have been developed in recent years. Many of these methods are 

based on the concepts of controllability and observability. Controllability and observability 

properties can be shaped by changing the configuration of the actuators and sensors. This is 

an optimization problem that is closely related to achieving high performance with minimal 

cost. For example, a system in which actuators and sensors are placed at or near the nodes 

of vibration modes may require an exceptionally large control force, or even may be 

uncontrollable. This approach is facilitated by the establishment of explicit relationships 

between controllability and observability and vibration modes (Longman et al, 1982; 

Moore, 1981; Hamdan and Nayfeh, 1989, etc), among which Hamdan and Nayfeh’s 

measures are particularly attractive. They introduced a generalized angle between the two 

vector spaces on which controllability and observability are based: the left eigenvectors and 

the column vectors of input influence matrix, and the right eigenvectors and the column 

vectors of output measurement matrix. Choi et al (2000) further improved the method by 

extending the results to be used with a balanced coordinate system, and introducing the 

magnitude of the measures, the norms of eigenvectors, when used in that coordinate system. 

A balanced coordinate system is desirable because it ensures that the system is equally 

controllable and observable.  

This study will use another controllability-observability based approach proposed by 

Panossian et al. (1998) in a practical application and described in detail by Gawronski 

(1998). This approach involves the computation of the system norms of each device 

location for selected modes, and then grades them according to their participation in the 

system norm. It agrees with the control objective of the LQR algorithm to be used in this 

study, whose cost function is actually a 2-norm, and it is relatively simple compared with 
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other algorithms. Silva and Lopes (2004) adopted the  norm of this approach in their 

study in the second phase, actuator and sensor location selection, of their smart structure 

design.  

∞H

The method proposed in this chapter uses the Hankel singular norm instead of the  

and  norms. The Hankel norm is advantageous because it reflects both controllability 

and observability, and is invariant under linear similarity transformations. The placement 

indices proposed by Gawronski (1998) took into consideration the closed-loop effects when 

the actuators are not placed at the disturbance locations and sensors are not at the 

performance evaluation locations in index normalization. To make the approach more 

applicable to civil engineering problems, this study considers only the case when the 

actuators are collocated with disturbances and sensors collocated with performances. This 

assumption simplifies the normalization procedure, but still could reflect some closed-loop 

effects, as discussed in section 4.1, though it might decrease the accuracy. The simplified 

methodology is applied to the smart control device and sensor placement in the base 

isolation benchmark problem in the last section of this chapter. 

∞H

2H

 

4.1  Effects of the Cross Couplings on Norms in the Feedback Loop  

A structure’s inputs are composed of both disturbance and control inputs, and plant 

outputs include regulated outputs and measurements. In engineering practice, control 

devices and sensors are placed at available locations, not necessarily collocated with the 

disturbance and outputs used for performance evaluations. It is shown that the cross 

couplings between the inputs and outputs all impact on the structural norms due to the 

feedback loop (Gawronski, 1998), so it is necessary to examine these effects for placement 

rules based on properties of the structural norms. 

First, define a general model of a feedback control system that explicitly includes the 

desired inputs and outputs. The block diagram of a general feedback control system is 

shown Figure 4-1. 
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Figure 4-1 General Diagram of a Feedback Control System 

 

w  is the general disturbance. The control input u  to the plant is generated by the 

controller. The output consists of the regulated output z  and the measurement output y . 

The feedback loop is closed between the measurement output and controller (actuator). In 

general, the measurement output is distinct from the regulated output, though they may be 

identical in some applications. The state model of the plant for the closed-loop system in 

Figure 4-1 is 
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Let  be the transfer function matrix from w  to z ,  be the transfer function 

matrix from  to 

wzG wyG

w y ,  be the transfer function matrix from u  to , and  be transfer 

function matrix from  to 

uzG z uyG

u y . These open-loop transfer functions are expressed by 
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Denote the Laplace transforms of the vectors y , , , and  with capital letters. The 

transfer function of the plant is then 

z u w
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The transfer function of the controller is 
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Substituting  from the second equation of (4-4) into equation (4-5) yields Y
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Substituting equation (4-6) into the first equation of (4-4) yields the closed-loop transfer 

function from  to  of the feedback control system w z
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If , the transfer function diagram representing Figure 4-1 is shown in 

Figure 4-2. 
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Figure 4-2 Diagram of a Constant-Gain Feedback Control System 
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The closed-loop transfer function from  to  then becomes w z
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Equation (4-8) shows that the controller impacts the closed-loop performance not only 

through the action from u  to y , but also through the cross-actions from u  to z  and  to w

y . If the transfer function matrices  or  were zero, the controller could not reach 

the responses z . Therefore, for non-collocated systems, the actuator and sensor 

connectivity  is not the only factor that determines the closed-loop performance. This 

makes the placement problem complicated because the above effort would be in vain if 

 or  decreases while the importance of locations (placement indices) is determined 

by large . 

wyG uzG

uyG

wyG uzG

uyG

Fortunately, this is not the case. Denote subscript i for the ith mode, the following 

multiplicative property of modal norms holds (Gawronski, 1998) 

 

iiii ,,,, uzwyuywz GGGG ≅                                      (4-9) 

 

where . denotes either , , or Hankel norms, and subscript i denotes the ith mode. 2H ∞H

This property can be shown directly using the approximate relationship between the 

transfer function and the norms (equations (2-38) and (2-39)). This property indicates that 

for each mode the product of norms of the performance loop (from disturbance to response) 

and the control loop (from actuators to sensor response) is approximately equal to the 

product of the norms of the cross-couplings between the disturbance and sensors, and 

between the actuators and performance. It also indicates that improvement in  

automatically leads to improvement in  and . Thus, the actuator and sensor 

location problems can be performed by manipulating  alone. This conclusion is 

important for the placement problem. It means the placement strategy proposed in sections 

4.2 and 4.3 will be applicable for non-collocated systems. 
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4.2  Placement Indices 

To define the controllability-observability based actuator and sensor location model, 

consider the system defined by equations (2-5a, b). Information about the location and size 

of the actuator is contained in the control input influence matrix B . Information about the 

sensor location is contained in the matrix C . Because there is no explicit disturbance in 

equations (2-5a, b), the placement strategy here only considers the case that actuators are 

collocated with the disturbance, and sensors are collocated with the performance outputs. 

Note that, for the purpose of describing the methodology, the term “actuator” will be 

used for generality, although the focus of this thesis is on smart control devices which are 

not technically actuators. Also sensors mainly refer to accelerometers in this study. 

For this benchmark problem, control devices are required to be placed at base level 

and, conveniently, at bearing locations. So there are 92 candidate locations for control 

devices. Accelerometers may be placed at the four corners (Figure 3-1) of each floor 

including the base. Each corner has one accelerometer in the x- and one in the y-direction, 

giving eight available accelerometer locations for each floor. Note that three sensors would 

be enough for each floor to capture the responses because each floor has three DOFs. Thus, 

the problem of placement is to determine a reasonable subset of locations for control 

devices that offer high controllability of the desired modes, and a reasonable subset of 

sensors that offer high observability in detection of the desired modes. 

It is known that controllability and observability for linear systems are conveniently 

captured by the singular values of the grammians or Hankel singular values. Hankel 

singular values do not vary with coordinate transformations. An almost-balanced 

realization can be obtained without changing the  matrix. A logical conclusion to draw is 

that Hankel norms are appropriate measures for placement. 

A

Consider a model of a structure in modal state-space representation ( )  

The Hankel norm of the ith mode is given by 

mmm CBA ,, .
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Quantitatively, the Hankel norm is approximately one-half of the  norm, that is, about 

half of the resonant peak of transfer function (equation (2-39)). 

∞H

The question arises as to how the Hankel norm of a structure with a single control 

device or sensor relates to the Hankel norm with a set of s actuators or r sensors. It turns 

out that, for each mode, the Hankel norm with a set of actuators or sensors is the rms sum 

of the Hankel norm with each single actuator or sensor from this set, i.e., 
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Finally, the Hankel norm of the system is the largest norm of its mode, i.e., 
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where maxγ  is the largest Hankel singular value of the system. Equations (4-10), (4-11) and 

(4-12) provide a means to normalize the indices using Hankel norms so that the indices are 

between 0 and 1. 

 For actuator placement, the index ijσ  that evaluates the jth actuator at the ith mode in 

terms of Hankel norm is defined with respect to all modes and control devices as 

 

h

hij
ij G

G
=σ .                                                    (4-13) 

 

Similarly, in the sensor placement, the placement index that evaluates the kth sensor at the 

ith mode is defined as 

 

h

hik
ik G

G
=σ .                                                  (4-14) 
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It is convenient to arrange the placement indices in the placement index matrix. The 

resulting actuator placement index matrix is 
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                                            (4-15) 
⇐  jth actuator 

                                                              ⇑  

                                                          ith mode 

 

The sensor placement index matrix is 
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                                            (4-16) 
⇐  kth sensor 

                                                               ⇑  

                                                          ith mode 

 

The placement index can be studied from two points of views. First, one may examine 

the importance of a single actuator/sensor over all modes 

 

Actuator index vector (column):  [ ]TAsAAA σσσσ L21=                      (4-17) 

Sensor index vector (column): [ ]TSrSSS σσσσ L21=                        (4-18) 
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where the kth entry is the placement index of the kth control device/sensor. In the case of 

the Hankel norm,  

 

)(max ikiAk σσ = , )(max ikiSk σσ = .                                        (4-19) 

 

This method focuses on the overall importance of an actuator or sensor regardless of 

its importance to a specified mode, so it could possibly result in large indices from the 

higher modes. It does not agree with the design goal for base isolation systems where the 

first several modes dominate, so it is not adopted in this study. 

One may examine the importance of all control devices/sensors to a single mode using 

 

Actuator index vector (row):  [ ]AmnAmAmAm σσσσ L21=              (4-20) 

Sensor index vector (row): [ ]SmnSmSmSm σσσσ L21=                   (4-21) 

where  
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Herein this second approach is adopted to determine the index vector for every 

available device location. The placement index characterizes the contribution of each 

device to each mode, so it serves as a placement solution. Locations with small indices for 

lower modes would be removed. 

 

4.3  Placement Strategy 

When one considers the placement of a very large number of candidate actuators and 

sensors, the maximum placement indices alone may not be a sufficient criterion 

(Gawronski, 1998). Suppose that a specific location gives a high performance index. 

Inevitably, locations close to it will have a high performance index as well. But the 
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locations in the neighborhood are not necessarily the best choice because the performance 

gains achieved using devices at these locations can also be achieved by appropriate gain 

adjustments (Gawronski, 1998). The best strategy is to find locations that cannot be 

compensated for by gain adjustment. Naturally, correlation coefficients are used to remove 

highly correlated locations. Below is a description of the approach recommended by 

Gawronski (1998). 

Define a vector of the squares of the ith Hankel modal norms, 
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where 
hikG  is the Hankel norm of the kth mode at the ith control device or sensor. The 

correlation coefficient ikρ  is defined as  
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Given a small positive number ε, say 001.0=ε , denote the membership index , 

, where

)(kI

rk ,,1L= r  is the number of sensors (control devices). This index is determined as 
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=
1
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)(kI ,    
elsewhere

ik ερ −> 1
       

and ik σσ <
     .                   (4-25) 

for ik >

 

If , then the kth sensor (actuator) is accepted. If 1)( =kI 0)( =kI , the kth sensor (actuator) 

is rejected. In the case of 0)( =kI , the two locations i and k are either highly correlated 

)1( ερ −>ik , or the ith location has a higher performance iσ . 
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Based on the above analysis the placement strategy is established. For this 3D base 

isolation benchmark problem, sensor placement is more flexible, so actuator locations are 

decided first. The placement procedure is described as follows: 

• Place the control devices in order at the 92 bearing locations, one in the x-direction 

and one in the y-direction. Assume each admissible sensor location has two sensors, 

one in the x- and one in the y-direction, so that the  matrix is fixed. For each 

location, compute the modal  matrix and then the Hankel placement indices for all 

modes, until the 92×27 (total 27 modes) placement index matrix is formed. 

mC

mB

• Roughly choose 20~25 locations with the largest placement indices in the lower 

modes. 

• Check the correlation coefficients for the selected locations. Reject actuators with 

. The resulting values (say, 10) are the final locations. If the number is less 

then 10, add more locations in step 2; if the number is more than 10, decrease ε so that 

rejection condition is stricter. 

0)( =kI

• Fix the   matrix for the resulting set of actuator locations. Compute the floor sensor 

placement indices, assuming sensors are put at all four corners on this floor while none 

are on other floors to determine  matrix. Repeat for each floor until the 9×27 

placement index matrix is formed. 

mB

mC

• Reject insignificant floors that have very low sensor placement indices. 

• For the remaining floors, compute the corner placement indices one by one. Retain the 

non-correlated corners. 

All control device and sensor locations are thus determined following the above 

procedure. 

 

4.4  Control Device and Sensor Placement for the Benchmark Problem 

The 3D dynamics of the benchmark problem have been introduced in Chapter 3. The 

parameters of the superstructure are known. The optimal isolation parameters, bearing 

stiffness and damping coefficient of the linear elastomeric bearings, have been determined 
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in Chapter 3. They are:  kN/m, 4.2119=bk 44.241=bc  kN-s/m. Matrices  and  in 

the computation of Hankel norms and placement indices are dependent upon the device 

locations.  

mB mC

Control device (MR damper) locations are to be determined first. Assume 

accelerometers are placed at all available locations (named as full sensor placement here). 

Consider control devices placed at bearing location #1, one in the x-direction and one in the 

y-direction. Follow the placement procedures summarized in section 4.3. Use equations (4-

10), (4-13) and (4-14) to compute placement indices of all modes. Repeat this process for 

all other 91 bearing locations. The resulting control device placement index matrix has a 

dimension of 92×27. Figure 4-3 shows the indices of first 18 modes (first 6 modes in each 

of the x-, y- and r-directions, versus bearing locations. 

As shown in Figure 4-3, locations with large placement indices almost coincide for all 

modes, though they may vary in the x-, y- and r-directions. Comparing Figure 4-3 and 

Figure 3-1, it is found that these locations are on the outer base corners and the south edge 

(see Appendix A for corner numbers). Particularly, locations near corner 2 (bearing 19) and 

4 (bearing 80) and the south edge influence the r-direction modes most. They are the 

farthest points away from the center of mass. Locations that influence the x-direction 

modes (blue) are along or near the south edge (bearing 1-3, 31, 60-65, 90, etc.). These 

locations are near the x-axis across the center of the mass. It is not apparent what locations 

influence the low y-direction modes most in Figure 4-3. One reason for this is that control 

devices are placed in the x- and y-directions at the same time when computing the 

placement indices. Because the structure is irregular, the x- device would also impact on the 

y- mode, and vice versa. The structure is more eccentric in the x-direction than in the y-

direction, so the result of interaction is that the y-direction indices are less significant 

relative to the x-direction indices for this strategy. If the y-direction indices were examined 

with the control devices placed in the y-direction only, things may be different. Anyway, 

for the results shown in Figure 4-3, it is preferable to include points near the y-axis across 

the center of mass and the other corner (corner 1), though they do not show high indices for 

this placement strategy. Taking into account all possible high correlations, primary 
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selection also includes some inner locations and the inner corner. These location numbers 

are (22 in total): 

1, 2, 3, 12, 13, 19, 30, 31, 40, 43, 49, 62, 63, 64, 73, 74, 75, 80, 81, 87, 91, 92 

 

 
Figure 4-3 Control Device Placement Indices vs. Control Device Locations 

 

The benchmark constraints require that the control force not exceed the bearing force, 

and it is desirable not to exceed 10% of the total weight of the structural system for 

practicality. The total weight of the building is 2.031×105 kN. Simulations show that the 

maximum bearing forces for the passive isolation case are 33%, 18%, and 21% of the total 

weight in the x-, y-, and r-directions, respectively. As the MR dampers to be used in this 

study have capacity of 1000 kN, the total number of MR dampers should not exceed 40. So 

in this study, it was decided to use 40 MR dampers. 
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With the 22 primary selections, the next step is to reject the highly correlated locations. 

For this problem, the small number 001.0=ε ; that is, locations i and k are regarded as 

highly correlated if . Table 4-1 provides the membership indices (those with 

 are to be rejected). 

999.0>ikr

0)( =kI

 

Table 4-1 Membership Index of the Control Device Locations 
location 1 2 3 12 13 19 30 31 40 43 49 62 63 64 73 74 75 80 81 87 91 92

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
2 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 
3 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 
12 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
13 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
19 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 
30 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 
31 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 
40 0 1 0 1 1 1 1 1 1 1 1 1 0 1 
43 0 1 1 1 1 1 1 1 1 1 1 1 1 
49 0 1 1 1 1 1 1 1 1 1 0 1 
62 0 0 0 1 1 1 1 1 1 1 0 
63 0 1 1 1 1 1 1 1 1 0 
64 0 1 1 1 1 1 1 1 0 
73 0 1 1 1 1 1 1 1 
74 0 1 1 1 1 1 1 
75 0 1 1 1 1 1 
80 0 0 1 1 1 
81 0 1 1 1 
87 0 1 1 
91 0 1 
92 0 
 

Based on Table 4-1, the original locations (1st column) and highly correlated locations 

(2nd column, ) are shown in Table 4-2. Location numbers that do not show up in 

this table, such as 12, 13, 72, 73, 74, have 

0)( =kI

1)( =kI  and thus are accepted.  
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Table 4-2 Correlation Membership of Control Device Locations 

Original location Membership Locations 
1 92 
2 92 
3 31, 62, 63, 64 
19 80, 81 
30 40, 49 
31 63, 64 
40 49 

 

 

Eliminating the highly correlated locations leaves 12 remaining locations. Considering 

planar distribution, 10 locations are finally selected. They are: 

3, 13, 19, 30, 31, 43, 65, 74, 81, 87.  

Placing two MR dampers in the x-direction and two in the y-direction at each location, 

the total number of control devices (MR dampers) is 40. The schematic of the control 

device installation is shown in Figure 4-4 and the planar placement on the base level is 

shown in Figure 4-5. 

 
Figure 4-4 Schematic of Control Device Installation 

 

Actuator or control device

Base Slab
Column

Isolation Bearing 
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Figure 4-5 Plan View of the Base Level and the Control Device Locations 

 

Full sensor placement was assumed in the determination of the control device 

locations. Now that the control device locations have been determined, the next step is to 

examine the sensor (accelerometer) floor placement indices according to step 4 in 

placement procedures. Figure 4-6 shows the first 18 mode indices versus floor numbers. 

Floor 0 represents the base. 
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Figure 4-6 Sensor Placement Indices vs. Floors 

 

It is clear that floors 1 and 2 and the base always have small indices for modes 1-19. 

This result indicates that sensors placed on the two floors do not correspond to high 

observability, and thus are not very important in detecting response signals. So 

accelerometers will be placed on floors 3 to 8.  

There are four corners, and thus eight available locations for accelerometers for each 

floor, some of which are redundant. Three accelerometers per floor (24 total accelerometers) 

would provide a measure of all motions of that particular floor. So the following step is to 

compute the corner indices of floors 3 to 8. Place two accelerometers (one in the x- 

direction and one in the y-direction) at each corner of floor 3 and compute the indices and 

then repeat this procedure for the remaining floors (4~8).  

Figure 4-7 shows the sensor corner indices of floor 3. Corner 4 (pink) has a different 

index than corners 1, 2, and 3, which are identical. For floors 4~8, computation shows that 

the indices corresponding to the four corners are exactly equal to each other. For computing 
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convenience, accelerometers are placed at corners 2 and 4 from floor 3 through 8 in this 

benchmark problem because the two corners are farthest from the center of the mass and 

thus the responses are large. In addition, displacement sensors are placed at corners 2 and 4 

at the isolation level to measure the bearing deformations. They are necessary for the 

determination of the control force. This completes the sensor placement. Note that the 

number of accelerometers might be further reduced if the indices were computed with 

accelerometers placed at single directions, because currently there are four accelerometers 

at each floor. 

 

 
Figure 4-7 Sensor Corner Placement Indices for Floor 3 

 

Figure 4-8 shows the locations of the accelerometers (red) and displacement sensors 

(yellow). No sensors are installed on floors 1 and 2. 
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Figure 4-8 Sensor Locations 

 

To evaluate the performance with the reduced set of sensors, comparisons are 

performed for responses of the isolated benchmark building subjected to the Newhall 

earthquake. The control algorithm is chosen as LQG, and MR dampers are adopted as the 

control devices to examine the performance of these systems. Weights are placed on the 

corner base drifts, corner base accelerations, and corner top floor accelerations 

( , , 810642.4 ×=driftq 910145.1 ×=naccelratioq 2020×= IR , 225IS =
gg xx &&&& , and 20×= nsvv ii

S I , 

where ns is the number of sensors). Noise in the sensors is simulated by adding a band-

limited white noise to each signal that is scaled to have an RMS of approximately 3% of 

the corresponding maximum RMS responses of the passive system. The approach to 

control design will be described in detail in Chapters 5 and 6. Time history responses of the 

base drift, inter-story drift between the fifth and sixth floors, and roof accelerations at 

corner 1 in the x-direction for full sensor placement and reduced sensor placement are 

shown in Figure 4-9. It can be seen that the response values are very close and differences 

in the resulting performance of the two systems are not significant. 
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Figure 4-9 Responses at Corner 1 in the x-Direction with Full- and Reduced-Sensors 

 

4.5  Summary 

A controllability/observability-based approach has been proposed to effectively place 

control devices and sensors. The placement indices are based on Hankel singular values, 

which are invariant for both unbalanced and balanced systems. Validation of the technique 

for control devices (MR dampers) not collocated with disturbances, and for sensors not 

collocated with performance, is mathematically demonstrated. Correlations between 

locations are examined to avoid duplication of control effort, and locations with high 

indices and high correlations are rejected. The efficacy of the reduced set of sensors is 

confirmed by earthquake responses. 
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Chapter 5 

LQG Control in Nodal Coordinates 

A variety of control algorithms have been developed for civil engineering applications, 

each of which has its proponents. This study focuses the on linear quadratic regulator 

(LQR), a modern optimal control technique that uses quadratic cost functions with 

solutions based on a common variational approach. The methodology yields matrix 

equations for the control gains that can be solved using readily available tools (Matlab, 

2005). It provides the designers with great insight into the design and the flexibility to 

perform trade-offs among various performance objectives. This chapter first reviews LQR, 

and then states how LQG techniques overcome the limitations of LQR through the use of 

the separation principle and Kalman filter. Also, this chapter considers an important issue 

regarding the procedures for the design of LQG controllers: the selection of the responses 

to be weighted.  Simply weighting many responses does not necessarily help to close all 

loops and result in larger gains for the desired modes. The principles and techniques for 

selecting the weighting matrix are applied to the base isolation benchmark problem, 

followed by the introduction of the modeling and control of the control device to be used of 

this study, MR dampers. Optimal weighting values for the semiactively controlled system 

are determined by the test and error method in the nodal coordinate system. Responses of 

the benchmark building subjected to the design earthquakes with the selected weightings 

are presented. The limitation and inconvenience of the nodal approach in closed-loop pole 

assignment and controller order reduction are discussed at the end of this chapter. 
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5.1  Linear Quadratic (LQ) Control 

5.1.1  Linear Quadratic Regulator (LQR) 

The governing equation for a general feedback control system in state space form is 

given in (4-1) and (4-2). Rewriting (4-1) and (4-2) with sensor noise included in 

measurement yields 

 

EwBuAxx ++=&                                                      (5-1) 

vwEuDxCy +++= yyy                                                (5-2) 

wEuDxCz zzz ++=                                                    (5-3) 

 

The objective of a regulator is to drive any initial condition errors to zeros, thus 

guaranteeing stability. This objective is achieved by selecting the control input  to 

minimize a quadratic performance criterion or cost function. The problem is referred as the 

least-squares (optimal) control problem. The cost function often takes a form that 

minimizes the norm, covariance, or other inner-product space. An appropriate form for this 

study is 

)(tu
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)()(1lim dtEJ TT RuuuDxCQuDxC zzzz .                 (5-4) 

 

where  represents expectation,  is the vector of command forces, [ ].E u R  is a positive 

definite input weighting matrix, and Q  is a positive semi-definite state weighting matrix. 

The relative magnitude of Q  and R  may be selected to trade off requirements on the 

magnitude of the performance against requirements on the magnitude of the input. For 

example, a larger R  penalizes the control more, and a larger Q  makes z  approach zero 

more quickly with time.  
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In LQR control, the task is to find an optimal feedback gain K  to achieve the control 

objectives. State variables are typically used for feedback, i.e., xy = , yielding the control 

law 

 

Kxu −= .                                                         (5-5) 

 

For more general output feedback, the solution for K  involves three coupled nonlinear 

matrix equations, whereas for full-state feedback, the solution reduces to the Riccati 

equation. Moreover, full-state feedback has powerful stability properties that are not 

guaranteed for other types of output feedback (Stevens and Lewis, 2003).  

The solution to the LQ regulator with state feedback is well developed. The optimal 

gain matrix is given by 

 

)~(~ 1
c

TT SBNRK += −                                                (5-6) 

 

where  is the solution of the controller algebraic Riccati equation (CARE) given by cS

 

QSBRBSSAAS0 ~~~~ 1 +−+= −
c

T
cc

T
c                                       (5-7) 

where 
TT NRNQCCQ zz

~~~~ 1−−=                                               (5-8a)   

NRBAA ~~~ 1−−= T                                                   (5-8b)   

zz QDCN T=~                                                       (5-8c) 

zz QDDRR T+=~ .                                                 (5-8d) 

 

Calculations to determine K  can be done using Matlab routine lqry.m in the control 

toolbox. Note that if D , the procedures would be greatly simplified without losing 

generality. 

0z =

Note that the above control law results in 
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EwxBKAx +−= )(& .                                            (5-9) 

 

We see that the values of the closed-loop poles depend on the control gain K . The 

optimal control gain should stabilize the closed-loop )( BKA − . We say (  is 

stabilizable if such a feedback gain exists. For a stabilizable system, closed-loop poles may 

be arbitrarily assigned. For the LQ regulator with full-state feedback, the closed-loop 

stability is guaranteed if the matrix pair 

),BA

),( ACC zz
T  in the open-loop is detectable (Steven 

and Lewis, 2003). Other output feedback amounts to partial feedback, so it is clear that 

closed-loop stability cannot be expected. This is an advantage of using full-state LQ control. 

The detectability condition basically means that zz CCT  should be chosen so that all 

unstable states are weighted in the cost function, so that the open-loop unstable states will 

be forced to zero through the action of the control. From the numerical point of view, if 

),( ACC zz
T  is observable, a positive definite solution  results; otherwise,  may be 

singular. Because  helps determine , it is found that if  is singular, it may result in 

some zero-gain elements in 

cS cS

cS K cS

K . That is, if ),( ACC zz
T  is not observable, the LQ 

algorithm can refuse to close some of the feedback loops (Stevens and Lewis, 2003).  

 

5.1.2  Kalman Filter and Noise-Shaping Filter 

Though LQR with full state feedback has some advantages and robust characteristics, 

all the states are not available for measurement in most real world problems. The observer 

design technique enables one to estimate the full state given only partial information in the 

measured output if the measured outputs capture enough information about the dynamics of 

the system. The combination of the state estimates  and the state feedback gain K  is then 

a dynamic regulator similar to the static regulator. It yields a control force of  

x̂

 

xKu ˆ−= .                                                    (5-10) 

 



88 

 

Equation (5-10) is well-known as the separation principle, which states that the feedback 

gain and observer may be designed separately and then concatenated (Stevens and Lewis, 

2003). The separation principle also makes it possible to reduce the order of the controllers. 

The state estimator is a dynamical system. For systems without disturbance and noise 

measurement, the state estimator is described by 

 

LyuLDBxLCAyyLBuxAx yy +−+−=−++= )(ˆ)()ˆ(ˆ&̂                (5-11) 

 

That is, the observer consists of two parts: a model of the system, and an error-correcting 

portion that involves the output error multiplied by the observer gain L . Observers of this 

type are called output-injection observers. 

To demonstrate that equation (5-11) is indeed an observer, define the estimation error 

as xxx ˆ~ −= . It is seen that the estimation error has dynamics given by 

 

xLCAx y
~)(~ −=&                                              (5-12) 

 

It is important for the estimation error to vanish with time for any initial estimate, 

ensuring that  will approach . This will occur if )(ˆ tx )(tx )( yLCA −  is asymptotically 

stable, so the observer design problem is to select L  to stabilize . It is well 

known that the poles of  may be arbitrarily assigned if and only if  is 

observable. Also note that equation (5-12) is very similar to equation (5-9), and  

)( yLCA −

)( yLCA − ),( ACy

 
TTTT LCALCA yy −=− )(                                       (5-13) 

 

)( TTT LCA y−  is similar to )( BKA − . This outcome is called duality, i.e., state feedback 

and output injections are duals. The duality indicates that the same theory for selecting the 

state-feedback gain K  may be used to select the observer gain L , i.e., Q  and R  may be 

taken as design parameters for output-injection observers without noises (Stevens and 
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Lewis, 2003). It enables us to design an observer by replacing A ,  andB K  with ,  

and  in equation (5-7), respectively. 

TA T
yC

TL

However, in reality, modeling inaccuracies, disturbances, and noises are present in the 

system and in the measurements. The observer gain could not be solved using the duality 

property for this situation. A Kalman filter is an observer that is used for applications that 

require the reconstruction of the state from a stochastically disturbed (e.g., seismically 

excited) system and noisy measurements based on probability theory. The process 

disturbance  and measurement noise  are unknown, but it is reasonable to assume 

them to be zero-mean Gaussian white noise processes and orthogonal to each other, i.e., 

)(tw )(tv

 

{ } 0wv =TE                   (5-14a) { } )(E τδHww =T ,   { } )(E τδPvv =T ,   

),(~)( H0w t ,   ),()( P0v =t                                      (5-14b) 

 

where  and  are positive semi-definite covariance matrices. H P

The assumption that  and  are white noise processes may in some 

applications be too simplistic to facilitate good performance in the controller. For instance, 

wind-gust noise and near-field earthquakes consist mainly of low-frequency components. 

To inform the controller about the frequency content of the perturbation (ground motion for 

this study), suppose  is not white. We can determine a filter system description 

)(tw )(tv

)(tw
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             ww xCw =                                                       (5-15b) 

 

which has a white noise input  and output . Equations (5-15a, b) are called a 

noise-shaping filter. Its dynamics may be combined with the plant (equation (5-1) and (5-3)) 

to obtain the augmented dynamics 
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where the subscript a denotes the augmented system. This augmented system does have a 

white process noise . A similar procedure is applied if  is non-white. )(tn )(tv

In this study, a Kanai-Tajimi shaping filter that is widely applied in civil engineering is 

adopted. The Kanai-Tajimi shaping filter takes the form 
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where, 5.1=gω  rad/s, and 2.0=gς .  

Note that the benchmark building is subjected to bi-directional excitations, so the 

perturbation (ground motion) is modeled as process 
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The state-space matrices , , and  for the filter are obtained from the transfer 

function (5-19).  

wA wB wC

The magnitude of the shaping filter as a function of frequency, as well as the frequency 

content (power spectral density) of the seven historical design earthquakes, is plotted in 

Figure 5-1. 
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Figure 5-1 Frequency Content of Design Earthquakes and the Kanai-Tajimi Filter 

 

With the augmented model, the observer gain matrix is given by 

 
1−= PCSL y

T
ae                                                       (5-20) 

 

where  is the solution of the filter algebraic Riccati equation (FARE) given by eS

 
T
aaea

T
aee

T
aae HEESCPCSSAAS0 yy +−+= −1 .                         (5-21) 

 

Calculations to determine L  are done using the Matlab routine lqew.m within the control 

toolbox. For design purposes, 225IH =  and IP =  are used in LQG controller design in 

this chapter, where I  represents the identity matrix.  

If the feedback gain matrix  is selected using the LQR Riccati equation (5-6) and (5-

7), and estimator gain matrix L  is selected using the Kalman filter Riccati equation (5-20) 

K
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and (5-21), this procedure is called the LQG (Linear system, Quadratic cost, Gaussian 

noise) design.  

Now an output-projection observer for the stochastic system (5-16) and (5-17) is in the 

form 

 

                  .         (5-22) LyuLDBxLCAyyLuBxAx yy +−+−=−++= )(ˆ)()ˆ(ˆˆ aaaaaa
&

 

For the estimation error xxx ˆ~ −= , the error’s dynamics is governed by 

 

LvwExLCAx y −+−= aaa
~)(~& .                                   (5-23) 

 

It turns out that the solution to the FARE is the error covariance, i.e., { }T
e Et xxS ~~)( = . If 

the observer is asymptotically stable and  and  are stationary processes, the error 

 will eventually reach a steady state in which it is also stationary with constant mean 

and covariance. The gain L  will be chosen to minimize the steady state covariance . 

Thus, the optimal gain L  will be a constant matrix of observer gains (Stevens and Lewis, 

2003). 

)(tw )(tv

)(~ tx

)(teS

Regarding the system’s closed-loop stability properties, the conditions stated above 

also hold. It is stated as: if  is observable and ),( aa ACy ),( zz CCEA T
aa  is reachable, the 

error system (5-23) using the gain L  solved from FARE is asymptotically stable (Steven 

and Lewis, 2003). Generally L  is selected such that poles of )( aa yLCA −  are 2 to 6 times 

farther to the left than those of the matrix )( BKA −  so that the estimation error vanishes as 

quickly as desired. 

Last, the force can be used as a measurement for the estimator, and in semiactive 

systems it is often necessary to do so. If the force is provided by active devices, then it is 

clear that xKfu ˆ== , where  is the actual force vector, and thus f

 

LyxLDBLCAxKDxCyLuBxAx yyyy +−−−=−−++= ˆ))(()ˆˆ(ˆˆ
aaaaaaaa& .  (5-24) 
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However, for semiactive systems, the applied force f  is not the commanded force u , or 

the control action determined by the controller, i.e., Kxf ≠ . Instead, the force f  must be 

measured and fed into the controller resulting in the control action given by 
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where  is the Laplace transform operator, and  is the measured force. The 

estimator is now described by 

{}.L measf

 

 .                        (5-26) [ ]
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The controller is then designed for the combined filter / structure model, as shown in 

Figure 5-2. 

Combined filter / structure 

 
Figure 5-2 Flow Chart of the Nominal Controller Design Using the Nodal Approach 

 

K-T shaping 
filter

Structural Nodal 
Model

Selected regulated output Selected feedback responses 
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build controller 

(Eqs. 5-26, 5-10) 
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Select 
weighting 
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Estimator design 
to obtain L

Select 
disturbance 

level H=25I2 
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5.1.3  Selection of the Weighting Matrices 

The discussion in section 5.1.2 shows that the observability of ),( zz CCEA T
aa  and 

controllability of  are conditions to ensure the convergence of the closed-loop 

plant and the estimator, respectively. In this study, the feedback measurements selected 

corner accelerations and base drifts. For simplicity, the estimator model without noise is 

used for the study of weighting matrix selection. The matrix  is 

),( aa ACy

yC
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The subscript is to remind that only the rows corresponding to corners 2 and 4 are to be 

used. The observability  has been indirectly indicated in chapter 4, where all sensor 

location indices, and thus the associated Hankel singular values, are non-zero.  

),( ACy

The goal of this section is to select the outputs , or  the response gains , on which 

weights should be placed. Responses to be weighted depend on the performance objectives. 

They should close all loops, and should result in larger control gains in the desired states or 

modes. The objective of the control of base isolated systems is to decrease the base drift 

while retaining the advantage of small inter-story drifts and accelerations. Table 5-1 gives 

six response combinations and the notations used for describing each case for testing the 

observability of 

z zC

),( ACC zz
T , or equivalently, the controllability of ),( zz CCA T , which is 

quantitatively measured by the grammians. 

 

Table 5-1 Weighting Matrix Alternatives 

1. All Accelerations (AA) 4. Base Drifts + Base Accelerations (BDBA) 

2. Base Drifts + Inter-story drifts of 
the superstructure (AID) 

5. Base Drifts + Accelerations of the base and 
top (8th )floor (BDBATA) 

3. Base Drifts + All Accelerations 
(BDAA) 

6. Base Drifts + Accelerations of the 5th and 
8th floor (BD5ATA) 
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Figure 5-3 shows the observability grammian versus mode number for cases 1 and 2. It 

is clear that only the isolation modes (fundamental modes in each direction) are observable 

for the second case. That is, weightings placed on the base drifts and inter-story drifts 

would result in control gains near zero for the other higher modes. However, the first case, 

weighting all acceleration responses, has non-zero observability grammians in all modes, 

and the most observable modes are the isolation modes and the highest modes. The highest 

modes usually have small participation factors and thus contribute less to the responses. So 

although most modes have large observability grammians for the two cases, they are not a 

good choice to achieve the goal of controlling lower modes. 

 

 
Figure 5-3 Weighting Observability Grammians for Cases AA and AID 

 

The third case also includes the base drifts as weighted responses. The observability 

grammians for this case are shown in the left column of Figure 5-4. Notice that this 

modification does not change the observability significantly or the resulting control gains, 

from the first case. Thus it is important to carefully select the weighting used rather than 

simply weighting all responses. The fourth case weights only the base drifts and base 
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acceleration. The results (right column of Figure 5-4) show that most grammian values 

decrease, while the ratio of lower modes to isolation modes increases from 1/10 to 1/7. This 

choice is better if the control of the lower modes is the primary interest. Note that the 

absolute grammian values do not affect the control effort, because the control gains can be 

adjusted through the magnitude of the weighting value . Q

 

 
Figure 5-4 Weighting Observability Grammains for Cases BDAA and BDBA 

 

Figure 5-5 provides two more cases, with the top floor accelerations and the fifth-floor 

accelerations added to the previous case. The results show that the ratio of the grammians 

of the flexible (structural) modes to those of the isolation modes increased to 1/5 when the 

top floor accelerations are added in case five (BDBATA). But the addition of weighting 

placed on the fifth-floor resulted in a decrease in this ratio (case six). 
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Figure 5-5 Weighting Observability Grammians for Cases BDBATA and BD5ATA 

 

In summary, the fifth case of BDBATA is the most appropriate choice of weighting 

and will be used in the sequel. 

 

5.2  Control of the Benchmark Building Subjected to Earthquakes  

5.2.1 Modeling and Control of MR Dampers 

MR dampers are semiactive control devices that use MR fluid to provide controllable 

force. MR fluids typically consist of micro-sized, magnetically polarizable particles 

dispersed in a carrier medium such as mineral or silicone oil. When a magnetic field is 

applied to the fluids, particle chains form, and the fluid becomes a semi-solid and exhibits 

viscoplastic behavior. The MR fluid can be readily controlled with a low voltage (i.e., 

12~24 V), current-driven power supply outputting only 1~2 Amps. Transition to 

rheological equilibrium can be achieved in a few milliseconds, allowing construction of 

devices with high bandwidth. MR fluids have high strength, low power requirements, can 
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operate at temperatures from -40° to 150°C with only slight variations in the yield stress, 

and are insensitive to impurities commonly introduced during manufacturing. The future of 

MR devices for civil engineering applications appears to be quite bright (Dyke, 1996a). 

A schematic of a type of MR damper is shown in Figure 5-6(a). The MR fluid valve is 

contained within the damper piston and consists of an annolar flow channel. The magnetic 

field is applied radially, perpendicular to the direction of fluid flow. The magnetic field 

varies with the current in the electromagnetic coil having a specified resistance. The current 

is proportional to a commanded DC input voltage. With the power supply, the damper can 

reach a maximum force determined by the design dimensions. 

 

 

Magnetic Choke

(a)                                                         (b) 

 

Figure 5-6 (a) Schematic of an MR Damper   

   (b) Bouc-Wen Model of the MR Damper (Spencer et al,1997) 

 

To take full advantage of the unique features of the MR damper in control 

applications, a high fidelity model needs to be used to accurately reproduce the behavior of 

the MR damper. After reviewing several idealized mechanical models for controllable fluid 

dampers, Spencer et al (1997) proposed a new model that overcomes a number of the 

shortcomings of these models and can effectively portray the behavior of a typical MR 

damper. This phenomenological model is based on a Bouc-Wen hysteresis model, which is 

numerically tractable and is capable of exhibiting a wide variety of hysteretic behaviors. 

The schematic of this model is shown in Figure 5-6 (b). 

The dashpot in series with the Bouc-Wen model is included to provide the roll-off 

observed in the force as the velocity approaches zero. Three parameters are assumed to 

c0

Bouc-Wen MR fluid x 

fc 

Rod Piston
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vary with the applied voltage. Additionally, a first order filter has been incorporated into 

the model to account for the dynamics involved in the MR fluid reaching rheological 

equilibrium. This simple model is shown to be able to accurately predict the response of the 

MR damper over a wide range of operating conditions (Spencer et al., 1997; Yi et al., 2001; 

Dyke et al., 1999). The equations governing the force f produced by this device model are 

 

zxcf α+= &0   and    xAzxzzxz nn &&&& +−−= − βγ 1                       (5-28) 

 

where x is the displacement accross the device, and z is an evolutionary variable that 

accounts for the history dependence of the response. By adjusting the parameters of the 

model γ, β, n, and A, one can control the linearity in the unloading and the smoothness of 

the transition from the pre-yield to post-yield region. The functional dependence of the 

device parameters on the command input u is modeled as 

 

uba ααα +=   and   uccc ba 000 +=                                      (5-29) 

 

The first order filter that accounts for the dynamics involved in the MR fluid is given 

by 

 

)( vuu −−= η&                                                   (5-26) 

 

where v is the command voltage applied to the control circuit and η/1  is the time constant 

of the filter.  

The parameters of the MR damper used in this study are as follows: 

50872.1 ea =α N/cm, 59616.4 eb =α  N/cm, 40.40 =ac Nsec/(cm.V), 0.440 =bc N 

sec/(cm.V), , , 1=n 2.1=A 3=γ  cm-1, 3=β  cm-1, and 50=η  sec-1. They were selected 

so that the device has a capacity of 1000 kN. These parameters are based on the identified 

model of a shear-mode prototype MR damper tested at Washington University (Yi et al., 
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2001) and scaled up to have maximum capacity of 1000 kN with maximum command 

voltage V (Yoshida, 2003).  10max =V

The response of the MR damper to a sinusoidal wave with amplitude of 20cm, 

frequency of 0.5 Hz is shown in Figure 5-7 for six constant voltage levels: 0V, 2V, 4V, 6V, 

8V and 10V. The force levels increase with the command voltage levels. For the 

benchmark problem subjected to earthquakes, the MR dampers will experience 

displacements of 30cm to 50cm. 

 

 
Figure 5-7 Force-Time Response of the MR Damper to 20sin(πt) 

 

The force-displacement and force-velocity loops are shown in Figure 5-8 and Figure 5-

9, respectively. Note that the force-displacement loops progress along a clockwise path 

with increasing time, whereas the force-velocity loops progress along a counter-clockwise 

path with increasing time, and the MR damper force is not zero when the voltage is zero. 

Also note that the model of the MR damper exhibits the dissipative characteristic of a 

viscous device. 
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Figure 5-8 Force-Displacement Loop of the MR Damper to 20sin(πt) 

 

 
Figure 5-9 Force-Velocity Loop of the MR Damper to 20sin(πt) 
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Figure 5-9 also shows that the force-velocity relationship is not one-to-one but exhibits 

nonlinear behavior when the acceleration and velocity have opposite signs (or alternatively, 

when the velocity and displacement have the same sign). This behavior is crucial for 

control applications. 

For employing this model in simulation, it is important to remember that semiactive 

devices are dissipative devices. Pure dissipative devices are capable of generating control 

force only in the second and fourth quadrants of the force-velocity plane. To enforce this 

physically-based behavior, a constraint is applied in the simulation as 
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where  is the ith component of the desired force and  is the local velocity.  iu ix&

In this application, the measurements typically available for control force 

determination include the acceleration of selected points on the structure, the displacement 

of the MR damper, and the control force provided by the MR damper. The approach 

proposed here is to append a force feedback loop to induce the MR damper to produce a 

force f  approximately equal to the desired (nominal) control force u  (Dyke, 1996a). Thus 

a linear optimal controller is designed to calculate a vector of desired control forces based 

on the measured structural response y  and the measured control force vector . This 

approach has been shown in equation (5-25). The controller can be obtained from a variety 

of method. In this study, an LQG strategy is adopted. 

measf

Because of the nonlinear nature of the MR damper force and its dependence on the 

local response, it is not possible to directly command the ith MR damper to generate the 

specified force. The only way to control the force produced by the device is by adjusting 

the control voltage . The iv if  increases when  increases. iv

Many approaches have been proposed to control semiactive devices. The clipped-

optimal control algorithm based on acceleration feedback proposed by Dyke et al. (1996a, 

b,c) has found to be among the best performing of several nonlinear semiactive controllers 

for MR devices. The clipped-optimal algorithm selects the command signal as follows:  
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When the ith MR damper is providing the desired optimal force (i.e., imeas uf = ), the 

voltage applied to the damper should remain at the present level. If the magnitude of the 

force produced by the damper is smaller than the magnitude of the desired optimal force, 

and the two forces have the same design, the voltage applied to the current driver is 

increased to the maximum level so as to increase the force produced by the damper to 

match the desired control force. Otherwise, the command voltage is set to zero. The 

algorithm for selecting the command signal for the ith MR damper is illustrated in Figure 

5-10 and stated as 

 

)}({max imeasii ufuHVv −=                                             (5-31) 

 

where  is the maximum voltage to the current driver,  is the Heaviside step 

function,  is the desired force and  is the measured force 

maxV (.)H

iu measf

ui

 
Figure 5-10 Graphical Representation for Selecting Command Signal (Dyke, 1996a) 

 

With the clipped-optimal control algorithm for MR dampers, the simulink block 

diagram of this smart base isolation system is shown in Figure 5-11. The flow chart of the 

nominal controller design in the nodal coordinates was given in Figure 5-2. The flow chart 

of the nominal controller design in the modal coordinates will be given in chapter 6. The 

diagram also has a selection block for cases of passive-on (10 V to MR damper), passive-

fmin 

V=VmaxV=0
V=0

fmeas 

V=0V=0 
V=Vmax
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off (0 V in MR damper), and semiactive. The passive (without MR damper) case will be 

controlled by the switch on/off block when it is on 0. 

 

 
Figure 5-11 Simulink Block Diagram for Simulations 

 

5.2.2 Weighting Determination 

Engineering judgment plays an important role in modern LQ design for the selection 

of  and Q R . Once they are selected, the determination of the optimal feedback gain is a 

formal procedure relying on the solution of nonlinear coupled matrix equations. Because 

the ratio of the values in these two matrices are the critical parameters, it is assumed herein 

that  without loss of generality, and 2020×= IR 225IS =
gg xx &&&&  and  in solving the 

estimator gain. 

20×= nsvv ii
S I

In this study, the method to select Q  used by Erkus and Johnson (2004) is adopted. 

Weightings are placed on displacements, velocities and accelerations at corner j, floor i. 

This choice is expressed as 
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where , , and α β γ  represent the relative importance of displacements, velocities and 

accelerations, respectively. xω  and yω  are the frequencies of the dominant modes in the x-

and y- directions, respectively. The frequencies are included in the weights to normalize the 

velocity and acceleration weights to be compatible with displacement weights in units and 

to have similar magnitudes. Here the mean of the first three frequencies (fundamental 

frequencies in x-, y- and r-directions) is used for both xω  and yω ; that is 
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In this study, all α , β  and γ  are set to unity. The weightings on drift, velocity, and 

acceleration are determined by scaling the values ,  and , respectively. An 

additional floor weighting of 100 is placed on the base displacements because these 

responses are the most important in our design goal. 

driftq velq accelq

The weighting matrix is composed of weights on displacements, velocities and 

accelerations of interest. It has been determined in section 5.2, i.e., corner base drifts, base 

accelerations, and top floor accelerations. The matrix is thus in the form 
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where  
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The responses at the four corners (marked in Figure 4-7) are used for weighting. ,  

and  contain x- and y-components as shown in equation (5-30). 

j
bα

j
bγ

j
8γ

To determine the best weightings for structural response improvement, contour plots 

showing the ratio of improvement (maximum response of the semiactive system to the 

optimal passive system) at various q values (herein called q-Maps) for the Newhall 

earthquake are created. The highest frequency of the structure is 133Hz, so the integration 

step used for simulation is 0.0005 sec. The locations and numbers of MR dampers used are 

those determined in chapter 4, while sensors are the full set rather than the reduced set. 

Sensor noise is not considered in creating these q-maps.  

The q-maps for the response reduction in the base drift and in the acceleration are 

shown in Figures 5-11 and 5-12, respectively. It is clear that for the semiactively controlled 

system, the accelerations increase and the base drifts decrease with larger values of . 

This behavior is the trade-off commonly observed in base-isolation systems. However, the 

responses do not change linearly with , so it is possible to find acceptable weighting 

values for both the base drifts and the accelerations.  

driftq

accelq

Figure 5-12 shows that base drift can be reduced by up to 25% in the x-direction and 

up to 65% in the y-direction with . For these weighting values, 

accelerations are increased by 50% in the x-direction and 10% in the y-direction (Figure 5-

13). 

5.75.6 10~10=driftq
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Figure 5-12  q-Maps of Base Drift Response 

 

 
Figure 5-13 q-Maps of Acceleration Responses 
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The performance in the y-direction appears to be better because the responses are 

normalized by the larger of the two responses, which are those in the x-direction of the 

passive system. In subsequent earthquake simulations,  (with the factor 

100 on base displacement, the actual ) and  are 

used as the best weightings. 

610642.4 ×=driftq

810642.4 ×=driftq 910145.1 ×=onacceleratiq

 

5.2.3 Earthquake Simulation Results 

With the best set of weightings obtained through a thorough examination of the 

Newhall q-maps, the maximum responses subjected to all seven design earthquakes are 

computed. In addition to the responses of the semiactively controlled system, the 

performance of some other systems, passive (without MR damper), passive-on (10 V to 

MR damper), and passive-off (0 V in MR damper) systems are also computed for 

comparison. To be consistent with the q-maps, these simulations also use the full set of 

sensors without considering sensor noise. Results regarding the reduced-sensor and sensor 

noise will be shown in chapter 6. Figure 5-14 shows the maximum base drift, roof 

acceleration, and inter-story drift between the base and the 1st floor for the four cases 

(denoted by “semiactive”, “psv”, “psv on” and “psv off”, respectively, in the legend.) to the 

seven design earthquakes.  
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Figure 5-14 Maximum Responses to the Design Earthquakes (Nodal) 

 

It is clear that the maximum responses of the ideal passive and MR-based passive-off 

systems are nearly equal. This result is because, with zero voltage, the damping force 

provided by MR damper is quite small. Passive-on is the most effective among the four 

strategies tested in limiting the base drift. However, it causes large accelerations and inter-

story drifts in the superstructure. The semiactive system falls between the two cases. The 

base drift is limited to some extent at the cost of moderate acceleration and inter-story drift 

increases.  

The performance of the passive-on and semiactive cases can also be compared using 

performance indices (Narasimhan, et al., 2004). Here six performance indices from 

Narasimhan et al. (2004) are compared (Table 5-2), and they correspond to the responses at 

the corners (unlike those defined in previous work). These numbers are also plotted in bar 
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graphs of Figure 5-15 and 5-16, where PI numbers 1, 2, 3 of the axis represent the 

performance indices 3, 4, 5, respectively, and 4, 5, 6 represent the performance indices 7, 

11, and 8, respectively. 

The values in Table 5-2 and the two figures demonstrate that both systems are able to 

decrease the base drift )1,1( 73 << JJ  significantly for most of the earthquakes, especially 

in the case of the RMS responses. Though the semiactive system is not as good as the 

passive-on case at limiting the base drift, it is advantageous because it does not lead to the 

significantly larger story drifts and accelerations as the passive-on case. For the passive-on 

case, both peak and RMS accelerations for the earthquakes El Centro and Kobe are 

extremely large, while the semiactive case controls the accelerations within a range for all 

earthquakes, indicating the semiactively controlled system is particularly flexible in that it 

can adapt to various excitations and the designer has options regarding the design goals. 

 

Table 5-2 Performance Indices 

Peak displ., drift, and accel. RMS displ., drift, and accel. Earthquakes Cases 
J3 J4 J5 J7 J11 J8 

Passive-on 0.6416 1.2695 1.711 0.5147 0.8372 1.3951 Newhall 
Semiactive 0.7660 1.2436 1.4942 0.6988 0.7644 1.1568 
Passive-on 0.7380 1.1888 1.6139 0.5300 0.7655 1.1794 Sylmar 
Semiactive 0.7859 1.0669 1.1384 0.5904 0.6562 0.8829 
Passive-on 0.2468 0.9329 2.7857 0.3612 0.6900 2.8173 El Centro 
Semiactive 0.5044 0.4962 1.7547 0.4783 0.3742 1.4551 
Passive-on 0.7360 0.7475 1.3323 0.3906 0.3707 1.3349 Rinaldi 
Semiactive 0.8333 0.7498 1.2382 0.6503 0.4729 1.0482 
Passive-on 0.5333 0.9633 1.7454 0.4439 0.7523 1.8341 Kobe 
Semiactive 0.7511 0.7478 1.2592 0.6380 0.5227 1.1794 
Passive-on 0.5725 0.5038 1.5323 0.4067 0.3647 0.9561 Ji-ji 
Semiactive 0.8624 0.8001 1.7390 0.7597 0.6981 0.9967 
Passive-on 0.5753 0.5058 1.3211 0.4786 0.4718 0.8771Erzincan 
Semiactive 0.6457 0.6537 1.2372 0.6043 0.5172 0.8643 
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Figure 5-15 Performance Indices of the Passive-on System 
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Figure 5-16 Performance Indices of the Semiactive System (Nodal) 

 

Next, the responses to the Newhall earthquake are examined closely because q-maps 

were computed specifically for this earthquake. Figure 5-17 shows the base drift at corner 1 

of the system to this earthquake. Though the semiactive case does not decrease the base 

drifts as much as the passive-on case, it has a similar decrease in the peak values than the 

passive and passive-off cases as the passive-on case.  
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Figure 5-17 Base Drift Responses at Corner 1 to the Newhall Earthquake (Nodal) 

 

 
Figure 5-18 Acceleration Responses at Roof Corner 1 to the Newhall Earthquake (Nodal) 
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Figure 5-19 shows the top floor accelerations at corner 1 of the various systems for this 

earthquake. Note that the accelerations for the semiactive case are not as high as those of 

the passive-on case, although the peak values in x-direction are similar.  

 

 
Figure 5-19 Response Profiles to the Newhall Earthquake (Nodal) 

 

Figure 5-19 provides the peak response profiles for the Newhall earthquake. These 

plots show that maximum inter-story drift occurs at the 6th floor, while the maximum 

acceleration occurs at the roof. The semiactive system clearly performs better than the 

passive-on system in that it results in both lower accelerations and lower inter-story drifts. 

The effective forces provided by MR dampers for the passive-on, passive-off and 

semiactive cases, and the effective bearing forces in the passive case are given in Figure 5-

20. It shows that in the x- and y-directions, the effective control forces generated by the MR 

dampers do not exceed the maximum bearing forces used by the passive base isolation 
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system. This outcome satisfies the restrictions set forth in the benchmark problem. Also 

notice that the control forces in the passive-on case are greater than those in the semiactive 

case, and the forces with the MR-based passive-on controller do exceed the passive bearing 

forces in r-direction. This fact indicates that much less control effort (and smaller, less 

expensive devices) is needed for the semiactive strategy to achieve effective control 

performance than for the passive-on system. 

 

 
Figure 5-20 Effective Bearing Forces and Control Forces (Nodal) 

 

As a final study, it is of interest to investigate how well the control forces generated by 

the MR dampers using the clipped-optimal strategy track the desired control forces 

computed from LQG algorithm. The forces shown in Figure 5-21 are the forces in one of 

the two MR dampers at bearing #3 in x- and y-directions, respectively. The ability of the 

MR damper to track the desired force generated by the nominal LQG controller are clearly 

seen here. The reason the peak force in the MR damper is lower is that the capacity of the 

MR dampers used in this study is 1000 kN (see chapter 3) and the desired force exceeds 
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this value. This outcome occurs often in the design of a semiactive controller and should 

not be considered a deficiency.  

 

 
Figure 5-21 Desired and Actual Control Forces in MR Damper at Bearing 3 in the Newhall 

Earthquake (Nodal) 

 

5.3 Pole Assignment and Order Reduction in Nodal Coordinates 

With the weightings chosen, the controller gain matrix and estimator gain matrix have 

been determined, and thus the closed-loop poles of the plant )( BKA −  and of the LQG 

compensator  are determined. It is of interest to examine how the control action 

changes the system configuration. Here the closed-loop poles are plotted together with the 

open-loop poles to gain some insight into the feedback control in the frequency domain. 

)( yLCA −

Figure 5-22 shows that, with control, the first two modes in three directions (x, y, and 

r) are shifted to the left while other modes barely change. The two modes shifted roughly to 

the frequencies of the first two flexible modes, indicating that they are comparable to the 

frequencies of a traditional (fixed-base) building. However, the simulations shown above 
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demonstrated that the closed-loop system did not result in the large acceleration and drift 

levels typically present in fixed-based buildings. So the controlled structure has the ability 

to achieve better performance. 

Also observed from Figure 5-22 is that these poles shift nearly horizontally and remain 

at approximately the same magnitude along the imaginary axes, indicating that the shifted 

poles have higher damping. 

 

 
Figure 5-22 Poles of the Open-Loop and the Closed-Loop Plants (Nodal) 

 

Figure 5-23 provides a plot of the compensator poles versus the open-loop plant poles. 

This plot shows that some poles shift far into the left-hand-plane with the selected 

weightings. Figure 5-24 is a zoom-in of Figure 5-23. Clearly, the poles corresponding to 

one isolation mode, and all the second and the third modes are shifted to the left, indicating 

that estimator errors of these modes decay quickly. 
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Figure 5-23 Poles of the Open-Loop Plant and the Closed-Loop Controller (Nodal) 

 

 
Figure 5-24 Zoom-In of the Poles of the Open-Loop Plant and the Closed-Loop Controller 
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5.4  Summary 

Two issues for improving LQG design have been found to be very important: 

determination of the weightings and controller order. Weighting matrix selection is 

extensively studied in this chapter for a base isolated structural system by examining the 

observability of the selected responses so that all loops are closed and control gains are 

large in the desired modes. Optimal weighting values for the base isolated system 

examined herein are determined through trial simulations. The responses of the building to 

the design earthquakes with the selected weightings are presented.  

However, using the trial-and-error method to determine the weightings fails to provide 

the insights into the effect of the control action on the structural dynamics and thus, 

prevents one from conducting more effective control and performance-oriented design. For 

example, the closed-loop pole locations are implicitly related to the weightings in the nodal 

approach. It is not clear how to choose Q  and R  to achieve larger gains for desired states 

or modes. It is similarly hard to determine the estimator gains such that the errors in the 

estimator states decay quickly while the dynamics do not override the control action. In 

nodal coordinates, it is also challenging to reduce the order of the controller, because the 

insignificant states or modes are not explicitly shown in the weightings. However, in modal 

coordinates, the answers to the above questions are explicit and straightforward, which will 

be discussed and studied in the next chapter. 
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Chapter 6 

LQG Control and Order Reduction Using the Modal 
Approach 

Constraints on the controller order are frequently employed in classical controller 

design. For example, proportional control constrains the controller to have an order of zero, 

and a lead compensator constrains the order to be one (Burl, 1999). State-space control 

strategies tend to yield controllers of excessively high order. The basic order of an LQ 

methodology generates controllers with an order equal to the plant order. Frequency-

shaped loop transfer recovery, integral control, and other modifications of the controller’s 

frequency domain characteristics increase the controller order. High order controllers not 

only increase the hardware quantity and complexity, which translates directly to increased 

cost, but also increase software complexity, which increases coding and debugging time. 

High order controllers typically contain faster poles and thus require faster sampling rates, 

which may increase the cost of A/D and D/A conversion. For digital control, high order 

controllers increase the computational burden and therefore the speed of the required 

processor. For these reasons, it is desirable to reduce the order of the controllers whenever 

possible (Burl, 1999). 

Controller order can be reduced in three ways: (1) generate a reduced order 

approximation of the plant before designing the controller; (2) constrain the order of the 

controller during the design; (3) generate an approximate reduced order controller after the 

controller design. For MIMO systems combined with modern control technique like LQG, 

order reduction is usually performed after the full order controller design. A variety of 

techniques exist for controller order reduction. In this study, a technique referred to as 

LQG-balancing is adopted, for it assumes that the system to be balanced is closed with a 

standard LQG feedback loop. Studies have shown that the LQG approach is the most 

natural way to balance closed-loop systems (Jonckheer and Silverman, 1983). An 

approximate LQG-balanced method that simplifies the procedure will also be introduced 
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and evaluated in this chapter. The approximate procedures only apply to the modal 

coordinate system. 

 

6.1  LQG Balancing and Order Reduction 

6.1.1  LQG Control in Modal Coordinates 

For an LQG strategy in a modal coordinate system, consider a simple case of  0Dz = , 

IR = , { } IPvv ==TE . There is no loss of generality with these assumptions because they 

can be compensated by adjusting Q  and . The CARE and FARE of the system 

represented by equations (5-7) and (5-21) then reduce to 

H

 

QSBBSSAAS0 ~
+−+= c

T
cc

T
c                                        (6-1) 

~
HSCCSSAAS0 yy +−+= ea

T
aee

T
aae                                     (6-2) 

where 

 

zz QCCQ T=
~ ,   ,   T

aa HEEH =
~

{ } )(E τδHww =T                         (6-3) 

 

and the control gain and the estimator gain are given by 

 

c
T SBK = ,    .                                            (6-4) T

ae yCSL =

 

Weightings can be placed directly on the responses of particular modes with the modal 

approach, so the model does not require a shaping filter in the controller design, i.e., 

, , and AA =a yy CC =a EE =a . 

The control design process usually begins with the required closed-loop system 

performance, such as the tracking error, or the pole locations. Thus, one must determine 

appropriate weights to meet the performance requirement. Generally, weighting selection is 
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a trial and error process and is dependent on experience. For example, using the nodal 

approach in chapter 5, weights are determined through q-maps by numerical simulation. 

However, with the modal approach, weightings can be placed directly on modes of interest. 

Moreover, an analytical solution can be obtained for low-authority LQG controllers. 

A low-authority controller only moderately modifies the system properties. For a 

structure with LQG control, the controller is of low-authority if the plant closed-loop 

matrix and the estimator closed-loop matrix in (6-5a) can be approximately replaced by (6-

5b) 

 

c
T

pcl SBBAA −= ,                                    (6-5a) CCSAA T
eecl −=

))(( c
T

pcl diageig SBBAA −≅ , .            (6-5b) ))(( CCSAA T
eecl diageig −≅

 

In other words, for a low-authority controller,  and  can be replaced with their 

diagonal terms (Gawronski, 1998).  

TBB CCT

Low-authority LQG controllers in modal representations produce diagonally dominant 

solutions of CARE and FARE equations, and weights are explicitly implied in pole shifts. 

These results are summarized in properties 6, 7 and 8 provided below. 

 

Consider the diagonal weight matrices Q~  and , i.e.,  and 

. The solutions to the Ricatti equations (6-1) and (6-2) can be obtained 

from properties 6 and 7, respectively. 

~
H )(~

2IQ iqdiag=

)( 2~
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6. There exist , where , ioi qq ,≤ 0, >ioq ni ,,1L= , such that  is the 

solution of (6-1), where 
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7. There exist , where , ioi hh ,≤ 0, >ioh ni ,,1L= , such that  is the 

solution of (6-2), where 

)( 2, IS iee sdiag≅
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Here, iγ  is the ith Hankel singular value,  and  are the ith controllability and 

observability grammians, respectively, 

iow , iow ,

iξ  the ith modal damping ratio, and iω  the ith 

circular frequency.  

Figure 6-1 shows the change in cβ  with the weight  or Hankel singular value square 

from equation (6-6). Similar results can be obtained for 

q

eβ  based on the weight . h

 

 

Figure 6-1 Coefficient cβ  vs. Weight q  or Hankel Singular Value  2γ

 

Also, the approximate diagonal CARE and FARE solutions allow one to determine the 

relationship between the weights and root loci. Let weighting matrices be 
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)0,0,,,,0,0(~
2 LK IQ iq= , and )0,0,,,,0,0( 2~

LK IH ih= .                (6-8) 

 

Then property 8 (the LQG root-locus) holds (Gawronski, 1994, 1998). 

 

8. For the weights (6-8) and ioi qq ,≤ , ioi hh ,≤ , the pair of closed-loop poles 

))Im()(Re( ,, iccicc j λλ ±  (controller) and ))Im()(Re( ,, ieciec j λλ ±  (estimator) related to 

the pair of open-loop poles ))Im()(Re( ,, icoico j λλ ± (controller) and 

))Im()(Re( ,, ieoieo j λλ ±   (estimator) by 

 

)Im()Re()Im()Re( ,,,,, icoicoiciccicc jj λλβλλ ±≅±                          (6-9a) 

)Im()Re()Im()Re( ,,,,, ieoieoieieciec jj λλβλλ ±≅±                          (6-9b) 

 

where  and  are limiting values for damping authority. They are the weights at 

which the ith resonant peak of the plant transfer function flattens (Gawronski, 1994,1998). 

ioq , ioh ,

Property 8 implies that the ith pair of closed-loop poles shifts the ith pair of open-loop 

poles by factors of ic,β  and ie,β  on the real axis for the controller and estimator, 

respectively (Gawronski, 1994, 1998). The imaginary parts idico ,, )Im( ωλ = , and other pairs 

of poles, remain unchanged. 

Proofs regarding the low-authority property, the approximate CARE and FARE 

solutions, and the root-loci to weight relationships are given in Gawronski (1994, 1998) 

and are summarized in Appendix B.  

An investigation of the root locus characteristic results in additional insights. Note that 

the real part of the poles is iiico ωζλ =)Re( , , and the resonant peak is iiio ωζκα 2, = , 

where κ  is a constant. One obtains 

 

icioiicic ,,,, // ααζζβ == .                                            (6-10) 

 



124 

 

ic,β  is thus a ratio of the closed-loop to the open- loop damping ratio, and the open-loop to 

the closed-loop resonant peak. Therefore, to suppress the resonant peak by ic,β  times, the 

required weighting is (from property 6)  
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≅ .                                          (6-11) 

 

ic,β  can also be interpreted as a ratio of the open-loop to closed-loop Hankel singular 

value, or as a ratio of the variances of the open-loop  and the closed-loop  states 

excited by the white noise input (Gawronski, 1998) as 
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This interpretation can be obtained using modal coordinate properties and Lyaponov 

equations.  

These formulas and related insights provide a direct approach to the design of the 

controller. Note that, although the controller and estimator gain matrices might not be 

completely accurate with the assumptions of 0Dz =  and 0E =y , they do not pose a  

problem for assigning pole location because, as property 8 illustrated, the desired solutions 

of , and thus the desired gains, can be found by adjusting weightings. So these 

assumptions do not result in a loss of generality. 

),( ec SS

 

6.1.2  LQG-Balanced and Approximately LQG-Balanced Controllers  

The LQG methodology generates controllers with an order equal to the plant order. 

The state-space model of the base isolated benchmark structure has an order of 54. It is 

desirable that the controller have a lower order. However, reducing the controller order 

based on Moore balanced realization (chapter 2) uses the assumption that the plant and the 
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controller are operating separately as open loops. One still has to be cautious about the 

feedback properties of the loop made up with the full system and a compensator based 

upon the reduced model. 

In this study, a new balancing and reduction approach, the LQG-balancing technique, 

is adopted. It was initiated by Jonckheer and Silverman (1983) and extended by 

Opdenacker and Jonckheer (1985), which considered the plant, from the beginning, within 

the LQG loop. Jonckheer and Silverman (1983) found that the eigenvalues of the solutions 

to the two algebraic Riccati equations (CARE and FARE) are similarity invariants, and 

there exists a state-space representation in which  and  are equal and diagonal. An 

LQG-balanced system is thus defined in the sense that the solutions to CARE and FARE 

are equal and diagonal, that is 

cS eS

 

),,,( 21 Nlqgec diag µµµ L=== MSS , Nµµµ ≥≥≥ L21                    (6-13) 

 

where )( ilqg diag µ=Σ , and iµ , ),,1( Ni L=  are LQG characteristic (or singular) values. 

The characteristic values are used to measure how important each state of the plant is in the 

closed loop. It makes it possible to construct a reduction index for the LQG compensator 

that remains approximately the same as the full order version. 

Let  be the transformation matrix of the LQG-balanced state such that lqgT xTx lqg= . 

The transformation matrix  is computed by decomposing  and , forming the 

matrix , and then performing singular value decomposition to , as 

lqgT cS eS

F F

 

c
T
cc PPS = ,                                              (6-14) e

T
ee PPS =

ecPPF =                                                        (6-15) 

T
lqg UVF M=                                                   (6-16) 

 

where the singular values are the LQG characteristic values.  is obtained using lqgT
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2/1−= lqgelqg MUPT    or   .                         (6-17) 2/11 −−= lqgclqg MVPT

 

The solutions of CARE and FARE, and the weighting matrices in the new coordinate 

system, are (Jonckheer and Silverman, 1983) 

 

lqgc
T
lqgc TSTS = , lqgelqge TSTS 1−=                                            (6-18) 

lqg
T
lqgc TQTQ ~

= , lqglqge THTQ
~

1−= .                                         (6-19) 

 

The most striking result Opdenacker and Jonckheer (1985) obtained for the LQG 

balancing method is that, in a system without energy dissipation, the LQG-balanced 

coordinates coincide with the modal coordinates and that the characteristic values of the 

balancing all equal one. A characteristic value not equal to one is a clear indication of the 

existence of dissipation in the system. Other types of balancing, or related techniques, do 

not have this property. Thus, LQG-balancing is a procedure that accounts for the physical 

characteristics of the problem throughout. 

The results for low-authority controllers lead to approximate, but greatly simplified 

procedures of LQG balancing in modal coordinates. The system is approximately LQG-

balanced in the sense that lqgec M≅≅ SS , i.e., their diagonal terms satisfy iicics µε =+ ,, , 

iieies µε =+ ,,  with 1,, <<icic sε  and 1,, <<ieie sε . Gawronski (1994) derived 

approximate, closed-form balanced-LQG-controller gains from Riccati equations in modal 

coordinates, stated in property 9. 

 

9. For the diagonally dominant solutions of CARE and FARE for a Moore-balanced 

modal model, i.e.,  and )( 2, IS icc sdiag≅ )( 2, IS iee sdiag≅ , an approximate balanced-

LQG solution is obtained. It is diagonally dominant, i.e., 

 

)( 2Iilqg diag µ≅M  and   ieici ss ,,=µ                               (6-20) 
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where  is the transformation matrix from the balanced modal representation 

 to the LQG-balanced representation . It is 

diagonally dominant as well, 

lqgT

),,,( mbmbmbmb DCBA ),,,( lqglqglqglqg DCBA
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s
T =                    (6-21) 

 

and  is approximately obtained by ),,,( lqglqglqglqg DCBA

 

),,,(),,,( 1
mblqgmbmblqgmblqglqglqglqg DTCBTADCBA −≅ .                    (6-22) 

 

lqgT  is obtained either from the singular value decomposition (SVD) method or the 

approximate method; the control gain and the estimator gain based on the LQG-balanced 

model are given by 

 

c
T
lqg SBK = ,    T

lqge ,yCSL = .                                            (6-23) 

 

The LQG-balanced controller for the semiactive system is then 

 

[
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−+−=
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xKf ˆ=                                                           (6-24b) 

 

These results provide a means for controller order reduction. 

 

6.1.3  Reduction Index and Reduction Strategy 

A balanced model was introduced above for model reduction. However, determining 

the order and the retained states that best reproduce the complete system needs a measure 
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of importance, i.e., a reduction index. Generally, system norms are used as reduction 

indices (Burl, 1999). However, system norms, including Hankel norms, reflect only the 

system controllability and observability properties of the open-loop systems. For closed-

loop, Jonckheer and Silverman (1983) used the LQG characteristic values as the reduction 

indices to measure the importance of the compensator performance. This study uses an 

order-reduction index that was introduced by Gawronski (1994, 1998). This order-

reduction index accounts for both the system controllability and observability properties of 

the open-loop system and the compensator performance. It is the product of Hankel 

singular value and the LQG characteristic value; that is, 

 

iii µγσ 2= .                                                     (6-25) 

 

From equations (6-6), (6-7) and (6-20), one obtains 

 

2
)1)(1( ,, −−

= ieic
i

ββ
σ .                                          (6-26) 

 

Equation (6-26) reflects the degree of damping of motion, which depends on the pole 

mobility to the left-hand side of the complex plane (Gawronski, 1994, 1998). If a pair of 

poles is easily moved (i. e., a small weight is required), the corresponding states are easy to 

control and estimate; otherwise, if poles hardly move even for large weights, the states are 

difficult to control and estimate. If the ith controller pole is stationary, then 1, =icβ ; if the 

ith estimator pole is stationary, then 1, =ieβ . For both cases, 0=iσ . For shifted controller 

poles and estimator poles, 1, >icβ , 1, >ieβ  and thus 0>iσ . In addition, from equations 

(6-12) and (6-26), one obtains 
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That is, the reduction index is proportional to the relative change of the responses of the 

open- and closed-loop systems due to white noise. So iσ  is a proper indicator of the 

importance of states and thus can serve as the reduction index. 

A matrix of the reduction indices matrix is formed by the product of the Hankel 

singular matrix and LQG characteristic value matrix 

 

lqgh M2ΓΣ = .                                                  (6-28) 

 

The large entries of Σ  are to be retained and the small entries are be truncated. Arranging 

the iσ ’s in descending order, and denoting retained entries with a subscript r, truncated 

with a subscript t, modal coordinate with a subscript m, the reduction matrix becomes 

 

),( trdiag ΣΣΣ = .                                            (6-29) 

 

To truncate the insignificant states or modes, the estimator model is partitioned as 
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(6-30) 

 

where  is the LQG-balanced model, the transformation matrix of 

which is obtained either from accurate singular value decomposition (equation (6-21)) or 

approximation (equation (6-19)). Note that the states should be arranged with the same 

sorting order as the reduction index matrix  is arranged. 

),,,( lqglqglqglqg DCBA

Σ

The reduced estimator is 
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The output of the controller is the control force. The full order control force is xKˆ . 

Partitioning K  as [ ], the order-reduced control force is tr KK

 

rr xKf ˆ= .                                                 (6-32) 

 

6.1.4  Spillover in Modal Control 

The modal approach requires one to decouple the system equations into sets of two 

equations, each dealing with a single modal coordinate. However, as shown in equations 

(6-9a, b), the effect of the action of the control system is similar to that of high damping, 

and it is possible that some modes can even become over-damped. The small damping 

assumption does not hold any more. Some modes may be coupled again with the addition 

of the control system, and the coupling can be very strong (much stronger than if they were 

coupled with non-proportional damping). As a result, energy might be inadvertently 

pumped into one of the uncontrolled modes. This phenomenon has been called “spillover” 

(Genta, 1999). Spillover can cause the system to behave differently than predicted, and in 

some cases can even results in instabilities. 

However, when the full-order model of the system is used for control law design, the 

LQR control law using full-state feedback, and the LQG control law using a Kalman filter, 

guarantee closed-loop stability. Moreover, the focus of this study is on semiactive systems 

using MR dampers as control devices instead of an active system using actuators. The 

device itself is inherently passive and cannot generate instabilities in the controlled system. 

Therefore, it is only necessary to refine the control strategy that works efficiently within 

this bound for vibration mitigation as well as spillover suppression. 

A key to achieving this objective is the understanding that most of the structural 

vibration energy is typically contained in the lowest modes of vibration, especially for base 

isolation systems. Because we are dealing with linear systems, energy is not able to transfer 

to the higher modes for base isolation systems and thus spillover is avoided. Note that there 

are some design constraints for the benchmark problem, one of which is the limitation on 

the number and capacity of the control devices. This restriction is included to define an 
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upper bound of the control force, thus ensuring that the system still acts as a base isolation 

system even when the control force is introduced.  

Further spillover mitigation for modal LQG control in this study is through closed-

loop pole placement. Through the use of larger cβ  values in the lower modes and smaller 

cβ  values in the higher modes, the closed-loop poles can be placed at the desired locations 

so that only lower modes are coupled (through the presence of the controller) while higher 

modes are not effected. This outcome will be shown in the figures of the closed-loop poles 

of the plant in the section 6.2. In addition, the control devices are placed only at locations 

with higher placement indices (stronger controllability) at lower modes. This approach also 

helps to avoid the potential of spillover. 

 

6.2  Application to the Benchmark Building 

6.2.1  LQG-Balanced Controller for the Benchmark Building  

 
Figure 6-2  Hankel Singular Values from SVD of Balanced Nodal Model and from 

Approximation of Balanced and Unbalanced Modal Model 
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Before designing the LQG-balanced controller, Hankel singular values that represent 

the open-loop controllability and observability are computed and are shown in Figure 6-2.  

The upper figure shows the accurate values obtained from Moore-balanced modal 

model using the singular value decomposition method. The lower figure shows the 

comparisons of the unbalanced and Moore-balanced modal model using the approximate 

closed-form equations. The results agree very well, which confirms the fact that Hankel 

singular values are invariant under linear transformation, and the approximate method is 

sufficient for Hankel singular value computation. 

The first step in the LQG compensator design is to determine the closed-loop pole 

locations. As is shown in the approximate LQG-balancing algorithm, the closed-loop pole 

locations are determined by the solutions of the Ricatti equations, which are consequently 

determined by the weightings, and thus by cβ  and eβ . In this study, the design procedures 

for the reduced-order LQG controller start from the trial values of cβ  and eβ . A block 

diagram is shown in Figure 6-3. 

Structural Modal 
Model 

 
Figure 6-3 Flow Chart of the Nominal Controller Design Using the Modal Approach 

 

Select 
weightings 

βc  

Select 
weightings 

βe  

Compute 
Sc(Eq.6-6)

Compute 
Se(Eq.6-7)

Compute
Tlqg

Obtain LQG-Balanced 
Structural Model

LQR design: 
use Eq.6-4 to 

determine Klqg 

Estimator design: 
use Eq.6-4 to 
determine Llqg 

Compute 
Sc,lqg , Se,lqg

Selected feedback outputs

Obtain Moore-
Balanced Model

Use Klqg and Llqg 
to build controller

(Eqs. 6-24 a,b) 
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The procedure is described as follows: 

• Balance the form 2 modal state-space representation of the plant using equations (2-55) 

and (2-56).  

• Place the closed-loop poles of the plant and the estimator at desired positions. This is 

done by assuming cβ  and eβ  values are known. Determine the weighting matrices Q~  

and , solve  and  (equations (6-6) and (6-7)) and then 
~
H cS eS K  and  (equations (6-

4)). Adjust 

L

cβ  and eβ  values so that the two equations of (6-5a) have the desired 

eigenvalues.  

• Use either the singular value decomposition algorithm (equation (6-17)) or the 

approximation algorithm (equation (6-21)) to obtain the LQG-balanced transformation 

matrix . The LQG-balanced representation  and the LQG 

characteristic values  are then easily obtained using equations (6-16) or (6-20).  

lqgT ),,,( lqglqglqglqg DCBA

lqgM

• Compute the reduction indices using equation (6-25) or (6-26), form the reduction 

index matrix and decide which modes are to be retained. 

• Based on the LQG-balanced representation, construct the full-order LQG-balanced 

controller (equation 6-24). Now that the retained modes have been identified, the 

reduced-order controller is then obtained (equations (6-30) and (6-31)).  

• Apply the full-order and reduced-order controller to the plant. Examine the 

performance of the reduced-order LQG controller. If the desired performance is not 

achieved, repeat the procedure by testing other cβ  and eβ  values. 

 

Because the goal of controlling base isolation systems is to decrease the response of 

the fundamental modes while maintaining low responses for the higher modes, ic,β  values 

for the first six modes (first two modes in x-, y- and r-directions, respectively) are chosen as 

4.8, 14.6, 3.1, 1.4, 1.4, 1.02, while ic,β  values for other modes are 1.1. The corresponding 

weightings on modes, , are then obtained, the first six of which are: 5314.9, 4627.1, 

4267.8, 1012.6, 691.97, 748.8, respectively. Others are between 200 and 500, much smaller 

than the first three. Similarly, 

iq

ie,β  values for the first three modes are chosen as 5.2, 4.8, 
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and 3.0, while the others are 2. Such selection is to ensure that the estimator poles stay at 

least two times farther into the left hand plane than the plant poles.   values are obtained 

from equation (6-7), the first three of which are: 6103.6, 4616.3, 7272.3. 

ih

 
Figure 6-4 Test of Low-Authority Property 

 

Figure 6-4 shows the closed-loop poles in expressions (6-5a) and (6-5b), to see if  

and  can be replaced by their diagonal terms, that is, if the controller is of low-

authority for the selected weightings. It is demonstrated that all closed-loop plant poles 

nearly coincide except for a few lower modes. This outcome is because the lower modes 

are highly damped and highly weighted. As the estimator poles are purposely placed farther 

into the left hand plane, the 

TBB

CCT

eβ  values are large, and thus the estimation of the closed-loop 

poles using the diagonal terms of  deviates from the accurate poles. Figure 6-3 also 

shows that using 

CCT

2=eβ  for the last several high modes is too large for low-authority 

properties. However, these modes of the estimator will be truncated in the controller order 

reduction as shown later because they have small order reduction indices. The frequencies 

of the sensor noise are not this high (>100 Hz), so truncating these modes would not affect 
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the estimator’s noise rejection ability. So simulations below would still use the low-

authority approximation of the LQG-balanced controller for the above selected eβ ’s. 

It is of interest to examine how the LQG-balanced controller with the selected 

weightings changes the structural properties. Thus, the open-loop poles of the plant and the 

LQG-balanced closed-loop poles for the two algorithms are shown in Figure 6-5. 

Computations have confirmed that lqgec M≅≅ SS  using the approximate method. The 

plot demonstrates that the approximate LQG-balancing algorithm using the low-authority 

property agrees well with the accurate LQG-balancing using complicated singular value 

decomposition methods. Also, it shows that the feedback only changes the lower modes as 

desired. The three pairs of poles move to the left, comparable to the fundamental flexible 

modes. So the closed-loop system behaves like a fixed-base system without base isolation 

for the passive-on case. However, MR dampers in the semiactive case do not provide the 

maximum force all the time as in the passive-on case, so the semiactively controlled system 

would still behave like an isolation system with feedback.  

 

 
Figure 6-5 Poles of the Open-Loop and the Closed-Loop Plants (Modal, 1) 
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Figure 6-6 shows the close-loop estimator poles using the two LQG-balancing 

algorithms versus the open-loop plant poles. With the selected weights, all the poles move 

about twice as far to the left as those of the plant. The poles from the two LQG-balancing 

methods do not coincide for some modes, so the eβ  values are a little large for these modes. 

However, larger eβ  values are necessary for sensor noise rejection, which will be 

discussed later. 

 

 
Figure 6-6 Poles of the Open-Loop Plant and the Closed-Loop Controller (Modal, 1) 

 

It is desirable to see the frequency responses of the LQG-balanced control system. 

However, for MIMO systems, it is neither informative nor necessary to compute every 

transfer function. The frequency-dependent singular values of the transfer function matrix 

provide sufficient information regarding the maximum and minimum margins of the 

frequency response. The singular values are an extension of the Bode magnitude response 

for MIMO systems. 

Figure 6-7 shows the MIMO Bode magnitudes of base drifts at corner 1 to the control 

devices (MR dampers) of the open- and closed-loop systems without disturbances applied. 
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It shows that for the weightings chosen above, the controlled (closed-loop) system has 

lower peak frequency response in the fundamental modes (-81.4 dB) than the uncontrolled 

(open-loop) system (-91.2), and the first peak of the closed-loop system moves slightly to 

the left (2.77 rad/s to 1.13 rad/s), indicating the control force makes the system a little more 

rigid. However, from the third peak, the maximum frequency response margin of the 

controlled system is higher than the uncontrolled value, though weightings are also put on 

these modes. It also shows the difference between the LQG-balancing and Moore 

balancing (balancing such that controllability grammians and observability grammians are 

equal) is not significant for this base isolation system. 

 

 
Figure 6-7  MIMO Bode Magnitude Plots of Base Drifts to MR Damper at Bearing 3 of the 

Open- and Closed-Loop Systems (Modal, 1) 

 

Figure 6-8 shows the MIMO Bode magnitudes of the top floor accelerations at corner 

1 to control devices (MR dampers) of the open- and closed-loop system without 

disturbances. Similar results are obtained for the acceleration frequency responses. 
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Figure 6-8  MIMO Bode Magnitude Plots of Roof Corner Accelerations to MR Damper at 

Bearing 3 of the Open- and Closed-Loop Systems (Modal, 1) 

 

 
Figure 6-9  LQG Characteristic Values and Order Reduction Indices (Modal, 1) 
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Figures 6-7 and 6-8 show that the LQG-balanced controller is able to decrease the 

fundamental modes without sacrificing the higher modes for the undisturbed system. The 

order of this controller is then reduced to improve the design. Figure 6-9 shows the LQG 

characteristic values and controller order reduction index. As shown in Figure 6-9, both the 

LQG characteristic values and the order-reduction indices are large for the isolation modes. 

The order-reduction indices show that retaining first twelve modes seem to be good 

sufficient to capture the main features of the full-order controller.  

 

6.2.2  Earthquake Simulations 

In this section, the performance of the benchmark building with the designed controller 

is to be examined for earthquake excitations. Sensor noises are simulated by adding band-

limited white noises with an RMS magnitude of 3% of the RMS responses at the 

corresponding locations in the passive case to each of the measurements. 

The response profiles of the system with base-drift and all corner acceleration 

feedback and full order balanced-LQG controller subjected to the Newhall earthquake are 

shown in Figure 6-10. This plot shows that the semiactively controlled system only allows 

minor increases in inter-story drifts and accelerations over the passive system in the upper 

floors, and significantly decreases all responses as compared with the passive-on system. 

These results are better than the previous results using the nodal approach (Figure 5-16). 

This fact shows that the selected weightings for the modal approach are effective. 
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Figure 6-10 Response Profiles with Full-Sensor, Full-Order Controller 

to the Newhall Earthquake (Modal, 1) 

 

Figure 6-11 shows the response profiles with the set of reduced sensors determined in 

Chapter 4. Compared with Figure 6-10, it is clear that reduced set of sensors is able to 

capture the response. The responses of the two systems are very close indicating that the 

reduced set of accelerometers is sufficient. This set of sensors is adopted in all subsequent 

studies. 
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Figure 6-11 Response Profiles with Reduced-Sensor, Full-Order Controller 

to the Newhall Earthquake (Modal, 1) 

 

Figure 6-12 shows the response profiles with reduced sensors and the reduced-order 

controller with only 12 modes retained. Compared with Figure 6-10 and 6-11, it can be 

seen that reduced-order control results in an error in the story drift between floor 1 and the 

base. Further study shows that the reduced-order controller with 18 modes retained results 

in nearly the same performance as the full-order controller. 
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Figure 6-12 Response Profiles with Reduced-Sensor, 12-Mode Controller 

to the Newhall Earthquake (Modal, 1) 

 

The responses using these weightings, the reduced set of sensors and the reduced-order 

controller were computed. The time histories of the base displacement at bearing 3 are 

shown in Figure 6-13. This plot shows that the peak base drifts are smaller than those in 

nodal approach (Figure 5-9). The acceleration response at the same location as that in 

chapter 5 (Figure 5-18) is shown in Figure 6-14. The semiactive system results in smaller 

accelerations than the passive-on case although the base drifts are decreased at the same 

time. Again, this result is better than those using the nodal approach. 
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Figure 6-13 Base Drift Responses at Corner 1 to the Newhall Earthquake (Modal, 1) 

 

 
Figure 6-14 Acceleration Responses at Roof Corner 1 to the Newhall Earthquake (Modal, 1) 
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The forces generated by MR dampers using this approach (Figure 6-15) indicate that 

the modal approach uses less control force in achieving much better performance than the 

nodal approach (Figure 5-20). 

 

 
Figure 6-15 Effective Bearing Forces and Control Forces (Modal, 1) 

 

The maximum responses using these weightings for all seven design earthquakes are 

shown in Figure 6-16 (compared to Figure 5-8). Clearly, the semiactive system has smaller 

responses in inter-story drifts and accelerations, for all earthquakes than the passive-on 

system, and even the base drifts in the y-direction.  

The performance indices 3, 4, 5, 7, 11, 8 of the semiactive system for the seven 

earthquakes are compared in a bar graph (Figure 6-17). Comparing these results with those 

in Figure 5-16, it is clear that nearly all of the performance indices for all earthquakes are 

better than those corresponding to the nodal approach. Peak and RMS base drifts, inter-

story drifts and accelerations are all smaller. The modal approach turns out to be very 

effective, simple and straightforward. 
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Figure 6-16 Max Responses to the Design Earthquakes (Modal, 1) 
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Figure 6-17 Performance Indices of the Semiactive System (Modal, 1) 
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6.2.3  Control Performances for Different Weightings 

When selecting pole locations, it is useful to keep in mind that the control effort 

required is generally related to how far the open-loop poles are moved by feedback. 

Furthermore, when a zero is near a pole, the system may be nearly uncontrollable and 

moving such poles requires large control gains and thus large control effort. Therefore, a 

pole-placement philosophy that aims to modify only the undesirable aspects of the open-

loop response and avoid either large increases in bandwidth or efforts to move poles that 

are near zeros will typically allow smaller gains and thus smaller control devices than a 

philosophy that arbitrarily picks all the poles without regard to the original open-loop pole 

and zero locations (Steven and Lewis, 2003). 

In comparison with the selection of controller poles, estimator pole selection requires 

us to consider a different perspective. As in the controller, there is a feedback term in the 

estimator that grows in magnitude as the requested speed of its response increases. 

However, this feedback is in the form of an electronic signal or a digital word in a 

computer, so its growth causes no special difficulty (in theory). In the controller, increasing 

the speed of the response requires an increase in device size, weight and cost. The 

important consequence of increasing the speed of response of an estimator is that the 

bandwidth of the estimator becomes higher, thus causing more sensor noise to pass through 

to the control device. Thus, as with controller design, the best estimator design is a balance 

between good transient responses and low-enough bandwidth that sensor noise does not 

significantly impair actuator activity (Franklin et al., 2002).  

As a rule of thumb, the estimator poles can be chosen to be faster than the controller 

poles by a factor between 2 and 6. This ensures a faster decay of the estimator errors 

compared with the desired dynamics, thus causing the controller poles to dominate the total 

response. If the estimator poles are slower than the controller poles, we would expect the 

system response to disturbances to be dominated by the dynamic characteristics of the 

estimator rather than by those selected by the control law.  

For the measurement with sensor noise , the estimator equation is v

 

)ˆ(ˆˆ vuDxCyLEwBuxAx yy −−−+++=& .                           (6-33) 
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The associated estimator error is 

 

LvEwxLCAx y −+−= ~)(~& .                                      (6-34) 

 

Here the sensor noise is multiplied by L . If  is very small, then the effect of sensor noise 

is removed but the estimator’s dynamic response will be slow, so the error will not reject 

the effects of w  very well. On the other hand, if L  is large, then the estimator’s dynamic 

response will be fast, but the sensor noise, multiplied by L , results in large errors. Also, 

different weighting selection usually results in different control force. 

L

 

 
Figure 6-18 Poles of the Open-Loop Plant and the Closed-Loop Controller (Modal, 2) 

 

In this section, examples are given to show how the weightings change the pole 

locations. First, a comparison is made between the two cases of eβ  values with the cβ  

values unchanged. Larger eβ  values in low modes and smaller in higher modes are chosen 

for the second case. The first nine eβ ’s are: 7.0,  4.5, 2.5, 2.5, 2.2, 1.8, 2.1, 1.9, 1.7. The 
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resulting estimator poles are shown in Figure 6-18. This controller is expected to be 

truncated into a lower order, possibly 9 or 12. The controller order indices are shown in 

Figure 6-19. 

 

 
Figure 6-19 LQG Characteristic Values and Order Reduction Indices (Modal, 2) 

 

Figure 6-20 shows the step response of the closed-loop system and of the controller. It 

shows that the controller needs a longer time to settle, which indicates that the controller 

may not be very good for error and noise rejection. Further simulation shows that this 

controller is nearly as good at improving the performance as the controller discussed in the 

last section. The effective MR damper forces at the center of the base mass are given in 

Figure 6-21. It shows that this set of weightings results in smaller MR damper forces in the 

y-direction than the previous controller. 
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Figure 6-20 Step Responses of the Closed-Loop Plant and the Full-Order LQG Controller 

(Modal, 2) 

 
Figure 6-21 Effective Bearing Forces and Control Forces (Modal, 2) 
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Next, a comparison is made between different cβ  values for the second case of eβ . 

The second set of cβ  are smaller. They are 4.0, 3.5, 2.0, 2.0, 1.5, 1.2 for the first six modes, 

and 1.05 for all other modes. The open-loop and closed-loop poles of the plant are shown 

in Figure 6-22. It shows that smaller weightings do not push the closed-loop poles to the 

left as far as the larger weightings do. 

 

 
Figure 6-22 Poles of the Open-Loop and the Closed-Loop Plants (Modal, 2) 

 

The MIMO Bode magnitudes of the system with smaller weightings confirmed that 

the fundamental modes decreased less (-89.3) than the system with larger weightings (-

91.2), and frequencies shifted less (1.96 Hz vs. 1.13 Hz), as is shown in Figure 6-23. 
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Figure 6-23  MIMO Bode Magnitude Plots of Base Drifts to MR Damper at Bearing 3 of 

the Open- and Closed-Loop Systems (Modal, 2) 

 

Simulations with the Newhall earthquake for this set of weightings yield the same 

conclusions. From figure 6-24, it is obvious that the maximum base displacement is much 

larger than that in Figure 6-11. In Figure 6-25, the base drifts are larger than those in Figure 

6-13. So, if the weightings are too small, neither the acceleration nor the base displacement 

can be controlled very effectively. However, the relative positions of the plant and 

controller poles are better assigned according to the rule of thumb, because the controller 

decays faster (Figure 6-26) than in the first case (Figure 6-19). 
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Figure 6-24 Response Profiles with Reduced-Sensor, 18-Mode Controller 

to the Newhall Earthquake (Modal, 2) 

 
Figure 6-25 Base Drift Responses at Corner 1 to the Newhall Earthquake (Modal, 2) 
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Figure 6-26 Step Response of the Closed-Loop Plant and the Full-Order LQG Controller 

(Modal, 2) 

 

From the above analysis, it is clear that the weightings on the responses govern the 

system responses. The weightings of the controller determine whether the estimator gain L  

is optimal or not but have less effect on the system responses. Also, the control 

performance might be improved if the MR damper used is specifically designed for this 

building.  

The modal design procedures demonstrate that the LQG-balanced controller does 

ensure the desired closed-loop properties, and the pole locations can be easily assigned by 

adjusting the cβ  and eβ  values which relate to weightings through closed-form 

expressions. Thus, unlike the trial and error weighting selection in the nodal approach, the 

weighting selection using the modal approach is quite straightforward, simple, and has an 

explicit physical interpretation. 
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6.3  Sources of Error 

The errors considered in this chapter are mainly modeling errors. There are basically 

three sources: (1) Transformation from the nodal model to the modal model. For the 3D 

irregular structure, the equations of motion cannot be fully decoupled with modal 

decomposition. When they are written into decoupled modal equations, some non-

proportional damping and stiffness are eliminated, which results in errors; (2) Approximate 

solutions to the Riccati equations using the modal approach. Even for the structure that can 

be fully decoupled, the closed-form expressions are approximated by disposing of many 

insignificant off-diagonal terms. The balance-LQG controller applies to more assumptions 

such as low-authority controller, low damping ratios, and so on. The isolation-modes to be 

eliminated in base isolation systems are highly damped. This fact can be seen in the 

optimal passive design part. These modes have damping ratios of 15% or so. (3) The D  

matrix cannot be reflected in the controllability and observability analysis and, for 

simplicity, this matrix is often ignored in the control design procedure.  

 

6.4  Summary 

This chapter introduced a controller order reduction technique that takes into account 

both open-loop and closed-loop effects for computing a LQG-balanced representation. A 

convenient closed-form approximation using the modal approach was also introduced and 

applied to the base isolated benchmark building. Pole-location assignment with weighting 

selection was examined and the earthquake simulation results were compared for different 

cases of weightings, reduced-order controllers and sensors. The results in this chapter 

demonstrate that the modal approach is straightforward, efficient and physically explicit. 
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Chapter 7 

Conclusions and Recommendations 

The purpose of this study was to develop an approach for the design of a seismic 

control system that is based on physical understanding of the system and thus is particularly 

suitable to the design of a smart base isolation system. The effectiveness of the proposed 

control strategies have been demonstrated and evaluated through application to the 

benchmark smart base isolation problem. An approach for optimal placement of control 

devices and sensors was also considered, and was demonstrated within the context of this 

benchmark problem. Evaluation of the designed controllers has been performed using a set 

of earthquakes defined within the smart benchmark problem. MR dampers are the 

semiactive devices selected for use throughout this dissertation because of their promise for 

civil engineering applications. 

Using well established controllability and observability properties (they have often 

been overlooked in civil engineering applications), the distribution of control devices and 

the number and locations of the sensors are determined by the proposed placement indices. 

These devices indicate the importance of each potential control device location and of each 

sensor (accelerometer) location for each mode. Locations that have low placement indices 

for selected modes are rejected. Due to the complexity of this problem, a correlation index 

has also been proposed to reject highly correlated locations that would be redundant. The 

seismic performance of the structure with the selected MR damper and sensor locations 

demonstrates the efficacy of this placement algorithm. 

LQG is a modern optimal control technique that provides the designer with great 

flexibility to perform trade-offs among various objectives. It has been successfully applied 

in many civil engineering studies. However, from a civil engineering implementation point 

of view, this approach may not be obvious to the designer. The control gains require the 

selection of weighting values that require the designer to have considerable experience with 

the system. However, in the modal coordinate system, such experience is not as critical as 
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the modal characteristics of the system are physically based and clear to the design 

engineer. Thus, the modal approach not only results in many approximate closed-form 

relationships between weightings and closed-loop pole locations, but also provides explicit 

physical interpretations, and thus helps the designer to facilitate the design. 

This study first considered a nodal coordinate system for the design of controllers. In 

the traditional nodal coordinate system, the weighting matrix in the LQG controller was 

determined based on the controllability / observability concepts considering the closed-loop 

stability requirements and the loop closure. The best weighting matrix was selected from 

several options because it was more effective in suppressing the desired modes with less 

control effort. Earthquake simulations showed that the nodal approach was effective in 

limiting the base drifts without sacrificing the low inter-story drifts and accelerations 

typical for base isolation systems. However, the nodal approach could not provide an 

understanding of the relationship between the weightings and the control objectives for 

assigning the closed-loop pole locations. Finding the optimal weighting values required a 

trial and error approach. 

Due to the challenges in applying physical knowledge of the system in the nodal 

approach, the modal approach was considered for the base isolation system. Using the 

modal approach, the closed-loop poles could be placed at desired locations by adjusting the 

weightings on individual modes. Thus the responses of the specified mode can be 

suppressed. In addition, this study adopted a new balanced model, the LQG-balanced 

model, for controller order reduction. This balanced model can be conveniently obtained 

using approximate closed-loop formulas and this balancing technique accounts for 

feedback effects. Combining the LQG characteristic values with Hankel singular values, 

the order reduction indices thus take into account both the open-loop and the closed-loop 

effects. Earthquake simulations confirmed the effectiveness of the order-reduction 

technique. Responses of the base isolated building subjected to earthquakes using the 

modal approach displaced more base drift reduction combined with lower inter-story drift 

and acceleration responses, all while using less control force than in the nodal approach.  

In all, the proposed approach integrating knowledge of the modal characteristics of the 

system with optimal placement techniques and LQG control in the modal coordinate 
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system was found to be very effective in improving the seismic performance of base 

isolation systems. 

 

Some recommendations for futures studies related to this work are: 

• Due to the limitations set forth in the base isolation benchmark problem statement 

constraints, control devices can only be installed at the base level in this study. This 

constraint rule is necessary for the benchmark problem participants to compare their 

control strategies, but can not make full use of control strategies and the control 

devices, and thus the achievable performance of the building is only partially realized 

within this study. To achieve better performance, future researchers are recommended 

to test the control strategies for general locations of control devices. 

• This benchmark building model is three dimensional, modeled with two translational 

and one rotational degree of freedom at each floor. However, this study did not focus 

specifically on torsional behavior, but controlled translations and rotations 

simultaneously. Future researchers could further investigate the potential for 

controlling the torsional behaviors. 

• The benchmark building is a tool to demonstrate the techniques developed and 

synthesized in this research. Future researchers should apply these techniques to even 

more complex structural models. For example, these techniques should be eventually 

applied to structures with nonlinear behaviors to evaluate their performance. The base 

isolation benchmark problem also allows for the use of nonlinear bearings. 

• Experiments are a necessary step in the validation of control strategies. It is 

recommended that some experiments be conducted to verify the performance of the 

proposed strategies. Further comparisons to other control methods should also be 

performed.  

• MR damper studies so far have been limited to consideration of the versatile and 

controllable damping properties of these devices. However, MR dampers can serve as 

a tunable interaction element between a primary system and a secondary subsystem to 

control the energy flow between the two systems for the protection of the primary 

system. Research of the active interaction algorithm has been successfully conducted 
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using a friction device as the interactive element (Hayen and Iwan, 1994; Iwan and 

Wang, L.-J., 1998; Zhang and Iwan, 2002a, b, c). 
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Appendix A 

Structural Parameters of the Benchmark Building 

Coordinates of 92 the bearings (unit: m) 

(The origin of the coordinate system is the center of the mass of the base) 

 

1 1.82 , -47.79 ; 24  32.83 , -11.16 ; 47  1.82 , -24.05 ; 70  -17.25 , -4.63 ;
2  -7.32 , -47.79 ; 25  25.97 , -11.16 ; 48  1.82 , -31.88 ; 71  -17.25 , 3.23 ;
3  -17.25 , -47.79 ; 26  18.17 , -11.16 ; 49  1.82 , -39.75 ; 72  -17.25 , 11.06 ;
4  -17.25 , -39.93 ; 27  12.53 , -16.18 ; 50  10.21 , 23.04 ; 73  -17.25 , 18.93 ;
5  -17.25 , -31.88 ; 28  12.53 , -24.05 ; 51  10.21 , 15.21 ; 74  -17.25 , 26.76 ;
6  -17.25 , -24.05 ; 29  12.53 , -31.88 ; 52  10.21 , 7.35 ; 75  -12.28 , 30.69 ;
7  -17.25 , -16.18 ; 30  12.53 , -39.75 ; 53  10.21 , -0.49 ; 76  -2.41 , 30.69 ;
8  -17.25 , -8.35 ; 31  12.53 , -47.79 ; 54  18.17 , 23.04 ; 77  6.00 , 30.69 ;
9  -17.25 , -0.49 ; 32  -7.32 , 23.04 ; 55  18.17 , 15.21 ; 78  14.17 , 30.69 ;

10  -17.25 , 7.35 ; 33  -7.32 , 15.21 ; 56  18.17 , 7.35 ; 79  22.07 , 30.69 ;
11  -17.25 , 15.00 ; 34  -7.32 , 7.35 ; 57  18.17 , -0.49 ; 80  29.41 , 30.69 ;
12  -17.25 , 22.83 ; 35  -7.32 , -0.49 ; 58  25.97 , 23.04 ; 81  32.83 , 26.88 ;
13  -17.25 , 30.69 ; 36  -7.32 , -8.35 ; 59  25.97 , 15.21 ; 82  32.83 , 19.11 ;
14  -7.32 , 30.69 ; 37  -7.32 , -16.18 ; 60  25.97 , 7.35 ; 83  32.83 , 11.28 ;
15  1.82 , 30.69 ; 38  -7.32 , -24.05 ; 61  25.97 , -0.49 ; 84  32.83 , 3.41 ;
16  10.21 , 30.69 ; 39  -7.32 , -31.88 ; 62  -12.28 , -47.79 ; 85  32.83 , -5.82 ;
17  18.17 , 30.69 ; 40  -7.32 , -39.75 ; 63  -2.80 , -47.79 ; 86  29.35 , -11.16 ;
18  25.97 , 30.69 ; 41  1.82 , 23.04 ; 64  7.10 , -47.79 ; 87  22.07 , -11.16 ;
19  32.83 , 30.69 ; 42  1.82 , 15.21 ; 65  -17.25 , -43.86 ; 88  12.53 , -11.16 ;
20  32.83 , 23.04 ; 43  1.82 , 7.35 ; 66  -17.25 , -36.03 ; 89  12.53 , -20.12 ;
21  32.83 , 15.21 ; 44  1.82 , -0.50 ; 67  -17.25 , -28.16 ; 90  12.53 , -27.95 ;
22  32.83 , 7.35 ; 45  1.82 , -8.35 ; 68  -17.25 , -20.33 ; 91  12.53 , -35.81 ;
23  32.83 , -0.49 ; 46  1.82 , -16.18 ; 69  -17.25 , -12.47 ; 92  12.53 , -43.65;  

 

Coordinates of the corners: 

Floors 1 to 6 Floors 7 to 8

1 -17.25,  30.69 1 -17.25,  30.69;
2  -17.25, -47.79; 2 -17.25, -47.79
3 12.53, -47.79; 3 12.53, -47.79;
4  32.83,  30.69; 4 12.53,  30.69

1

2 3

4 1

2 3

4

 
Masses of the base in the x-, y-, r- directions (units: x- y-: kN-sec2/m, r-: kN-sec2-m) 
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mb_x = 3565.73;    mb_y = mb_x;   mb_r = 2706868;  
 

Masses and moments of inertia of the superstructure in the x-, y-, r-directions: 

floor    x        y          r
1 2051,  2051,  1560994;
2 2051,  2051,  1560994;
3 2051,  2051,  1560994;
4 2051,  2051,  1560994;
5 2051,  2051,  1560994;
6 2057,  2057,  1560994;
7 2247,  2247,  1705017;
8 2580,  2580,  1957503;  

 

Offsets of the center of the mass of the floors with respect to the base (unit: m): 

        0,         0
   -0.3500,   -1.4200
   -0.3200,   -5.8000
    0.1100,   -7.2000
    0.1600,   -9.2000
    0.1600,   -9.2000
    0.1600,   -9.2000
    0.1600,   -9.2000  
 

Eigenvectors of the fixed-base superstructure (24×24): first 12 columns. 
-0.012202 0.000184 0.000114 0.000365 0.009757 -0.002245 0.000492 -0.00893 0.002504 -5.74E-05 -0.006898 0.003499
-0.000198 -0.012259 -0.000485 0.010182 -0.000321 0.000221 0.009585 0.000507 0.000118 -0.007028 9.34E-05 -0.000272
1.73E-05 -2.54E-05 0.000453 9.28E-06 -5.86E-05 -0.000361 -8.9E-06 9.45E-05 0.000325 7.44E-06 7.94E-05 0.000226

-0.011049 0.000156 0.00018 0.000182 0.005184 -0.001264 2.49E-05 -0.0011 0.000262 5.07E-05 0.002892 -0.002455
-0.00019 -0.011139 -0.000526 0.005478 -0.000162 0.000279 0.000252 -1.99E-06 -0.000139 0.003526 -2.68E-05 0.000223
1.59E-05 -1.9E-05 0.000402 1.25E-06 -2.53E-05 -0.00018 -7.17E-06 8.22E-06 5.95E-06 -1.7E-07 -3.53E-05 -0.00012

-0.009695 0.000134 0.000366 -2.74E-05 -0.000209 -0.000022 -0.000405 0.006784 -0.002009 7.97E-05 0.008707 -0.004302
-0.000159 -0.009675 -0.000504 -0.000269 5.3E-07 0.000131 -0.008583 -0.00049 -0.000214 0.00877 -0.000113 0.000233
9.22E-06 -1.73E-05 0.000352 -6.62E-06 1.58E-05 3.61E-05 1.25E-06 -7.83E-05 -0.000294 -8.07E-06 -0.000103 -0.000291

-0.008202 0.000115 0.000432 -0.000216 -0.00522 0.001237 -0.00053 0.009749 -0.003009 -4.71E-05 0.004008 0.000351
-0.000135 -0.007998 -0.000458 -0.005663 0.000152 -1.37E-05 -0.010729 -0.000563 8.25E-05 0.002104 -7.93E-05 -0.000245
6.74E-06 -1.54E-05 0.000285 -9.69E-06 4.96E-05 0.000225 8.3E-06 -0.000104 -0.000359 -8.83E-06 -4.35E-05 -6.97E-05

-0.006099 9.95E-05 0.000188 -0.000342 -0.00978 0.001738 -0.000183 0.004686 -0.001343 -0.000155 -0.009102 0.00496
-8.44E-05 -0.005651 -0.000438 -0.010319 0.000286 -0.000224 -0.002784 -0.000122 0.000454 -0.011125 9.95E-05 -0.000198
-1.06E-06 -8.76E-06 0.000199 -1.55E-05 6.93E-05 0.000378 9.81E-06 -3.34E-05 -7.48E-05 1.8E-07 0.000113 0.000384
-0.00408 7.28E-05 0.000331 -0.000389 -0.011066 0.00141 0.00032 -0.004768 0.001636 -2.26E-05 -0.008133 -0.000332

-5.05E-05 -0.004186 -0.000283 -0.010525 0.000293 -0.000545 0.005171 0.000262 7.95E-05 -0.00649 7.24E-05 0.00017
-8.04E-06 -7.46E-06 0.000137 -1.5E-05 7.51E-05 0.000385 7.42E-06 4.28E-05 0.000228 6.5E-06 9.4E-05 0.000207
-0.002251 4.74E-05 0.000128 -0.00029 -0.008805 0.000941 0.000584 -0.010694 0.001808 0.00013 0.006101 -0.000579

-2.8E-05 -0.002768 -0.000213 -0.008456 0.000238 -0.000523 0.009677 0.000507 -0.000271 0.006098 -3.65E-05 0.000105
-1.02E-05 -1.94E-06 7.73E-05 -8.86E-06 3.35E-05 0.000287 2.12E-06 8.64E-05 0.000369 9.28E-06 -9.66E-05 -0.000269
-0.00087 2.73E-05 0.000119 -0.000153 -0.004212 0.000556 0.000385 -0.007299 0.001657 0.000136 0.009157 -0.002121

-2.11E-05 -0.001328 -0.000115 -0.004624 0.000139 -0.000344 0.007559 0.000439 -0.00016 0.01052 -0.000137 -0.000313
-7.71E-06 -1E-07 3.21E-05 -2.23E-06 9.28E-06 0.000141 1.33E-06 4.41E-05 0.000242 8.23E-06 -8.45E-05 -0.000319  

Eigenvectors of the fixed-base superstructure (24×24): last 12 columns. 
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0.000543 -0.005638 -0.000165 0.005144 0.004363 -0.001019 0.000262 0.000434 -0.001274 0.004171 0.000368 -0.00093019;
0.00715 0.000525 -0.005023 -0.000248 0.00013 3.95E-05 -0.002965 0.003551 0.000278 -0.000264 5.51E-05 -0.00019508;

-6.88E-06 8.7E-05 8.26E-06 -0.000105 0.000155 0.000171 2.39E-05 1.56E-05 -0.000172 -0.000033 7.7E-05 -0.00013789;
-0.000615 0.006347 0.000289 -0.008505 -0.007353 0.002934 -0.000418 -0.001004 0.002414 -0.011693 -0.001257 0.00263041;
-0.009135 -0.00069 0.0091 0.000458 -0.000337 -0.000185 0.007644 -0.010017 -0.000696 0.000723 -0.000253 0.00055375;
8.29E-06 -9.23E-05 -1.03E-05 0.000145 -0.000189 -0.000242 -3.62E-05 -1.61E-05 0.000316 9.48E-05 -0.000198 0.00039482;

-0.000543 0.00597 -1.81E-05 -0.001254 -9.15E-05 -0.002617 -7.45E-05 0.000758 -0.000111 0.014118 0.000972 -0.00321618;
-0.005763 -0.000447 -0.000458 6.03E-05 0.000142 -6.58E-05 -0.007276 0.012645 0.001222 -0.000889 0.000215 -0.00076490;
6.59E-06 -0.000102 -1.03E-06 7.04E-05 -0.000165 -8.79E-05 1.61E-06 -3.32E-05 -2.69E-05 -0.000119 0.000171 -0.00048109;
0.000524 -0.005878 -0.000292 0.009465 0.006923 -0.001401 0.000528 -9.41E-05 -0.002403 -0.009571 8.79E-05 0.00231962;
0.009985 0.000726 -0.008964 -0.000465 0.000155 0.000212 0.001687 -0.009587 -0.001308 0.000637 -3.55E-05 0.00058690;
-1.02E-05 6.68E-05 1.49E-05 -0.000146 0.000214 0.000257 2.51E-05 6.81E-05 -0.0003 8.47E-05 -1.83E-05 0.00034387;

0.00063 -0.007654 0.000295 -0.006241 -0.006577 0.007132 -0.000572 -0.00019 0.002358 0.004184 -0.001759 -0.00127519;
0.004121 0.000345 0.010343 0.000323 -0.000316 -4.48E-05 0.006388 0.007026 0.001493 -0.000381 -0.000255 -0.00038160;
-5.7E-07 0.000127 -9.4E-06 -1.71E-05 0.000182 -2.55E-05 -1.64E-05 -6.08E-05 0.000385 -3.46E-05 -0.000208 -0.00019856;

-0.000758 0.009587 -5.12E-05 -0.0025 0.00507 -0.010421 0.000474 0.000131 -0.000767 -0.001725 0.003828 0.00122197;
-0.008946 -0.000629 -0.002355 -8.79E-06 0.000699 1.16E-05 -0.012476 -0.006601 -0.00154 0.000316 0.000399 0.00030596;
1.58E-05 -6.2E-05 1.65E-06 7.7E-05 -0.000334 -0.000145 -4.5E-07 2.61E-05 -0.000171 1.87E-05 0.000407 0.00015387;

-0.000135 0.003418 -0.000228 0.009701 -0.004981 0.007939 -0.000332 5.41E-05 -0.001084 0.000671 -0.003146 -0.00077024;
-0.003665 -0.000368 -0.009085 -0.000203 -0.000759 4.25E-05 0.0109 0.004213 0.000954 -0.000167 -0.000308 -0.00012790;

-9.5E-06 -4.04E-05 -1.08E-06 -3.58E-05 4.33E-06 -6.78E-05 -3.9E-07 2.39E-05 -0.000238 -1.51E-05 -0.000442 -0.00010451;
0.000618 -0.010579 0.000262 -0.00891 0.003813 -0.00396 0.00018 -7.59E-05 0.000972 -0.000216 0.001083 0.00022340;
0.009281 0.000716 0.008813 0.000157 0.00047 -8.36E-06 -0.005337 -0.001728 -0.000335 5.45E-05 8.05E-05 0.00004858;
-1.58E-05 1.59E-06 -7.79E-06 3.45E-05 0.000207 0.000284 1.53E-06 -3.47E-05 0.000334 1.53E-05 0.000282 0.00005275;  

 

Eigenvalues of the superstructure: 

49.62 65.66 91.05 496.42 557.82 860.45 1674.41 1793.83
2858.65 3292.8 3511.06 5583.47 5743.95 5958.46 7453.32 7928.58
9248.47 9702.5 10431.08 11673.94 12011.94 12912.83 15828.77 17720.57  
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Appendix B 

Properties of Modal Low-Authority LQG Controllers 

The relationship between ,  and  for the low-authority LQG controller is 

discussed here. 

mA mB mC

Let 02
sc ≤S  and 02

se ≤S . For a controllable and observable flexible system, there 

exists  such that the controller is of low-authority. Furthermore, if  is in the 

modal form 2, the following approximations hold 

00 >s mA

 

),,,,,,()( ,,22,22,11,11, nncnnccccc
T
mmc

T
mm wwwwwwdiag αααααα L=+−≅ AAWBB   (B-1) 

),,,,,,()( ,,22,22,11,11, nnonnooooo
T
mmom

T
m wwwwwwdiag αααααα L=+−≅ AAWCC   (B-2) 

 

or, for the ith block, 

 

2,,,,,, )( IAABB iic
T

imimic
T

imim ww α=+−≅                                   (B-3) 

2,,,,,, )( IAACC iio
T

imimioim
T

im ww α=+−≅                                   (B-4) 

 

where iii ωςα 2= ,  is the ith two-row block, and  is the ith two-column block. im,B im,C

 

Proof: Note that for the positive semi-definite matrix , one obtains that 

, i.e., the off-diagonal terms do not exceed the geometric 

mean value of the corresponding diagonal terms. Therefore, if  is in modal form 2, for 

small  such that 

T
mmBB

))(()( ,,,,
2

,,
T

jmjm
T

imim
T

jmim bbbbbb ≤

mA

cS 02
sc ≤S , the off-diagonal terms of  do not influence the 

eigenvalues of , i.e.,  (this is one of the equations (6-5) in modal 

T
mmBB

pclA c
T
mmmpcl SBBAA −=
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cordinates). Similar applies to the eigenvalues of . From Lyapunov 

equations (2-30), one obtains the above relationships. 

m
T
memecl CCSAA −=

 

Substituting  into the Lyapunov equations, 

one obtains 

2,,,,,, )( IAABB iic
T

imimic
T

imim ww α=+−≅

 

0)( ,,
2
,,,, ≅−+ T

imimic
T

imimic ss BBAA                              (B-5)  

and thus  

 

0
2 ,,

,2
, ≅−+

icii

i

ic

ic
ic w

q
w
s

s
ως

.                                   (B-6) 

 

Therefore, 2
,

,

,
, 2

1
2

1

i

ic

ic

ic
ic w

s
γ

ββ −
=

−
= , where 

ii

ii
ic

q
ωζ
γ

β
2

2
,

21+
= . This is equation (6-6) used for 

the property 6 stated in chapter 6. Property 7 in chapter 6 can be obtained similarly. 

 

LQG Root-Locus shown as property 8 in chapter 6 is proven as follows: 

For the weighting )0,0,,,,0,0(~
2 LL IQ iqdiag= , where  is small, the closed-loop matrix 

 is diagonally dominant, i.e.,  

iq

pclA

 

)( ,ipclpcl diag AA ≅ , where ni ,,1L= , and .         (B-7) ic
T

imimimipcl s ,,,,, BBAA −=

 

Introducing (B-3) yields . Then introducing  in 

form 2 (2-26b) into (B-7) yields 

)(2 ,,,,,
T

imimiciimipcl s AAAA +−≅ γ im,A

 

⎥
⎦

⎤
⎢
⎣

⎡
−
−−

≅
iiici

iiiic
ipcl ωςβω

ωωςβ

,

,
,A , with 
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q
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2
,
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= .                 (B-8) 
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