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A health monitoring framework that detects and localizes damage in civil structures is
proposed in this dissertation. Dynamic measurements of the systems as they vibrate
under the influence of ambient and service loads are used to characterize the structural
condition at any given time. Localization of damage is achieved by comparing
characterizations in the pre and post damage states from a statistical point of view.
Damage is localized regardless of the environmental conditions that affect the
structures’ dynamic behavior. Full automation of the data analysis is pursued. The
methodology is tested with simulated responses of a finite element model that represents
a typical highway bridge. Several uncertainties and modeling errors typically found in
real applications were considered in this numerical example. The main advantages and
limitations of the proposed framework are explained. The research emphasizes realistic
applicability to civil structures in which only a few low vibrational modes can be
measured with relatively high accuracy, and noise in sensors is unavoidable. However,
the proposed framework as a whole (or in part) is likely to perform well in other
engineering fields. 
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Chapter 1 

Introduction

Structural health monitoring (SHM) has become an important area of research within the

civil engineering community in recent years. Its potential is so promising that hundreds

of scientists from around the world are trying to develop techniques to assess damage in

structures by using response measurements and complex algorithms. However, our com-

munity is still far from obtaining a framework that effectively detects damage in struc-

tures that have been heavily excited by a natural phenomenon, or have suffered from

regular daily use and display conditions such as corrosion or fatigue, all within a reason-

able budget. Until this vision is realized, significant funds are being spent on visual and

enhanced visual inspections that often require the removal of non-structural components

and can be affected by the inspector’s subjective judgment. Moreover, due to the highly

qualified personnel they require, these type of inspections might not be possible imme-

diately after a major event. For instance, the city of Seattle has more than 150 bridges to

inspect in the case of a catastrophic event. As our infrastructure grows at higher rates

than ever before, and larger and more complex structures are being constructed, the need

to reduce costs, improve the reliability, and accelerate the process of inspecting our most

important structures, becomes more evident.

Some of the desired features of SHM techniques include automating the data analysis

process to minimize the need for human supervision, and the capability to identify dam-

age in the structure while it is in service as well as after a major event. It is also desirable
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that different degrees and types of damage be identified accurately as they occur regard-

less of the environmental conditions that may affect the structure’s behavior. However, it

is unrealistic to think that a single technique would be capable of detecting damage of

different natures such as a loss of stiffness in a structural element, corrosion in a steel

connection, or an overstress due to a static deflection. Therefore, a combination of meth-

odologies that optimally combines their outputs and takes full advantage of the informa-

tion available should be the final goal of the research in this area. 

The research performed in this dissertation attempts to combine two complementary

techniques in order to accurately detect and localize structural damage. Ambient vibra-

tions constitute the only source of information and the effects of the unknown environ-

mental conditions are systematically accommodated. The resulting structural health

monitoring framework does not attempt to quantify the damage or state a prognosis of

the structure’s condition. Moreover, the emphasis is limited to the localization of struc-

turally deficient elements capable of changing the global dynamic properties of the

structures.

1.1  Classification of SHM Techniques

SHM techniques can be classified according to several characteristics. For instance, in

1993, Rytter [65] established four levels of techniques determined by the information

provided to the user (see Fig. 1.1). Under this distinction, level 1 simply determines

whether damage has occurred, whereas level 4 also determines the location, severity and

remaining life of the structure. Another important method for classification is associated

with the type of input required to analyze the status of the structure. Here, SHM tech-

niques are classified as vibration-based, statically-based, and those that perform a direct

inspection of the structural elements. This last category includes approaches such as the

use of fatigue sensors, crack recognition through digital imaging, crack detection in con-

crete with embedded sensors, and corrosion detection procedures. Although promising
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results are being obtained by some researchers working in those areas, direct inspection

techniques are usually localized and expensive and their use in large civil structures is

not always feasible.

Statically-based procedures use static deflections under specific load conditions to deter-

mine the changes on the stiffness of the structure. An example of these types of methods

was proposed by Johnson [46] who developed an optimization technique to detect dam-

age in frames using previously known static loads and the deflections produced in the

healthy and damaged structures. In his work, the stiffness matrix of a finite element

Figure 1.1  Classification of SHM techniques

SHM

Information
provided

techniques

Information
required

Direct
inspection

Statically-
based

Dynamically-
based

- Level 1

- Level 4
:
·

- Fatigue detection
- Crack detection
- Corrosion detection
- Etc.

Time
domain

Frequency
domain

- Iterative
- Non-iterative

Model-
based

Non-model
based

- Iterative
- Non-iterative
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model representative of the structure is updated until its response matches the measured

deflection. Hu and Shenton [37] used genetic algorithms to detect damage in an analyti-

cal two-span continuous beam with a uniformly distributed load. The concept of redistri-

bution of dead load when damage occurs is used in their work. Yokoyama and

Rafiquzzaman [78], on the other hand, developed a damage identification technique that

uses the static deflections and support reactions produced by a moving load on several

types of bridges including simply supported beams, girder systems and slabs. The vari-

ability of the curvature is analyzed to detect damaged elements. In general, statically-

based SHM methods are limited regarding the information obtained from the structure

and are difficult to implement due to the large static loads required.

Unlike the slow development of statically-based methods, vibration-based SHM tech-

niques for civil structures has been growing rapidly during the last two decades. In 1998

Doebling et al. [23] provided a broad review of the literature in this area, exposing the

advantages and capabilities of several methodologies. Under this classification, time-

dependent response measurements are obtained from the structure to analyze its behav-

ior. Most of these methods use the characteristics of a healthy structure and compare

them to those displayed at any given time to detect the existence of damage and localize

the weakness with certain accuracy. Lei et al. [51], for example, proposed the Time

Series Analysis, a technique in which a localized analysis of the outputs of the structure

is used to determine the proximity of damage.

The work performed by Lei et al., however, differs from the majority of the research

being developed in vibration-based SHM, in which time-history responses of the struc-

ture are used to find its dynamic properties (i.e. natural frequencies, mode shapes and

damping ratios), which are later used to localize damage. Three typical steps are used in

these techniques. First, the modal properties of the healthy structure are identified using

recorded responses to dynamic loads. Dynamic loads may include forced vibrations

obtained with dynamic shakers or actuators, as well as ambient vibrations generated
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with the normal operation of the structure. Although forced vibrations typically provide

better modal information, the use of ambient vibrations constitutes an attractive alterna-

tive for modal identification as it does not require artificially loading the structure or

stopping its use in order to test it. The second step consists of characterizing the struc-

ture according to the identified modal information. Here, the estimation of structural

parameters such as stiffness or flexibility is often used along with a simplified finite ele-

ment model representative of the structure. Some techniques, however, characterize the

modal properties themselves. The third and final step consists of repeating the first two

steps at any given time and comparing the characterization of the structure to the origi-

nal properties in the undamaged state.

Several techniques can be found in the literature that follow this trend. For instance Ber-

nal [9] developed a technique that uses damage location vectors (DLV). In his work,

Bernal estimated the flexibility matrix of the structure for both the undamaged and dam-

aged states based on their detected dynamic properties. Based on these flexibility matri-

ces damage location vectors are calculated to reveal the proximity of damage. Pandey et

al. [60] attempted to localize damage by comparing the curvature of the mode shapes

before and after damage. The technique, however, is very sensitive to noise in the sen-

sors and is limited regarding the type of structures to which it can be applied. Parloo et

al. [61] developed a technique that localizes damage using the sensitivities of the mode

shapes to changes of mass and stiffness. Although accurate detection of damage is

obtained, the need for a high number of mode shapes makes the technique not always

feasible for civil structures.

Unlike the work performed by Bernal, Pandey et al., and Parloo et al. in which no math-

ematical model of the system is needed, some techniques make use of an identification

model to localize damage. Ching and Beck [18], for example, proposed a two-stage

Bayesian approach in which the most likely dynamic properties of the structure are

found by reducing the error between the measured response of the structure and the cal-
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culated response from a numerical model. Mass and stiffness matrices are then identified

by updating a model of the structure using a Bayesian probabilistic framework. With a

similar approach, Caicedo and Dyke [15] developed a technique to localize damage in

elastic structures using the dynamic properties identified with ambient vibration. In this

methodology, stiffness values of an identification model are calculated using its charac-

teristic equation and the modal properties detected. Even though more information from

the structure is being used in modal based methodologies (e.g. mass, geometry), the use

of an identification model always introduces modeling errors into the problem.

1.2  Remaining Challenges

Although encouraging results have been obtained in both analytical and small scale

experiments, several challenges have to be overcome before SHM becomes a reality in

full-scale civil structures. Among those, a well known challenge is the uncertainty in the

measured modal parameters, affected by external and uncontrollable environmental con-

ditions such as temperature, temperature gradients, and humidity. To meet this challenge

Sohn et al. [69] proposed a method based on an outlier analysis by Worden et al. [74].

This method consists of a statistical analysis that determines the distribution of the

dynamic properties of the system over an undetermined number of environmental fac-

tors that affect its behavior. The method effectively eliminates the effects of the sur-

rounding conditions and an accurate detection of damage is achieved. Kullaa [50] and

Yan et al. [76] both took further steps with this methodology, the former applying it to

civil structures, and the latter doing some experimental work with scaled models. How-

ever, the methodology is still classified as level 1 (as described by Rytter [65]) and is

unable to locate the damage on the structure. The statistical nature of the method also

helps to minimize the impact of unavoidable noise in sensors.

Perhaps visual inspection will not be replaced for a long time. However, the implemen-

tation of a reliable SHM framework should allow us to considerably reduce the amount
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of periodic inspections needed in key structures and, more importantly, provide fast and

accurate information on their state after extreme loads have been applied. Yet the biggest

challenge for the research community is the search for collaboration from the industry

both to fund further investigations and to involve them in the design process. To become

more attractive to the industry and finally become a reality in our infrastructure, SHM

systems must combine various techniques with different capabilities. Moreover, studies

of the potential costs and benefits need to be carried out.

1.3  General Trends

Due to their importance for the normal functioning of our civilization, bridges have

become an important target for research in SHM. Some challenges are associated with

the implementation of such techniques in these type of structures. For instance, the typi-

cal high flexibility of long span bridges constitutes a difficulty to accurately identify

modal properties. Full scale implementations of various techniques are already under

development and preliminary results have been published. Abe and Siringoringo [1], for

example, applied a method based on the global dynamic properties of the Hakucho

Bridge (Japan) to detect changes in the stiffness of a simplified model of the bridge.

Other full scale application were developed by Xiang et al. [75], who applied a statisti-

cally-based method to the Wenhui Bridge using several types of sensors, and Sumitro et

al. [70], who used actual-stress measurements to detect damage in the Ashidagawa

Bridge with a localized technique. All these applications are still under development,

and although damage is detected with relative accuracy using analytical models, real

damage is still to be detected.

Acceleration records have become the most popular measurement within the research

community for structural health monitoring purposes. Simplicity, relative low price, and

reliability are the most important advantages of these type of measurements. However,

recent technological advances have provided engineers with a variety of sensors capable
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of measuring accurate dynamic responses. Laser displacement measurements, for

instance, have been used in several fields and are commercially available. However,

complexity, difficulties associated with long distances, and high price constitute impor-

tant drawbacks for SHM applications. Other types of measurements include the use of

high resolution digital imaging to measure displacements and strain measurements using

optical fibers. In the former, Paudel et al. [63] developed an “edge recognition” method

capable of recording dynamic displacements within the frequency range of interest for

civil structures. Ito et al. [41], in the latter, used strain measurements obtained with opti-

cal fiber sensors to avoid fatigue damage and detect shear failure in concrete slabs.

While the possibilities are expanding, acceleration sensors are also developing quickly

reducing consistently their size, price, and power required.

1.4  Main Objective

This research aims to develop a vibration-based SHM framework capable of detecting

and localizing damage within a structure regardless of the surrounding environmental

conditions that affect its dynamic behavior. Ambient vibrations will constitute the only

source of information to characterize the stiffness of the structures at any given time.

Localization of damage will be achieved by comparing characterizations in the pre and

post damage states from a statistical point of view.

The research will emphasize realistic applicability to civil structures in which only a few

low frequencies can be measured with relatively high accuracy, and noise in sensors is

unavoidable. Moreover, the automation of the data analysis is pursued.

1.5  Overview

The dissertation is organized as follows. In the second chapter, a comparison of three of

the most popular modal identification techniques for estimating modal properties of
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structures as they vibrate in their natural environment is carried out. Both simulated as

well as experimental data obtained from of a four-storey steel building known as the

SHM benchmark problem is used for this purpose. The use of an optimization algorithm

for model updating is proposed in Chapter 3 as a way to characterize the stiffness of a

structure and localize damage by observing the changes of the identified values. Charac-

terizations are obtained by updating a representative finite element model such that the

correlation of its mode shapes with those estimated from the structure is optimized. The

mathematical tools required to implement such optimization are derived here.

A principal component analysis is proposed in Chapter 4 in an attempt to accommodate

the effects of unknown and varying environmental conditions over the numerical char-

acterizations. This type of analysis requires multiple characterizations of the healthy

structure under a wide range of environmental conditions in order to accurately map the

influence and reduce it in post-damage characterizations. Finally, the conclusions

reached and methodologies proposed in Chapters 2, 3 and 4 are combined in a six-step

framework in Chapter 5. The framework is then tested using a finite element model of a

typical highway bridge. Several uncertainties typically found in real-world applications

are considered in this numerical example. A summary of the conclusions and possible

paths for future research are discussed in Chapter 6.
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Chapter 2 

Modal Identification Through Ambient Vibration

As mentioned in Chapter 1, a significant amount of research has been done in the area of

structural health monitoring (SHM) using the global dynamic properties of civil struc-

tures. In this context, the accurate identification of modal properties plays a fundamental

role in the evaluation of the state of the structures. Before engaging in a discussion about

the identification of these properties, it is important to underscore that, although closely

related, system and modal identification are not the same. Whereas modal identification

refers to the process of estimating the dynamic properties of a system (i.e. natural fre-

quencies, damping ratios and mode shapes), with system identification an input-output

model capable of reproducing or even predicting the outputs of a system is pursued.

Although we are only concerned with the identification of dynamic properties in this

chapter (modal identification), most recent methodologies perform system identifica-

tion. Therefore, an extra step has to be implemented in order to obtain the dynamic prop-

erties as shown later in this chapter. The term modal identification will be used

throughout this dissertation regardless of the fact that system identification is performed

as an intermediate step.

Although impulse responses and forced vibrations have long been used in several engi-

neering fields as reliable means to obtain modal properties, the use of these tests is not

always feasible in civil engineering applications due to massive sizes and safety con-

cerns. Moreover, civil structures are irremediably subjected to unmeasurable external
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loads such as wind and soil vibrations. For these reasons, as well as cost and simplicity,

the use of ambient vibrations constitutes an attractive alternative for modal identification

in this field. However, several obstacles exist that make the use of ambient vibrations

challenging as a source of information. Among these are the assumptions that the

unmeasured loads have certain statistical properties and that a significant number of

dynamic modes are excited. In addition, low amplitudes are sometimes insufficient to

overcome nonlinear behavior due to internal friction [29]. Therefore, the use of ambient

loading may not be applicable in all cases.

A number of techniques have been developed in the last four decades for modal identifi-

cation using ambient responses. The classification of the techniques documented in the

literature, however, has always been an arguable matter. For instance, depending on how

the time records are employed, some authors have classified the techniques as time

domain and frequency domain techniques. This classification becomes vague as some of

the techniques are comprised by intermediate steps that involve complementary

approaches. The scope of this study is limited to those techniques whose main algorithm

is classified as time domain, allowing the use of frequency domain approaches as an ini-

tial step. Moreover, only techniques that are capable of estimating full sets of modal

properties (i.e. natural frequencies, damping ratios and mode shapes) are considered.

Although widely reported in the literature, our knowledge of the relative advantages and

disadvantages of the techniques with respect to similar algorithms remains limited. Sev-

eral authors have published comparisons with certain restrictions and Monte-Carlo

results are scarcely reported. For instance, in 1993, Lew et al. [52] compared the tech-

niques derived from the eigensystem realization algorithm (ERA) while trying to keep

the computational effort needed at the same level. Although this is an attractive feature

to use as a baseline, by doing so some techniques were at a disadvantage. In 1995,

Deforges et al. [22] made a comparison in which only natural frequencies and damping

ratios were considered. More recently, Kinkegaard and Andersen [49] compared three of
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the most popular techniques by using a rather simple dynamic system. Other compara-

tive studies have been published by Brinker et al. [12], and Abdeghani et al. [2]. In gen-

eral, complete comparisons are difficult to achieve due to the amount of technical

parameters needed to carry out the techniques (e.g. model order estimation and record

lengths). However, comparison studies are rarely redundant, providing different insight

into certain applications and conditions.

This chapter makes an attempt to statistically compare three of the most popular modal

identification techniques available in the literature. This comparison is performed on the

basis of “best possible results” regardless of the computational power required. All eval-

uations carried out in this study use both analytically simulated data as well as experi-

mental acceleration records from a structure selected by a working group formed by the

American Society of Civil Engineers (ASCE) and the International Association of Struc-

tural Control and Monitoring (IASCM). The structure, known as the SHM benchmark

problem, is a four-storey steel frame scaled at 1:3 [44]. Specifically, simulated data is

employed to assess and compare, via Monte-Carlo simulations, three modal identifica-

tion methods to determine which of these algorithms performs best in an entirely auto-

mated environment. Only the first six vibrational modes are targeted in the identification

and the effects of noise are evaluated. Additionally, experimental data is used to analyze

the viability of detecting reliable dynamic properties using typical ambient vibrations of

civil structures. With this in mind, the modal properties obtained from executing the best

technique to ambient vibration records are compared to those obtained with more tradi-

tional hammer testing in the experimental phase of the benchmark structure.

The chapter is organized as follows. In the first section, a brief review of time-invariant

linear systems, state representations, and the mathematical meaning of modal properties

is provided. The second section is devoted to presenting the modal identification meth-

odologies evaluated. It is important to emphasize, however, that detailed mathematical

derivations of the techniques are not intended. Original references are provided for the
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interested reader. In the third section, both the analytical model and the experimental

structure of the benchmark problem are introduced. The fourth section is dedicated to

the analysis of the analytical data. All selected parameters used to carry out the identifi-

cation and the evaluation of the different techniques via Monte-Carlo simulations are

explained in detail. Results of this analytical study are statistically presented here with a

discussion of the main conclusions. The final section is devoted to the experimental

case, providing insight on the results obtained and the parameters selected to execute the

identification of both ambient vibration records and hammer tests. Conclusions about

this comparison are also presented in this section.

2.1  Time-invariant Linear Systems

When subjected to external forces, the dynamic equilibrium of a lumped linear system

with n-degrees of freedom is described by the differential equation

, (2-1)

where ,  and  are  time-invariant matrices defining the mass, damping and

stiffness of the system, whereas  and  are  vectors describing the dis-

placement and external excitation, respectively. Here, derivatives with respect to time

are symbolized with .

To simplify the numerical simulations of dynamic systems, Eq. (2-1) is usually rewritten

as a system of first-order differential equations. This transformation can be performed in

a number of ways. However, the most widely used is the so-called state-space represen-

tation given by

 (2-2)

MX
··

t( ) CsX
·

t( ) KX t( )+ + F t( )=

M Cs K n n×

X t( ) F t( ) n 1×

·( )

Z
·

t( ) Ac Z t( ) Bc F t( )+=
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where  is known as the state vector, whereas the system matrix ,

and the input influence matrix  are defined, respectively, as

 and . (2-3)

Furthermore, to evaluate Eq. (2-1) at any time, the state-space representation of the sys-

tem is complemented with the output equation

, (2-4)

where  can be deliberately selected from all outputs of the system that are linear

combinations of the state and the input vectors. For instance, if accelerations of the sys-

tem are pursued, then the observation and direct term matrices (  and , respectively)

are defined as

 and . (2-5)

2.1.1  Discrete Systems

Together, Eqs. (2-2) and (2-4) constitute a continuous-time state-space model. This

means that the system response can be evaluated at any particular time. Because experi-

mental data is discrete in nature, a discretized version of this system is necessary to

numerically simulate its behavior. The model can then be discretized every  and

expressed as

, (2-6)

Z t( )  X  X
·
 

T
= Ac

Bc

Ac
0 I

 M 1– K–   M 1– Cs–  
= Bc

0

 M 1–  
=

Y t( ) C Z t( )  D F t( )+=

Y t( )

C D

C  M 1– K–   M 1– Cs–  = D  M 1–  =

∆t

Zk 1+ A Zk B Fk+=

Yk C Zk  D Fk+=
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where the system and input influence matrices (  and , respectively) can be obtained

by applying a zero-order hold approximation (see [49])

 and . (2-7)

When implementing system identification techniques based on output measurements,

typically a discrete state-space realization of the structure is obtained. However, it is

important to emphasize that the states of these resulting realizations do not have any

physical meaning. In other words, the coefficient matrices are not comprised of products

of the structural matrices ,  and  (or their inverses), but of real scalars whose

combination produces the same output displayed by the system.

Free Response and Markov Parameters

Assume now that a discretized system described by Eq. (2-6) is vibrating in free

response (i.e. ) due to an unknown set of initial conditions . When ,

the states and output of the system are given by  and ,

respectively. In general, the states and output of the system can be expressed as

 and , (2-8)

for . The discretized samples of the free response of the system are known

as the Markov parameters, and are widely used in modal identification.

Stochastic Inputs and Measurement Noise

When dealing with ambient vibrations of civil structures, the excitation is produced by

unknown forces, while the measurements (usually accelerations) are corrupted by

A C

A Ac ∆t( )exp= B Ac
1–  A I – Bc=

M K Cs

Fk 0= Z1 k 1=

Z2 A Z1= Y1 C A Z1=

Zk Ak 1–  Z1= Yk C Ak Z1=

k 1 2 …, ,=
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unavoidable noise in sensors. In this case, the system can be viewed as a purely stochas-

tic process described by the discrete state-space representation

(2-9)

where  and  represent the unmeasurable input and the noise in the sensors, respec-

tively. In order to analyze these type of systems, some assumptions are made. Therefore,

it is assumed here that the processes  and  have zero mean, are statistically inde-

pendent, and are uncorrelated with their previous values. In other words, the covariance

matrices can be expressed as

(2-10)

where  represents the expectance operator and  is the Kronecker delta.

2.1.2  Modal Properties

The modal properties of a linear dynamic system described by Eq. (2-1) can be obtained

from its characteristic equation, given by

, (2-11)

where  is the -th root of the equation and  is the -th mode shape of the dynamic

system.  and the elements of  are real for overdamped modes, but for underdamped

modes (as most civil structures), they are complex and occur in conjugate pairs. For each

Zk 1+ A Zk Wk+=

Yk C Zk Vk+=

Wk Vk

Wk Vk

E Wp
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T
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 ST  R 
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pair of roots , the damped and undamped natural frequencies as well as the

associated damping ratio can be obtained, respectively, as

,  and . (2-12)

The modal properties can also be extracted from the system and output matrices of a

state-space representation of a dynamic system, even in those cases in which the states

are not physically meaningful. In the case of a discrete representation, the roots of the

characteristic equation are equi0valent to the eigenvalues of the system matrix ,

whereas the mode shapes can be obtained multiplying the eigenvectors of  by the out-

put matrix .

Modal Assurance Criteria (MAC)

At multiple locations throughout this thesis it will be necessary to numerically evaluate

the similarity of two mode shapes. In these cases, a correlation technique known as

modal assurance criterion (MAC) will be used. The MAC has established itself as a key

correlation measure ever since it was first proposed by in 1982 by Allemang and Brown

[3]. The MAC between two mode shapes  and  is defined as,

(2-13)

where  indicates the -th component of a total of  components describing the mode

shape. A value close to 1.0 suggests that the two mode shapes are well correlated,

whereas a value close to 0 indicates that they are uncorrelated and are probably associ-

ated with different frequencies.
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2.2  The Methodologies

As mentioned previously, the modal identification of civil structures using ambient

vibrations has emerged as a convenient alternative in terms of safety, cost and simplicity.

However, several difficulties arise as the statistical properties of the unknown inputs

play a significant role in the success or failure of the identification. It was believed that

modal identification would succeed only if the inputs were white noise with a Gaussian

distribution. Using different approaches, Andersen [5] and Ibrahim et al. [39] reduced

the limitations imposed by this requirement. In their work, it was shown that, as long as

the input can be generated by filtering Gaussian white noise through a linear filter, then

the original system can be substituted by an alternative state-space representation with

Gaussian white noise excitation whose modal properties remain unchanged [5]. Experi-

mentally, Caicedo et al. [17] showed that modal identification can be carried out using

band-limited ambient vibrations with questionable stationarity, as in the case of some

civil structures.

2.2.1  Free Response Estimation Techniques

Early developments on modal identification using time domain techniques rely heavily

on free responses and Markov parameters. For instance, in 1977, Ibrahim and Mikulcik-

when [40] developed a technique (known as the Ibrahim Time Domain (ITD) method)

that retrieves modal properties of linear systems by performing an eigenvalue decompo-

sition of a special arrangement of the free response. In the last two decades, the estima-

tion of such responses using the vibrations of civil structures as they operate in a normal

basis has allowed researchers to implement this type of modal identification methodol-

ogy. Therefore, as a first step in this comparative study, the two most common tech-

niques for the estimation of free responses are compared in terms of the quality of their

results and the ability to deal with noisy measurements. However, even in an analytical

study, the evaluation of the estimated free responses is not easy because the set of initial
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conditions that generates the estimated free response is unknown. To overcome this dif-

ficulty, the results obtained from both techniques are visually inspected in both the time

and the frequency domain (by means of spectral density functions). Simulated ambient

vibrations from the analytical model of the benchmark problem are used to accomplish

this goal.

Natural Excitation Technique (NExT)

Although auto- and cross-correlation functions had already been used to produce free

decaying functions of systems subjected to unknown inputs (see for instance Bendat and

Piersol [8]), it was in 1993 when James et al. [43] provided the mathematical back-

ground for this practice. In their work, it was shown that when forced vibration data is

available from tests conducted with certain types of excitation, the cross-correlation

functions between the response measurements and a single reference measurement sat-

isfy the homogeneous differential equation of motion of the linear system and, therefore,

can be treated as free responses. The technique is known as NExT (Natural Excitation

Technique) and assumes that the excitation is weakly stationary, broad-band, and uncor-

related to prior system responses.

Consider the n-degree of freedom, time-invariant, linear system described by Eq. (2-1)

(and repeated here for convenience)

. (2-14)

Post multiplying Eq. (2-14) by the displacement of any of the degrees of freedom mea-

sured  (referred to as the reference signal), and taking the expected value of each

side yields

, (2-15)

MX t( ) CsX t( ) KX t( )+ + F t( )=

Xi s( )

MR
X
··

Xi

t s,( ) CsRX
·
Xi

t s,( ) KRXXi
t s,( )+ + RFXi

t s,( )=
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where  denotes the vector of correlation functions. For weakly stationary processes

it can be shown that [8]

, (2-16)

where . Assuming that the displacement, velocity and acceleration processes

are weakly stationary and uncorrelated with future disturbances (i.e. ),

and taking the fourth derivative of Eq. (2-15) we obtain

. (2-17)

Equation (2-17) shows that the cross-correlation function of the responses of the struc-

ture with a reference signal satisfies the homogeneous equation of motion and can be

treated as free response. Since the calculation of cross-correlation functions are obtained

by performing an inverse Fourier transform to the cross-spectral density functions,

NExT is considered to be a frequency domain technique.

Known Issues

The successful implementation of NExT highly depends on two factors, namely: 1) the

capability of the unknown input to excite all the modes of the structure; and 2) the length

of the records used. Since cross spectral density functions are usually obtained by “win-

dowing” data records and averaging results in the frequency domain, lengthy records

provide more samples to be averaged, and therefore, better results.

The main drawback in the implementation of the natural excitation technique is related

to the fact that one singular sensor has to be selected as reference for the entire set of

measurements. Several problems are derived from this requirement. For instance, when

the selected reference sensor is located at a point of the structure where a vibrational
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mode does not have high participation, the estimated free response contains little or no

information of that mode. This phenomenon occurs when the sensor is located near a

modal node or when the motion of the mode is orthogonal to the measurements of the

sensor. In these cases, the chances of not detecting the mode or miscalculating it are

highly increased. Moreover, for every channel selected as reference, a different free

response for an unknown set of initial conditions is obtained. To overcome these prob-

lems, modal identification based on free responses obtained from NExT have to be

applied repeatedly, using several channels as reference.

Random Decrement Technique (RDD)

The random decrement technique was developed at NASA by Henry Cole [19-21] in the

late sixties and early seventies, while trying to develop methodologies to identify dam-

age in aerospace structures subjected to ambient loads. The mathematical background of

the technique as well as the implementation issues have been provided by several

authors throughout the years [38, 72]. It is now accepted that the random decrement

(RDD) is a fast method to estimate auto and cross-correlation functions.

As clearly stated by Asmussen [6], the basis of the RDD technique is that, when driven

by a stationary input, the random response of a linear system starting at some arbitrary

time  is composed of three parts, namely: 1) the free response from the initial dis-

placement at , 2) the impulse response due to the initial velocity, and 3) a random

component which is due to the load applied to the structure in the time following . Let

us now assume that every time the displacement equals certain value  (referred to as

the trig level), a record of the response is taken for a period of time. If  of these seg-

ments are averaged we obtain the random decrement signature described as

, (2-18)

to

to

to

a

N

DXX τ( ) 1
N
---- X to τ+( ) X to( )

i 1=

N

∑ a= =
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where  represents the random displacement. As the number of averaged segments

increases, the random response will decrease and eventually cancel itself. Similarly,

since the velocity at each triggering point is a random variable, the impulse response

becomes negligible. Therefore, the result is a free decaying response due to an initial

displacement .

In 1977, Ibrahim [38] extended the applicability of the random decrement technique by

introducing the auto and cross-RDD signatures, allowing the analysis of multichannel

measurements and, therefore, the search for mode shapes. Then, in 1982, Vandiver et al.

[72] showed that the RDD signature, expressed now as a conditional expectation, is sim-

ply proportional to the auto correlation function. Bedewi [7] later generalized the work

of both Ibrahim and Vandever et al. and set the following relations between the random

decrement signatures and the correlation functions

(2-19)

, (2-20)

where  represents the expectance operator,  is the derivative of the cross-

correlation function and  is the variance of the derivative of the process . When the

trig condition is chosen so that  for any , then for Gaussian processes

the last term of Eq. (2-20) vanishes since  and  are independent. Therefore,

the cross-RDD is proportional to the cross-correlation function. When dealing with mul-

tichannel measurements, however, the initial conditions of all measured DOF’s are not

known, but a set of initial conditions does exist giving a free response for which, the

RDD signature is an unbiased estimate [12].

X

a

DXX τ( ) E X to τ+( ) X to( ) a=[ ]
RXX τ( )

σX
2

-----------------a= =

DYX τ( ) E Y to τ+( ) X to( ) a = X
·

to( ) v=,[ ]
RYX τ( )

σX
2

-----------------a
R'YX τ( )

σ
X
·2

------------------v–= =

E[ ] R'YX τ( )

σ
X
·2 X

X to( ) a = X
·

to( )

X to( ) X to( )



23
Known Issues

The numerical implementation of the random decrement technique becomes a challenge

as the measured responses of the systems are discrete. This fact implies that the proba-

bility of having the value  is zero. In his dissertation, Asmussen [6] detailed

the different triggering conditions that researchers have used to overcome this difficulty.

The most popular approach is to set a small range around the established threshold 

and consider all points that lie within this range as triggering points.

Similar to NExT, the implementation of the random decrement technique also requires

the selection of one reference sensor from which the triggering points are obtained. This

condition arises the same problems described previously. Also similar to NExT, but per-

haps more critical in the random signature, is the high noise to signal ratio of the esti-

mated response towards the end of the decay.

2.2.2  Modal Identification Techniques

Four modal identification techniques are compared under similar conditions in this

study. Although the mathematical basis of each technique is presented on this thesis, it is

not intended to derive every detail of these algorithms. Interested readers are referred to

the original articles where the algorithms have been introduced. However, details are

provided regarding the numerical implementation of the techniques for the numerical

example used.

Eigensystem Realization Algorithm with Data Correlations (ERA/DC)

To obtain mathematical models capable of reproducing responses measured from physi-

cal systems, Juang and Pappa [48] developed a technique that uses the so-called Markov

parameters to build state-space representations of linear systems. The methodology was

based on the earlier Ibrahim time domain (ITD) method which was limited by the need

X t( ) a=

a
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of a large number of sensors to form a square arrangement of the free response. Due to

its efficacy for lightly damped systems, the eigensystem realization algorithm (ERA)

was extensively used in the late 80’s and early 90’s for advanced control and health

monitoring of civil structures. Although the ERA was first proposed to be applied using

impulse responses, it can be shown that, when free responses with unknown initial con-

ditions are used, the system and output matrices of the state-space realization (i.e.  and

) are obtained. Thus, despite the inability to calculate the input influence matrices (

and ), the calculation of modal properties is not affected.

In 1988 Juang et al. [47] proposed an alternative approach to the ERA called ERA/DC,

where DC indicates that it makes use of data correlations. The improved algorithm has

shown to be at least as effective as its predecessor (see Lew et al. [52]). The algorithm

uses the discretized free response  (e.g.  from NExT) to form a matrix known as

the Hankel matrix

. (2-21)

Using the Markov parameters of Eq. (2-8), the Hankel matrix can also be expressed as

, (2-22)
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where  is the system matrix of a state space realization of the linear system, and  is

the vector of unknown initial conditions. Alternatively, Eq. (2-22) is expressed as

, (2-23)

where  is the output matrix of the system. Using two different Hankel matrices formed

from the same free response, the correlation matrix  is defined as

. (2-24)

The block correlation matrix is then formed as

, (2-25)

Combining  with Eq. (2-24), the block correlation matrix can be expressed as

. (2-26)
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(2-27)

where  is a diagonal matrix with the singular values in the diagonal, and the matrices

 and  are square and unitary. The matrices ,  and  are obtained eliminat-

ing the rows and columns corresponding to small singular values produced by computa-

tional modes. Since  is a diagonal matrix, Eq. (2-27) can be expressed as

. (2-28)

From Eqs. (2-26) and (2-28), when 

 and . (2-29)

For , Eq. (2-26) takes the form

(2-30)

Combining Eqs. (2-23), (2-29) and (2-30), the system and output matrices can be found

 and , (2-31)

where  is the identity matrix, and  is a zero matrix, both of proper dimensions for the

necessary matrix products. While natural frequencies can be obtained directly from the

system matrix ( ), mode shapes are obtained multiplying the eigenvectors of  (asso-

ciated with non-physical states) by the output matrix ( ).
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Known Issues

Successful implementation of the ERA/DC usually requires some general knowledge of

the structural system as well as some experience with the algorithm. For instance the

number of samples used to form the Hankel matrix and its relative dimensions have an

important impact on the results. Juang and Pappa [48] suggested using a Hankel matrix

whose number of columns is 10 times the number of poles expected (i.e. 20 times the

number of frequencies) and whose number of rows is 2-3 times the number of columns.

Another commonly used practice to select these dimensions is associated with the qual-

ity of the free responses. Under this criterion, the Hankel matrix is built making full use

of the decaying signal provided the signal to noise ratio is high. However, the selection

of these parameters highly depends on the experience of the user, making the algorithm

difficult to implement successfully for first-time users.

The selection of the number of singular values used to truncate matrices ,  and  is

crucial to obtain accurate results. The underestimation of this parameter translates into

overlooking vibrational modes, whereas a larger number may lead to obtaining non-

existent, computational modes or even modes that are linear combinations of those pur-

sued. Although, in theory, this number should be equal to the number of desired poles

from the structural system, a number of factors may lead to undesirable results. For

instance, if the free response contains little participation of one particular mode, an erro-

neous mode is introduced. In general, however, the overestimation of the truncation is

preferable as numerical tools can later be used to distinguish true modes from those due

to noise.

As pointed out previously, the methodologies to estimate free responses of systems

when excited by unknown stationary inputs requires the selection of a single reference

channel to execute the process. Therefore, when implementing the ERA/DC with esti-

mated free responses, a different set of results is obtained for each channel selected.

Ψ R S
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While this repeated process helps in detecting all true modes of the structure, it also

leads to obtaining different sets of values for each mode. In this case, numerical tools

known as stabilization diagrams are helpful to determine similar modes and improve the

accuracy by averaging the results. Stabilization of modes will be discussed later in this

chapter.

Prediction Error Method Through Least Squares (PEM/LS)

Prediction error methods (PEM) have been widely reported in the literature (see, for

instance, [5] and [53]). The main idea is to identify a system of linear equations that,

based on past inputs and outputs, can predict any output. For the special case of multi-

variate output-only measurements, these models are known as auto-regressive with

moving average vector (ARMAv). In this case, the prediction is based not only on past

outputs but also on past errors of the prediction. Several algorithms have been proposed

to implement prediction error methods. Nonlinear optimization and multi-stage least

squares are among the possibilities. In this study, the prediction error method is carried

out using a two-stage least squares approach (PEM/LS).

As a first step, a long auto-regressive (AR) model is fitted to the measurements using

least squares. The auto-regressive model is of the form

, (2-32)

where  and  are the predicted and true outputs of the system, and  is the -th auto-

regressive coefficient of the -order AR model. In the case of multiple channels, the

auto-regressive coefficients can be estimated as

ŷk A1yk 1–– A2yk 2–– …– Anyk n––=

ŷ y Ai i

n



29
, (2-33)

where  is the length of the recorded measurements and  represents the pseudo

inverse. The error of this AR model can be calculated by subtracting the predicted out-

put (using Eq. 2-32) from the true output of the system (i.e. ). In the second

step, a pseudo-ARX (auto-regressive with exogenous input) model is estimated using

the error obtained from the AR model as the pseudo-input. This ARX model takes the

form 

, (2-34)

from which  auto-regressive and  moving average matrix coefficients can be esti-

mated using, again, a least squares approach

. (2-35)

The system and output matrices of a state space realization associated with this ARMAv

model of order ( , ) can be formed as
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 and , (2-36)

and the dynamic properties can be extracted in the same manner described previously.

Known Issues

The sizes of the system and output matrices of the estimated state-space realization are

significantly larger than those estimated with other techniques. As a result, along with

the desired modal properties, several computational modal parameters are calculated.

This phenomenon constitutes the main drawback in the use of ARMAv models for

modal identification. To overcome this problem, the use of stabilization diagrams is

helpful to separate true structural modes from non-physical ones. However, several

models of different orders must be estimated. The automation of this process is dis-

cussed later in this chapter.

Some authors have employed this technique simply to calculate initial values for more

complex non-linear optimization algorithms (see, for instance, Andersen [5]). However,

the computational power required to execute such algorithms is considerable and grows

exponentially as the number of sensors increases. Moreover, since the estimation of sev-

eral ARMAv models of different orders is necessary, the implementation of non-linear

optimization algorithms becomes impractical. Numerical evaluations (not reported here)

showed that only marginal improvements (if any) on the quality of the detected modal

properties are gained when optimization algorithms are implemented. In general,

lengthy records allow an accurate fitting of the data with simple least squares tech-

niques, making the implementation of optimization algorithms unnecessary.
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Stochastic Subspace Identification (SSI)

Subspace identification algorithms have slowly evolved over the last three decades,

combining more mathematical tools and becoming more powerful and computationally

efficient. In 1997, Van Overschee and De Moor [73] provided a common mathematical

background for all subspace algorithms existing in the literature, including those used to

identify input-output systems, stochastic output-only systems and the combination of the

two. When applied to linear systems driven by stochastic and unmeasurable inputs, the

algorithm is known as the stochastic subspace identification (SSI) technique. Here, the

Kalman filter states of a realization are obtained by means of row space projection of

Hankel matrices. Once the states are known, the identification problem is reduced to a

linear set of equations from which the system and output matrices of the realization can

be easily estimated.

Consider the Hankel matrix of the form

, (2-37)

where  is the random response of the system at time , and the two subscripts on 

denote the time index of the upper left and bottom left elements respectively. It is

assumed herein that the number of columns of the Hankel matrix approaches infinity

( ). Let us now define  as the orthogonal projection of the row space of 

(known as the future) onto the row space of  (known as the past) 

. (2-38)
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Through a singular value decomposition of this projection, it can be shown that [49]

, (2-39)

where  is the observability matrix and  is the Kalman state sequence

(2-40)

. (2-41)

Similarly, it can be shown that the projection 

(2-42)

can be expressed as

. (2-43)

From Eqs. (2-40) and (2-43), the Kalman states can be obtained from output data using a

singular value decomposition. As a result, the system and output matrices  and  can

be estimated from the following set of linear equations

. (2-44)
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Known Issues

The dimensions of the Hankel matrices used in the orthogonal projections have an

important impact in the computational power required to execute the identification. An

appropriate selection of these dimensions must take into account both the quality and

amplitude level of the recorded measurements as well as the computational power avail-

able. As in all modal identification techniques, the selection of a model order becomes

complicated when noisy measurements are employed and non-stationary inputs excite

the structure. The use of several model orders and the stabilization of the results has

been recommended by various researchers and employed in this study.

2.2.3  Data Management

One of the objectives of this research is to fully automate the modal identification tech-

niques, allowing the online evaluation of the state of the structures (discussed in later

chapters) and eliminating the subjective judgement of different users. This automation

can be a challenging process for several reasons. For instance, identified modal proper-

ties are often not associated with the true dynamic behavior of the structure. This phe-

nomenon is usually a consequence of noisy sensors, overestimation of the model order,

or the inability of the unknown inputs to significantly excite a particular vibrational

mode. In some cases, the identified modes have clear signs of not being associated with

the system (e.g. unexpectedly high damping ratios). To systematically eliminate these

modes, some criteria have to be established. General knowledge of the system is funda-

mental for carry out this process. The criteria used for the elimination of doubtful modes

are discussed in the sections devoted to the numerical implementation of the algorithms.

But perhaps the most difficult problem for automating the modal identification of struc-

tures, is to deal with those cases when the identified properties are associated with noise

but do not have clear signs of this fact. This problem is aggravated by techniques such as
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the combination of NExT and ERA that require repeated implementations while chang-

ing parameters of the algorithm (e.g. using different channels as reference). This practice

usually results in multiple sets of repeated modal properties from which it is difficult to

select the most accurate ones. To determine the true modes of the systems, researchers

have used the so-called “stabilization diagrams” for years. Since no actual diagrams are

required to automate this process, it is referred here as “stabilization of modes” and is

described in the following section.

Stabilization of Vibrational Modes 

A stabilization diagram is an useful tool with which the user can easily visualize the fre-

quencies that have been detected in a consistent manner and discard those that appear to

be unrelated with the true dynamic behavior of the structure. The automation of this pro-

cess is somewhat affected by subjectivity as some thresholds have to be set. Basically,

the detection of similar vibrational modes is based on two criteria, namely, 1) the prox-

imity of the frequencies and, 2) the correlation of the mode shapes. The first criterion

was simply evaluated by determining a 2% threshold. Here, two frequencies are consid-

ered similar if their values are within 2% of each other. The correlation of the mode

shapes was evaluated by calculating the modal assurance criterion (MAC) of the two

vectors. The established threshold for this criterion was set equal to 0.9. The automated

algorithm then recognizes two vibrational modes as similar if both criteria are met.

Although the proximity of the detected damping ratios has also been used by some

researchers, it is well known that the variation of these ratios is usually high compared to

the variation of the frequencies. Therefore, it was decided to ignore these parameters in

this study. Finally, stable modes are determined by searching, in descending order, those

modes with the most similar sets, while averaging the corresponding frequencies, mode

shapes and damping ratios.
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2.3  The Benchmark Structure

To enhance the understanding of SHM techniques, a task group of the IASC-ASCE has

developed a series of benchmark problems that allow researchers to compare results of

the different techniques, improve the methodologies, and identify their capabilities and

limitations. These studies are based on a structure constructed at the University of Brit-

ish Columbia, and, as described by Johnson et al. [44], it is a 4-story, 2-bay by 2-bay

steel frame, scaled at 1:3 (see Fig. 2.3). In this study, data collected from the experimen-

tal structure itself as well as a finite element model that closely represents it are used.

The identification of modal properties is limited to the six lowest frequencies and the

associated damping ratios and mode shapes. Moreover, although multiple damage sce-

narios were considered by the task group, this chapter is concerned with the healthy

(fully braced) condition only. All damage scenarios will be addressed in Chapter 4 when

damage detection under different environmental conditions is pursued. In the following

sections detailed descriptions of the experimental setup as well as the analytical model

Figure 2.1  The benchmark structure
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are provided. More information of the benchmark problem can be found in: http://wus-

ceel.cive.wustl.edu/asce.shm/

2.3.1  Experimental Setup

The structure has a 2.5m×2.5m plan and is 3.6m tall. The members are hot rolled grade

300W steel (nominal yield stress 3e8N/m2). The sections are unusual, designed for a

scale model, with properties as given in Table 2.1. Four steel plates were attached to

each floor to represent the mass of the building. Each plate on floors one through three

has a nominal mass of 1000Kg, and the masses on the fourth floor have a mass of

750Kg. The placement of these plates is identical at each floor, with masses being dis-

tributed asymmetrically so that the motions are coupled in every mode.

Because the structure was placed outdoors, ambient vibration was induced by several

factors such as wind, and ground excitation produced by traffic, working machinery and

people walking near the structure. Hammer impacts were all located in the southwest

corner at the first floor (between first and second stories), and responses were recorded

for both, impacts directed in the north-south and east-west directions.

Table 2.1  Member properties of benchmark experiment

Property Columns Floor beams Braces
Section type B100×9 S75×11 L25×25×3

Cross-sectional area                               A [m2] 1.133×10–3 1.43×10–3 0.141×10–3

Moment of inertia (strong direction)      Iy [m4] 1.97×10–6 1.22×10–6 0

Moment of inertia (weak direction)        Iz [m4] 0.664×10–6 0.249×10–6 0

St. Venant torsion constant                   J [m4] 8.01×10–9 38.2×10–9 0

Young’s Modulus                                  E [Pa] 2×1011 2×1011 2×1011

Mass per unit length                           ρ [kg/m]  8.89  11.0 1.11
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A total of 16 uniaxial accelerometers were placed on the structure to record its response

under all load cases. Each floor (including the base) was equipped with three sensors,

two of which measured accelerations in the north-south direction at opposite sides of the

structure, and the third measured east-west accelerations. Only the accelerometers

placed on the floors are used in this study (for a total of 12 sensors). Ambient vibration

was recorded for a period of five minutes with a sampling frequency of 200Hz. Hammer

impacts were recorded with a sampling frequency of 1000Hz for approximately two

minutes, time during which three or four impacts were applied to the structure. More

information on the experimental setup can be found in Dyke et al. [25].

2.3.2  Analytical Model

132 beam elements were employed to construct a finite element model to simulate the

behavior of the benchmark structure (See Fig. 2.2). Geometry, cross-sectional areas,

material properties, and mass distribution of all members were based on the experimen-

tal model (see Table 2.1). Moreover, the mass associated with the steel plates attached to

the structure, was carefully distributed as lumped masses along the nodes. However,

some assumptions were made to simplify the analysis and reduce the computational

effort needed to simulate dynamic responses. For instance, the properties of the inter-

story diagonals were purposely limited so that only axial forces were developed on these

members. In addition, fixed conditions in all directions were provided to the nodes con-

nected to the ground. But perhaps the main assumption is that all floors behave like rigid

membranes with no in-plane deformation. This assumption is based on the fact that, as

seen in Fig. 2.2b., 16 beam elements provide stiffness to each floor. Moreover, the steel

plates attached to the experimental structure provide not only the intended mass, but also

some additional stiffness to the plane. As a result, all in-plane nodes were expected to

have similar behavior. With this in mind, displacements along each axis as well as rota-

tions with respect to the vertical axis of all external nodes were constrained to be depen-

dent on the central node. Rotations with respect to the  and  axes were allowed for allx y
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nodes. By condensing these degrees of freedom the finite element model is simplified in

such a way that 88 DOF are active. Finally, damping ratios of 1% were introduced to

each mode of the analytical model.

Ambient disturbance responses were simulated by introducing three bandwidth-limited,

statistically-independent and normally distributed random inputs acting as horizontal

ground excitation to the model in the  and  directions as well as a rotation with

respect to the  axis. Similar to the studies performed by the IASC-ASCE working

group on SHM, only three acceleration responses per floor were recorded (same loca-

tions as in the experimental case). Each simulation consisted of seven minute inputs

from which data was obtained with a sampling frequency of 200Hz. The first two min-

utes of each simulation were discarded to ensure no transient response was being consid-

ered. In addition, simulated sensor noise was introduced to each sensor as white noise.

The signal to noise ratio ranged between 0.03 and 0.1 (in a standard deviation sense)

depending on the amplitude of the records themselves.
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For comparison purposes, the theoretical modal properties of the analytical model were

calculated using the stiffness, mass and damping matrices built. These parameters are

hereafter referred to as the theoretical properties (see Table 2.2).

2.4  Analytical Analysis and Results

This section is divided in three subsections. The first one is devoted to the numerical

implementation of the free response estimation techniques, including the selection of the

parameters necessary to execute them as well as the comparison of the results. In the

second subsection, a detailed description of the numerical implementation of all three

modal identification techniques is provided. The third and last section is exclusively

devoted to the comparison of the techniques.

2.4.1  Free Response Estimation

Numerical Implementation of NExT

In terms of quality of results obtained by NExT, no major benefits are gained by using

data that is sampled at a much higher rate than needed. In contrast, the computational

effort increases significantly as higher rates are used. As previously mentioned, the spe-

cific objective in the case of the analytical model of the benchmark problem is to capture

Table 2.2  Theoretical natural frequencies and damping ratios

Mode 
number

Description
Frequency 

Hz.
Damping ratio

%
1 E-W motion 7.827 1.0

2 N-S motion 8.397 1.0

3 Torsion 11.115 1.0

4 E-W motion 21.959 1.0

5 N-S motion 23.763 1.0

6 Torsion 31.658 1.0
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the first six modes of vibration, which range approximately between 7 and 31Hz. Thus,

data produced with the analytical model is filtered through a low-pass filter, “down-sam-

pling” the data from 200Hz to 100Hz, leaving enough frequency content in the estimated

free response to capture the dynamics of the system adequately. Fast Fourier transforms

were performed using segments of data with 512 points and averaging in the frequency

domain was performed by overlapping the samples by 75% of their length (box win-

dows). As a result, the estimated free responses are 2.56 seconds long. All 300 seconds

of the simulated ambient vibration were used.

Numerical Implementation of RDD

As commonly done in the literature, the threshold was expressed in terms of the standard

deviation  of the reference. Specifically, the threshold was set exactly to this value.

Moreover, the range within which signal points were considered triggering points was

set to plus or minus 0.5% of the selected threshold. Unlike NExT, where high sampling

frequency involves computational expense without much benefit, higher sampling fre-

quency translates in higher chances of points lying within the set range, providing more

samples to calculate the RDD signature. Thus, the sampling frequency with which the

simulated data from the analytical model of the benchmark structure was kept at 200Hz.

The number of triggering points along the 300 seconds of data used vary slightly

depending on the channel selected as reference. In this comparison, these numbers vary

randomly between 130 and 160. In addition, segments of 512 points were averaged pro-

ducing RDD signatures of 2.56 seconds.

Comparing NExT and RDD

The estimated free responses obtained with NExT and RDD are compared in both the

time and the frequency domains under the influence of two levels of noise added to the

σX
2
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simulated records. Figure 2.3 shows the decaying responses estimated for one of the sen-

sors that measures north-south vibrations of the top floor. Such estimations were

obtained using the acceleration record from the opposite side of the model as reference

channel. As clearly shown in Fig. 2.3a, the free responses estimated by both techniques

look very similar in the time domain. However, when the frequency content is analyzed,

it is clear that the results obtained with NExT concentrate most of the energy in a few

frequencies, whereas the random decrement signature distributes the energy more

evenly along the entire spectrum.

As expected, the peaks in the spectral density function of the random signature and the

cross-correlation function do not contain all the vibrational modes that the structure

should exhibit (see Table 2.2). This is due to the fact that the reference channel selected

to obtain these free response estimates measures vibrations in the  axis (north-south)

and therefore, the motion of orthogonal modes (east-west) are not captured. This phe-

nomenon occurs despite the non symmetrical distribution of the mass of the model.

y

Figure 2.3  Comparison of estimated free responses by NExT and RDD

a. No noise in sensors b. Noisy sensors 
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While the free responses of Fig. 2.3a were obtained with noise-free simulated accelera-

tions, those of Fig. 2.3b were obtained from records to which a significant amount of

noise was added. In fact, in RMS sense, the signal-to-noise ratio ranged between 0.2 and

0.8 (commonly referred to as 20% and 80% noise). Under these conditions, it is remark-

able that the estimated free responses varied only slightly. Yet again, the results obtained

with NExT seemed to be more robust, as the peaks remain clear, whereas the third peak

of the random decrement result is barely distinguishable. For all these reasons, NExT is

used hereafter to estimate free responses of the structure whenever a system identifica-

tion technique requires it (see ERA-DC later in this chapter).

2.4.2  Modal Identification

Numerical Implementation of ERA/DC

In an attempt to improve the quality of the modal properties identified with ERA/DC,

each sensor was used as a reference channel to estimate free responses from NExT.

Therefore, a total of 12 sets of results are available for a given set of ambient vibration

records. Figure 2.4 shows the complete modal identification process, including the esti-

mation of multiple free responses, the systematic elimination of doubtful modal proper-

ties, and the stabilization of modes.

The Hankel matrices used to implement the ERA/DC were composed of 200 columns

and 96 rows (8 block rows of 12 sensors each), whereas the block correlation matrices

were built with three Hankel matrices as block-columns and two as block-rows. More-

over, as stated in the section devoted to the numerical implementation of NExT, the sam-

pling frequency of the estimated free responses was 100 Hz. As a result, a total of 2.31

seconds of the free response were used to build both  and . The dimensions of

these matrices were chosen to make use of the first 2.5 seconds of the decaying

response, where, as seen in Fig. 2.3, the signal-to-noise ratio appears to be high. The

 0  1
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truncation of matrices ,  and  was carried out using 12 singular values, which

means that six vibrational modes were calculated for a given estimated free response.

As previously mentioned, Once ERA/DC has been executed, some of the calculated

modes may not be associated with the dynamic system. The systematic elimination of

doubtful modal properties is then carried out as follows:

• Modes with unexpectedly high damping ratios are rejected. Since the structure is a

steel frame with few non-structural elements, the damping ratios are expected to

be very low (perhaps even lower than the 1% introduced into the analytical

model). A 10% threshold was used.

Ψ R S

Figure 2.4  Numerical implementation of ERA/DC
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• To avoid poorly calculated modes due to the low amplitude of modes at the point

of the reference sensor, those modes whose shape vector have an amplitude at the

reference point location that is lower than one tenth of the highest value are elimi-

nated.

• Repeated modes are eliminated on the basis of lowest energy content using the

associated singular values obtained in the decomposition. The identification of

such sets is done as described in the stabilization of modes. However, lower

thresholds were used in this case (frequencies within 20% of each other, and MAC

values above 0.8). The identification and elimination of modes that are linear com-

binations of true modes is, on the other hand, more challenging. No action was

taken in these cases.

• Because only the first six vibrational modes of the system are targeted (roughly

between 7 and 32Hz), only frequencies below 35Hz are taken into account. This

practice is common in experimental modal identification, as natural frequencies

can easily be identified beforehand with frequency-domain techniques (e.g. spec-

tral density functions).

Once the modal properties for each of the 12 estimated free responses are calculated, the

stabilization of modes is executed in order to average all values identified as correspond-

ing to a given vibrational mode. Figure 2.5 shows all frequencies detected from a given

free response in the form of a typical stabilization diagram. Here, identified stable vibra-

tional modes are linked with a dotted line. Clearly, for this specific set of simulated

ambient vibration records, six modes are considered stable according to the established

criteria, with only a few extra modes detected. Only modes detected three or more times

with ERA/DC are considered stable in this study.
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Numerical Implementation of PEM/LS

Although not as critical as ERA/DC and its predecessors, the implementation of predic-

tion error methods leaves a number of variables that can be altered and whose correct

selection highly depends on the experience of the user. In the case of the two-stage least

squares algorithm used in this study, the main variables include the order of both the

auto-regressive and the moving average models. In general, an increase in the auto-

regressive model order translates not only into more required computational power, but

also into a more complex eigensolution of the problem. Therefore, since more eigenval-

ues and eigenvectors are obtained, the selection of the true vibrational properties of the

structure from computational ones becomes more difficult. However, before engaging in

a discussion on how to select these values, it is important to understand the effects of the

order of the ARMAv models in the accuracy of the modal properties themselves.

Figure 2.6 shows the deviation of the identified fundamental frequency of the bench-

mark problem from the true analytical value for several ARMAv models. Although

somewhat erratic, it can be seen in Fig. 2.6a that a more accurate frequency is obtained

as the order of the auto-regressive model is increased. Similarly, the order of the moving

Figure 2.5  Typical stabilization diagram for ERA/DC
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average model affects the identified value in the same manner (see Fig. 2.6b). Higher

frequencies, mode shapes and damping ratios are also influenced positively as the order

of these models is increased. Since higher order models require more computational

power, it could be concluded that the accuracy of the methodology becomes a trade-off

with time. However, noise, non-stationary inputs and non-linearities in the system can

affect the technique and even make it lose accuracy for excessively high order models.

Figure 2.7 illustrates the implementation of the prediction error method through least

squares (PEM/LS) as employed in this study. Note that, unlike the implementation of

ERA/DC, the modal properties were not obtained through averaging. The process starts

by forming a reliable basis to separate the true vibrational modes of the structure from

computational ones, using a series of six low-order ARMAv models. The order of these

models were (4,2), (4,3), (5,4),(5,3), (6,4), and (6,5), where the first and second numbers

represent the auto-regressive and moving average orders respectively. Moreover, the

order of the auto-regressive model estimated in the first step of the algorithm was two

times the order of the final ARMAv model. All five minutes of data sampled at 200 Hz

were used to identify these models.

Figure 2.6  Accuracy of first natural frequency for different 
ARMAv model orders

(3,3) (7,7) (11,11) (15,15)

0

0.05

0.1

0.15

0.2

ARMAv model order (na,nc)

D
ev

ia
tio

n 
fr

om
 t

ru
e 

va
lu

e 
(H

z)

(15,1) (15,5) (15,9) (15,13)
0.008

0.01

0.012

0.014

0.016

ARMAv model order (na,nc)

D
ev

ia
tio

n 
fr

om
 t

ru
e 

va
lu

e 
(H

z)

a. Varying AR model order b. Varying MA model order 



47
The systematic elimination of questionable modal properties was carried out using the

same criteria used in the implementation of ERA/DC. As expected, this handful of

thresholds were particularly useful in the implementation of the PEM/LS algorithm,

eliminating most of the computational modes that, by nature, the algorithm estimates

with each ARMAv model. Similarly, the stabilization of the identified modes is per-

formed using the same criteria used with ERA/DC. However, this process was carried

out with the sole purpose of determining the stable modes of the system. Subsequently,

more accurate values were extracted from a high order model with ten auto-regressive

and ten moving average matrix coefficients (10,10).

Figure 2.7  Numerical implementation of PEM/LS
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Numerical Implementation of SSI

Among the algorithms compared in this study, the stochastic subspace identification

technique is the most user-friendly as it only requires the selection of the number of sin-

gular values to truncate the decomposition. However, depending on the quality of the

measurements and the frequency content of the input, it may be necessary to retain a

large number of singular values to identify all vibrational modes. Moreover, even for

high quality measurements and stationary white noise as input (as in the case of the ana-

lytical model employed here), this selection may affect the quality of the results. It can

be seen in Fig. 2.8, for instance, that the deviation of the identified first frequency with

respect to the true analytical value is decreased for larger truncations. Higher frequen-

cies, mode shapes and damping ratios are influenced similarly.

The identification of modal properties was then carried out using three truncation sizes

(20, 22 and 24) and averaging the results by means of stabilization of modes. Systematic

elimination of questionable modal properties was executed here using the same criteria

exposed previously. However, this procedure was rarely needed. All five minutes of data

sampled at 200 Hz were used here. Figure 2.9 summarizes the numerical implementa-

tion of the algorithm.

Figure 2.8  Accuracy of first natural frequency for 
different truncations
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2.4.3  Comparison of Results

Two numerical studies were performed to investigate the capabilities of each algorithm.

The goal of the first study is to determine the performance of the different methodolo-

gies under the same noise level conditions. The second set of simulations investigates

Table 2.3  Evaluation criteria

Criteria Description Formula

Accuracy of detected natural frequencies 
as error percentage

Accuracy of detected mode shapes through 
the modal assurance criteria (MAC)

Accuracy of detected damping ratios 
as error percentage

Number of modes missed --

Number of extra modes detected --

Figure 2.9  Numerical implementation of SSI
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the performance of the methodologies under various noise levels. Table 2.3 shows all

five evaluation criteria used to carry out the comparison. Here, ,  and , represent

the frequencies, mode shapes and damping ratios respectively; whereas the subindices

“true” and “id” stand for analytical and identified.

Constant Noise

Five hundred simulations were performed to determine the effectiveness of each meth-

odology under the influence of a constant level of noise added to the acceleration

records. For each simulation, noise was created as uncorrelated, normally-distributed

random signals with zero mean and unit standard deviation. These signals were then

multiplied by  and added to the measured responses. In an RMS sense, these

noise signals range between 3 and 9% of the accelerations used (depending on the sensor

location). Running in a Microsoft Windows based Pentium 4 at 2.0 Ghz, each simulation

took approximately nine seconds to produce seven minutes of simulated ambient vibra-

tion records (from which only the last five were used to avoid using transient responses),

and to obtain the theoretical dynamic properties of the 88-DOF model. Subsequently,

10, 30 and 29 seconds were employed to complete the automated ERA/DC, PEM/LS,

and SSI algorithms, respectively.

Figures 2.10 and 2.11 show histograms of two of the evaluation criteria used to compare

the techniques. All 3000 results (6 frequencies in 500 simulations) are considered

equally. Although it is difficult from these plots to compare the efficacy of PEM/LS and

SSI with respect to each other, it is clear that both techniques outperform ERA/DC. It is

also clear that none of the methodologies were nearly as capable of identifying damping

ratios with the same accuracy as they identify natural frequencies. Whereas errors rarely

reach 0.5% for the identified frequencies, damping ratios were often off by more than 20

and even 50% (specially when using ERA/DC).

ω φ ζ

1 10 5–×
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None of the techniques seemed to be greatly affected by the simulated noise as all three

algorithms successfully identified the targeted first six vibrational modes in all 500 sim-

ulations (i.e.  in all cases). In addition, PEM/LS and SSI did not identify any

extra modes while ERA/DC identified up to three computational modes. Figure 2.12

shows the histogram of the additional identified by ERA/DC for all 500 simulations.

Figure 2.10  Deviation of identified natural frequencies ( )J1
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The mean value and standard deviation of the first three evaluation criteria for the differ-

ent algorithms are shown in Table 2.4. Again, all 3000 results are employed to calculate

the tabulated values. In a mean sense, these results indicate that the PEM/LS algorithm

outperforms the other two algorithms in the identification of all modal properties. How-

ever, in a standard deviation sense, SSI slightly outperformed PEM/LS in the identifica-

tion of frequencies and mode shapes. It is difficult to draw conclusions from this first

study regarding the relative performances of PEM/LS and SSI. Although slightly better

results were obtained with PEM/LS, it can be argued that its numerical implementation

is more challenging. Moreover, the computational power required is almost identical.

Variable Noise

The effect of sensor noise in the algorithms was investigated using 1000 simulations

with different signal-to-noise ratios. To achieve this goal, the zero mean, unit standard

deviation white noise added to the acceleration records of each simulation was multi-

plied by a different constant. Over all simulations, this constant constitutes a random

variable, uniformly distributed between 0 and , which corresponds to a maxi-

mum noise level of approximately 80% in average for all acceleration records (in an

RMS sense).

Figures 2.13, 2.14 and 2.15 show all 6000 values (6 modes in 1000 simulations)

assumed by ,  and , respectively. Similar to the constant noise study, but given

the high noise level introduced, it is remarkable that all modal properties were detected

Table 2.4  Evaluation criteria for constant noise level

Algorithm

ERA/DC -16.87x10-3 0.122 15.45x10-4 32.95x10-4 -14.560 14.529

PEM/LS -7.25x10-3 0.083 2.91x10-4 3.73x10-4 0.384 7.448

SSI -14.38x10-3 0.071 3.31x10-4 3.52x10-4 -1.656 7.620

J1
σJ1 J2

σJ2 J3
σJ3

2 10 4–×

J1 J2 J3



53
by all three evaluated methodologies. It can be observed in Figs. 2.13 and 2.15 that,

when identifying natural frequencies and damping ratios, none of the methodologies

showed clear signs of sensitivity to noise in the sensors. The identification of mode

shapes, however, is affected negatively as the noise level is increased (see Fig. 2.14). In

this case, SSI seems to be more robust than ERA/DC and PEM/LS.

As expected, ERA/DC consistently calculated some computational modes. However, no

trend was observed as the noise level was increased. Table 2.5 shows the mean value and

standard deviation of the first three evaluation criteria. Contrary to the constant noise
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study, the results indicate that the SSI algorithm outperforms the other two algorithms in

the identification of all modal properties demonstrating its robustness to deal with noisy

measurements. Given these results and the fact that subspace identification requires the

lowest number of parameters to setup, it is concluded here that, among the algorithms

evaluated, SSI is the best choice.

2.5  Experimental Results

However detailed an analytical study may be, it is never able to reproduce all the charac-

teristics of real systems and particularly those of civil structures. Therefore, despite the

effort put into the analytical study, many questions about the viability for modal identifi-

cation through ambient vibrations remain unsolved. For instance, given the usual low

amplitude of ambient vibrations, one might wonder if the measurements are sufficient to

Table 2.5  Evaluation criteria for variable noise level

Algorithm

ERA/DC -233.7x10-4 0.121 16.57x10-4 26.44x10-4 -14.817 13.974

PEM/LS -9.15x10-4 0.079 5.56x10-4 6.92x10-4 -0.229 7.832

SSI 2.58x10-4 0.070 4.56x10-4 4.75x10-4 -0.157 7.232
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implement any of the methodologies discussed. Moreover, the often overlooked non-lin-

earities of the structure at low amplitudes may play a significant role. Therefore, to

investigate the feasibility of ambient modal testing, experimental ambient vibrations

from the benchmark structure were analyzed here. Only the stochastic subspace algo-

rithm is implemented for this purpose. It is not intended here to discuss the stationarity

of the input loads acting on civil structures and their capability to excite an acceptable

amount of vibrational modes. This problem is unique for each case and should be evalu-

ated in the field.

The main problem in evaluating modal properties identified with ambient vibration

records, lies in the fact that, unlike analytical studies, the exact dynamic properties are

unknown. In the case of the benchmark problem however, these properties can also be

obtained from hammer tests, providing a more reliable point of reference. Since ERA/

DC was essentially created to deal with free responses, this algorithm was implemented

to extract the modal properties of the structure from the impact tests. The implementa-

tion of the SSI was identical to that of the analytical study. The following sections

describe the evaluation of hammer tests using ERA/DC, and the comparison results.

2.5.1  Hammer Testing (Implementation of ERA/DC)

As mentioned previously, hammer impacts were all located in the southwest corner of

the first floor (between first and second stories). Three impacts in the north-south direc-

tion and three more in the east-west direction were recorded. Therefore, a total of 6 free

responses recorded at a sampling frequency of 1000 Hz are available. Similar to the ana-

lytical study, the available data was “down-sampled” to 100 Hz through low pass filters.

Figure 2.16 shows, as an example, the response of all 12 sensors taken shortly after one

of the impacts. Unlike the estimated free responses obtained with NExT, where only a

couple of seconds constituted meaningful data, more than five seconds are part of the

decaying response that greatly overpowers the ambient vibration. Thus, larger Hankel
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matrices can be used in this case. These were then composed by 400 columns and 180

rows (15 block-rows of 12 sensors each), whereas the block correlation matrices were

built with three Hankel matrices as block-columns and two as block-rows. As a result, a

total of 4.18 seconds of the free response were employed to execute the algorithm. Sys-

tematic elimination of doubtful modal properties as well as the stabilization of those

remaining was carried out using the same criteria applied in the analytical study.

2.5.2  Comparison of Results

Table 2.6 contains the modal properties identified with both ambient vibration records

(using SSI) and hammer testing (through ERA/DC). Natural frequencies and damping

ratios, as well as the MAC correlation between the correspondent mode shapes are tabu-

lated here. Unlike the analytical study, no specific number of vibrational modes were

pursued. In fact, a total of seven modes were identifiable from the hammer tests. Note

that, perhaps due to a limited bandwidth of the random inputs, the sixth mode was not

identified using the ambient vibration records. However, it can be observed that the nat-

ural frequencies identified with ambient vibrations are in good agreement with those

identified from hammer impacts. In fact, only the second natural frequency differs by

more than 1% (1.63%). Damping ratios, on the other hand, poorly agree and the error in

these parameters is much larger.

Figure 2.16  Typical impulse responses
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But perhaps the most important parameters in a structural health monitoring context are

the mode shapes. Here, only the fourth mode had an excellent agreement between the

vectors identified with both tests (i.e. MAC of 0.995). And, although relatively good

agreement was observed in most of them, the vectors associated with the first frequency

seem to differ significantly (MAC of 0.895). Because relatively long ambient vibration

records were analyzed and averages from different estimated free responses were

obtained, this phenomenon cannot be attributed to noise in the sensors, but rather to an

inconsistent behavior of the structure when vibrating at low and high amplitudes.

Although the source of this phenomenon is not precisely known, it is likely that these

changes are due to a non-linearity of the structure (e.g. friction in the joints) that affects

the behavior of the building mainly when the amplitude of the displacements is small

(e.g. ambient vibration). Schematically, Fig. 2.17 helps to visualize the differences

between the first three mode shapes of the two tests.

The inconsistencies between the modal properties obtained from ambient vibrations and

hammer tests may lead some to argue that, at least in this benchmark problem, ambient

vibrations do not suffice to characterize the structure and search for damage. However,

once damage was induced to this structure, a mostly successful damage identification

Table 2.6  Identified modal properties

Mode Description Frequency (Hz) Damping ratio (%) Mode shapes

Ambient
(SSI)

Hammer
(ERA)

Ambient
(SSI)

Hammer
(ERA)

MAC

1 E-W motion 7.466 7.449 1.059 0.796 0.895

2 N-S motion 7.759 7.634 0.973 0.852 0.932

3 Torsion 14.472 14.436 0.805 0.407 0.942

4 E-W motion 19.892 19.832 0.001 0.441 0.995

5 N-S motion 20.989 20.850 0.017 0.493 0.969

6 Torsion -- 22.472 -- 0.634 --

7 E-W motion 25.553 25.245 0.828 0.464 0.939

φham φamb,
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technique was already implemented in 2003 using, exclusively, ambient records (see

Giraldo et al. [29]). Therefore, the argument of those who do believe in the usability of

ambient vibrations is that, as long as the state of the structure is analyzed while vibrating

under the same conditions as in the healthy state, the dynamic properties will reflect the

changes of its overall stiffness.

2.6  Conclusions

This chapter was devoted to the identification of modal properties from civil structures

as they vibrate in their natural environment. The three main goals of the study were: 1)

to provide a brief introduction to linear systems, their mathematical representations and

the physical meaning of their modal properties; 2) the evaluation and comparison of

Figure 2.17  Experimentally identified mode shapes

a. From ambient vibration records

b. From hammer tests
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three of the most popular time-domain modal identification techniques; and 3) the anal-

ysis of the performance of the best methodology by comparing it to more traditional

ways of testing. An analytical model of a two-bay by two-bay, four-storey building, as

well as the actual steel frame were used to accomplish the intended goals.

The three methodologies compared are the eigensystem realization algorithm with data

correlations (ERA/DC), the prediction error method through least squares (PEM/LS),

and the stochastic subspace algorithm (SSI). Because ERA/DC requires estimation of

free responses, the random decrement (RDD) and the natural excitation technique

(NExT) were also evaluated and compared. Analytical data from an 88 degree of free-

dom model that closely represents the actual structure was used to carry out these com-

parisons. Results indicate that while being the most user-friendly, the SSI algorithm is

more robust to noise in sensors. Acceptable results were also obtained with PEM/LS

surpassing those obtained from SSI from relatively clean signals. However, as the noise

in sensors was increased, its accuracy seemed to be negatively affected. ERA/DC was

clearly in disadvantage. Poor results and difficult setup make this algorithm difficult to

implement for ambient vibrations.

Experimental data was used to compare the modal properties obtained from real ambient

vibrations and the more traditional hammer tests. Although somewhat accurate results

were obtained with SSI, results were far from perfect (in terms of the similarity of the

results). Limited bandwidth inputs as well as non-linearities of the structure at low

amplitude vibrations seem to affect the identification. However, modal properties at low

amplitudes seemed to be consistent. Moreover, as demonstrated in past studies of the

benchmark problem [29], damage was actually reflected in its modal properties.
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Chapter 3 

Structural Health Monitoring Through Model 
Updating

Perhaps the most argued issue for researchers of vibration-based health monitoring

revolves around the characterization of structures for damage localization. On one hand,

some people feel that utilizing a finite element model of the structure introduces model-

ing errors and decreases the chances of correctly characterizing the structure. On the

other hand, there are those who think that by not using a model, valuable information

that can be easily obtained from the structure (e.g. mass, geometry) is wasted. Although

the most Solomon-like answer to this dilemma is perhaps a combination of both points

of view, this research focusses only on the latter by proposing a model updating tech-

nique that uses some of the dynamic properties detected from the structures.

Several model updating techniques have been proposed over the years in the fields of

mechanical, aerospace and civil engineering for various purposes. Basically, a finite ele-

ment model known as the identification model (ID-model), is modified in such a way

that its dynamic behavior resembles, as closely as possible, that of the structure being

analyzed. In 2003, for example, Ching and Beck [18] proposed a two-stage Bayesian

approach in which the most probable dynamic properties of the structure are found by

reducing the error between the measured response of the structure and a simulated

response from a numerical model in the time domain. Mass and stiffness matrices are

updated using this probabilistic framework. One year earlier, Caicedo and Dyke [15]
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calculated a reduced number of unknowns of the model's stiffness matrix using its char-

acteristic equation and the estimated dynamic properties. Some of the characteristics of

the structure, including the mass, were assumed known and invariable in their work.

These two schemes are representative of iterative and non-iterative model updating tech-

niques respectively, which, in general, marks a trade-off between the computational

effort needed and the precision reached.

Iterative model updating has been performed in the past by using different objective

functions that involve natural frequencies and mode shapes. This approach is usually

executed by assigning weighting factors to the discrepancy between each of these sets of

properties and the desired experimental ones (see Moller and Friberg [57], Bohle and

Fritzen [13], and Jaishi and Ren [42]). However, because there are always differences

between the structure and the ID-model (regardless of the care taken when constructing

it), the optimization usually converges to a set of parameters that sacrifices accuracy to

achieve optimal frequencies and the correlation of the mode shapes. Moreover, assign-

ing these weighing factors becomes a task that highly depends on the experience of the

engineer in each situation. Unlike control-oriented model updating, in which the accu-

racy of the frequencies is perhaps the most important issue, the changes in mode shapes

are more likely to provide information that can lead to the localization of damage.

The model updating procedure implemented in this research is an iterative algorithm

that minimizes an objective function constructed using the correlation between the mode

shapes of the structure and the eigenvectors of the ID-model. This correlation is mea-

sured using the modal assurance criteria (MAC). Several authors have made use of the

MAC for model updating. In 1988 Heylen and Janteer [33] proposed the use of these

correlation measurements to update the model of a simple spring-mass, 16-DOF system.

To accelerate the updating process, numerical derivatives of the MAC values were

obtained in this work. A decade later, Moller and Friberg [57] proposed the use of an

objective function that involved both natural frequencies and mode shapes. More
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recently, Jaishi and Ren [42] applied the latter work for SHM purposes. The algorithm

was further enhanced by using the sensitivities of the mode shapes to changes in the

structural parameters. Although the results obtained by all these authors clearly show the

potential for using the MAC values in model updating, the algorithms used to optimize

the different objective functions are often slow and do not explore all the mathematical

possibilities.

Herein a variation of the optimization algorithm known as the conjugate gradients is

employed to execute the updating process. The main contribution of the research is the

derivation of the needed partial derivatives and Hessian matrix of the selected objective

function, using as basis the sensitivities of the mode shapes derived in 1968 by Fox and

Kapoor [27]. By providing these tools, the need for time consuming numerical estima-

tions through finite differences is eliminated. Moreover, because the main focus of this

research is the applicability of these type of algorithms to civil structures, the robustness

of the methodology is tested for the cases of poorly estimated mode shapes as well as

their limited availability, both situations common in the field. Section 3.1 discusses the

methodology and the mathematical background, whereas a numerical example and the

conclusions are provided in sections 3.2 and 3.3 respectively.

3.1  Methodology

The robustness of the methodology proposed in this chapter (as well as that of most

model-based SHM techniques) strongly depends on the selection of an appropriate ID-

model and its ability to reproduce the dynamic behavior of the structure. The ID-model

will determine and limit the range of potential dynamic behaviors that the structure can

exhibit. ID-models typically represent the structure in a simplified way, and their level

of complexity depends primarily on the measuring capabilities. Therefore, the more

degrees of freedom measured, the more complex the ID-model becomes and the better

the chances of accurately identifying and localizing structural damage. Unfortunately,
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no specific guidelines can be established for the construction of this model, and the

experience of the engineer for taking into account both the known characteristics of the

structure and the measurements obtained from it plays a fundamental role.

Once the ID-model has been constructed, the first problem that must be resolved is the

selection of an appropriate set of updating parameters. Although perhaps not ideally, the

use of finite element models limits the search for damage to an element-based search. In

other words, changes in the structure have to be reflected exclusively in changes on the

elements of the ID-model, leaving connections and boundary conditions unchanged.

With this limitation in mind, it is recognized that the updating parameters are reduced to

the properties of the elements themselves, including the density and elasticity properties

of the material as well as the geometric properties of the cross sectional areas.

One of the main assumptions made in this research is that the mass distribution of the

structure does not change with damage. In principle, this assumption is not critical

because a significant change in mass, besides being much more evident than stiffness

changes, would also have an important impact on the dynamic properties of the struc-

ture, and most likely be reported as a change of stiffness by the updating technique.

However, the assumption also implies that a characterization of the structure in the pre-

damage state is available with the same mass of the damaged state. In structures such as

bridges, where the changes in mass are temporary, it is reasonable to argue that periodic

characterizations of the structure would accurately describe them under similar mass

conditions. However, buildings and their constant change of mass might require special

treatment. A statistical analysis such as the one introduced in Chapter 4 may help reduce

these effects.

By making the assumption of invariable mass, both the cross sectional area of the ele-

ments as well as the density of the material are recognized as constants and the possibil-

ities for updating parameters are reduced to the inertial properties of the elements and
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the material’s Young’s modulus and Poisson’s ratio. To keep the number of updating

variables small, and recognizing that the Young’s modulus of the material has a global

effect on the stiffness of the element’s principal components, it was decided to assume

assume this property as the only updating parameter. As it will become clear in later sec-

tions of this chapter, the selection of the Young’s modulus of the elements as updating

parameters is also convenient from a mathematical point of view.

The updating process will be described in the following sections. First, the objective

function used for updating the identification model is discussed. Consequently, the opti-

mization technique used to find the optimal parameters is described. In the three sections

to follow, the mathematical tools needed to carry out the optimization process are

derived. Finally, the implementation issues are laid out.

3.1.1  The Objective Function

As mentioned previously, the algorithm implemented in this research is an iterative

algorithm that maximizes the correlation of the mode shapes of the structure and the

eigenvectors of the constructed ID-model. This correlation is measured using the modal

assurance criteria (MAC), which, as described in Chapter 2 of this dissertation (and

repeated here for convenience), is defined as

. (3-1)

Here, a value close to 1.0 suggests that the two mode shapes  and  are well corre-

lated. Maximizing this correlation should allow us to accurately characterize the struc-

ture at any time and localize damage by comparing the current state with previous
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characterizations. An objective function that evaluates the correlation of all identified

modes for a given trial  (i.e. identification model build with a set of selected parame-

ters) will take the form

, (3-2)

where  and  are the corresponding mode shapes from the identification model and

the structure respectively, and  is the number of experimentally detected modes.

Therefore, the function  should be minimized to determine the optimal set of

parameters.

3.1.2  Optimization Technique

There are numerous algorithms available to optimize linear and nonlinear problems.

Researchers in fields such as numerical analysis and statistical computing have filled the

literature with studies and alternatives on this topic (see, for instance, Bertsekas [10],

Bertsekas and Tsitsiklis [11], and Gill et al. [28]). When selecting an algorithm to opti-

mize a nonlinear problem, such as the minimization of Eq. (3-2), it is important to

understand first that there is no single technique that works best for all types of nonlinear

optimization problems. The selection of an appropriate algorithm strongly depends on

several factors such as the number of variables, the presence of constraints and the con-

tinuity of the objective function. As described in [36], three general types of algorithms

have been found to be effective for most practical purposes:

• For a small number of parameters, stabilized Newton and Gauss-Newton algo-

rithms are efficient. The memory required by these algorithms is proportional to

the square of the number of parameters.

p

Ω p( ) 1---MAC φn φ̂n,( )
n 1=

N

∑=

φ φ̂

N

Ω p( )



66
• For a moderate number of parameters, various quasi-Newton algorithms are effi-

cient. The memory required is also proportional to the square of the number of

parameters.

• For a large number of parameters, various conjugate-gradient algorithms are effi-

cient. The memory required is proportional to the number of parameters.

Because the complexity of ID-models (i.e. the number of parameters to optimize) is dif-

ferent for each case, this research focuses on the more general conjugate gradient algo-

rithm, despite the fact that, for simplistic ID-models, it may not be the most efficient

option. However, as long as the objective function of Eq. (3-2) is employed, the mathe-

matical tools derived in later sections can be employed to execute other types of algo-

rithms more suitable for simplistic ID-models with few parameters.

The conjugate gradient algorithm was developed in 1952 by Hestenes and Stiefel [32] as

an improvement to the steepest descent method. Despite the vast amount of literature

devoted to the method, interested readers are referred to the report written in 1994 by

Shewchuk [67], in which a clear summary of the basics is explained. The conjugate gra-

dients method is a mature algorithm that has been extended from linear applications with

a number of variations that assume near quadratic objective functions [34]. One of the

variations is called conjugate gradients with Newton-Raphson and Fletcher-Reeves

which includes special subroutines that deal with line search in any specific conjugated

gradient to accelerate its convergence [67]. Details on the algorithm can be found in

[26]. Both the gradient vector and the Hessian matrix of the objective function with

respect to the optimization parameters (i.e.  values) are required to perform the optimi-

zation. The algorithm can be summarized as shown in Fig. 3.1.

E
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3.1.3  Gradients and Hessian of Objective Function

Calculating gradient vectors and Hessian matrices is a computationally expensive pro-

cess that is often avoided due to large memory requirements and high computational

cost. However, as the power of computing tools quickly increases over time, more com-

plex algorithms with large memory requirements can be implemented. Moreover,

numerical estimations through finite differences are, in many cases, more time consum-

ing and have poor accuracy. The vector of gradients of the objective function employed

in this study can be obtained by differentiating Eq. (3-2) with respect to Young’s modu-

lus of each element of the ID-model. In general, the derivative with respect to the elastic

modulus of the -th element ( ) is

Figure 3.1  Conjugate gradients algorithm with Newton-Ramphson 
and Fletcher-Reeves (From [67])
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. (3-3)

It is assumed in this work that the condition of the structure does not change during the

time that accelerations are recorded. As a result, when calculating the gradients of the

MAC values for Eq. (3-3), the mode shapes of the structure ( ) can be treated as con-

stants. Therefore, the expression within the parenthesis of Eq. (3-3) can be written

, (3-4)

where

. (3-5)

The calculation of the Hessian matrix of the objective function is a more challenging

procedure and, certainly, more computationally expensive. It is derived by differentiat-

ing the gradients of Eq. (3-3) with respect to each optimization parameter, thus forming

a square matrix. In general, each term of the Hessian matrix takes the form

, (3-6)

which, when combined with Eq. (3-4) yields

. (3-7)
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Again, the detected mode shapes  can be treated as constants, and Eq. (3-7) can be

expanded to obtain

, (3-8)

where

 and (3-9)

are the sensitivities of the mode shapes with respect to the optimization parameters 

and , respectively, and

. (3-10)

3.1.4  Sensitivities of Mode Shapes

The sensitivity of mode shapes with respect to changes in structural parameters such as

mass and stiffness has been a design tool in both the aerospace and mechanical engineer-

ing fields for some years now. Explicit calculation of these sensitivities is a complex

task even for simplistic finite element models and the order of the equations needed rap-

idly increases with the number of elements used. Alternatively, different methods have

been proposed over the years. In some of the earliest work, Fox and Kapoor [27] found

exact expressions for derivatives of modal properties with respect to any design variable

using all eigenvectors of the structure in its current state. Eight years later, Nelson [59]
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proposed an approximated method that requires only the eigenvalue and eigenvector

under consideration. However, in the context of structural health monitoring of civil

structures, only a few researchers have explored the usability of mode sensitivities. Shen

and Sharpe [66], for example, use these derivatives to find the extent of already local-

ized damage. Parloo et al. [61], on the other hand, developed a non-iterative technique to

localize damage using the mode sensitivities and the differential between the mode

shapes from the healthy and damaged states. Unfortunately, a large number of mode

shapes have to be employed to successfully implement these techniques.

It is important to point out that the derivatives needed to implement the optimization

algorithm (i.e. Eqs. (3-9) and (3-10)) are derivatives of the mode shapes of the ID-

model. Because all mode shapes of this finite element model can be readily calculated

using its mass and stiffness matrices, it makes sense to use the exact expressions pro-

posed by Fox and Kapoor in 1968. Moreover, since the method has shown to quickly

converge to the final values by using a limited number of modes, a trade-off can be

established here to save computing time.

According to the work by Fox and Kapoor [27], the derivative of the -th eigenvalue

( ) with respect to the design variable  has the form

, (3-11)

where  is the associated eigenvector, and  and  are, respectively, the mass and

stiffness matrices of the model. On the other hand, the derivatives of the eigenvectors

are assumed to be a linear combination of all eigenvectors. That is

(3-12)
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where  is the total number of natural frequencies of the system, and

. (3-13)

If the design variable  is part of the stiffness matrix (i.e. independent of the mass), then

the derivative of the mass matrix is equal to zero. Therefore, when differentiating with

respect to the modulus of elasticity of the -th element ( ), Eqs. (3-11) and (3-12)

take the form

, (3-14)

and

, (3-15)
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where the -th row of the vector of the right hand side of the equation is equal to zero,

 is a matrix containing all eigenvectors in its columns, and

. (3-16)

As suggested by Eqs. (3-8) and (3-10), the implementation of the model updating tech-

nique requires not only the derivatives of the mode shapes with respect to the optimiza-

tion parameters, but also the second derivatives of these parameters. To obtain these

second derivatives, Eq. (3-15) is differentiated with respect to the design variable 

obtaining

, (3-17)

where  is a matrix containing all the derivatives of the eigenvectors with respect to

 (calculated previously), and the -th rows of both vectors multiplying  and  are

equal to zero. As explained later in this chapter, the second derivative of the stiffness

matrix is equal to zero ( ). With this in mind, Eq. (3-17) can be further devel-

oped and written
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, (3-18)

where  is the derivative of the eigenvalue with respect to , and  and  are the

derivatives of the stiffness matrix with respect to  and , respectively.

3.1.5  Derivatives of the Stiffness Matrix

The derivative of the stiffness matrix of a finite element model with respect to the

Young’s modulus of any of the elements can be easily obtained. Moreover, because it is

assumed in this research that the rest of the components of the stiffness matrix remain

unchanged, the derivative  is constant and can be calculated only once and stored in

memory. To explain the differentiation of this matrix let us consider the 3-element, 3-

DOF, shear model shown in Fig. 3.2.
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Assuming that no rotations of the nodes are allowed, the stiffness matrix of the model is

given by

. (3-19)

The derivative of  with respect to  is easily obtained by differentiating the matrix

(in an element-by-element basis) with respect to this parameter, obtaining

. (3-20)

In other words, the derivative of the stiffness matrix with respect to the parameter 

can be obtained by setting  and  for all . Because this derivative

becomes independent of the variable itself, its second derivative is equal to a zero

matrix.

3.1.6  Implementation Issues

When performing a comparison between a mode shape of a structure and its counterpart

from an ID-model, the former has to be extended to the DOF's of the ID-model, or the

latter has to be restricted to the sensor locations. There are several methodologies for the
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expansion of experimental mode shapes to cover unmeasured DOF's. However, because

the extension of these modes is computationally expensive it was decided that the eigen-

vectors of the ID-model would be truncated. This approach seems to be the preferred

one among researchers in model updating.

A drawback of the methodology is the fact that the expressions found by Fox and

Kapoor [27] require the mode shapes be mass-normalized. To perform this normaliza-

tion, the Guyan reduced mass technique is used (see Guyan, [31]). Thus, the -th ele-

ment of the non-normalized -th mode  is

(3-21)

where  is the model's mass matrix, reduced to the measured degrees of freedom. This

method assumes that the inertial forces at the eliminated degrees of freedom are negligi-

ble, which is usually valid for low frequency modes. All equations of this chapter are

calculated using mass-normalized modes. The normalization of the experimental modes

was performed using the analytical modes in the denominator of Eq. (3-21).

In theory, the exact derivatives of the mode shapes with respect to the optimization

parameters are obtained by using all the eigenvectors of the model. However, as Moller

and Friberg [57] demonstrated, sufficiently accurate approximations for model updating

can be obtained with a limited number of vectors. The number selected highly affects the

efficacy of the optimization algorithm, especially in the present case, where the deriva-

tives and the Hessian matrices of the mode shapes are required. Unfortunately, the selec-

tion of an appropriate number of eigenvectors depends on the type of model being

updated and no general rule can be established. Perhaps a useful method to select this

number is by looking at the convergence of the mode shape derivatives, as the number

increases.
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A critical problem that could lead to an unstable optimization algorithm is the pairing of

non-corresponding mode shapes. This problem is not so difficult to avoid with certain

types of continuous structures such as beams, in which mode shapes can always be asso-

ciated with increasing frequencies. However, for other types of structures, the nearness

of two frequencies is certainly not informative enough to pair two modes. To solve this

problem, the modal assurance criteria (MAC) was also used here, always retaining the

order of the structure's modes and changing those of the ID-model if needed. It is also

important to emphasize that Eqs. (3-4) and (3-8) are sensitive to the sign of paired

modes.

Perhaps the biggest concern when implementing an optimization algorithm on a nonlin-

ear problem is the possibility of convergence to a local minimum without achieving the

pursued global minimum. However, given the characteristics of civil structures, it is

known that the variation of their modal properties when damage exists is typically rela-

tively low. Therefore, if the optimization of the parameters in the healthy state is guaran-

teed to be a global minimum, the optimization process in the damage state should

quickly find its way to a global minimum also (i.e. using the optimized healthy parame-

ters as starting point). The problem is then reduced to assuring that the optimization in

the healthy state has explored all the possibilities. Although costly, one way to overcome

this problem is applying the optimization algorithm with different and random starting

points. Genetic algorithms also constitute an alternative to address this issue. 

3.2  Validation through Analytical Model

To test the potential of the technique an analytical model of a 32m long beam was cre-

ated. The beam is simply supported at both ends with a third support located 12m from

the left end (see Fig. 3.3). Although intuitively simple, this type of continuous structures

pose a challenge to dynamic-based SHM techniques for various reasons. For instance,

the global effect that any kind of damage has on the modal properties of the structure
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makes it difficult to localize the weakness. Moreover, the continuous distribution of the

mass and stiffness causes that discretized and lumped ID-models introduce significant

modeling errors.

The finite element model of this continuous beam was created using 512 Euler-Bernoulli

elements whose properties can be summarized as: m4, m2,

N/m2, and Kg/m3. Only inplane motion of the nodes was

allowed (vertical motion and rotation), for a total of 1023 degrees of freedom. Four dam-

age scenarios (including the healthy case) were simulated by reducing the stiffness of

certain elements as indicated in Table 3.1.

Table 3.1  Damage scenarios

Damage 
scenario

Damaged 
elements

Stiffness 
reduction

1 -- --

2

153

154

155

156

20%

40%

40%

20%

3
375

376

50%

50%

4 (Scenarios 2 and 3 combined)

Figure 3.3  Finite element model of the continuous beam 
with three supports (512 elements)

12m 20m

Ix 6 10 5–×= A 0.05=

E 2 1011×= ρ 8000=



78
To isolate the problem of model updating and characterization of the structure from the

issues involved with modal identification, rather than using time history responses to

calculate the modal properties of the finite element models, these were calculated using

their mass and stiffness matrices. However, to demonstrate that the methodology can be

reasonably robust to noise in the sensors, once the efficacy of the methodology is proven

to update models using these theoretical mode shapes, a random noise vector is added to

the modal information made available. This noise is a uniformly distributed random sig-

nal with zero mean and a standard deviation equal to 2e-5, equivalent to approximately

0.2% of the values of the mass-normalized modes (in an RMS sense). From the 1023

DOF in the analytical model, only 30 uniformly distributed points of information were

made available (vertical motion), simulating sensors placed every meter within the span

of the bridge. Moreover, only the first six frequencies and mass-normalized mode shapes

were employed in the optimization algorithm (see Fig. 3.4).
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Figure 3.4  Mass-normalized mode shapes of 
the healthy model
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3.2.1  The Identification Model

To take advantage of all modal information made available, the identification model was

constructed with 32 elements and 33 nodes including the supports (see Fig. 3.5). Simi-

larly to the analytical model, only in plane motion of the nodes was allowed, thus obtain-

ing 30 vertical displacements and 33 rotations (63 DOF). Both the mass and the

geometric properties of the original finite element model were used to build the simpli-

fied ID-model.

When updating the ID-model, the evaluation of the objective function for any given trial

of optimization parameters (32 Young’s moduli) is performed by removing the rotational

degrees of freedom from the eigenvectors of the model. With this truncation, the mode

shapes of the ID-model are described by 30 points of information located at the simu-

lated sensor positions in the analytical model. Given the geometry of both models, each

element of the ID-model can be associated with 16 elements of the analytical model. For

the damage scenarios shown in Table 3.1, the expected stiffness reductions in the ID-

model are displayed in Table 3.2.

Table 3.2  Expected stiffness reduction on ID-model

Damage 
scenario

Element of 
ID-model

1 --

2 10

3 24

4 10 and 24

Figure 3.5  ID-model with three supports (32 elements)

12m 20m
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3.2.2  Convergence of Mode Shape Sensitivities

As mentioned previously, the number of eigenvectors used to calculate their sensitivities

to changes in structural parameters has an important impact on the computational power

required to execute the optimization algorithm. Therefore, understanding the conver-

gence of these sensitivities as the number of eigenvectors used is increased allows the

designer to truncate this calculation and accelerate the minimization process without

risking the stability of the algorithm. Unfortunately, the convergence of this values is

highly dependent on the model and no general guidelines can be provided. In the case of

the continuous beam, for instance, 85% of all sensitivities of the first six modes reach

values that are within 10% of their exact values when using as few as 20 eigenvectors.

As an example, Fig. 3.6 shows how the calculated derivatives of the first and sixth

modes approach their exact values as the number of eigenvectors used to calculate them

is increased. 20 eigenvectors were used to execute the optimization algorithm in this

numerical example.
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3.2.3  Optimization Results

Figure 3.7 shows the optimized Young’s modulus of the elements of the ID-model for all

damage scenarios. These values are shown as the remaining stiffness of the elements

with respect to the undamaged case (in percentage). It is clear from the diagrams that,

for the second and third damage scenarios, weaknesses are present in the 10th and 24th

elements of the ID-model, respectively. These indications of damage correspond to

those expected from the reductions of stiffness induced in the finite element model (see

Table 3.1). It is also clear from the fourth damage scenario that the optimization algo-

rithm was capable of detecting multiple stiffness reductions throughout the model.

Although the mode shapes used for these cases are the exact values from the 512-ele-

ment analytical model, it is remarkable that the weaknesses are localized with the use of

a limited number of truncated mode shapes (i.e. only 30 points of information from six

mode shapes), which makes the methodology very attractive for civil applications.

It should be noted that, since the ID-model is a simpler representation of the structure,

the detected reductions of stiffness are not equal to those reductions induced to the finite

Figure 3.7  Optimization results (ideal conditions)
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element model. This outcome is due to the fact that each element of the ID-model repre-

sents 16 elements in the original model. However, identified stiffness losses should

reflect the overall status of the spanned portion of the structure and can be used to alert

for possible damage. Also linked to modeling differences, is the fact that in addition to

the correctly identified weaknesses, other elements of the ID-model reflect non-existent

changes in all damage scenarios. This variation is especially clear in the vicinity of the

damaged elements, whose identified modulus of elasticity becomes somewhat erratic.

This problem becomes even more critical in cases where the damage induced is near the

end of the element spanned. In general, a higher number of sensors and a more detailed

ID-model as well as the use of more mode shapes in the optimization process should

minimize this problem.

Figure 3.8 shows the results obtained once the available mode shapes are corrupted with

noise as described previously. Although the stiffness detected for all undamaged ele-

ments becomes more erratic, those elements whose stiffness is expectably reduced are

still clearly identifiable.

Figure 3.8  Optimization results (noisy mode shapes)
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3.2.4  Convergence Rate

To evaluate the efficacy of the proposed technique its convergence rate is tested and

compared with other types of optimization algorithms under the same circumstances.

One of the algorithms employed in this comparison is the nonlinear minimization devel-

oped by Nelder and Mead [58]. Also known as the Simplex method, this algorithm uses

a triangulation process to find local minima of multivariate functions. In addition, the

method of conjugate gradients is tested providing only the gradients of the objective

function. In this case the algorithm estimates the Hessian matrix numerically. Both of

these algorithms are included in the optimization toolbox of Matlab [55]. The conver-

gence rate of all algorithms is shown in Fig. 3.9, which clearly demonstrates the advan-

tage of analytically calculating the Hessian matrix of the objective function. Running

times shown are the times employed by a Microsoft Windows based Pentium 4 at 2.0

GHz.
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Figure 3.9  Convergence rate of three optimization algorithms
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3.3  Conclusions

Model updating for structural health monitoring purposes was carried out using a mature

optimization algorithm known as Conjugate Gradients with Newton-Raphson and

Fletcher-Reeves. The optimization is based on the correlation between the mode shapes

of the structure and the eigenvectors of an analytical model referred to as the identifica-

tion model. Young's moduli of all elements of this model are selected as the optimization

parameters, whereas the modal assurance criterion (MAC) is used to measure the corre-

lation of the modes. A two-dimensional finite element model of a beam with three sim-

ple supports is used to test the performance of the proposed methodology. Results

indicate that stiffness changes can be detected with a reasonable number of sensors and a

limited amount of mode shapes. In addition, the robustness of the methodology to mildly

corrupted modal properties was successfully evaluated. As with any other vibration-

based SHM technique, detection depends on the capacity of the damage to change the

modal properties of the structure.

Although promising results are shown in this chapter, the robustness of the proposed

model updating technique for structural health monitoring purposes is still to be tested

for a wider range of structures. Given the global changes produced by local damage,

continuous structures, such as the beam with three supports, are possibly more suited to

this sensitivity based technique. Similar results were obtained for a simply supported

beam evaluated under the same circumstances. However, structures with a more lumped

distribution of their mass (e.g. buildings) may not take full advantage of the mode shape

sensitivities employed in the optimization process.

To carry out the proposed characterization of a structure through updating of an identifi-

cation model, only an estimate of the mass matrix (or relative quantities) is required.

These types of estimates are readily obtainable from construction plans and detailed

studies of the current status of the structures. This approach is sufficient for most of the
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existing parameter identification procedures. Variability of the mass, however, is a more

challenging issue that can manifest itself in different ways for different structures and

should be investigated in future studies. Buildings, for instance, do not usually have sud-

den changes of mass, but rather, live loads that tend to increase very slowly with time. It

is also important to point out, however, that every damage detection technique is not

necessarily appropriate for all types of structures. Each technique has capabilities and

limitations that must be explored and delineated. Systems that employ combinations of

the individual techniques may ultimately be necessary to realize a structural health mon-

itoring system, taking advantage of the capabilities of each technique while minimizing

the limitations.

Although the discrepancy of the natural frequencies has not been used in this study, this

does not mean that this information is not useful in health monitoring. In fact, in some

cases where the symmetry of structures may play an important role, this variation could

be used to ensure that no local minimum has been reached with the optimization process

(as opposed to a global minimum). However, these cases are not considered in this

research and should be considered in the future. The variation of the frequencies has

been successfully used in SHM to identify the existence of damage, without specifying

the location or the extent (Level 1 as classified by Rytter [65]). Sohn et al. [69], for

instance, has developed important conclusions in this area.
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Chapter 4 

Accommodating Varying Environmental 
Conditions

Although many algorithms have been developed in the last two decades to detect dam-

age in civil structures using dynamic properties, few studies have considered the chal-

lenge imposed by the variability of these properties due to changing and uncontrollable

environmental conditions such as temperature, temperature gradients, and humidity.

Among the few, Sohn et al. [69] proposed an effective method based on outlier analyses

used by several researchers in different fields (see, for instance, Worden et al. [74] and

Tarassenko et al. [71]). The method uses a neural network trained with results of a non-

linear principal component analysis that determines the distribution of certain identified

structural parameters over an undetermined number of environmental factors that affect

its behavior. The method effectively eliminates the effects of the surrounding conditions

to accurately detect the existence of damage. Kullaa [50] and Yan et al. [76,77] both

took further steps with similar methodologies, the former applying it to civil structures,

and the latter doing some experimental work with scaled models. These techniques only

detect the existence of damage but are unable to locate it within the structure (i.e. level I

as classified by Rytter [65]).

The analysis proposed in this research extends those previously developed approaches to

achieve accurate localization of damage in the structure regardless of the environmental

conditions that affect its dynamic behavior. The proposed scheme can be divided in three
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main steps: (1) identification of modal properties of the structure under the influence of

multiple environmental conditions; (2) characterization of the structure as a function of

the detected dynamic properties and an identification model (ID-model) representative

of the system; and (3) reduction of influence of the external conditions by means of a

statistically-based analysis. The latter goal, and focus of this chapter, is achieved by

accomodating the influence using a principal component analysis (PCA) to map the dis-

tribution of the numeric characterizations over an unknown number of external factors.

Direct measurement of the factors influencing the behavior is not required with this

approach. The statistical nature of the methodology also minimizes effects of noise in

the sensors, which is often a concern whenever a deterministic analysis is performed

[30].

The analytical model of the benchmark problem on SHM used in Chapter 2 for modal

identification is also used herein to demonstrate the effectiveness of the analysis pro-

posed. The robustness of the technique is tested by considering modeling errors as well

as a considerable amount of sensor noise. Environmental conditions are simulated with

changes in temperature as well as temperature gradients across the dimensions of the

structure. These variations affect the stiffness of the elements and, therefore, the global

modal properties. Although some structures, due to redundancies present, may also

experience a stress stiffening resulting from thermal expansion of the members, these

effects are expected to be minimal in the free-standing benchmark structure and are

neglected herein. Local damage is modeled as a reduction of the Young’s modulus of

certain combinations of elements in the structural model. Nine structural configurations

are investigated.

The chapter is unfolded in two main sections. In the first section, the basic steps of the

methodology are discused, whereas the second section is devoted to the analytical anal-

ysis of the SHM benchmark problem. Multiple dynamic simulations of ambient vibra-

tions  with random simulated environmental conditions are executed in order to perform
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a reliable analysis. Results indicate that the methodology proposed is very effective for

reducing the effects of the unknown external conditions. However, the actual localiza-

tion of weaknesses depends on the technique used to characterize the structure and is not

the main concern of this chapter.

4.1  Methodology

The identification of modal properties is performed in this chapter using a combination

of the natural excitation technique (NExT) and the eigensystem realization algorithm

with data correlations (ERA/DC). Both techniques were introduced in Chapter 2 of this

thesis. This task is performed with simulated ambient response data when the structure

is influenced by a variety of random environmental conditions. It is assumed herein that

the external conditions are invariant during the brief period of time while the accelera-

tion measurements are recorded. Subsequently, characterizations of the structure for

each set of detected modal properties is carried out using the non-iterative technique

developed by Caicedo et al. [15]. Although not in detail, this technique is introduced

later in this chapter. Interested readers are referred to the original paper as well as the

more explanatory main author’s doctoral dissertation [14].

Once the stiffness values of the healthy structure are identified, a principal component

analysis (PCA) is performed. This type of analysis reveals the trend present in the iden-

tified parameters when influenced by external conditions and can be used to accommo-

date this influence. The analysis proposed has the potential to be combined with other

types of numerical characterizations of structures such as the iterative model updating

technique introduced in Chapter 3. However, to demonstrate the potential of the analysis

to adjust to other types of characterizations, it was decided to implement it here with a

more mature technique. The complete SHM framework including the modal identifica-

tion with stochastic subspace identification (rated best in Chapter 2) and the stiffness
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characterization of the structure with the model updating technique introduced in Chap-

ter 3, will be tested in the fifth chapter of this dissertation.

4.1.1  Stiffness Characterization Through Least Squares

In 2002, Caicedo and Dyke [15] proposed a non-iterative technique that uses the charac-

teristic equation of an identification model and the identified modal properties of the

structure to determine the elemental stiffness values (Young’s modulus) of the members

of the ID-model. This technique assumes that the mass matrix of the structure (or a rea-

sonably good estimation of the relative quantities) is known. Consider the characteristic

equation

(4-1)

where  is the -th eigenvalue (square value of the -th natural frequency of the struc-

ture), and  is the -th eigenvector (corresponding to the -th mode shape). In their

work, the left-hand-side of Eq. (4-1) is reorganized as

, (4-2)

where  is a vector containing only the unknown stiffness values corresponding to spe-

cific elements in the identification model, and  is a matrix built using the eigenvector

 and the known portions of the stiffness matrix  of the ID-model (i.e. geometry and

boundary conditions). Using all  identified mode shapes and natural frequencies, Eq.

(4-2) becomes

, (4-3)

where
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 and . (4-4)

The unknown stiffness values can be estimated as

, (4-5)

where  denotes the pseudo-inverse. One of the advantages of this methodology is that

only the non-zero elements of the stiffness matrix of the ID-model are identified using

the geometry of the structural elements. The procedure to obtain the matrix  can be

automated using a finite element mesh. A complete description of the technique for

Euler-Bernoulli beam elements can be found in [14].

4.1.2  Principal Component Analysis

PCA is a multi-variate statistical method also known as proper orthogonal decomposi-

tion or Karhunen-Loeve transform. It is a mathematical procedure that transforms a

number of (possibly) correlated variables into a smaller number of linearly uncorrelated

variables called principal components. PCA has been applied in structural vibrations for

a variety of purposes, including modal analysis and parameter identification [76]. In

2005, Yan et al. [76] used this approach to identify the existence of damage while

accommodating the influence of those environmental conditions that have a linear affect

(or nearly linear) on the natural frequencies of the system. Perhaps the main advantage

of this technique is that measuring the environmental factors becomes unnecessary. The

methodology was further developed by the same authors, applying it to civil structures

and accounting for nonlinear variations [77]. However, the focus on statistical variations

∆
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of natural frequencies restricts the technique to detecting only the existence of damage,

without knowing its location or extent.

It is widely known that environmental conditions such as temperature, temperature gra-

dients, and humidity have a noticeable impact on the modal properties of a structure. As

a direct consequence, characterizations obtained using detected modal properties are

also affected. When PCA is performed using identified stiffness values of the healthy

structure over a wide range of environmental conditions, the distribution of those identi-

fied values across the unknown external factors can be mapped. The associated singular

value decomposition reveals not only a group of vectors that each sample (i.e. stiffness

values identified with a set of environmental conditions) can be expressed in terms of,

but also the level of influence of each vector. By using the components with the highest

level of influence (associated with the most influencing environmental conditions), one

can create a transformation matrix with which the data is mapped into the hyper-space

spanned by these components and back into the original axes. The residual error after

such transformation is independent of the vectors selected to create it. In other words,

the error does not depend on the external factors influencing the changes of the structure

and can be used as a reliable indicator of damage. A more detailed discussion is pro-

vided in the following paragraphs.

Let us first consider the matrix  whose column vectors  are the identified

stiffness values of the elements of the ID-model at time , and whose row vectors con-

tain all the identified stiffness values of the -th element. In this case  and  are the

number of elements and samples respectively. A singular value decomposition of the

covariance matrix of  is [76]

, (4-6)

Y ℜJ K×∈ yk

tk

j J K

Y

YYT UΣ2UT=
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where  is an orthonormal matrix (i.e. ) whose columns  define

the principal components forming a subspace spanning the data, and  is a diagonal

matrix with the singular values in descending order representing the level of influence of

the principal components. The fact that the matrix containing the singular values is pre-

and post-multiplied by  and , respectively, in this equation is due to the symmetry

of . Whereas some of the principal components may be associated with one partic-

ular environmental factor (e.g. temperature changes), some others, may be associated

with a combination of two or even more. However, in addition to these highly influenc-

ing principal components, a remaining set of vectors that have less influence over the

identified values result from the decomposition. These additional vectors may be due to

noise in sensors, incorrect measurements as a result of non-stationary input, or occa-

sional mass variations. Thus, these vectors can be discarded. As discussed later in this

chapter (section 4.2.2), the selection of an appropriate number of principal components

is not critical.

To project the stiffnesses values of a given sample  into the environmental-factor char-

acterized space , a transformation matrix  (known as the loading matrix) is built

using the first  columns of  (associated with the most influencing factors). That is

, (4-7)

with , , and  (known as the scores vector). The new

data can be re-mapped into the original axes using the reverse transformation

, (4-8)

and the residual error  due to the loss of information while performing the two way

projection can be calculated as
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. (4-9)

 is then a function of those principal components ignored when creating the matrix

, and, because of the orthonormal properties of all principal components, is indepen-

dent of those vectors selected to create it and the environmental conditions associated

with them.

Although in classical PCA the collected data is standardized so that the mean and stan-

dard deviation of each row vector is zero and unity, respectively, the standardization of

the data is slightly different in this study. The matrix , as used in Eq. (4-6), is formed

with the elements

, (4-10)

where  is the non-normalized parameter identified for the -th element (in this case

Young’s modulus) at time , and  is the mean of the row vector . This standardiza-

tion allows us to analyze the residual error as a percentile reduction in the stiffness

detected in the elements of the identification model with respect to their original values.

As damage is introduced in the system, the value of the residual error (rather than the

absolute value of this quantity) due to the two-way projection should decrease for those

structurally defective elements. This change is an indication of damage that is indepen-

dent of the environmental factors. However, because the principal components that span

the hyper-space that contain the healthy data do not correctly describe the new damaged

system, the extent of the damage may not be identified correctly. Moreover, as will

become clear in the simple example provided later in this chapter, some undamaged ele-

ments may indicate a non-physical gain of stiffness, or in the worst case, lightly dam-

aged elements may be masked by heavily damaged ones. To overcome this difficulty, the
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technique is divided in three steps. First, by setting a strict threshold, the residual error is

used to separate damaged elements from those that appear healthy.  is then modified to

build a prediction model that calculates the most likely stiffness values of all elements of

the identification model using the identified values of those elements with no apparent

damage. Finally, the residual error is recalculated and used to localize and quantify dam-

age.

To better understand the methodology, a simple, two-dimensional example is provided

to help visualize how the principal components describe the variation of the identified

stiffness values when affected by external factors, and how this knowledge can be used

to discard their effect. Suppose then that we are trying to identify damage in a simple

structure by identifying the Young’s moduli of a two-element identification model.

Assume also that the structure is affected by multiple factors such as changes in temper-

ature and humidity. Fig. 4.1a shows 40 identified points (  and ) of the healthy
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structure and a single point identified in a damaged state of the structure in which the

first element lost 5% of its initial stiffness.

Using data collected in the healthy state we can standardize the identified values so that

percentile points of variation with respect to the mean can be observed (  and  axes in

Fig. 4.1b). From this figure, it can be observed that an environmental factor exists that

makes the identified stiffness values vary along what appears to be a straight line,

whereas other factors make these values slightly vary in other directions. A principal

component analysis of the standardized healthy information determines the two princi-

pal components (denoted in Fig. 4.1b as PC-1 and PC-2) in terms of which the data can

be expressed. 

Let us now focus on the damaged data point shown in Fig. 4.1a as identified, which is

denoted as  after the normalization process has been performed with healthy data (see

Fig. 4.1b). This point can be expressed in terms of the principal components using the

projection given in Eq. (4-7), obtaining a set of new coordinates  and  (see Fig.

4.2). By using only the first principal component (PC-1) to project the data point into the

line spanned by this component, and back in to the original axes the point  is obtained.

The error left by the transformation can then be expressed in terms of the original axes

and tells us that a variation with respect to both  and  has occurred. In fact the pro-

jected point lies farther to the right of the original point revealing a positive variation of

 (loss of stiffness). Similarly, the projected point is further down from the original

data point revealing a negative variation of  (gain of stiffness). Obviously, it is not

possible for an element to gain stiffness. Therefore, we can say with confidence that the

stiffness of the first element ( ) has decreased, whereas the second element appears to

remain healthy. However, the magnitude of those changes cannot be found using the

residual error as calculated.
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As a second step, the most likely stiffness values of all elements is calculated using

those identified values that appear to remain healthy (only  in this case), and the prin-

cipal components selected for the transformation (in this case PC-1). From Eqs. (4-7)

and (4-8) we learned that there exists a linear combination of the selected principal com-

ponents (i.e. scores vector) that can be used to re-map the stiffness values detected. This

linear combination can be redefined using only the stiffness of the seemingly healthy

elements. That is

, (4-11)

where  is the incomplete sample and  is the transformation matrix  whose rows

have been removed accordingly with . The vector of coefficients  can be calculated

as

, (4-12)
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where  indicates the pseudo-inverse. Therefore, the most likely set of stiffness values

of all elements of the ID-model , given the values of those apparently healthy ele-

ments, are

, (4-13)

and the residual error becomes

. (4-14)

In the two-dimensional case, for instance, the predicted data point is shown in Fig. 4.3

and is denoted as . In this case  reveals a reduction of stiffness of the first element

 of 5% (as indicated in Fig. 4.3) while  does not indicate any change. Similar to

Eq. (4-9), the residual error is a function of those principal components ignored to create

the prediction model and independent of the vectors selected to create it.
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To apply this methodology, it is assumed that periodic measurements are being acquired

from the structure and therefore the variation of the identified stiffness values of the

identification model with respect to changes in environmental conditions can be mapped

accurately. However, as the unavoidable noise in sensors and temporary variations of the

structure’s dynamics can alter the identification process, it seems somewhat inadvisable

to alert for damage once a single sample shows some possible loss of stiffness. The cri-

terion for damage is then based on an outlier analysis in which a maximum variation of

stiffness is defined to separate the admissible error from that with apparent influence of

damage. To do this, an X-bar control chart [68] is constructed for each element by draw-

ing two lines: a centerline ( ) and an additional horizontal line corresponding to the

lower limit ( ). In this case, these are

, and (4-15)

where  is the expected value of the residual error for all samples of the -th ele-

ment before damage is introduced, and  is the admissible damage in percentile points.

The construction of this chart allows us to count the number of times the error lies out-

side of the admissible range adopted (i.e. points below ). A damage warning is then

issued if three consecutive points lie outside the admissible range or if the residual error

is unusually large.

The most important advantage of this PCA-based approach is that it does not require

measuring the environmental factors that influence the behavior of the structure. This

ability relys on the assumption that damage does not change the dynamic properties in

the same way that environmental factors do (an unlikely case in which the PCA would

not be applicable). Moreover, the effect of noise in sensors is mitigated when a large

number of samples is employed, and the criterion to issue damage alerts does not rely on

a single sample. It is also important to point out that this type of analysis is not limited to

the stiffness identification method employed in this chapter. In fact, most vibration-
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based parameter identification methods that exist in the literature are influenced by the

variability of structures and could be complemented with PCA to discard the effects of

the external conditions. However, the assumption that the environmental conditions

have a linear (or weakly nonlinear) effect on the identified parameters does impose a

constraint on such implementations. For example, the variability of concrete’s Young

modulus for temperature changes is a case in which the external factors’ influence may

be too nonlinear for this approach to be useful.

4.2  Validation Through Analytical Model

To test the efficacy of the proposed technique, the finite element model developed for

the benchmark problem on structural health monitoring was used. This 88-DOF FE-

model as well as its simulated ambient vibrations were described in detail in section

Table 4.1  Damage patterns investigated in this study

Case Elements
Reduction 
of stiffness 

(%)

Expected 
damaged 

elements on 
ID-model

1 Undamaged structure. -- None

2 Brace on the first floor of the south half of the east side. 10 4

3
Both braces on the second floor of the west side

Both braces on the second floor of the east side 

10

30
6 and 8

4 All braces on the south half of the east side 10 4, 8, 12, and 16

5

Brace on the first floor of the north half of the east side

Brace on the second floor of the south half of the east side

Brace on the fourth floor of the west half of the north side

30

10

10

4, 8, and 15

6 Central column on the third floor of the east side 50 12

7 Beam on the first floor of the north half of the east side
100 

(removed)
4 and 8

8 Column on the second floor of the south-east corner 50 5 and 8

9
Central column on the second floor of the north side

Beam on the third floor of the east half of the south side

50

50
7, 9, and 13
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2.3.2 of this dissertation. Modal identification was carried out using the natural excita-

tion technique (NExT) in combination with the eigensystem realization algorithm with

data correlations (ERA/DC) and their implementation was also performed as indicated

in Chapter 2. Nine case scenarios are considered in this study including the undamaged

state of the structure. Damage was induced using reductions of stiffness of the elements

of the finite element model as indicated in Table 4.1.

To simulate varying environmental conditions, changes in temperature were introduced

as well as two independent temperature gradients. The overall temperature was

assumed to be a random variable distributed uniformly between 0oC and 40oC (32oF and

104oF). Both temperature gradients, were assumed to be normally distributed random

variables with zero mean and standard deviation . The first gradient case is such

that, for a given gradient , there is a difference in temperature equal to  between the

top and bottom elements of the structure which is linearly distributed over the height of

the building. Similarly, the second temperature gradient introduces a spatial difference

in temperature between the east and west faces of the structure. The variability of steel’s

Young’s modulus for temperature changes is shown in Fig. 4.4 [76].
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Figure 4.4  Young’s modulus of steel vs. temperature (after [76])
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4.2.1  Identification Model

As mentioned previously, the selection of an appropriate identification model is closely

related to the success of any model-based SHM technique. Because a limited number of

sensors were used (12), some assumptions were needed to select an identification model

that took full advantage of the information available. For instance, since no measure-

ments of vertical displacements are available from the analytical model, all degrees of

freedom of the ID-model in this direction were constrained. Moreover, none of the

recorded accelerations provide any information of the in-plane deformation of the

floors. Given all these limitations, a rather simplistic all-column identification model

with 16 elements was utilized (see Fig. 4.5b). Geometric properties of the ID-model and

its elements, as well as the mass distribution are based on the properties of the analytical

model used to produce acceleration records. 
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All columns adjacent to any particular floor, are rigidly linked to a central node that is

allowed to displace in-plane only (both translational directions and rotation). This

reduces the number of DOF’s of the model to three per floor, for a total of 12. As a result

of such condensation, each element of the ID-model has contributions from a portion of

the structure, and the identified damage cannot be attributed to a single member but to

that particular group of elements. Fig. 4.5a shows how the members of the analytical

model influence a single element of the ID-model. Note that some members of the finite

element model affect only one corresponding element of the ID-model, while some oth-

ers contribute stiffness to several elements of the model.

4.2.2  Applying PCA

As explained in previous sections, the identification of stiffness values of the elements

of the ID-model is affected by environmental conditions and noise in sensors, both of

which are changed randomly for every simulation performed in this study. Fig. 4.6a, for

instance, shows the identified stiffness values under two different and random environ-

mental conditions and noise. Although different values were obtained, both simulations

were performed with the healthy model of the structure. Thus, a deterministic analysis of

a. Two samples b. 100 samples

Figure 4.6  Identified stiffnesses in the healthy state
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these two samples could mistakenly conclude that, when performing the second simula-

tion, some of the elements experienced a significant loss in stiffness as compared to the

first simulation. All samples obtained from the healthy model are shown in Fig. 4.6b.

The need for a statistical analysis is clear from this example.

If the effect of the external factors over the stiffnesses of the elements is linear, the iden-

tified values should remain in the hyperplane defined by the  principal components

with high energy content. Therefore, the residual error due to the projection increases as

 is reduced and decreases for a higher  value. In real applications the number of

environmental factors is not known and could be difficult to find by observing the singu-

lar values [76]. It may be intuitive to select a higher number of principal components in

order to obtain a small residual error. However, since the residual error itself is the indi-

cator of damage, its amplitude is not so important for the outlier analysis. Thus, the

selection of an exact dimension  is not very critical. In some cases, it may be useful to

select several values of  for verification. In this study,  was chosen as 3.

It is important to emphasize the importance of having sufficient samples of the healthy

structure for a wide range of environmental conditions. This ensures that the distribution

of the identified stiffnesses over these factors is well known and can be mapped accu-

rately when performing the singular value decomposition. In this study, a total of 100

simulations of the healthy state of the analytical model were performed to apply the

PCA analysis. When damage is present, however, only 50 simulations were used.

To separate those elements with apparent damage from those that seem unchanged a

limit of 1% was set. This means that those elements whose identified stiffness have

decreased by at least 1% when performing the two-way projection (i.e.  > -1%) are

excluded to build the prediction model using Eqs. (4-12) and (4-13). In addition, the

coefficient of admissibility  in the outlier analysis (see Eq. (4-15)) was selected as 2.

In other words, the outlier analysis is set so that those elements whose stiffness seem to
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have decreased by more than 2% according to the prediction model (i.e.  > -2%) are

considered outliers. A warning shall then be issued in case three consecutive samples

report the same (or greater) loss of stiffness.

Figure 4.7 provides the residual error  of the elements of the first floor of the ID-

model as calculated using the values obtained with the prediction model. The first 100

samples correspond to the healthy data points and are expected to vary randomly around

the mean but remain close to this value. The last 50 samples correspond to case 2, in

which a single brace from the east side of the first floor has lost 10% of its stiffness. As

indicated in Table 4.1, element 4 of the ID-model is expected to show a reduction of the

identified stiffness. Clearly, the residual error of this element decreases significantly (in

a magnitude sense), to the point that only a few data points remain within the threshold

prescribed. In this case, 49 out of all 50 damaged samples showed that element 4 had a

stiffness reduction of more than 1% when performing the initial two-way projection (i.e.

 < -1%). This means that 49 of the prediction models were built without using the

identified stiffness value associated with this element. Similarly, a few other elements

had to be excluded to form some of the prediction models due to the resultant initial

error. However, only two prediction models were built excluding a maximum of three

identified values.

ep

ep

ew

0 50 100 150

-10

-5

0

5

Sample number

E
 v

ar
ia

tio
n 

(%
)

Element 3

0 50 100 150

-10

-5

0

5

Sample number

Element 4

(Damaged)

Residual error
Mean
Lower limit

Healthy DamagedHealthy Damaged

Figure 4.7  Residual error ( ) of two elements of the first floor 
before and after damage (case 2)

ep



105
The benefits of the PCA analysis proposed in this chapter can be clearly seen when the

variability of the Young’s moduli detected are analyzed directly. As an example, Fig. 4.8

shows this variability for the same two elements whose residual error was shown in Fig.

4.7. Notice that, in the mean sense, the detected loss of stiffness of element 4 is the same

(about 3.5% of its initial value). However, the deviation of these distributions is much

higher, making it more difficult to reliably determine the state of the structure or issue

warnings alerting for possible damage. 

Table 4.2 shows the warnings issued for each damage case, indicating the element

involved and the number of samples required to obtain three consecutive outlier points.

Notice that the first three damaged scenarios (cases 2, 3, and 4) are detected very accu-

rately and the first three samples are sufficient to issue the corresponding warnings.

Although not as quickly, damage in cases 5 and 6 are also detected accurately. In case 5,

for instance, warnings are issued promptly for elements 4 and 15, but 14 samples are

needed to issue a damage warning for element 8.
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The number of outlier data points of all 16 elements for all case scenarios are shown in

Fig. 4.9. Contrary to the already mentioned cases 2 through 6, in which accurate warn-

ings were issued once damage was induced, very few outlier points were detected for

cases 7, 8, and 9, resulting in inaccurate warnings or none at all. In these cases the dam-

age induced did not have the same impact on the dynamic properties of the structure,

and as a result, the damage identification was not successful. For instance, when the

damage described in case 7 was induced on the healthy structure, the natural frequency

that suffered the maximum variation was decreased by 0.37% (for fixed environmental

variables and no noise present). The reason for this low variation of the structure is the

Table 4.2  Warnings issued

Case
Warning 
issued for 
element

Samples 
needed

Status

1 -- -- --

2 4 3 Correct

3
6

8

3

3

Correct

Correct

4

4

8

12

16

3

3

3

3

Correct

Correct

Correct

Correct

5

4

8

15

3

14

3

Correct

Correct

Correct

6 12 8 Correct

7

4

8

12

--

17

19

False negative

Correct

False positive

8
5

8

--

--

False negative

False negative

9

7

9

13

--

--

--

False negative

False negative

False negative
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high stiffness added by the diagonal elements. This can easily be seen in the first dam-

aged scenarios (cases 2 through 5) where even small variations of the diagonal elements

can be detected promptly. However, high variations in the stiffness of the column and

beam elements have little impact on the structure’s dynamic properties, and thus are

challenging to detect.

To demonstrate the capabilities of the proposed technique to detect various types of

damage whenever the dynamic properties of the structure are altered, cases 7, 8, and 9

were analyzed with the unbraced structure as the reference (i.e. healthy state). Under this

new configuration, the damaged induced in these cases had a significant impact on the
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dynamic properties allowing us to detect and localize the changes imposed to the healthy

structure. Table 4.3 shows the warnings issued for these cases. Damage is correctly iden-

tified in all cases with a few samples.

4.3  Conclusions

A statistically based analysis that helps reducing the effects of changing environmental

conditions has been developed and combined with an established parameter identifica-

tion method. The efficacy of the method was demonstrated using an analytical model of

the SHM benchmark structure. Both modeling errors and sensor noise were considered

in this numerical example. Forced responses simulating ambient vibration were used to

determine structural properties. Numerous samples were obtained for a variety of simu-

lated environmental conditions. The distribution of these properties over the unknown

external effects was obtained through PCA, mapping the data into the hyper-space

defined by the principal components, and back into the original axes. The residual error

due to this projection was successfully used as a indicator of damage and a prediction

model was used to quantify its extension. This approach, as well as most vibration-based

techniques that use global dynamic properties of the structure, is limited to scenarios in

Table 4.3  Warnings issued for unbraced cases

Case
Warning 
issued for 
element

Samples 
needed

Status

1 (unbraced) -- -- --

7 (unbraced)
4

8

3

3

Correct

Correct

8 (unbraced)
5

8

3

6

Correct

Correct

9 (unbraced)

7

9

13

3

3

3

Correct

Correct

Correct



109
which damage results in a loss of stiffness in the structure that is significant enough to

change the dynamic properties.

Herein the effect of temperature is modeled as a variation of the Young’s Modulus of the

elements of the finite element model. However, real structures with certain constraints

also experience stress stiffening of the members due to thermal expansion. When the

structure cannot expand freely, this effect has also an impact on the global modal proper-

ties. Due to the design of this free-standing test specimen, and the uniformity of the

material, these effects are neglected in this study.
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Chapter 5 

SHM Framework Definition and Validation

The conclusions of the comparative study of Chapter 2 as well as the techniques intro-

duced in Chapters 3 and 4 are combined herein to create a structural health monitoring

framework that aims for the identification and localization of damage within a structure

regardless of the environmental conditions that affect its dynamic behavior. This frame-

work is analytically tested using a finite element model of a typical highway bridge

which was loaded with non-white random inputs to simulate ambient vibrations. Several

uncertainties typically found in real-world applications are considered in this numerical

example in order to add some realism to the study and to test the robustness of the tech-

nique. Various configurations of structural integrity and environmental conditions are

also considered.

To categorize the framework as a whole we have to look at some of its characteristics

(see classification of SHM techniques in Chapter 1). For instance, according to the infor-

mation provided to the user, the framework can be categorized as a level 2 technique (as

classified by Rytter [65]), provided that it successfully identifies and localizes damage

within the structure. Moreover, because dynamic responses are utilized in the time

domain, the scheme can be considered to be both a vibration-based and a time-domain

technique. Lastly, because a finite element model of the structure is updated, then the

framework qualifies as a model-based technique.
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The four sections in which the present chapter is divided attempt to achieve each of the

defined main objectives, namely: 1) the definition of the framework as a succession of

steps that should be taken for its successful implementation; 2) the introduction of a real-

istic numerical model; 3) the validation of the premises of the SHM scheme using simu-

lated responses; and 4) the stipulation of its capabilities and limitations. It is important to

emphasize that, although civil engineering structures are the main target of this disserta-

tion, the framework as a whole (or in part) is likely to perform well in other engineering

fields. However, its viability, requirements and limitations may differ significantly and

should be investigated for specific cases.

5.1  The Structural Health Monitoring Framework

The proposed framework can be divided in six basic steps which are described in the

sections below. Unfortunately, no specific guidelines can be established for the execu-

tion of these steps and the experience of the engineer for taking into account all the vari-

ables that influence the final results is essential. However, based on the experience

obtained while performing the research involved in this dissertation, several pieces of

advice are offered to the reader for the realization of each step. Some of these discus-

sions will become clear as the numerical problem is introduced later in this chapter.

5.1.1  Identification of Dynamic Properties

An accurate identification and numerical description of the mode shapes of the structure

is key for the success of the proposed scheme. This task, however, is much more com-

plex than simply selecting a method to analyze the dynamic records (for which Chapter

2 provides some insights). In fact, problems such as the selection of the number of sen-

sors, their optimal placement, and the characteristics of the recorded data should be

addressed beforehand. In general, previous knowledge of the structure is very important

and a detailed finite element model should help in solving some of these issues. It is
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important to emphasize that the number of modes shapes identified should be as high as

possible as each provides some information about the state of the structure. The follow-

ing sections discuss some of the most important issues to be addressed while carrying

out the identification of modal properties.

Number of Sensors

Rather than a technical question, the number of sensors to be employed should be a bud-

getary issue. In general, the higher the number of sensors, the better the description of

the structures’s mode shapes is, and a more detailed identification model can be con-

structed. Some might argue that a high number of sensors also means that more difficul-

ties arise, such as the collection of large amounts of data, energy supply and even

communication issues. However, with the tools that are commercially available today,

these are all issues that can be resolved with a generous budget.

Sensor Placement 

Once the number of sensors is defined, their placement throughout the structure should

be determined considering two main factors, namely: 1) the amount and shape of the

modes expected to be identified; and 2) the ID-model that will be used to characterize

the structure at any given time. To analyze this problem and find an effective solution, a

detailed finite element model of the structure is recommended. Such model can roughly

reveal in advance the frequencies and shapes of the modes to be identified and therefore,

provide information for the engineer to strategically place sensors and obtain an ample

description of all mode shapes. This type of analysis can replace the simplistic concept

of observability, which uses the system and output matrices of the model (  and ,

respectively) to determine whether a vibrational mode can be detected but does not pro-

vide information on the obtained description of the associated shape. However, it is

important to keep in mind that, ultimately, the ambient loads are the ones that limit the

A C
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modal information that we can detected. Preliminary records of the structure’s dynamic

response to ambient loads should help determine the excited modes.

It is also important to place sensors so that the degrees of freedom of the ID-model can

be directly associated with the measurements taken. By assuring this direct relationship

we can avoid the problem of linearly transforming mode shapes or expanding them, a

procedure that is time consuming and widely criticized by several researchers because it

adds unnecessary errors to the calculations.

Data Acquisition

Acquiring useful vibration records from structures is usually more complicated than

intuition indicates. The main decisions to be made concern the sampling rate, signal fil-

tering, length of records, and the times of day at which data should be recorded.

Although a high sampling rate ensures that all excited modes of the structure are

recorded, as stated in Chapter 2, an increasing amount of data points not only requires

more computational power, but may also have a negative impact on the identification

results. Therefore, the sampling rate should be decided upon using previous knowledge

of the maximum natural frequency expected from the structure, which can easily be

found by analyzing the frequency content of preliminary records of the structure at vari-

ous points. According to the Nyquist theorem, sampling rate should be at least twice the

highest natural frequency expected in order to avoid aliasing signals. A factor of 3 to 5 is

recommended. Moreover, filters can be used to optimize the information obtained within

a defined frequency range and minimize the negative effects of unexpected high fre-

quency signals. The basics on signal conditioning can be found in [56].

To make decisions regarding the length of the records and the most suitable times, it is

important to understand the nature of the service and ambient loads that excite the struc-

ture on a regular basis. In buildings, for instance, service loads provided by occupants
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are highly dependant on the time of the day and the identification should highly benefit

from those loads. A very different approach should be taken when trying to identify the

modal properties of bridges. In this type of structures traffic usually provides vibrations

with enough amplitude and frequency content to carry out the identification. However,

the mass added to the structure may be significant and perhaps have a non-negligible

influence on the modal properties of the bridge. A good understanding of these issues is

very important to make an educated judgment. 

Data Processing

Herein, data processing refers to the actual analysis of the recorded vibrations and the

identification of the natural frequencies, mode shapes and damping ratios of the struc-

ture. Although this identification can be carried out with multiple techniques, the com-

parison performed in Chapter 2 showed that the subspace identification (SSI) method is

the most robust and reliable among some of the most popular time domain techniques.

However, even if this method is selected to analyze the data, there are a few parameters

that must be selected in order to execute it. Among these parameters we can find the size

of the Hankel matrices and the realization order. Although several tips for the successful

implementation of the SSI method were provided in Chapter 2, the experience of the

user with the algorithm is fundamental.

5.1.2  Building an Identification Model

As stated in Chapter 3, the robustness of most model-based SHM techniques strongly

depends on the selection of an appropriate ID-model and its ability to reproduce the

dynamic behavior of the structure. Therefore, their construction should be tightly linked

to the physical properties of the structure. For instance, both mass and stiffness quanti-

ties should be obtained and meticulously distributed throughout the nodes and elements

of the ID-model. However, to take full advantage of the model updating technique of
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Chapter 3, some other factors such as the placement of the sensors must be taken into

consideration. The following paragraphs should help understand these issues and per-

haps ease the construction of this model.

The bottom line is that the ID-model must exhibit mode shapes that can be distinctively

associated with those identified from the structure. Although ID-models typically repre-

sent the structure in a simplified way, their simplicity should not compromise this direct

association. It is worth noting that, because the natural frequencies are not employed in

the optimization process, their order or their proximity is irrelevant. However, a well

constructed ID-model is expected to have similar natural frequencies and in the same

order as those displayed by the structure.

Unlike some non-iterative techniques (see, for instance, Caicedo [14]), the model updat-

ing scheme introduced in Chapter 3 allows the use of ID-models with more degrees of

freedom than those associated with measurements recorded from the structure. This

means that the expansion of the detected mode shapes becomes unnecessary allowing

the use of more elaborate ID-models. However, it is important to keep in mind that the

efficiency of the model updating technique is highly dependent on both the number of

updating parameters and the number of DOF of the ID-model. In fact, the computational

requirements grow exponentially as either of these two factors is increased. 

5.1.3  Forming an Accurate Baseline

Because the characterization of the structure is achieved through optimization process of

a nonlinear problem, the initial set of parameters plays a fundamental role both in terms

of efficiency as well as accuracy. This initial set of parameters is referred to as the base-

line of the updating process and should be optimal in the sense that, when the objective

function is evaluated with modal properties of the healthy system, it is guaranteed to

represent a global minimum. Much like later characterizations of the structure, this set of
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parameters is calculated by updating the ID-model with identified modal properties.

However, given the importance of this set, and the fact that they are calculated only

once, special attention should be given not only to the identification of the structural

mode shapes, but also to the updating process. For instance, if more traditional identifi-

cation methods are available (e.g. forced vibrations) and within budget, then this possi-

bility should be considered.

However, even if very accurate modal properties are available to calculate a baseline, the

optimization algorithm is not guaranteed to reach a global minimum (given that a ran-

dom set of initial parameters is provided). There are a number of ways to deal with this

difficulty such as the use of multiple and random initial sets or even genetic algorithms.

However, these processes are time consuming and decisions should be made taking into

account the computational capabilities and the time constraints.

An important factor that must be determined prior to the implementation of the SHM

scheme is the number of modes to be used for later characterizations of the structure. It

is recommended that all identified mode shapes be used as each provides distinctive

information. However, it is necessary to use the same mode shapes for each character-

ization, regardless of the structural condition, as well as the initial search for the base-

line. It is important to recognize that the framework uses the changes in the mode shapes

as the fundamental source of information. Therefore, characterizations obtained with a

different set of mode shapes, even when a single mode shape is associated with a differ-

ent frequency, cannot be used.

5.1.4  Setting up the Optimization Algorithm

A number of variables must be selected prior to the execution of the updating algorithm.

Among these variables are the parameters of the ID-model subjected to change, the

number of modes used in the calculation of the sensitivities, and those associated
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directly with the conjugate gradients algorithm. The following paragraphs provide some

insights into these issues.

It was shown in Chapter 3 that the selection of the Young’s modulus of the elements as

updating parameters is mathematically convenient for the model updating process. Both

the gradients as well as the Hessian matrix can be obtained when utilizing these parame-

ters. However, the model updating methodology also allows the user to update a limited

number of these parameters. Whether all moduli or a limited number should be updated

is a decision that must be made upon knowledge of the identified structural mode

shapes. For instance, in some cases (as will be shown in the numerical example pre-

sented later in this chapter) the identified mode shapes do not provide sufficient infor-

mation regarding the status of certain members of the structure. As a consequence, the

associated elements of the ID-model tend to be highly sensitive to small changes in the

dynamic properties and are likely to indicate nonexistent losses or even gains of stiff-

ness. In such cases, the Young’s modulus of those elements should be updated only to

create a baseline for all elements of the ID-model (see section 5.1.3), but should not be

updated to characterize the structure once the framework is in place.

One of the parameters that has the largest influence on the efficiency of the optimization

algorithm is the number of vibrational modes used to calculate the sensitivities of the

mode shapes of the ID-model. As stated in Chapter 3, when using the method proposed

by Fox and Kapoor [27], exact values are obtained when all eigenvalues and eigenvec-

tors of the ID-model are employed in the calculation. However, the computational power

and the memory required to compute these values rapidly increase as the number of

mode shapes and their associated frequencies are increased. To select a number of vibra-

tional modes that results in a computationally efficient algorithm without sacrificing

much accuracy, the convergence of the sensitivities has to be analyzed as suggested in

Chapter 3.
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Lastly, the conjugate gradients algorithm with Newton-Raphson and Fletcher-Reeves

must be setup with some parameters, the most influential one being the maximum num-

ber of iterations allowed when updating the ID-model. For a linear optimization prob-

lem, the algorithm is guarantied to find the global minimum in a maximum number of

iterations equal to the number of parameters being updated. For nonlinear problems,

however, this statement is no longer true and the convergence depends on the character-

istics of the ID-model. Although the selection of this parameter should be based upon

experience with the algorithm, it is recommended that the optimization be allowed to

run several times with an unlimited number of iterations and for different sets of identi-

fied modal properties. The number of iterations required to converge and the conver-

gence rate of the objective function for these cases should provide useful feedback for

the selection of a limit.

5.1.5  Multiple Characterizations of the Healthy Structure

It is important for the healthy structure to be characterized multiple times under the

influence of a wide range of environmental conditions. By doing this multiple character-

ization, the effects of these factors over the identified parameters (i.e. optimized moduli

of elasticity) can be mapped accurately and accommodated at later times once the frame-

work is fully functioning. To achieve this goal in regions with seasons and high varia-

tions of temperature, characterizations should be obtained through all these changes.

However, because there is a need to characterize the structure over a relatively long

period of time, it is important to point out that the structure is assumed to remain healthy

during this time.

5.1.6  Outlier Analysis and Issuing Warnings

As shown in Chapter 4, two thresholds are established when implementing the outlier

analysis proposed. The first threshold is used to reject identified  values outside theE



119
normal variations (and construct a prediction model using those that are seemingly

healthy), whereas the second one is used to define which elements are damaged (i.e. out-

lier points). Defining the first threshold is a task that should depend on the uniformity of

the optimized parameters, which, ultimately, depends on the quality of the identified

modal properties as well as the ability of the optimization algorithm to reach global min-

ima. For instance, if the identified sets of  values are usually sets with high deviations

from the healthy values (even after the environmental conditions have been accommo-

dated) then this threshold should be set to a higher value. In such a case, a low threshold

would translate into building the prediction model with too few elements, likely deterio-

rating the results. On the other hand, the second threshold should be set at whatever

value is considered by the engineer as a damage indicator. Also left to the criterion of the

system designer is the required number of consecutive outliers to issue a damage warn-

ing and take the needed action.

The model updating algorithm employed in the proposed framework becomes useless in

those cases in which damage introduces radical changes to the dynamics of the structure,

be it introducing new modes or changing the existing ones to the extent that they become

difficult to recognize in an automated environment (as indicated by the modal assurance

criteria, MAC). It is obvious that, in such cases, the condition of the structure has been

altered considerably and damage is almost certain. Therefore, and even though no char-

acterization of the structure (i.e. set of updated parameters) can be obtained through the

optimization algorithm, the sample should be considered as an overall outlier. As

explained before, damage warnings should be issued when a predefined number of con-

secutive outliers are detected. In such cases, the technique drops to a level 1 technique

(as classified by Rytter [65]), detecting only the existence of damage but being unable to

localize it.

E
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5.2  Numerical Example

The numerical model selected to test the proposed SHM framework is representative of

a highway bridge (see Fig. 5.1). With 12 meters of width, the bridge has two spans of 20

and 32 meters, respectively. Three simple supports provide the boundary conditions. As

shown in Fig. 5.1b, the bridge is composed of five steel girders supporting a 10cm thick

concrete slab which is assumed to be continuously connected to the girders. Diagonal

elements provide lateral support to the girders every 4 meters. The girders are regular

W16x89 sections as described in [4], whereas the diagonal elements have a combined

area m2. Girders and connecting elements have a modulus of elasticity of

E=2e11N/m2.

3e 3–

Steel girders

20m 32m

Figure 5.1  Typical highway bridge with three simple supports

Concrete slab

Lateral stiffeners

12m1m 1m

a. Lateral View

b. Cross section
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5.2.1  The Finite Element Model

To simulate dynamic responses of the bridge as well as environmental changes and a

variety of structural conditions, a finite element model was created with 174 Euler-Ber-

noulli elements connecting 135 nodes (see Fig. 5.2). This model is often referred to sim-

ply as “the structure” throughout this chapter. It has a total of 750 degrees of freedom,

with the only restrictions being the displacements in all directions of the 15 supported

nodes as well as their rotations with respect to the  axis. The main issues associated

with the construction of this FE-model are discussed in the following sections. 
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Figure 5.2  Finite element model 

a. 3D view

b. Top view

Simple supports
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Stiffness and Mass Distribution

The cross sectional properties of all elements were carefully selected based on the prop-

erties of the structural members of the bridge and their most likely behavior as compos-

ite elements. For instance, because the concrete slab is assumed to be continuously

connected to the steel girders, the inertia of the longitudinal elements was calculated as a

combination of the two. The properties of these elements are m4,

m4, m4, and m2. Similarly, the properties of

the connecting elements were calculated as a combination of the two diagonals and the

concrete slab resulting in the properties m4, , , and

m2. All elements have the mass of the associated steel material uniformly

distributed over their length. In addition, the mass of the concrete slab was added as

lumped masses at the nodes of influence in a simple tributary distribution.

To add some realism to the problem, it was decided to consider the uncertainties associ-

ated with the actual strength of the structure as constructed. It is well known that, regard-

less of the quality of the materials employed and the construction practices, the final

strength of the elements is always unknown and most likely different from those values

for which they were designed. These uncertainties were simulated by multiplying the

Young’s modulus of all 174 elements of the FE-model by random numbers that were

uniformly distributed between 0.9 and 1.1. In other words, and similar to real scenarios,

the actual stiffness of the healthy structure is unknown and only expected values are pro-

vided (i.e. E = 2e11N/m2).

Varying Environmental Conditions

Regardless of the condition of the structure, each characterization is performed with a

different set of environmental conditions that surrounds it. Similar to Chapter 4, these

conditions are simulated here using changes in temperature as well as three temperature

Ix 6.285e 4–=

Iy 2.887e 2–= J 5e 5–= A 4.7e 2–=

Ix 1.225e 3–= Iy 0= J 0=

A 1e 2–=
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gradients across the dimensions of the FE-model. The overall temperature is assumed to

be a random variable distributed uniformly between 0oC and 40oC (32oF and 104oF),

whereas the temperature gradients, were assumed to be normally distributed random

variables with zero mean and standard deviation . The first gradient is used to

simulate differences in temperature between both sides of the structure (e.g. sun hitting

one side only). This difference in temperature is then linearly distributed over the width

of the bridge. Similarly, the second and third gradients introduce spatial difference in

temperatures between the end supports and the central support. Note that these condi-

tions are assumed to remain stable during the short period of time during which ambient

responses are simulated. The variability of steel’s Young’s modulus for temperature

changes is shown in Fig. 4.4 [76].

The FE-model fails to take into consideration the residual stresses originated by differ-

ential expansion of the materials and the restrictions imposed by the boundary condi-

tions. Unlike the example provided in Chapter 4, in which these effects were considered

negligible due to the uniformity of the material and the free standing conditions, a more

noticeable effect is expected for the type of structure analyzed in this chapter. The conse-

quences of this omission will be analyzed when the results are presented in later sec-

tions.

5.2.2  Damage Scenarios

Similar to the numerical examples provided in Chapters 3 and 4, local damage is simu-

lated here as a reduction of the Young’s modulus of certain combinations of elements in

the FE-model. As summarized in Table 5.1 and displayed in Fig. 5.3, twelve structural

configurations are investigated. The first configuration corresponds to the undamaged

structure, whereas configurations two through nine correspond to multiple scenarios in

which the girders of the bridge have partially lost their stiffness. Cases ten and eleven

are also simulated with the reduction of stiffness of longitudinal elements. However,

σ 4=
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these cases are being analyzed to explore the capabilities of the technique when the

boundary conditions are altered. Case ten, for instance is formed by reducing the stiff-

ness of both elements adjacent to one of the middle supports by 20%. Case eleven, on

the other hand, is simulated by completely removing the element next to one of the left

supports of the bridge, causing the same effect as the removal of the support itself.

Lastly, case twelve targets the connecting members of the bridge by reducing the stiff-

ness of one of these elements by 40%.

Table 5.1  Damage scenarios

Case Elements
Reduction 
of stiffness 

(%)
1 -- --

2 17, 18 20

3 69, 70 50

4 29, 30 30

5 55, 56 30

6 60 40

7
7, 8

123, 124

20

20

8
3, 4

23, 24

15

20

9

19, 20

21, 22

23, 24

20

20

20

10 10, 11 20

11 1 100

12 150 40
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Figure 5.3  Damage scenarios

Case 1 (Healthy) Case 2

Case 3 Case 4

Case 6Case 5

Case 7 Case 8

Case 10Case 9

Case 11 Case 12
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5.2.3  Simulating Dynamic Responses

Simulating ambient vibrations of civil structures using FE-models and mathematically

created loads has always been criticized by researchers. Our inability to measure ambi-

ent and service loads has forced engineers to presume their statistical properties and

reproduced them using customized random signals. Moreover, using a finite element

model, it is difficult to reproduce the exact localization and distribution of these loads.

Although simulated ambient vibrations are used in this analytical study, a few extra

steps have been taken in order to attenuate these flaws. For instance, instead of the band

limited white noises used in various studies, the random signals used to load the FE-

model have a non-flat frequency content (as shown in Fig. 5.4). These signals were

obtained by applying a linear filter to Gaussian white noise, and will be used to test the

SSI method to achieve the premises of Andersen [5] and Ibrahim et al. [39], whom, as

mentioned in Chapter 2, showed that correct modal identification can be achieved under

these circumstances.

Uncorrelated random forces were applied to the central nodes of the FE-model every

four meters (for a total of 11 nodes). Each node was loaded with three forces including a
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Figure 5.4  Frequency content of random inputs
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vertical force, a horizontal force (transverse to the bridge) and a torque. All 33 forces

have zero mean and a standard deviation of 0.39 and 0.12N for the vertical and horizon-

tal forces, respectively, and 3.85Nm for the torques. Similar to the numerical example

provided in Chapter 2, the disturbances are independent of the structural response. In

addition, to ensure that no transient responses of the FE-model are used in the modal

identification process, the first 60 seconds of all simulations were systematically dis-

carded.

5.3   Implementation of the SHM Framework

In the following sections the SHM framework is executed in six steps as suggested ear-

lier in this chapter. The discussions provided focus on the implementation issues and

should be helpful for applying the technique to other cases.

5.3.1  Identification of Dynamic Properties

The first challenge is the accurate identification of the modal properties of the bridge as

it vibrates under the influence of the simulated ambient forces. Although no budgetary

limitations are present in an analytical study, it was important to keep the number of sen-

sors low in order to show the viability of the technique. Similarly, the length of the

records needed to be reasonably short. For this reason, only 33 sensors recording 10

minutes of data were employed. Recall that each dynamic simulation is inherently

affected by a random set of simulated environmental conditions.

It was suggested earlier in this chapter that a detailed FE-model of the structure is partic-

ularly helpful for making decisions such as the placing of sensors and the sampling fre-

quency. Although the model described in Section 5.2.1 is partially unknown (stiffness

values were randomly modified to consider material and construction uncertainties), the

author has an unrealistic advantage here as the structure itself is an analytical model.
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However, given the characteristics of the bridge, such decisions are not difficult. For

instance, it is somewhat obvious that the mode shapes will include those corresponding

to vertical and horizontal bending motions as well as torsion of the deck. Therefore, ver-

tical sensors will be placed symmetrically and uniformly along the sides of the bridge to

capture vertical and torsional modes, whereas horizontal sensors will be placed along

the center of the deck to capture horizontal motions. Figure 5.5 shows the final place-

ment of all 33 sensors. 

Figure 5.5  Sensor placement

Figure 5.6  Accelerations recorded from three sensors
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To simulate realistic data acquisition conditions, the accelerations recorded from the FE-

model were contaminated with uncorrelated Gaussian white noise signals. All 33 signals

have zero mean and a standard deviation of . However, there are some dif-

ferences in terms of the RMS ratio between the noise signals and the acceleration

records they contaminate. On average, the noise added to the vertical acceleration is

only 3%, whereas the average for the horizontal accelerations is 20%. Figure 5.6 shows,

as an example, 16 seconds of three contaminated signals from those sensors that produce

the highest accelerations.

After analyzing a few data sets obtained from simulations performed at relatively high

frequencies, it became clear that only the first ten modes of the structure were being

excited with enough energy to be identified consistently with the SSI algorithm. These

modes vibrate at frequencies that range from 0.67 to 6.29Hz. Thus, to reduce the compu-

tational power and improve the accuracy of the identification, ambient vibration simula-

tions were performed at 20Hz. According to the Nyquist theorem, this sampling

frequency allows the correct identification of all ten excited modes.

The implementation of the SSI algorithm was carried out as suggested in Chapter 2 (see

Fig. 2.9). After analyzing the stability of the results, it was decided to use Hankel matri-

ces with eight block rows of data. Moreover, each data record (i.e. 10 minutes of 33 sen-

sors at 20Hz) was decomposed four times to estimate realizations of the system with 30,

32, 34, and 36 poles. The modal properties of all four realizations were calculated and

stabilized using the same evaluation criteria used in Chapter 2 (frequencies within 2%

and mode shapes with MAC values of 0.9 minimum). Figure 5.7 shows the identified

natural frequencies as well as their associated mode shapes for a random set of environ-

mental conditions.

σ 3e 3–=
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5.3.2  The Identification Model

As mentioned previously, the computational power required to update the ID-model is

highly dependent on its complexity. For this reason a rather simplistic model was built

with only 61 elements connecting 42 nodes and boundary conditions similar to those of

the bridge (see Fig. 5.8). The following paragraphs provide discussions on some of the

many considerations that were accounted for while building this model.
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Given the properties of the bridge and the nature of the loads that these type of structures

receive, no significant motions are expected in the longitudinal direction (axial modes).

In fact, no measurements are even taken in this direction. For this reason, all displace-

ments in the  axis were eliminated from the ID-model, thus reducing the amount of

degrees of freedom by 33. Similarly, because axial deformation of connecting beams

should be minimal, the displacements in the  axis of all lateral nodes were constrained

to displace with the central node, further reducing the amount of DOF by 22. An addi-

tional group of 22 DOF can be condensed by linking the rotations of the lateral nodes

with respect to the  axis to those of the corresponding central nodes. As a result of

these condensations, the ID-model is reduced to only 139 DOF. Note that this number is

a small fraction of the 750 DOF of the FE-model, revealing that modeling errors are sig-

nificant, as expected in real-world applications.

The cross sectional properties of the three longitudinal elements were selected in such a

way that the overall stiffness of the ID-model matches the expected values of the bridge

in all directions. For instance, it was assumed that the central longitudinal elements of

the ID-model entirely represent the central girder of the bridge as well as half the stiff-

ness of the adjacent girders. Thus the properties , , , and  of the central elements

are equal to those of the bridge girders multiplied by two. With a similar reasoning, the

properties of the lateral longitudinal elements are equal to those of the girders of the
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14 15 16 17 18 19 20 21 22 23 24 25 26
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Figure 5.8  Identification model
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bridge multiplied by 1.5. The connecting beams, on the other hand, have a direct corre-

spondence to elements in the structure and their properties are set accordingly.

The mass of the elements of the ID-model was uniformly distributed across their length,

whereas the mass of the concrete deck was distributed among the nodes of the model in

a simple tributary distribution. Moreover, the initial Young’s modulus of all 61 elements

is set equal to the expected values of the structural members of the bridge (i.e. E=2e11N/

m2). However, in the search for a baseline (see section 5.3.3), these values will be

updated and used as a starting basis for all characterizations of the structure once the

scheme is fully implemented. Note that all the sensors placed on the structure can be

directly associated with degrees of freedom of the ID-model greatly facilitating the eval-

uation of the objective function in the updating process. Based on the correspondence of

Table 5.2  Expected damaged elements of ID-model

Case
Elements of 
FE-model

Reduction 
of stiffness 

(%)

Expected damaged 
elements of
ID-model

1 -- -- None

2 17, 18 20 9

3 69, 70 50 22

4 29, 30 30 2 and 15

5 55, 56 30 15

6 60 40 17

7
7, 8

123, 124

20

20

4

36

8
3, 4

23, 24

15

20

2

12

9

19, 20

21, 22

23, 24

20

20

20

10

11

12

10 10, 11 20 5 and 6

11 1 100 1

12 150 40 48
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the elements of the ID-model with the structural members of the bridge, the SHM frame-

work should yield damage warnings for the elements indicated in Table 5.2, if imple-

mented successfully.

5.3.3  The Search for a Baseline

To ensure high accuracy of the baseline, and considering that this calculation is per-

formed once, a number of special measures were taken. For instance, the modal proper-

ties of the structure were estimated using 15 minutes of ambient vibrations, five more

than those used in subsequent characterizations of the structure. The following para-

graphs explain in detail how the ID-model was updated in the search for this baseline.

To ensure that a global minimum is reached, a total of 21 updating processes were car-

ried out with different sets of initial conditions, including that in which all elements start

with the expected modulus of elasticity (i.e. E = 2e11N/m2). The additional 20 processes

had random initial conditions that uniformly varied within 10% of the expected values.

The baseline was then selected from the process that reached the lowest objective func-

tion. These processes were carried out with no limit in the number of iterations of the

conjugate gradients algorithm (i.e. until convergence is reached).

All 61 Young’s moduli were updated in this search for a baseline. Moreover, 100 eigen-

values of the FE-model and their corresponding eigenvectors were used to find the sen-

sitivities of the mode shapes. It is worth noting that the computational power required to

perform all these calculations was significant, perhaps to the point that, if later charac-

terizations had been performed with the same setup, this study would have been imprac-

tical. Figure 5.9 shows the identified Young’s moduli, whereas Fig, 5.10 shows the

modal properties of the ID-model built with these values.
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5.3.4  Setting up the Optimization Algorithm

The first issue that must be resolved is the selection of the parameters of the ID-model

that will be updated. Note that, with the measurements recorded, the bending of the deck

in the transversal direction cannot be determined. This type of deformation constitutes

the main source of information about the condition of the connecting beams that provide

lateral support to the girders. Note also that nine of the ten vibrational modes identified

from the structure (see Fig. 5.7) are different configurations of bending in the longitudi-

nal direction and torsional deformation of the deck, which mostly depend on the stiff-

ness of the main girders. Therefore, given the limited amount of information, updating

the Young’s moduli of the connecting elements becomes difficult and even minor

changes in the structure can result in high variations in their identified values. Therefore,

it was decided not to update the elements of the ID-model associated with these struc-

tural members. As a result, only 39 elements are updated.

40 modes were used in the calculation of eigenvector sensitivities of the ID-model. By

using this relatively low number of modes, 89.9% of the 12,870 calculated sensitivities

(39 elements and 10 modes described by 33 points) reach values that are within 10% of

the exact sensitivities. As an example, Fig. 5.11 shows how some of the calculated sensi-

tivities of the first and sixth eigenvectors approach their exact values as the number of

Figure 5.11  Convergence of mode shape sensitivities
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modes used to calculate them is increased. In addition, a maximum of 78 iterations (with

6 Fletcher-Reeves line-search iterations) were allowed for the conjugate gradients algo-

rithm to search for a global minimum. This limit was set after observing that approxi-

mately two thirds of all processes reached convergence with less than 78 iterations.

5.3.5  Multiple Characterizations of the Healthy Structure

To properly map the influence of the environmental conditions over the identified stiff-

ness values, the structure, in its heathy state, was characterized 100 times. Each charac-

terization was performed using different identified modal properties of the FE-model

under the influence of random environmental conditions and noisy sensors. Figure 5.12

shows all identified values as well as the normalized values, which show the deviation

with respect to the mean values in percentile points (see Eq. 4-10).

5.3.6  Outlier Analysis and Issuing Warnings

As seen in Fig. 5.12b the normalized parameters deviate from the mean values signifi-

cantly. Therefore, to set the first threshold required in the proposed PCA analysis and

thus select the elements used in the prediction model, a relatively high limit of 3% was

Figure 5.12  100 characterizations of the healthy structure
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used. In addition, the coefficient of admissibility  in the outlier analysis (see Eq. (4-

15)) was selected as 5. In other words, those elements whose stiffness seem to have

decreased by more than 5% according to the prediction model (i.e.  > -5%) are con-

sidered outliers. A warning shall then be issued in case three consecutive samples report

the same (or greater) loss of stiffness.

Once damage is induced to the FE-model, 20 simulations and subsequent characteriza-

tions are performed. Figure 5.13 shows the outlier samples for each of the 39 updated

elements in all 12 damage scenarios. Table 5.3 shows all warnings issued, indicating the

element and the number of samples required to obtain three consecutive outliers.

Table 5.3  Warnings issued

Case
Warning 
issued for 
element

Samples 
needed

Status

1 -- -- --

2 9 3 Correct

3 22 3 Correct

4

1

2

15

10

6

7

Vicinity

Correct

Correct

5 15 3 Correct

6 17 5 Correct

7
4

36

3

3

Correct

Correct

8
2

12

4

3

Correct

Correct

9

10

11

12

4

4

4

Correct

Correct

Correct

10
5

6

3

4

Correct

Correct

11 All 3 Correct (level 1)

12 -- -- False Negative

α

ep
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Note that, with the exception of cases 11 and 12, all damage scenarios are detected and

localized promptly by the framework. Among these ten cases, Case 4 was perhaps the

most difficult to identify. As simply deduced from Figs. 5.3 and 5.8, the damaged ele-

ments of this case cannot be associated with a single element of the ID-model but with a
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group of them (elements 2 and 15). With the characterizations obtained from this dam-

aged model, six and seven samples were needed to count three consecutive outliers and

issue warnings for elements 2 and 15 respectively. Moreover, after 10 characterizations

of this damage case, a warning was issued for element 1, which is not directly associated

with the damaged elements of the FE-model but with those in the immediate neighbor-

hood.

Note also that in Case 11 all samples are considered as outliers and, therefore, warnings

are issued for all elements of the ID-model. As it turns out, the removal of the support of

one of the beams introduced radical changes in the dynamics of the bridge, to the point

that the automated framework does not recognize the new mode shapes of the structure

in order to couple them with mode shapes of the ID-model and carry out the optimiza-

tion process. As explained previously in this chapter, such cases should be treated as

outlier samples, provided that unrecognizable changes in the dynamics of the structure

are most likely indicators of heavy damage. The framework issues a warning for case 11

indicating the existence of damage, but is unable to localize it within the structure.

The only false negative (damage going undetected) obtained from the cases analyzed

was obtained in case 12. The damage in this case was induce in one of the connecting

beams that provide lateral support to the main girders. Although, one might expect the

damage to be reflected as changes in the longitudinal elements in the vicinity of the

weakness, the changes to the dynamic properties were not sufficient to issue warnings

for any element. This case is representative of all cases in which the connecting beams

lose some of their initial stiffness. Perhaps a more dense distribution of sensors through-

out the structure could allow the framework to localize such weaknesses. However, as

demonstrated in this case, the limited amount of sensors employed in this example does

not allow us to identify all types of damage.
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The Effects of the PCA Analysis

The overall temperature surrounding a structure has, in general, a relatively large influ-

ence over its modal properties. The natural frequencies of a steel structure, for instance,

can differ by more than 2% between a cold day of winter at 0oC (32oF) and a hot day of

summer at 40oC (104oF). However, the influence of this variable on the mode shapes is

expected to be small unless residual stresses generated by differential expansion of the

materials or restricting boundary conditions play a significant role. As a result, charac-

terizations of a structure obtained with model updating techniques that use both natural

frequencies and mode shapes are sensitive to temperature changes. For this reason, when

the PCA analysis was combined with the non-iterative technique proposed by Caicedo et

al. [14] in Chapter 4, the advantages of this type of analysis became evident.

The analytical results obtained in this chapter, however, do not show the same kind of

positive impact the PCA analysis had in the numerical example presented in Chapter 4.

The two main reasons for this deficiency are, namely: 1) the fact that the model updating

technique used in the framework only uses the mode shapes as the source of informa-

tion; and 2) the fact that this study fails to take into account residual stresses in the struc-

ture. As a result of this combination, the overall temperature has absolutely no impact on

the mode shapes of the FE-model and, therefore, no impact on the characterizations of

the structure. The PCA analysis is only useful in this example to reduce the influence of

simulated temperature gradients, which, have little impact on the mode shapes of the

FE-model.

In averaged values over the 20 damaged samples, Fig. 5.14 shows the residual error cal-

culated with the PCA analysis as well as the variability of the Young’s moduli identified

with respect to the mean of the undamaged cases. Note that not much benefit is gained

from the PCA analysis in this numerical example. In fact, advantages are only noticeable

when verifying the slightly lower standard deviation of the residual errors, revealing the
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reduction of some unknown effects (the temperature gradients, for instance). However,

more meaningful and positive effects are expected in real scenarios, where variations of

temperature can influence the mode shapes.
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5.4  Conclusions

A structural health monitoring framework that uses the ambient vibrations of civil struc-

tures as the source of information was proposed in this chapter and broken down in six

basic steps. This framework facilitates the identification and localization of damage

regardless of the environmental conditions that affect the structure’s dynamic behavior.

The capabilities of the methodology were clearly demonstrated with simulated dynamic

responses of a finite element model that represents a typical highway bridge. To add

some realism to the study and test the robustness of the technique, several uncertainties

and modeling errors typically found in real applications were considered in this numeri-

cal example. The main advantages and limitations of the proposed framework are dis-

cussed in the following paragraphs. The author acknowledges that these pros and cons

are the result of the experience gained with the research involved in this dissertation, and

that the implementation of the framework in other cases or engineering fields may dis-

close more useful information.

Although no specific minimum limit can be defined in general, the model updating

methodology requires a considerable number of highly accurate mode shapes to charac-

terize the structure. For instance, the correct localization of the all damage scenarios

analyzed in this chapter, would not have been possible if only 8 mode shapes were avail-

able. But perhaps even more critical is the fact that these identified mode shapes were

almost identical to the true eigenvectors (analytically calculated from the FE-model) and

that their quality was barely sufficient. In terms of the modal assurance criterion, the

identified mode shapes had a MAC average of 0.9996 when compared to the corre-

sponding true values. As demonstrated by the numerical example of this chapter and the

comparative study in Chapter 2, the stochastic subspace identification algorithm, aside

from being highly accurate, is notably insensitive to the unavoidable measurement

noise. However, the question on whether ambient loads are able to excite a significant
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amount of vibrational modes with sufficient energy to be properly identified remains

unsolved and should be investigated for specific applications.

Perhaps one of the most significant advantages of the model updating technique pro-

posed as part of the framework is the fact that the construction of the identification

model is not limited by the number of sensors used to identify the modal properties of

the structure. This allows the user to construct more complex ID-models that better rep-

resent the structure, greatly improving the characterization of the structure. As indicated

before, however, there is a trade-off as the complexity of the ID-model highly compro-

mises the computational power required to implement the technique.

Because the evaluation of the objective function does not impose a pre-defined number

of mode shape points, the number of sensors can be altered during the implementation of

the technique with no major consequences. This feature constitutes a very attractive

characteristic of the framework as the reliability of centralized sensor networks are not

always perfect and the temporary loss of one or more sensors is relatively common. A

further investigation should be conducted to analyze the numerical consequences.

The framework is a time consuming method and requires plenty of computational power

and memory. To give the reader an idea of this issue, it can be mentioned that a personal

computer with an Intel Pentium 4 microprocessor, 1GB of memory, and running at

2.4MHz, took an average of 29 minutes to obtain a single set of optimized Young’s mod-

uli. This time can be broken down into three specific tasks: 1) four minutes performing

the dynamic simulation to obtain ten minutes of acceleration records, 2) one minute

identifying the modal properties using the stochastic subspace algorithm, and 3) 24 min-

utes in the optimization of the parameters of the ID-model.

Although not much benefit was gained from the principal component analysis in the

numerical example used in this chapter, this type of analysis provides a powerful tool to
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reduce the effects of the environmental conditions for many SHM techniques (as clearly

shown in Chapter 4). However, when combined with the model updating technique dis-

cussed in Chapter 3, a more positive outcome can be realized in real scenarios where the

variations of temperature may have an influence on the relative values of the mode

shapes of the structure.

The robustness of the framework has yet to be tested on a wider range of structures and

its performance will vary with different applications. For instance, structures with a

more lumped distribution of their mass (e.g. buildings) will likely not take full advan-

tage of the mode shape sensitivities employed in the optimization process. Moreover, in

some cases in which the symmetry of the structures may play an important role, the

information provided by the variability of the mode shapes might not be sufficient to

reach a global minimum of the evaluation function. An example that combines both of

these difficulties is the SHM benchmark problem employed in Chapter 2. Although not

shown here, characterizations of this structure obtained with the proposed framework

tend to mask the damage losses as these are distributed between reductions and gains of

geometrically opposite elements.
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Chapter 6 

Conclusions

The ultimate goal of this dissertation was to create a structural health monitoring frame-

work for civil structures that aims the identification and localization of damage within a

structure regardless of the environmental conditions that affect its dynamic behavior.

After providing a general background on dynamic-based SHM and the existing tech-

niques, the research focussed on three of the most critical steps in a chapter by chapter

basis, namely: 1) the identification of the modal properties using ambient vibrations; 2)

the characterization of the structure’s stiffness at any given time; and 3) the reduction of

the influence of the environmental conditions. The conclusions reached and develop-

ments proposed were combined in a six-step methodology that was tested with a finite

element model of a typical highway bridge. The main findings of the research can be

summarized as follows:

• A statistical comparison of three of the most popular modal identification tech-

niques indicated that the stochastic subspace identification (SSI) method is a reli-

able way to estimate modal properties of structures as the vibrate in their natural

environment. This comparison was carried out in the second chapter with both

simulated as well as experimental data obtained from of a four-storey steel build-

ing known as the SHM benchmark problem.
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• The use of a mature optimization algorithm such as the conjugate gradients pro-

vides a powerful tool to characterize the stiffness of a structure and localize dam-

age by observing the changes of the identified values. Characterizations are

obtained by updating a representative finite element model such that the correla-

tion of its mode shapes with those estimated from the structure is optimized. The

evaluation criterion and the mathematical tools required to implement the optimi-

zation algorithm were derived in Chapter 3.

• When the unknown and always varying environmental conditions have a linear (or

nearly linear) influence on numerical characterizations of a structure (e.g. identi-

fied Young’s moduli), these effects can be accommodated by applying a principal

component analysis to the identified parameters. This type of analysis was pro-

posed in Chapter 4 and requires multiple characterizations of the healthy structure

under a wide range of environmental conditions in order to accurately map the

influence and reduce it in post-damage characterizations.

• The six-step structural health monitoring framework, as defined in Chapter 5, is

capable of detecting and localizing the damage induced to a realistic finite element

model of a typical highway bridge. These encouraging results were obtained

despite a limited amount of sensors and a considerable number of realistic condi-

tions considered in the study (e.g. modeling uncertainties, noisy sensors, non-

white excitation). However, it became clear that a relatively high number of highly

accurate mode shapes are required to successfully implement the methodology.

Depending on their nature, SHM techniques target specific types of damage. The

dynamic-based framework developed in this dissertation, for instance, targets the local-

ization of structurally deficient members capable of changing the global dynamic prop-

erties. On the other hand, other researchers have focussed their work on developing

techniques to detect other forms of damage such as corrosion, fatigue and cracking,
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which, may or may not affect the dynamic behavior of the structure. Therefore, to

become more attractive to the industry and become a reality in our infrastructure, SHM

systems must combine various techniques with different capabilities. Moreover, it is

clear that, to stimulate the industry into applying the developed methodologies, studies

of the cost-benefit ratio need to be carried out in the research community. 

Although civil engineering structures are the main target of this dissertation, it is impor-

tant to emphasize that the proposed SHM framework as a whole (or in part) is likely to

perform well in other engineering fields. However, its viability, requirements and limita-

tions may differ significantly and should be investigated for specific cases.

6.1  Future Work

One of the limitations of this study is associated with the fact that all finite element mod-

els employed were built with Euler-Bernoulli beam elements. This type of elements is

commonly used to construct complex finite element models and different alternatives

such as the condensation of degrees of freedom can help substitute other types of ele-

ments (membrane-type behavior of the bridge deck in Chapter 5). However, it is

acknowledged here that the capabilities of the framework, in terms of efficiency and

quality of results, need to be tested with other types of elements.

Perhaps one of the immediate steps that can be taken to further develop the methodology

is the implementation of a standard way to quantify the localized damage. As presented,

the framework issues a damage warning whenever a portion of the structure (associated

with an element of the ID-model) consistently reveals the loss of a predefined percent-

age of stiffness (5% in the numerical case of Chapter 5). However, and even though a

different course of action is probably needed when the stiffness reduction is significant,

the issued warnings are always equivalent.
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To further investigate the advantages of the principal component analysis proposed in

Chapter 4, it is necessary to study the effects of various environmental conditions on the

modal properties of structures, but mostly on the characterizations obtained from them.

For instance, although variations of temperature alter the modulus of elasticity of steel,

other side effects such as residual stresses generated by differential thermal expansion of

materials and restricting boundary conditions need to be investigated. Moreover, both

humidity and gradual variations of mass may have an impact that can potentially be

accommodated with the statistically based analysis proposed.

One of the main advantages of the model updating technique proposed in Chapter 3 is

the fact that the objective function used to update the model can be evaluated even when

one or more sensors are lost (as long as corresponding modal points are used to calculate

the MAC values). It is obvious that the accuracy of the technique is altered as each point

contains information about the state of the structure. However, a study on the fault toler-

ance of the framework should be conducted, indicating the rate in which the results dete-

riorate with the loss of sensors.
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