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2.5 Brüel & Kjær model #4368 with its base magnet . . . . . . . . . . . . 17

2.6 Jiangsu Lianneng made impact hammer . . . . . . . . . . . . . . . . . 17

2.7 Sinocera signal conditioners . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Shake table located at HIT . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 250 kN capacity Schenck actuator . . . . . . . . . . . . . . . . . . . . . 19

2.10 MTS FlexTest GT controller . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 TestSuite Multipurpose Software layout . . . . . . . . . . . . . . . . . . 20

2.12 Dong-Hua Universal Dynamic Signal Test System . . . . . . . . . . . . 21

2.13 dSpace DS1104 system terminal board . . . . . . . . . . . . . . . . . . 22

2.14 dSpace ControlDesk Software layout . . . . . . . . . . . . . . . . . . . 22

2.15 Ke Dong KD 5018 signal conditioner . . . . . . . . . . . . . . . . . . . 23

2.16 Keyence laser displacement sensor and controller . . . . . . . . . . . . 24

2.17 BHST #DA-50 LVDT . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.18 MR damper amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.19 MTS load cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.20 MR damper fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.21 El Centro ground motion comparison . . . . . . . . . . . . . . . . . . . 27

2.22 Kobe ground motion comparison . . . . . . . . . . . . . . . . . . . . . 28

2.23 Morgan Hill ground motion comparison . . . . . . . . . . . . . . . . . . 29



x

Figure Page

2.24 MTS loading frame with MR damper and load cell attached at HIT . . 30

2.25 Shore Western Actuator, MR damper and load cell attached to loading
frame at Purdue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.26 Shore Western SC6000 controller . . . . . . . . . . . . . . . . . . . . . 32

2.27 Speedgoat Performance Real-time Target Machine . . . . . . . . . . . . 32

3.1 Lumped mass model idealization of the test structure . . . . . . . . . . 35

3.2 Effect of rotation transformation on the complex mode shapes . . . . . 41

3.3 Impact data parser script workflow . . . . . . . . . . . . . . . . . . . . 43

3.4 Tapered boxcar window . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 An idealization of a linear system in time domain . . . . . . . . . . . . 47

3.6 Block diagram of the structure to be identified . . . . . . . . . . . . . . 55

3.7 Sensor and hit location layout . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 Transfer function comparison between experimental data vs ERA data 57

3.9 Phase diagram comparison between experimental data vs ERA data . . 58

3.10 Identified mode shapes of the first three identified modes . . . . . . . . 59

3.11 Transfer function comparison between experimental data and updated
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.12 El Centro earthquake response comparison in time domain for ST–AS . 63

3.13 Kobe earthquake response comparison in time domain for ST–AS . . . 64

3.14 Morgan Hill earthquake response comparison in time domain for ST–AS 65

4.1 Particulate alignment in MR fluid . . . . . . . . . . . . . . . . . . . . . 71

4.2 MR damper internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 MR damper models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Phenomenological Bouc-Wen hysteresis model of the MR damper . . . 74

4.5 HIT MR damper experimental data for 0 V and 1.7 V constant voltage
levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Comparisons for HIT MR damper experimental data vs identified model 78

4.7 Comparisons for HIT vs Purdue dampers . . . . . . . . . . . . . . . . . 80

4.8 An idealization of structural control with MR damper . . . . . . . . . . 82



xi

Figure Page

5.1 Application of rectangular window function to first floor displacement
response for Morgan Hill semi-active control case . . . . . . . . . . . . 87

5.2 Effect of Butterworth filtering to third floor acceleration response for Mor-
gan Hill semi-active control case . . . . . . . . . . . . . . . . . . . . . . 89

5.3 A representative Simulink model of the analytical simulation . . . . . . 90

5.4 El Centro earthquake response comparison in time domain for ST–AS
POFF case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 El Centro earthquake response comparison in frequency domain for ST–AS
POFF case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Moving RMS error for El Centro earthquake ST–AS POFF case . . . . 94

5.7 El Centro earthquake response comparison in time domain for ST–AS
PON case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 El Centro earthquake response comparison in frequency domain for ST–AS
PON case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9 Moving RMS error for El Centro earthquake ST–AS PON case . . . . . 97

5.10 El Centro earthquake response comparison in time domain for ST–AS SA
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.11 El Centro earthquake response comparison in frequency domain for ST–AS
SA case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.12 Moving RMS error for El Centro earthquake ST–AS SA case . . . . . . 100

5.13 Kobe earthquake response comparison in time domain for ST–AS POFF
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.14 Kobe earthquake response comparison in frequency domain for ST–AS
POFF case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.15 Moving RMS error for Kobe earthquake ST–AS POFF case . . . . . . 103

5.16 Kobe earthquake response comparison in time domain for ST–AS PON
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.17 Kobe earthquake response comparison in frequency domain for ST–AS
PON case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.18 Moving RMS error for Kobe earthquake ST–AS PON case . . . . . . . 106

5.19 Kobe earthquake response comparison in time domain for ST–AS SA case 107



xii

Figure Page

5.20 Kobe earthquake response comparison in frequency domain for ST–AS SA
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.21 Moving RMS error for Kobe earthquake ST–AS SA case . . . . . . . . 109

5.22 Morgan Hill earthquake response comparison in time domain for ST–AS
POFF case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.23 Morgan Hill earthquake response comparison in frequency domain for ST–
AS POFF case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.24 Moving RMS error for Morgan Hill earthquake ST–AS POFF case . . . 112

5.25 Morgan Hill earthquake response comparison in time domain for ST–AS
PON case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.26 Morgan Hill earthquake response comparison in frequency domain for ST–
AS PON case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.27 Moving RMS error for Morgan Hill earthquake ST–AS PON case . . . 115

5.28 Morgan Hill earthquake response comparison in time domain for ST–AS
SA case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.29 Morgan Hill earthquake response comparison in frequency domain for ST–
AS SA case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.30 Moving RMS error for Morgan Hill earthquake ST–AS SA case . . . . 118

6.1 Servo-hydraulic system diagram . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Introduction of outer loop control . . . . . . . . . . . . . . . . . . . . . 125

6.3 Open loop system input and output in time domain for HIT setup . . . 126

6.4 Frequency response and identified model of the open loop system for HIT
setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.5 Open loop system input and output in time domain for Purdue setup . 128

6.6 Frequency response and identified model of the open loop system for Pur-
due setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.7 RIAC control block diagram . . . . . . . . . . . . . . . . . . . . . . . . 130

6.8 Performance of RIAC for HIT actuator . . . . . . . . . . . . . . . . . . 131

6.9 Performance of RIAC for Purdue actuator . . . . . . . . . . . . . . . . 132

6.10 Communication between physical and anayltical substructure in a RTHS
frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



xiii

Figure Page

6.11 A representative Simulink model of the RTHS simulation . . . . . . . . 134

6.12 El Centro earthquake response comparison in time domain for ST–RTHS
POFF case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.13 El Centro earthquake response comparison in frequency domain for ST–
RTHS POFF case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.14 Moving RMS error for El Centro earthquake ST–RTHS POFF case . . 138

6.15 El Centro earthquake response comparison in time domain for ST–RTHS
PON case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.16 El Centro earthquake response comparison in frequency domain for ST–
RTHS PON case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.17 Moving RMS error for El Centro earthquake ST–RTHS PON case . . . 141

6.18 El Centro earthquake response comparison in time domain for ST–RTHS
SA case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.19 El Centro earthquake response comparison in frequency domain for ST–
RTHS SA case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.20 Moving RMS error for El Centro earthquake ST–RTHS SA case . . . . 144

6.21 Kobe earthquake response comparison in time domain for ST–RTHS POFF
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.22 Kobe earthquake response comparison in frequency domain for ST–RTHS
POFF case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.23 Moving RMS error for Kobe earthquake ST–RTHS POFF case . . . . . 147

6.24 Kobe earthquake response comparison in time domain for ST–RTHS PON
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.25 Kobe earthquake response comparison in frequency domain for ST–RTHS
PON case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.26 Moving RMS error for Kobe earthquake ST–RTHS PON case . . . . . 150

6.27 Kobe earthquake response comparison in time domain for ST–RTHS SA
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.28 Kobe earthquake response comparison in frequency domain for ST–RTHS
SA case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.29 Moving RMS error for Kobe earthquake ST–RTHS SA case . . . . . . 153



xiv

Figure Page

6.30 Morgan Hill earthquake response comparison in time domain for ST–RTHS
POFF case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.31 Morgan Hill earthquake response comparison in frequency domain for ST–
RTHS POFF case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.32 Moving RMS error for Morgan Hill earthquake ST–RTHS POFF case . 156

6.33 Morgan Hill earthquake response comparison in time domain for ST–RTHS
PON case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.34 Morgan Hill earthquake response comparison in frequency domain for ST–
RTHS PON case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.35 Moving RMS error for Morgan Hill earthquake ST–RTHS PON case . . 159

6.36 Morgan Hill earthquake response comparison in time domain for ST–RTHS
SA case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.37 Morgan Hill earthquake response comparison in frequency domain for ST–
RTHS SA case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.38 Moving RMS error for Morgan Hill earthquake ST–RTHS SA case . . . 162

7.1 A generic buffering application . . . . . . . . . . . . . . . . . . . . . . 168

7.2 A generic framing application . . . . . . . . . . . . . . . . . . . . . . . 170

7.3 xPC RT-UDP blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.4 dRTHS system architecture . . . . . . . . . . . . . . . . . . . . . . . . 172

7.5 dRTHS connection map . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.6 vdRTHS architecture including network time delays . . . . . . . . . . . 178

7.7 Implementation of Smith predictor . . . . . . . . . . . . . . . . . . . . 178

7.8 Implementation of initial time delay estimator . . . . . . . . . . . . . . 180

7.9 El Centro earthquake comparison in time domain for POFF case . . . . 183

7.10 Numerical MR damper force response comparison in time domain for
POFF case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.1 A representative Simulink model of the dRTHS for IISL node . . . . . 188

8.2 A representative Simulink model of the dRTHS for SSTL node . . . . . 189

8.3 A representative Simulink model of the dRTHS for SSTL node . . . . . 190

8.4 A representative Simulink model of the dRTHS for SSTL node . . . . . 191



xv

Figure Page

8.5 El Centro earthquake response comparison in time domain for RTHS–
unframed dRTHS SA case . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.6 MR damper force response comparison in time domain for RTHS–unframed
dRTHS SA case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.7 El Centro earthquake response comparison in frequency domain for RTHS–
unframed dRTHS SA case . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.8 Moving RMS error for RTHS–unframed dRTHS SA case . . . . . . . . 197

8.9 El Centro earthquake response comparison in time domain for RTHS–
framed dRTHS SA case . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.10 MR damper force response comparison in time domain for RTHS–framed
dRTHS SA case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.11 El Centro earthquake response comparison in frequency domain for RTHS–
framed dRTHS SA case . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.12 Moving RMS error for RTHS–framed dRTHS SA case . . . . . . . . . . 201

8.13 Delay estimation comparison for the first floor displacements - unframed 203

8.14 Delay estimation comparison for the first floor accelerations - unframed 204

8.15 Delay estimation comparison for the first floor displacements - framed . 205

8.16 Delay estimation comparison for the first floor accelerations - framed . 206

8.17 El Centro earthquake response comparison in time domain for ST–unframed
dRTHS SA case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8.18 El Centro earthquake response comparison in frequency domain for ST–
unframed dRTHS SA case . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.19 Moving RMS error for ST–unframed dRTHS SA case . . . . . . . . . . 212

8.20 El Centro earthquake response comparison in time domain for ST–framed
dRTHS SA case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.21 El Centro earthquake response comparison in frequency domain for ST–
framed dRTHS SA case . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8.22 Moving RMS error for ST–framed dRTHS SA case . . . . . . . . . . . 215

8.23 Bar chart error comparisons of dRTHS (unframed), dRTHS (framed) and
RTHS to shake table test . . . . . . . . . . . . . . . . . . . . . . . . . . 217



xvi

ABSTRACT

Ozdagli, Ali Irmak Ph.D., Purdue University, May 2015. Distributed Real-time Hybrid
Simulation: Modeling, Development and Experimental Validation. Major Professor:
Shirley J. Dyke.

Real-time hybrid simulation (RTHS) has become a recognized methodology for iso-

lating and evaluating performance of critical structural components under potentially

catastrophic events such as earthquakes. Although RTHS is efficient in its utilization

of equipment and space compared to traditional testing methods such as shake table

testing, laboratory resources may not always be available in one location to conduct

appropriate large-scale experiments. Consequently, distributed systems, capable of

connecting multiple RTHS setups located at numerous geographically distributed facil-

ities through information exchange, become essential. This dissertation focuses on the

development, evaluation and validation of a new distributed RTHS (dRTHS) platform

enabling integration of physical and numerical components of RTHS in geographically

distributed locations over the Internet.

One significant challenge for conducting successful dRTHS over the Internet is

sustaining real-time communication between test sites. The network is not consistent

and variations in the Quality of Service (QoS) are expected. Since dRTHS is delay-

sensitive by nature, a fixed transmission rate with minimum jitter and latency in

the network traffic should be maintained during an experiment. A Smith predictor

can compensate network delays, but requires use of a known dead time for optimal

operation. The platform proposed herein is developed to mitigate the aforementioned

challenge. An easily programmable environment is provided based on MATLAB/xPC.

In this method, (i) a buffer is added to the simulation loop to minimize network jitter

and stabilize the transmission rate, and (ii) a routine is implemented to estimate the

network time delay on-the-fly for the optimal operation of the Smith predictor.
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The performance of the proposed platform is investigated through a series of

numerical and experimental studies. An illustrative demonstration is conducted using

a three story structure equipped with an MR damper. The structure is tested on the

shake table and its global responses are compared to RTHS and dRTHS configurations

where the physical MR damper and numerical structural model are tested in local

and geographically distributed laboratories.

The main contributions of this research are twofold: (1) dRTHS is validated as a

feasible testing methodology, alternative to traditional and modern testing techniques

such as shake table testing and RTHS, and (ii) the proposed platform serves as a

viable environment for researchers to develop, evaluate and validate their own tools,

investigate new methods to conduct dRTHS and advance the research in this area to

the limits.
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CHAPTER 1

INTRODUCTION

With recent advances in technology and science, engineering research has evolved into

a new form, in which collaboration and distribution of knowledge across communities

are promoted using cybersystems (Atkins et al., 2003). Innovations in computing

diversified academic activities to discover new approaches to replace certain testing

facilities with virtual laboratories at national and international scale (Oden et al.,

2006; Cyberinfrastructure Council, 2007). The earliest attempt to overcome challenges

associated with traditional testing in the area of earthquake engineering is made by

combining computers with actuators in an online environment (Takanashi et al., 1975;

Mahin and Shing, 1985). Basically, this concept, also known as hybrid simulation

(HS), partitions an experimental setup into physical and numerical substructures, and

couples them via a transfer system, usually a hydraulic actuator (Nakata et al., 2014).

In the last few decades, HS has drawn a lot of interest from the engineering

community due the fact that it provides relatively more flexibility in terms of time, cost

and workmanship, compared to classical testing methodologies such as shake table test

(Nakashima et al., 1992; Saouma and Sivaselvan, 2008). Furthermore, hardware and

software enhancements to facilitate hard real-time computing leveraged capabilities

of HS to explore more realistic simulation cases of rate-dependent structural systems

(Christenson et al., 2008). Finally, in 2011, NEES took initiative to promote HS and

RTHS (real-time hybrid simulation) among earthquake engineering community to

accelerate research and education (Deierlein et al., 2011).

Although HS, whether it is real-time or not, is efficient in utilization of equipment

and space, laboratory resources may not always be optimized to employ more complex

testing plans involving multiple apparatus and large-scale systems. Consequently,

distributed systems, capable of connecting multiple HS setups located at numerous
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geographically dispersed facilities through information exchange, become essential.

Typically, such systems refer to a medium of integrated networks which are coordinated

by message passing (Coulouris et al., 2005) and operate on the Internet infrastructure.

Utilization of geographically distributed RTHS (dRTHS) does not only require

execution of equations of motions (EOM) within a strict time step, which is also

a necessity for conducting RTHS, but also transmission of the data in real-time

between distributed facilities running essential HS components such as numerical

and physical subsystems. Today, the Internet is accessed by millions of people for

various purposes including email, social interactions and access to the information.

The Internet is heterogeneous in the sense that Internet service providers (ISP) may

not accommodate best Quality of Service (QoS) all the time to all clients for all types

of services. Degradation in QoS due to regular traffic and/or cyber-attacks is expected

and may disrupt data exchange among users. QoS issues often manifest themselves

as (i) network time delay, (ii) jitter, or even (iii) packet loss (Morton and Claise, 2009;

Verma et al., 1991; Koodli and Ravikanth, 2009). In the event of such disruptions,

maintaining successful dRTHS becomes a major challenge. Fortunately, loss of data

is minimized with the improvements of the current infrastructure. On the other hand,

transmission protocols, by design, cannot afford to deliver data in real-time to the

destination, robustly due network delay and jittering.

To overcome the aforementioned challenges, in this dissertation, a platform to

enable dRTHS is proposed. The goal of this platform is twofold: (1) to provide

a transparent recipe based on MATLAB/xPC (MATLAB, 2011) to interconnect

facilities, thus the possibility of a natural evolution of the platform into more complex

applications; (2) to establish methodologies to avoid jitter during transmission, and

to estimate and compensate the network time delay between communication nodes

on-the-fly. Specifically, research efforts are focused on developing and validating the

proposed platform by comparing shake table test responses with dRTHS results. To

realize this research task, an experimental study is conducted in three phases. In

the first phase of this study, a large-scale prototype test structure with a magneto-
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rheological (MR) damper attached to its first floor is assembled at Harbin Institute

of Technology (HIT) in China and excited on the shake table at HIT under various

ground motion inputs. In the second phase, RTHS tests are conducted at Purdue

University where the whole system is partitioned into analytical model of the structure

as the numerical substructure and MR damper as the physical substructure. In the

final phase, the proposed platform is tested by distributing the numerical substructure

to University of Illinois at Urbana-Champaign (UIUC) and physical substructure to

Purdue University. Responses from dRTHS is compared to RTHS and shake table

tests to demonstrate the performance of the proposed platform.

1.1 Literature Review

The most prominent development towards multi-site testing has first started within

NEESGrid ecosystem (NEESgrid, 2003). To support reliable transmission between

facilities using Internet, a protocol named NEESGrid Teleoperation Control Protocol

(NTCP) has been standardized (Pearlman et al., 2004). With the help of this protocol,

simulation and testing computers within the grid could exchange data with each other

over the NTCP back-end servers.

An initial distributed HS (dHS) implementation based on this frame was Multi-

Site Online Simulation Testbed (MOST), where two physical substructures located at

UIUC and University of Colorado, Boulder (CU) were linked to the numerical model

simulated by National Center for Supercomputing Applications (NCSA), also located

at UIUC (NEESgrid, 2004; Spencer et al., 2004). Later, a low-cost and mobile version

of MOST, known as MiniMOST was developed to conduct MOST experiments in

small scale (Nakata et al., 2004).

Since the original NTCP had large overhead that compromised the robustness of

data exchange, protocol was not effective in utilization network resources, causing

decrease in speed of test. To improve the testing rate, Mosqueda et al. (2008) proposed

Fast-MOST by modifying NTCP handshake method and parallelizing communication
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procedures of coordinator with other sites. In addition, an event-driven distributed

controller developed by Stojadinovic et al. (2006) was adopted to satisfy command

continuity minimize the force relaxations which is common problem for slow rate HS.

A drawback of MOST framework is the support for interconnection of multiple

types of simulation programs with physical systems. Kwon et al. (2005) developed UI-

SIMCOR, a universal middleware that establishes a coordinator between multiple sites

and numerical simulation software for dHS, built on the MOST. As the demonstration

example, Multi-site Soil-Structure Interaction Test (MISST) was conducted where

UI-SIMCOR coupled a physical specimen with ZEUS-NL finite element program

(FEM).

Concurrently, alternative testing protocols were also developed. For instance,

NTCP has been evolved to NEES Hybrid Communications Protocol (NHCP) to

enable soft RTHS by handling some design bottlenecks such as transmission rate, data

packing, security and parallel processing (Cowart et al., 2007). Later, this protocol

was adopted by UI-SIMCOR’s new versions (Kwon et al., 2007). Takahashi and Fenves

(2006) exploited an early release candidate of OpenFresco to connect OpenSees FEM

to a physical substructure and a HS was performed with this framework between

Kyoto University and University of California, Berkeley. Following, Schellenberg et al.

(2009) released full version of OpenFresco and extended its capabilities to support

many varieties of numerical simulation programs and UI-SIMCOR, as well as NHCP.

Another notable application was studied by Park et al. (2005) by connecting test

laboratories with Wireless Application Protocol (WAP). SAMBA software suite over

TCP/IP was chosen as the main communication scheme in the instance when comput-

ers controlling actuators and running analysis engine operated on different operating

systems. Xiao et al. (2004) implemented Networked Structural Laboratories (Net-

SLab) network platform built on XML application layer. Internet-based Simulation for

Earthquake Engineering (ISEE) was developed by Yang et al. (2007) and Wang et al.

(2007), where a shared database is used via Structured Query Language (SQL) to

remove the need for coordinator communication. Last, but not least, Pan et al. (2006)
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designed a peer-to-peer (P2P) hybrid simulation system, similar to coordinator–client

type scheme.

Compared to HS based distributed tests, there is limited research on dRTHS. The

first significant attempt was made by Kim et al. (2012) by using QUARC Real-time

Control Software developed by Quanser. The distributed tests were conducted at a rate

of 500 Hz between University of Connecticut (UCONN) and UIUC. For the transport

layer, to ensure real-time uninterrupted data streaming, Transmission Control Protocol

(TCP) embedded into QUARC was used. In addition, to compensate network delays

in the feedback, a Smith predictor was introduced to numerical component. The

system was designed to be stable up to 100 msec delay.

As an alternative to TCP, Ojaghi et al. (2014) developed a full-fledged framework

named as Interdependent Channel – Distributed Hybrid Testing (IC-DHT) that acts

as a middleware between facilities carrying numerical simulations and physical sub-

structure testing. IC-DHT operates in soft real-time over a new high level protocol,

Data Handling Protocol (DHP) built on User Datagram Protocol (UDP). Additionally,

the network delays were treated by compensating the command input with polynomial

extrapolation before sending to the actuator site. The example tests were conducted

between Oxford and Bristol Universities at a rate of 50 Hz.

1.2 Remaining Challenges

The methods used for dHS are fairly mature. On the other hand, dRTHS is still

in the development phase. Although encouraging results have been acquired to date,

several challenges still remain before dRTHS will be actively used by the community.

First of all, outside hard real-time restrictions, currently available platforms are

formed based on individual requirement. Following that, there is a lack of standard-

ization specifying minimum requirements to conduct a successful test (Christenson

et al., 2014). Community efforts should focus on development of new open-source

transparent protocols, hardware and software components for dRTHS. Likewise, pri-
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orities given by the researchers to sampling frequencies, transmission rates, data loss,

delays and jitters according to operational needs should be well assessed through

standards. Ultimately, the resulting framework should be flexible in satisfying all

types of research demanding this technology.

In order to improve testing conditions, Internet infrastructure should be allocated.

For example, to provide the fastest transmission speed available between sites, related

privileges to control over local and wide area traffic should be given to IT team of

facilities at the time of testing. For that matter, software-defined networks should

be offered for elastic resource allocation. In addition, the security of the connection

should be ensured with existing or alternately new tools.

Last but not least, there is a growing interest in cloud computing. As a part of the

efficient utilization of distributed system towards virtual labs, with more numerically

complex models are tested in real-time, high power computing resources within the

cloud should be dedicated to real-time simulation. Yet, as the biggest challenge, the

collected data through dRTHS should be instantly available to the community either

during or after the testing for further analysis. Eventually, ready-to-use data in the

cloud will be evaluated to accelerate and push research to its limit in this area of

earthquake engineering.

1.3 Objective and Scope

The need for development and verification of a new dRTHS platform proposed

here arises from the following requirements and objectives listed below:

1. Previous attempts to employ dRTHS often integrate a middleware into the

transmission loop between sites. The complex control mechanisms implemented

within the middleware prohibit dRTHS from running at high rates. The platform

proposed here builds directly on UDP which provides only the essential control

elements required for packet exchange. Thus, faster transmission rates are

undertaken.
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2. Available dRTHS middleware is either proprietary or closed-source. Evidently,

advancement of the research in this area calls for open-source applications.

The MATLAB/xPC framework selected for this platform provides an easily

programmable environment. This study demonstrates a method for researchers

to design their own platforms based on the specifications provided here.

3. To avoid performance reductions and even instabilities in dRTHS, network

delays between testing sites should be quantified and compensated. Using pro-

grammable xPC environment, a Simulink block is implemented to estimate

nondeterministic network time delay on-the-fly, by inspecting sent and received

data packages between dRTHS nodes. Network delay estimation is especially

helpful for Smith predictor-based time delay compensation scheme, which ex-

pects a known constant delay for optimal operation.

The performance of the proposed dRTHS platform is validated by comparing

results to RTHS and shake table responses of a three story test structure equipped

with MR damper. The primary scope of the comparisons are selected as in-plane

displacements and accelerations of each floor, and the force at the MR damper level.

RMS and peak errors are presented to demonstrate that dRTHS is a reliable and

robust option among the many choices of testing methodologies.

1.4 Overview

This work focuses on the development, evaluation and validation of dRTHS setup

employed between Purdue and UIUC. dRTHS results are compared with global re-

sponses of a three story, large-scale test structure excited with a shake table at HIT.

Flow of information in this work can be summarized with the schematic given in

Figure 1.1.

Chapter 2 presents an overview and purpose of the test configurations towards

verification of the dRTHS. Configurations described in this chapter include: (i) system
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identification, (ii) shake table configuration, (iii) RTHS setup at HIT, and (iv) RTHS

setup at Purdue.

In Chapter 3, an improved system identification and model updating process

towards structural control and model response estimation is proposed. First, a theo-

retical background on system identification and model updating is presented. Next,

the motivation behind the proposed model updating technique along with the deriva-

tion of the methodology is explained. Finally, verification tests are conducted on the

uncontrolled test structure when excited with various ground motions using the shake

table.

Chapter 4 discusses modeling of MR dampers at Purdue and at HIT through

characterization. Since shake table and RTHS tests have been performed at HIT

and Purdue on different damper types, for the sake of a fair comparison, equivalent

voltages for Purdue damper to generate force levels of HIT damper at passive-off

and -on modes are provided in this chapter. In addition, fundamentals of control

theory and design approaches for passive and semi-active control of MR dampers are

discussed.

In Chapter 5, analytical simulations using an integrated model containing nu-

merical models of the test structure and MR damper are compared to shake table

results. The errors tabulated in this chapter are considered as the baseline for dRTHS

comparisons.

Chapter 6 presents experimental verification by comparing shake table response of

the test structure to RTHS results. In the first part of this section, H∞ type controller

to compensate actuator dynamics is introduced and tracking performance of the

controller is validated through a series of tests. In the second part, implementation

of RTHS at Purdue University is discussed in detail and several experiments are

conducted with the proposed setup. Finally, results from RTHS are compared to

shake table responses. An in-depth analysis of the comparisons is given and possible

sources of errors are discussed to justify the results.
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In Chapter 7, concepts on the Internet network and proposed dRTHS architecture

and network configurations are introduced. In addition, the basics of the method

and implementation through the network time delay estimation block is discussed.

Finally, a virtual distributed RTHS (vdRTHS) example test is conducted at different

communication rates where all substructures including MR damper and a prototype

structure is simulated at real-time at Purdue and UIUC, respectively and physical

Internet infrastructure is used for data exchange between test sites. To verify the

architecture and delay estimation block, vdRTHS results are compared to responses

from virtual RTHS (vRTHS), where all RTHS components are numerically simulated

in real-time.

Chapter 8 investigates adaptation of the proposed architecture to simulate the

controlled HIT test structure using dRTHS. The performance of the dRTHS platform

is evaluated by comparing results to RTHS and shake table test responses.

Finally, Chapter 9 summarizes the important research findings through this study

and draws general conclusions from the study presented here. Moreover, future work

on this research area is presented.
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CHAPTER 2

EXPERIMENTAL SETUP FOR SHAKE TABLE AND RTHS TESTS

In this chapter, an overview of experimental configurations built at Intelligent Infras-

tructure Systems Lab (IISL) at Purdue University and Structural Engineering Labo-

ratory at HIT towards realizing the objectives of this dissertation is given. Section 2.1

focuses on the three story test structure and structural modifications performed on the

structure. In Sections 2.2 and 2.3, configurations for system identification and shake

table tests are described including instrumentation setup. Introductory information

on the dampers used for shake table and RTHS/dRTHS tests is also provided in

this section. In Section 2.4, the loading frame designed at HIT for actuator tracking

evaluation, and in Section 2.5, RTHS setup developed at IISL are discussed in details.

Finally, a summary of the chapter is given in Section 2.6.

2.1 HIT Test Structure

The original prototype test structure (PS) is a three-dimensional, three story frame

located at Harbin Institute of Technology (HIT), China, shown in Figure 2.1a. The

structure has a base plan with dimensions 1.84 m by 2.04 m. Each story is 1.2 m tall

and the total height is 3.6 m (See Figure 2.1b). The columns, beams and girders are

made of structural steel with an elastic modulus estimated to be 220 GPa. Each joint,

where column and beam members are connected to each other, is welded and does not

allow free rotation. The structure is braced in one direction with v-type braces such

that the system is weak in the y-axis and strong along the x-axis (See Figure 2.1c). At

each story, a concrete slab weight approximately 250 kg is attached as seismic mass.

The total mass of the structure including the self-weight of the members is calculated
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to be 1066 kg. Section properties of the members used in the design of the PS is

summarized in Table 2.1.

(a) Experimental structure (b) Stick figure representation

(c) CAD drawings of floor plan details

Figure 2.1: Original experimental structure

For passive-off, passive-on and semi-active vibration control tests, an MR damper

is attached to the structure at first floor. To connect the MR damper to the first floor,

a slight modification is performed at the first floor by adding a horizontal v-brace in

the plan of the floor. Thus, the beam, where the MR damper is attached, will have
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Table 2.1: Section properties of the prototype structure

Beam and Girder Column Brace

A IX−X IY−Y J ρ A IX−X IY−Y J ρ A IX−X IY−Y J ρ

cm2 cm4 cm4 cm4 Kg/m cm2 cm4 cm4 cm4 Kg/m cm2 cm4 cm4 cm4 Kg/m

12.74 198.3 25.6 223.9 10.0 4.44 10.2 10.2 20.4 3.487 2.31 3.59 3.59 7.2 1.814

additional stiffness against deflection caused by damper force. A stick figure of the

modified structure is shown in Figure 2.2a. Top and side views of the MR damper

attachment joint are presented in Figures 2.2b and 2.2c. In addition, a detail where

v-brace is welded to the beam-column joint is given in Figure 2.2d. The cross-sectional

properties of the v-braces are same as the girders/beams, shown in Table 2.1. The

additional first floor mass contribution to the v-braces is about 45 kg which makes

the total mass of the structure about 1110 kg.

2.2 System Identification Test Equipment

Development of high fidelity mathematical models of the test structure is un-

dertaken by choosing appropriate testing equipment. This section describes test

instrumentation including DAQ system used for system identification.
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(a) Modified stick figure representation (b) Top view of MR damper attachment joint

(c) Side view of MR damper attachment joint (d) Corner detail

(e) CAD drawings of floor plan details

Figure 2.2: Additional details for modified test structure
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DAQ System

To acquire system identification data of the test structure, NI USB-6259, a multi-

functional data acquisition system box made by National Instruments is employed

(see Figure 2.3). The DAQ system has the capability to sample data upto 1.25 MHz

rate from 16 differential analog input channels at 16 bit analog-to-digital conversion

resolution. The data acquired online from DAQ system is transmitted over USB 2.0 to

a Dell Inspiron 1720 notebook to be processed by DeweSoft Dynamic Signal Analyzer

v6.6 developed by DeweSoft (see Figure 2.4) The raw data is later exported *.mat to

be processed in MATLAB (2011).

Figure 2.3: NI USB-6259

Instrumentation

Charge-type acceloremeters produced by Brüel & Kjær model #4368 with a flat

frequency response between 0.2 Hz and 4800 Hz are used to measure acceleration

response of the structure (see Figure 2.5). The one-hand operable modally tuned

impact hammer used in the tests is made by Jiangsu Lianneng Electronic Technology
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Figure 2.4: DeweSoft start-up screen

Limited Corporation with a model #LC-01A from Sinocera Piezotronics branch (see

Figure 2.6). The hammer is equipped with a charge type load cell with model #CL-

YD-303 and a rubber tip on the load cell. All together, hammer is rated to generate

maximum thrust of 2 kN. The acceleration sensors and impact hammer are powered

with signal conditioners capable of producing velocity and displacement by integration,

belonging to Sinocera Piezotronics branch with modepl #YE5858A, which is based

on Brüel & Kjær’s model #2635 charge amplifier (see Figure 2.7). The amplifier has

selectable dial gains, high-pass filter ranging from 0.3 Hz to 10 Hz for acceleration

measurements and a low pass filter from 300 Hz to 100 000 Hz (wide-band). All filters

attenuate maximum 3 dB at the cutoff frequency during normal operation conditions.

The decay rate for low and high pass filters are 12 dB and 6 dB per octave, respectively.

2.3 Shake Table Test Configuration

This section introduces the test structure used in the validation of dRTHS, along

with the shake table and other test equipment including DAQs and instrumentation.

Shake table test results are provided in Chapter 5.
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Figure 2.5: Brüel & Kjær model #4368 with its base magnet

Figure 2.6: Jiangsu Lianneng made impact hammer

2.3.1 Shake Table

The testing facility located in HIT is a unidirectional shake table and is 3 meters

wide and 4 meters long in shaking direction. A photograph of the shake table is

given in Figure 2.8. The actuator attached to the shake table is manufactured by

Schenck, shown in Figure 2.9. The two column servo-hydraulic actuator with model
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Figure 2.7: Sinocera signal conditioners

#PM250R is rated up to 250 kN static loading or 200 kN dynamic loading and can

drive the bare shake table (no payload) with a peak acceleration of ±1.33 g, peak

velocity of ±600 mm/sec at a stroke restricted to ±125 mm. The maximum payload

and maximum overturning moment of the shake table is limited to 12 tonne and

30 tonne ·m, respectively. The hydraulic oil to the actuator is supplied by the hydraulic

power unit produced by Schenck. The frequency of the excitation input is bounded

between 0 Hz and 30 Hz. An #493.10 MTS FlexTest GT #100 Controller, shown in

Figure 2.10 is used to provide the control input to the shake table. The controller is

capable of controlling of 8 servo-valves at the same time while sampling at a maximum

rate of 6000 Hz using 16 bit resolution.

MTS #793.00 TestSuite Multipurpose software is used to drive the controller. A

screenshot of the software is given in Figure 2.11.
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Figure 2.8: Shake table located at HIT

Figure 2.9: 250 kN capacity Schenck actuator



20

Figure 2.10: MTS FlexTest GT controller

Figure 2.11: TestSuite Multipurpose Software layout

2.3.2 Test Equipment

Equipment to measure shake table responses of the structure is categorized in two

following subsections.
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DAQ System

For data acquisition, Dong-Hua Universal Dynamic Signal Test System #DH5922

made by Jiangsu Donghua Testing Technology, that is capable of sampling 16 channels

simultaneously up to 200 kHz at 24 bit conversion is used (see Figure 2.12). The system

is controlled with DHDAS dynamic signal test and analysis software v4.3.55 over IEEE

1394 interface also known as Firewire, and driven by Dell Inspiron 1720.

Figure 2.12: Dong-Hua Universal Dynamic Signal Test System

To acquire structural responses and to control equipments such as MR damper or

current driver, DS1104 along with the terminal board CP1104 from dSPACE GmbH

is selected as real-time control development platform (see Figure 2.13). DS1104 is

essentially a PCI board and can sample data at up to 250 MHz using 4 ADC input

multiplex setting with 16 bit resolution and 4 ADC input sampling in parallel setting

with 12 bit resolution. The system can also produce analog output using 8 DAC

units with 16 bit resolution. ControlDesk Developer Version Release 6.3 software

running on Dell Dimension 5150 desktop computer, which is also hosting DS1104,

is used as the user interface to program and control real-time simulation that is

compiled and downloaded via Simulink/Real-Time Workshop (see Figure 2.14). Brüel

& Kjær accelerometers are paired with charge amplifier, Ke Dong KD #5018 made

by Yangzhou Dynamic Electronics. KD #5018 has a configurable gain varying from
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1 and 1000, high-pass filter ranging from 0.1 Hz to 10 Hz and a low pass filter from

300 Hz to 100 000 Hz (wide-band).

Figure 2.13: dSpace DS1104 system terminal board

Figure 2.14: dSpace ControlDesk Software layout
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Figure 2.15: Ke Dong KD 5018 signal conditioner

Instrumentation

Charge-type acceloremeters from Brüel & Kjær explained in Section 2.2 are used

to measure structural acceleration responses and ground acceleration of the shake

table. For displacement measurements, LVDT and Laser sensors are used. The laser

sensors made by Keyence with model LK-400 and LK-405 have ±100 mm measurement

range with extremely low linearity, ±0.05% over full scale (see Figure 2.16a). The

laser sensors are powered up by a LK-G3001V Controller (see Figure 2.16b) that

allows sampling rates reaching up to 50 000 Hz. In addition, Beijing Haiquan Sensor

Technology made DC-type LVDTs with model #DA-50 (reengaging spring type) and

#DA-150 (non-spring type) having respective strokes of ±50 mm and ±150 mm are

used (see Figure 2.17).

MR Damper

For passive-on/off and semi-active control tests, MR damper with model #RD-

1005-3 made by LORD is used. The damper is capable of producing forces up to

2500 N when powered with an input current of 1 A. To power the damper, a voltage

controllable current driver that can provide current up to 0 A to 3 A is used (see

Figure 2.18). The current driver is controlled via dSpace DS1104. To measure force

generated by MR damper, force transducer #661.19F-03 produced by MTS with a
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(a) LK-400 (b) LK-G3001

Figure 2.16: Keyence laser displacement sensor and controller

Figure 2.17: BHST #DA-50 LVDT

load capacity of ±15 kN is used (see Figure 2.19). The force transducer is powered by

MTS Flex GT Controller. To attach the MR damper to the first floor of the structure,

a fixture rigid enough not to deflect more than ±0.1 mm under maximum MR damper

load is designed (see Figure 2.20). For additional stiffness, tension-compression bars

are welded to the rigid fixture.
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Figure 2.18: MR damper amplifier

Figure 2.19: MTS load cell

2.3.3 Ground Excitation

Generally, any actuator has physical limitations in terms of realizing the desired

input. The limitations can often manifest as time delay or amplitude loss. For this

reason, a delay and amplitude compensation scheme needs to be implemented if the

reproduction of the excitation input is a must. The actuator of the shake table at
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(a) Top View (b) Full Setup including MR

Damper and Load Cell

Figure 2.20: MR damper fixture

HIT is controlled on the software-hardware level with internal PID control. Since

displacement is used as the feedback to the PID loop, acceleration records are double

integrated with trapezoidal integration rule in MATLAB. Excitation input is selected

as (i) historical El Centro earthquake recorded at El Centro Terminal Substation

Buildings concrete floor during Imperial Valley, CA earthquake on May 18, 1940, (ii)

Kobe earthquake recorded at station Takarazuka, Japan on January 16, 1995 and

(iii) Morgan Hill, CA earthquake recorded at station Gilroy Array #6 on April 24,

1984. Since the existence of the MR damper fixture is limiting maximum allowable

stroke of the shake table to nearly ±75 mm, El Centro and Kobe earthquakes are

scaled to 50 % and 35 % of their recorded peak ground displacement, respectively. No

time scaling is applied to any of the ground excitations. Tracking performance of the

shake table with payload while simulating earthquakes is given in Figure 2.21 for El

Centro, in Figure 2.22 for Kobe and in Figure 2.23 for Morgan Hill earthquakes. The

relative error calculated as RMSError/RMSReference, where RMSReference is historical

data, is found [86.8, 1.16] % for El Centro Earthquake acceleration and displacement,

[80.5, 7.90] % for Kobe Earthquake acceleration and displacement and [81.0, 5.23] %
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for Morgan Hill Earthquake acceleration and displacement, respectively. Although

reported errors on accelerations are relatively high, the shake table showed good

performance in tracking of the intended displacement.
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Figure 2.21: El Centro ground motion comparison

2.4 Loading Frame at HIT

This section introduces the test equipment including DAQs required to conduct

tracking performance tests of actuator compensation algorithms at HIT. Results are

provided in Section 6.1.3.
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Figure 2.22: Kobe ground motion comparison

2.4.1 Test Equipment

Tracking tests conducted at HIT are performed with MR damper #RD-1005-3

attached to an uniaxial servohydraulic load frame with a model #311.41 from MTS

and a capacity of ±2500 kN (see Figure 2.24). The hydraulic system has a saturation

velocity limit of ±90 mm/sec when six pump units are running on Model #505.180

MTS SilentFlo Hydraulic Power Unit providing up to 160 gal/min hydraulic oil flow

with a pressure of 3000 psi. The force transducer and MR damper is attached to

the actuator with hydraulically controlled wedge grips #641.39 that requires #685

hydraulic grip supply unit, both made by MTS. For inner-loop and outer-loop control,

Flex GT Controller and DS1104 are used, respectively.
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Figure 2.23: Morgan Hill ground motion comparison

2.5 Real-time Hybrid Simulation Setup at Purdue

This section introduces the test equipment including DAQs required to conduct

RTHS at IISL. The results of RTHS conducted on this frame are provided in Chapter 6.

2.5.1 Test Equipment

RTHS tests conducted at IISL are performed with MR damper #RD-8041-1 made

by LORD. Current in the MR damper is controlled by LORD Wonder Box Device

Controller Kit with model #RD-3002-03 via external command. The force of MR

damper is measured by Omega made model #LC101-2K S-type force transducer

with a capacity of ±9000 N (±2000 lb). An Omega made model #DMD-465WB wide
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Figure 2.24: MTS loading frame with MR damper and load cell attached at HIT

bandwidth signal conditioner module with a frequency response up to 2 kHz is used to

power up the force transducer. Both damper and load cell are attached to a loading

frame also containing Shore Western made actuator model #910D rated with ±5000 N

force capacity (Figure 2.25). A MOOG made #G761-3004B controllable servo-valve

that provides a flow rate of 10 gal/min at 1000 psi valve pressure drop is used to

operate actuator. The oil supply is provided by a model #505.120 MTS SilentFlo
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Hydraulic Power Unit providing up to 120 gal/min hydraulic oil flow with a pressure

of 3000 psi, when four motor pumps are running.

Figure 2.25: Shore Western Actuator, MR damper and load cell attached to loading

frame at Purdue

For the inner-loop control of the actuator, a Shore Western SC6000 analog servo-

hydraulic control system is used (see Figure 2.26). The actuator is operated through

Shore Western MDOF Control System software running on a PC, embedded in SC6000.

For the outer-loop control, a performance real-time target machine made by Speed-

goat is used (see Figure 2.27). RT system has a software-level RT-kernel that is con-

figurable using MATLAB/Simulink/xPC. High-resolution, high accuracy A/D board

model #IO112 supporting up to 32 differential simultaneous A/D channels with 18-

bit resolution and D/A board model #IO113 supporting up to 8 differential D/A

channels with 18-bit resolution are integrated into this digital control system. In

addition, it contains an Intel 8255X series #IO702 Ethernet controller providing two

Fast Ethernet ports for real-time communication.

2.6 Summary

In this chapter, the experimental setup for system identification and shake ta-

ble tests including sensors, DAQ and actuator systems are described. Furthermore,
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Figure 2.26: Shore Western SC6000 controller

Figure 2.27: Speedgoat Performance Real-time Target Machine

earthquake excitations to be used for the validation of RTHS and also shake table

performance for the given ground motions are briefly discussed. In addition, loading

frame located at HIT and RTHS setup located at IISL are explained in detail.
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CHAPTER 3

MODELING, SYSTEM IDENTIFICATION AND MODEL UPDATING OF

THE TEST STRUCTURE

A proper mathematical description of the test structure is crucial for the comparisons

to be performed using RTHS/dRTHS. Development of the system model must take

the dynamic characteristics of the structure into account. Nevertheless, success of

control design strategies benefits from an appropriate model.

In essence, system identification is the process of establishing a model that re-

produces the input/output behavior of the target structure. By selecting a system

identification procedure suitable for the experimental objectives, one can develop reli-

able predictions and explain system behavior (Catbas et al., 2013). As explained by

Aktan and Moon (2005), to fully achieve potential outcomes of system identification,

six steps should be followed. Those are: (i) conceptualization of the structure based

on the needs; (ii) a-priori modeling; (iii) experimentation and collection of data; (iv)

feature extraction; (v) model calibration and (vi) model evaluation.

In this chapter, an overview of system modeling, identification and model updating

to develop an appropriate mathematical description of the test structure is given. Sec-

tion 3.1 presents a baseline model of the test structure along with the mathematical

formulations in state-space representations for the numerical and dRTHS evaluations.

Next, Section 3.2 introduces a commonly used system identification methodology,

Eigensystem Realization Algorithm (ERA) along with its theory and modification of

the method for real world application. In Section 3.3, a new model updating pro-

cess aggregating identified system characteristic with physical mass-damping-stiffness

properties is presented with verification tests. In Section 3.4, the limitations of the

proposed method are discussed. Evaluation criteria used for performance assessment

of the developed model is given in Section 3.5. Section 3.6 presents the initial model
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based on the baseline modeling assumptions, identified results of the system, transfer

function comparisons between different models and lastly comparison of simulated

results of the model to experimental shake table tests of the uncontrolled structure.

Finally, a summary of the chapter is given in Section 3.7

3.1 Baseline Model

For the development of the model, the structure is assumed to be a linear system

and remains linear throughout the entire test plan. Thus, based on the description

presented in Section 2.1, a simple mass-damper-spring system equivalent to a shear

model of the structure is developed as follows:

Mẍ+ Cẋ+Kx = −Mẍg + F (3.1)

where M , C and K are the mass, damping and stiffness matrices respectively. The

right-hand-side of the equation represents earthquake excitation, ẍg and force input,

F to the structure.

The system is established to have three degrees of freedom (DOF), where each

node represents a floor of the test structure. Seismic concrete masses and structural

weight are lumped at floor level for each degree of freedom, as shown in Figure 3.1.

m1 and m3 represent first floor and top floor, respectively. This system model has

the following structural properties:
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c1 c2 c3

m1 m2 m3

k2k1 k3
xg x1 x2 x3

F

Figure 3.1: Lumped mass model idealization of the test structure

[M ] =


m1 0 0

0 m2 0

0 0 m3

 (3.2a)

[C] =


c1 + c2 −c2 0

−c2 c2 + c3 −c3
0 −c3 c3

 (3.2b)

[K] =


k1 + k2 −k2 0

−k2 k2 + k3 −k3
0 −k3 k3

 (3.2c)

[F ] =


f

0

0

 (3.2d)

The model described herein is designed to reproduce only horizontal responses in

the weak axis when a disturbance is applied as means of ground motion or external

force in the weak axis. Torsional and out-of-plane responses are omitted in the

modeling assumptions.
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Given M and K, as an alternative to the proportional damping matrix, a non-

proportional type can be formed based on a specific set of damping ratios:

[C] = [M ]Φ(2ξ[2πf ])ΦT (3.3)

where Φ is mode shape of the system, f and ξ represent diagonal matrix of natural

frequencies in Hertz and damping ratios, respectively.

State-space Formulation

For continuous linear time invariant (LTI) systems, the standard state-space repre-

sentation derived either from physical properties or experimental data of the baseline

model is introduced below:

ẋ = Ax+Bf + Eẍg (3.4)

y = Cx+Df + Fẍg (3.5)

where, x is the internal state vector, y is system response vector, f is the input force

and ẍg is the ground acceleration. The state matrix, A and input-to-state matrix, B

and E of the system in Equation (3.4) can be written as:

[A] =

 0 I

−M−1K −M−1C

 , [B] =

 0

M−1P

 , [E] =

 0

−I

 (3.6)

where P and G are influence matrices of applied external force and ground motion

excitation. [C], [D] and [F ] matrices depend on the chosen output vectors. For a

system that produces displacement and velocity responses relative to the ground and

absolute acceleration responses, the state-to-output and feedthrough matrices are

given as:

[C] =


1 0

0 1

−M−1K −M−1C

 , [D] =


0

0

M−1P

 , [F ] =


0

0

0

 (3.7)
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Given the above state-space representations, P is formulated as:

[P ] =


1

0

0

 (3.8)

3.2 System Identification

To construct the state-space matrices given in Equations (3.4) and (3.5), M , C

and K matrices can either be approximated from the lumped 3-DOF model presented

in Section 3.1 or can be estimated from experimental data. Considering the fact

that deficiencies and discrepancies between the estimations and experimental data are

often evident, implementing a system identification method tool that reveals dynamic

properties of the structure is needed.

For this study, a commonly used time-domain approach, ERA is selected. Juang

and Pappa (1985) proposed ERA to extract modal parameter and create a minimal

realization model that replicates the output response of a linear dynamical system

when it is subjected to a unit impulse. The success of this algorithm has been

verified in multiple studies (Caicedo et al., 2004; Giraldo et al., 2004; Caicedo, 2011).

The workflow for ERA can be summarized in five steps. Those are (i) Hankel matrix

assembly, (ii) singular value decomposition, (iii) state-space realization, (iv) eigenvalue

extraction and (v) model assurance.

3.2.1 Procedure

A discrete-time representation of Equation (3.4) with n-dimensional state vector,

x; m-dimensional control input, u and p-dimensional output vector, y can be written

as:

x(k + 1) = Ax(k) +Bu(k) (3.9a)

y(k) = Cx(k) (3.9b)
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where A is n×n matrix, B is n×m matrix and C is p×n matrix. The matrix impulse

response, known as Markov parameter sequence, can be derived from Equations (3.9a)

and (3.9b):

Y (k) = CAk−1B (3.10)

where Y (k) is p×m matrix. Yij(k) is ith output to jth input at time step k.

(i) Hankel matrix assembly

As the first step of the ERA algorithm, Hankel matrix for a time step k is formed:

H(k − 1) =


Y (k) Y (k + 1) · · · Y (k + s)

Y (k + 1) Y (k + 2) · · · Y (k + s+ 1)
...

...
. . .

...

Y (k + r) Y (k + r + 1) · · · Y (k + r + s)

 (3.11)

For a typical application, as a rule of thumb, r, row of H(k− 1) matrix should be

at least 10 times the modes to be identified and s, column of H(k − 1) should be 2-3

times of r.

(ii) Singular value decomposition

A singular value decomposition is performed using H(0):

H(0) = PDQT (3.12)

where P is rp× n, Q is ms× n and D is n× n diagonal matrix.
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(iii) State-space realization

By integrating P , D, Q and H(k), a minimum realization of the identified system

in Equations (3.9a) and (3.9b) can be derived in state-space form:

A = D−1/2P TH(1)QD−1/2 (3.13a)

B = D1/2QTEm (3.13b)

C = ET
p PD

1/2 (3.13c)

where ET
p = [Ip 0] and ET

m = [Im 0].

(iv) Eigenvalue extraction

Natural frequencies, damping ratios and mode shapes can be obtained by applying

eigen-decomposition on the state matrix, A, as given in Equation (3.13a). A typical

way to obtain the identified parameters is prescribed below:

[v, λ] = eig(A) (3.14a)

s = ln(λ)fs (3.14b)

fdE =
=(s)

2π
(3.14c)

ζE =
<(s)

|s| (3.14d)

ΦE = ET
PPD

1/2v (3.14e)

where v and λ are eigenvectors and eigenvalues of the system in z-plane since state A

is in discrete-time form, fs is the sampling rate of the system in Hz, s is the Laplace

root of the system converted from the z-plane, fdE, ζE and ΦE are experimental

damped frequency in Hz, damping ratio and complex mode shape, respectively. The

experimental natural frequency of the system can be obtained as following:

fnE =
fdE√
1− ζE

(3.15)

where fdE and fnE are experimentally obtained damped and natural frequencies,

respectively.
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Most of these operations are automated through damp function in MATLAB

(2011).

Although for typical ERA applications mode shapes will be complex-valued, as it

will be shown later in Section 3.3, model updating process requires a real mode shape.

It is expected that a transformation from real to complex mode shape should maintain

the original information of the identified complex mode shape to conserve dynamic

characteristic of the test structure as much as possible (Panichacarn, 2006). Thus, a

rotation transformation is applied to reduce the error between real and complex mode

shapes:

φiEr = φiE/φ1iE (3.16a)

φiEreal = sgn (<(φiEr))� ‖φiEr‖ (3.16b)

where φiE is the ith column of ΦE, φ1iE is the first element of φiE, φiEr is rotated

φiE, ‖φiEr‖ is absolute value of φiEr, sgn(x) is the signum operator for x, � is the

element-by-element vector multiplication operator, and finally φiEreal is real mode

shape of the ith column of ΦE. Right hand side of Equation (3.16a) is basically

a rotation transformation where φiE is normalized with respect to its first element.

The procedure minimizes the imaginary part of the complex mode shape such that

Equation (3.16b) is able to produce real values with a minimal error.

To understand the effect of Equation (3.16a) better, an example is presented. For

a 3-DOF model as described in Equations (3.2a) to (3.2c), where system parameters

are [m1,m2,m3] = [1, 1, 1] kg, [c1, c2, c3] = [10, 10, 10] N sec/m and [k1, k2, k3] =

[1000, 1000, 1000] N/m, initial and rotated values of the first mode shape are shown

in Figure 3.2. The reduction in the imaginary part should be noted.

(v) Model Assurance

Quality of the identified modal parameters is estimated through model assurance

indicators. A model assurance criteria introduced by Juang and Pappa (1985), known

as the Model Amplitude Coherence (MAC) indicator does not always deliver the most
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Figure 3.2: Effect of rotation transformation on the complex mode shapes

reliable values. The flaws of MAC are resolved with Extended Modal Amplitude

(EMAC). EMAC is explained in detail by (Pappa, 1994).

3.2.2 Application

Theory behind the ERA for system identification has been explained in the pre-

vious section. In this section, (i) collection, (ii) preparation, (iii) pre-processing, and

regeneration of the data is explained.

(i) Collection

ERA is effective for identifying structural characteristics, and is intended to be

applied to impulse response functions. An impulse response function can be retrieved

either from any type of transfer function by applying inverse Fourier transformation

or directly from structural responses to an impulse. For this study, impact hammer

testing is selected as the most appropriate testing methodology.

In concept, a hammer impact, which is equipped with a load cell at its tip, can

produce a broadband signal at contact time and excite each mode of the structure

with equal energy. For proper testing, the structure should be instrumented at several
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points based on the available sensors, data channels on data acquisition system and

testing plan (Trethewey and Cafeo, 1992). In typical applications, system responses

are captured with accelerometers placed at critical points.

Theoretically, a single hit would suffice for ERA to capture system dynamics.

However, with colored or colorless noise present, and small-scale local and global

nonlinearities in the structure, some performance degradation during parametric

estimations such as erroneous minimum realization or fictitious natural frequencies is

expected. Performing a large number of impacts will manage the issues stated above

to some extent, as it will provide more averaging for frequency domain pre-process

and thus will result in higher quality data.

Lastly, between each hammer hit, system should be left in free-vibration until

impact energy dies in the system substantially through structural damping.

(ii) Preparation

Data gathering of an impact test should take the least effort and time, especially

if the system will be excited at multiple locations. Since setting DAQ system for

each hit is time consuming, all of the impact data and system response generated for

a single contact point should be collected at one single run. After data collection,

each hit and associated outputs can be manually parsed. To automize parsing with a

minimal user-software interaction, a MATLAB script has been developed. Features

such as automatic parsing and windowing has been added to align with project goals.

Essentially, script described herein manipulates and parses the impact and re-

sponse data in *.mat file format based on user selections. These selections include:

(i) minimum peak threshold for the impact force to be identified, (ii) order number

of successful impacts, (iii) impact length, (iv) exponential decay window parameters

for system response; and (v) pre- and post-impact boxcar window parameters for

the impact force data. The procedure is summarized in the flow diagram given in

Figure 3.3.
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Preparation

Pre-processing

Load the experimental data

Parse the data
Impact force 
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Window length

Exponential decay 
windowing of 
response data

Tapered boxcar 
windowing of 
impact data

Transfer function 
generation

Inverse Fourier 
Transformation

ERA

Cut-off

Figure 3.3: Impact data parser script workflow
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As the first step, the script identifies the peaks in the impact data according to

the threshold. After user manually rejects unsuccessful hits, the remaining response

data is parsed based on the window length parameter.

The second step is windowing. During impact testing, the tester should wait for

some amount of time between each hammer hit until system damps out completely.

For lightly damped systems, waiting time can take more than a minute. In cases

where structure needs to be excited, for instance, thirty times, test may take over

thirty minutes. Thus, tester may choose to shorten the impact period and hit the

system before it dies out. However, when a discontinued measurement is converted to

frequency domain through discrete Fourier transformation (DFT), the boxcar window

applied by default is going to create spectral leakage. Although spectral leakage cannot

be completely prevented, the effect of it in the measurement can be minimized by the

use of exponential decay window or so-called damping window for freely vibrating

systems. An exponential decay window can be represented as given by Trethewey and

Cafeo (1992):

wexp(t) =

e
−t
τw 0 ≤ t ≤ T

0 T < t

(3.17)

where τw is time constant and T is length of window. τw is chosen based on desired

decay ratio:

τw = − T

ln(rdecay)
(3.18)

where rdecay is decay ratio in percentage. A windowed response, yiw should be formu-

lated as:

yiw = wexpyi (3.19)

To reject the noise in the impact force, a boxcar window is applied. A boxcar

function can be described as:

wbox(t) =

1 Tprehit < t < Tposthit

0 otherwise

(3.20)
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where Tprehit is the point of time before the impact, Tposthit is the point of time after

the impact that contains ringing of the sensor. Often, to minimize the spectral leakage,

tapered half-sin is concatenated with box car function. A half-sin function is given

below:

wsin−pre(t) = sin(ksin ∗ t) (3.21a)

wcos−post(t) = cos(kcos ∗ t) (3.21b)

where k is a shape modifier. Finally, the tapered boxcar window becomes:

wtaper(t) =



0 t ≤ Tstart

sin(ksin ∗ t− Tstart) Tstart < t ≤ Tprehit

1 Tprehit < t < Tposthit

cos(kcos ∗ t− Tposthit) t ≤ Tposthit + Tend

0 t > Tposthit + Tend

(3.22)

where Tstart and Tend are the start and end of the taper window, respectively. ksin

and kcos should be selected in such a way that sin(ksin ∗ t) and cos(kcos ∗ t− Tposthit)
should yield 1 at Tprehit and at Tcos, respectively. Tapered boxcar window based on

Equation (3.22) is shown in Figure 3.4.

In conclusion, a windowed response, yiw should be formulated as:

yiw = wtaperyi (3.23)

After the windowing is performed, parsed data is ready to be pre-processed in

frequency domain.

Although exponential and force window functions can reduce the leakage phe-

nomenon, it introduces bias error on the estimated frequency response functions,

hence, natural frequencies and damping ratios to be identified. Therefore, it is always

a good practice to compare model estimations with experimental data after system

identification and model updating. The effect of windowing has been discussed in

depth by Halvorsen and Brown (1977) and McConnell and Varoto (1995).
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Figure 3.4: Tapered boxcar window

(iii) Pre-processing

As stated before, frequency domain pre-processing of data can minimize effect

of nonlinearities and noise when multiple transfer functions are averaged. Here,

production and averaging of transfer functions, and reconstruction of the impulse

response function (IRF) by Inverse Fourier Transformation are explained before the

resulting IRF is used for ERA. Procedures involving pre-processing is summarized in

Figure 3.4.

A system can be idealized as in Figure 3.5, where h(t) is IRF, x(t) and y(t) are

system inputs and outputs, respectively (Craig and Kurdila, 2006; Chopra, 1995).

The impulse function can be defined as:

h(t) =
y(t)

x(t)
(3.24)
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h(t)
x(t) y(t)

Figure 3.5: An idealization of a linear system in time domain

A linear relationship of the system output to its input can be described in the com-

plex Laplace domain. Frequency response function, also known as, transfer function,

H(s) is defined as such:

H(s) =
Y (s)

X(s)
(3.25)

where Y (s) and X(s) are the input and output in Laplace domain. Equation (3.25)

can be rewritten in frequency domain:

H(f) =
Y (f)

X(f)
(3.26)

or

H(f) =
Sy(f)

Sx(f)
(3.27)

where Sx and Sy are Fourier spectrum of x(t) and y(t). Sy and Sx can be easily

obtained by applying Fast Fourier Transformation to input and outputs of the system.

Although Equation (3.27) is sufficient to generate a unit impulse frequency response

function, for impact hammer test, system response to hammer input is more prone

to noise compared to the input. To reduce the effect of noise, the frequency response

function is redefined by multiplying right hand side nominator and denominator of

H(f) with complex conjugate of Sy:

H(f) =
Sy(f)

Sx(f)

=
Sy(f) · STy (f)

Sx(f) · STy (f)

=
Gyy(f)

Gxy(f)

(3.28)

where STy is complex conjugate of Sy, Gyy is the cross-spectral density of x(y) and y(x)

and Gxy are auto-spectral density of x(y). For each impact, a new transfer function
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can be constructed using the method explained above. Yet, transfer functions are

affected by the noise and nonlinearities. Assuming the test structure is linear and

noise is Gaussian, as many as observations necessary in transfer function form need

to be arithmetically averaged as shown:

Havg(f) =
1

n

n∑
i=1

(
Hi(f)

)
=

1

n

(
H1(f) +H2(f) + . . .+Hn(f)

) (3.29)

where Hi is the transfer function from ith impact test and Havg is the averaged transfer

function. At this point, optionally, to increase performance of ERA in obtaining

minimum realization, higher frequencies of the transfer function can be rejected by

simply narrowing down the bandwidth. Consequently, the resulting transfer function

will have less information, however with no more high frequency content noise and

uninterested modes. Finally, a noiseless IRF based on Havg can be regenerated by

Inverse Fast Fourier Transformation (IFFT).

3.3 Model Updating

As explained before, using ERA, a state-space model of the structure can be

generated based on measured quantities. This state-space representation also contains

dynamic characteristic of the identified structure, i.e. natural frequencies, damping

ratios and mode shapes. On the other hand, the ERA-obtained states do not contain

any physical information of the structure that is not measured. Consequently, a

feedback control algorithm relying on unmeasured structural responses cannot be

developed since those remain unobservable. To overcome this disadvantage of the

ERA, Giraldo et al. (2004) proposed a model updating method where experimental

results are combined with an analytical model. According to this approach, the
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stiffness and damping matrices are modified using identified natural frequencies and

damping ratios as given below:

[KE] = MAΦA[2πfE]ΦT
A (3.30a)

[CE] = MAΦA(2ξE[2πfE])ΦT
A (3.30b)

where MA, KE and CE are analytical mass matrix, experimentally-modified stiffness

and damping matrices, respectively. fE and ξE represents diagonal matrix of ERA

identified natural frequencies in Hertz and damping ratios, respectively. Analytical

modal matrix, ΦA is taken as MA-mass normalized eigenvectors of M−1
A KA where KA

is the analytical stiffness matrix. Although this method produces accurate model for

control design purposes, resulting model may not always accurately capture the zeros

of the experimental transfer functions. A clear reason for the poor zero tracking is

because the model updating method uses eigenvectors of the analytical model. If the

real eigenvectors of the structure deviate from eigenvectors ΦA of the analytical model,

the modeling error may lead to low quality models, thus, semi-active controllers with

lowered performance or even unstable active controllers. To overcome this problem, a

new model-updating methodology promising better zeros-tracking is necessary. The

proposed method herein uses mode shapes identified by ERA process. A straightfor-

ward application of modal updating based on the use of identified mode shapes can

be written as below:

[KE] = MAΦE[2πfE]2ΦT
E (3.31a)

[CE] = MAΦE(2ξE[2πfE])ΦT
E (3.31b)

where ΦE is ERA identified eigenvector matrix of the structure.

However, in most cases, since eigenvector ΦE will not be MA-orthogonal (i.e.

ΦT
Ei
MAΦEi = 1 where ΦEi is the ith column of ΦE), the resulting matrices will not

be symmetric. Although KE and CE trace zeros very successfully, their asymmetry

does not reconcile with the Maxwell’s Reciprocal Theorem. In order to symmetrize

KE and CE, MA needs to be modified in such a way that, ΦE will be ME-orthogonal,
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where ME is the updated mass matrix of the system. At the same time, for the sake

of the problem, ME needs to be as similar as possible to MA, so that ME will still

comply with initial modeling assumptions. Then, the objective function is minimizing

the quadratic error between MA and ME as given below:

min[vec(ME −MA)TWvec(ME −MA)] (3.32)

subject to

ME = ZT
EDEZE (3.33)

ZE = Φ−1E (3.34)

where vec is the vectorization operation, ZE is the inverse of ΦE as given in Equa-

tion (3.34), W is the weighting matrix and DE is a diagonal matrix to be found as a

solution to the minimization problem given in Equation (3.32). Weighting vector W

can be adjusted to give more weight to the elements that need to be minimized.

Note that, Equations (3.33) and (3.34) also lead us to the flowing formula:

ΦT
EMEΦE = DE (3.35)

After finding DE, the mass matrix, ME can be produced from Equation (3.33).

Finally, by rewriting Equations (3.31a) and (3.31b), updated stiffness and damping

matrices, KE and CE can be obtained as follows:

[KE] = MEΦE[2πfE]2ΦT
E (3.36a)

[CE] = MEΦE(2ξE[2πfE])ΦT
E (3.36b)

It should be noted that Equation (3.36) allows fine-tuning of mode shapes, as well as

natural frequencies and damping ratios, in case those parameters are not accurately

identified using ERA.

The model updating methodology explained above is implemented and automated

in MATLAB. To solve the minimization problem, fminunc, unconstrained nonlinear

optimization function already implemented in MATLAB is used.
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3.4 Limitations of the Proposed Method

Although this method supersedes the previous model updating method in various

ways, it has some incompetencies either inherited from its predecessor or due to

implications regarding implementation.

It has been observed that the model updating methodology may introduce small

off-diagonal terms in the lumped mass matrix up to 1% of the diagonal terms. Since

the updated mass matrix is not diagonal anymore, the inverse of mass matrix is not

going to be diagonal. Eventually, off-diagonal terms of M−1 will leak in B, D and

E vectors. Although the leakage does not impose any problem, it should be noted

that for a system presented in Equations (3.4) to (3.8), force applied at first floor will

affect all internal states related to its relative accelerations, even if initial conditions

are zero. A similar behavior is observed also for the systems modeled with consistent

mass matrix.

The proposed method can yield symmetric matrices that comply with direct

stiffness method, albeit, the results will not be in band matrix form with a band-

width of three like shown in Equations (3.2b) and (3.2c). Thus, stiffness and damping

of individual floors cannot be extracted. One potential impact of this issue is not

being able to calculate exact shear force at floor level.

3.5 Evaluation Criteria

A set of criteria is developed to understand:

• the effectiveness of numerical model in simulating reference structure responses

on the shake table

• the performance of RTHS/dRTHS conducted at Purdue to simulate reference

structure responses

Focusing on global structural performance, evaluation criteria are concentrated

on peak, root mean square (RMS) responses and moving RMS responses. Relative
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displacement and absolute acceleration responses are selected as the basis of compari-

son for two cases mentioned above. The performance indices are prepared such that

smaller values indicate better performance. A summary of these criteria is presented

in Table 3.1. Here, xi and ẍi represent displacement relative to the ground and abso-

lute acceleration at ith floor. Definition for RMS of an arbitrary discrete signal, x is

given as:

RMS(x) =

√√√√ 1

n

n∑
i=1

(xi − x̄)2 (3.37)

Likewise, RMS error between two arbitrary signals, x and y, is calculated as:

RMS(x− y) =

√√√√ 1

n

n∑
i=1

(xi − yi)2 (3.38)

To calculate moving RMS error, a window of length τ is slid until the end of the

signal. Therefore, this index is a function of time. Since RMS with sliding window is

computationally demanding when implemented in loop form, convolution is used to

compute the moving average of the squared signal.

3.6 Results

To perform model verification, the structure is identified experimentally at HIT

and the results of the model updating technique are compared to the shake table

response.

3.6.1 Initial Model

An initial model of the test structure based on the information provided in Sec-

tions 2.1 and 3.1 is established as the baseline model.

The following assumptions are made for the baseline model:

• Each column is assumed to have fixed-fixed connection with identical stiffness

of 12EI/L3.
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Table 3.1: List of evaluation criteria

Index # Equation Description

J1
RMS(xi, actual(t)− xi, reference(t))

RMS(xi, reference(t))

Normalized RMS Floor Displacement Error

Ratio of RMS error between actual and reference value

to the RMS reference value

J2

∣∣∣∣∣xmaxi, actual − xmaxi, reference

xmaxi, reference

∣∣∣∣∣ Peak Floor Displacement Error

Ratio of error between peak actual and peak reference

value to the peak reference value

J3
RMS(ẍi, actual(t)− ẍi, reference(t))

RMS(ẍi, reference(t))

Normalized RMS Floor Acceleration Error

Ratio of RMS error between actual and reference value

to the RMS reference value

J4

∣∣∣∣∣ ẍmaxi, actual − ẍmaxi, reference

ẍmaxi, reference

∣∣∣∣∣ Peak Floor Acceleration Error

Ratio of error between peak actual and peak reference

value to the peak reference value

J5
RMS(xi, actual(t)− xi, reference(t))

xmaxi, reference − xmini, reference

RMS Floor Displacement Error divided by the range

Ratio of RMS error between actual and reference value

to the difference of the maximum and minimum value

J6
RMS(ẍi, actual(t)− ẍi, reference(t))

ẍmaxi, reference − ẍmini, reference

RMS Floor Acceleration Error divided by the range

Ratio of RMS error between actual and reference value

to the difference of the maximum and minimum value

J7

[
RMS(xi, actual(t)− xi, reference(t))

RMS(xi, reference(t))

]
τ

Moving RMS Floor Displacement Error

Ratio of RMS error between actual and reference value

to the RMS reference value in a time window

J8

[
RMS(ẍi, actual(t)− ẍi, reference(t))

RMS(ẍi, reference(t))

]
τ

Moving RMS Floor Acceleration Error

Ratio of RMS error between actual and reference value

to the RMS reference value in a time window
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• E, Young’s modulus of structural steel is equal to 220 GPa.

• I, moment of inertia of a single column in weak-axis is equal to 10.2 cm4.

• L, length of the column is equal to 1.2 m.

• Damping ratio, ξ for all of the structural modes is assumed to be 0.5 %.

• Each story is supported by four columns.

• Structural masses and concrete slabs are lumped to the nodes.

Using the assumptions stated above, the baseline model can be formed as:

[M ] =


400.1 0 0

0 355.3 0

0 0 355.3

 kg (3.39a)

[C] =


211.1 −60.5 −13.6

−60.5 187.4 −71.1

−13.6 −71.1 128.5

N sec/m (3.39b)

[K] =


1222.2 −611.1 0

−611.1 1222.2 −611.1

0 −611.1 611.1

 103 N/m (3.39c)

The estimated natural frequencies are calculated 2.92 Hz, 7.96 Hz and 11.62 Hz.

3.6.2 System Identification: Identified Parameters

A general block diagram of the structure to be identified is shown in Figure 3.6.

Here, ẍg is the disturbance as the ground motion to the system, f1 is the input force

applied at the first floor, also where the MR damper device will be connected, and

xi, ẋi, ẍi are the relative displacement to the ground, relative velocity to the ground,

and absolute acceleration of ith floor, respectively.
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. . . . . .

. . .

f1

Figure 3.6: Block diagram of the structure to be identified

Structure is identified with an impact hammer by hitting to its first floor and

recording the resulting acceleration responses. Due to the limited number of sensors

available, multiple tests were performed. Thus, three sensors are used in each test to

measure the accelerations at various locations in the weak direction. The tests are

categorized based on the sensor placements at north side, mid point and south side

as given in Figure 3.7. At each trial, 25 hits, each having up to 60 sec time window,

are performed on the mid point of the girder at the first floor. For each set of data,

including the hammer force, 4 channels are sampled at 3000 Hz. For all acceleration

and hammer force sensors, 0.3 Hz and 300 Hz are selected as low pass filter and high

pass filter, respectively. Interested readers can access the impact test data from the

NEES Project Warehouse (Ozdagli et al., 2013a,b).

After the data are collected, post-processing is conducted involving dividing each

impact response into individual time history associated with the hammer force re-

sponse. A decaying exponential window of 1% to the structural responses is applied to

the structural responses. Transfer functions are generated from force to acceleration

for all successful hits and averaging is performed in order to increase signal to noise

ratio and eliminate structural nonlinearities. Using the averaged transfer functions,

impulse response functions are developed. After impulse functions are bounded to

0 Hz to 40 Hz, ERA procedure has been applied on each trial individually. 500 columns

and 1500 rows with a singular value of 25 are selected as the input parameters to

ERA. Finally, 11 modes are identified in the system. However, only first three modes

are used since higher modes are mainly associated with the torsional movement of

the structure. The identified modes and damping ratios are determined as 2.88 Hz,



56

North Side

Mid Point

North Side

Hammer Hit Point

Figure 3.7: Sensor and hit location layout

8.10 Hz and 12.34 Hz; 0.57 %, 0.21 % and 0.15 %, respectively. For each ERA applica-

tion, EMAC numbers yielded over 95 %. Transfer functions and phase diagrams of

experimental data are compared to those generated with ERA in Figures 3.8 and 3.9.

The identified mode shapes for each identified mode are represented in Figure 3.10.

As seen from comparisons and identified mode shapes, there is no significant

difference between results. However, since ERA results of mid-point accelerations

have better estimations on the zeros, it is decided to place the accelerometers to the

mid-point for further shake table tests.
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3.6.3 Comparison of Model Updating Methods

Two model updating methodologies have been discussed previously in Section 3.3.

According CK updating method (Equation (3.30)), the following matrices are formed:

[M ] =


400.1 0 0

0 355.3 0

0 0 355.3

 kg (3.40a)

[C] =


101.6 3.3 3.8

3.3 93.3 6.2

3.8 6.2 96.2

N sec/m (3.40b)

[K] =


1316.4 −703.8 30.5

−703.8 1357.1 −680.2

30.5 −680.2 649.8

 103 N/m (3.40c)

For the MCK update method (Equation (3.36)), there are 9 components, each

corresponding to an element in M matrix. Given a weighting vector, W in the form

of I9, the identified MCK system based on the identified parameters is given as:

[M ] =


419.1 2.6 2.4

2.6 359.1 10.1

2.4 1.1 325.9

 kg (3.41a)

[C] =


91.4 −1.7 0.3

−1.7 75.23 −0.1

−0.1 −0.1 69.0

N sec/m (3.41b)

[K] =


1446.7 −726.0 44.7

−726.0 1299.6 −615.9

44.72 −609.3 552.3

 103 N/m (3.41c)
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Readers should note that all matrices from CK and MCK methods are symmetric

but have small off-diagonal terms that are not larger than 10 % of diagonal elements.

Transfer functions of experimental data collected from mid-point accelerometers

upon impact, initial analytical model estimation and updated models are compared

in Figure 3.11.

As seen from the figures, it is evident that the proposed MCK updating method

is superior not only in capturing zeros but also peaks, compared to CK updating

method.

3.6.4 Model Verification

For the validation of the model, structural responses of the seismically excited,

uncontrolled system are compared to updated model. El Centro, Kobe and Morgan

Hill earthquakes explained in Section 2.3.3 are chosen as the disturbance (Figure 3.6).

The simulated earthquake motion measured on the shake table (ST) by accelerom-

eters is used as the input to the analytical simulation (AS) of the model given in

Equation (3.41). For the basis of the comparisons, the experimental displacement and

acceleration records are compared to analytical simulation responses. Experiments

and simulations, both are conducted at a rate of 5000 Hz.

The comparison plots are given in Figures 3.12 to 3.14. RMS and peak response

errors are tabulated in Table 3.2. Only the first 25 seconds of data is processed to

calculate the given errors. All values are given as percentages.

From Table 3.2, it is reported that average peak error of floor accelerations and

displacements are ranging from 6 % to 8 %. For the RMS response categories, the

average error is varying from 10 % to 14 %. The overall criteria average yields about

10 % error for all three earthquakes.

Among three earthquakes, largest RMS error has occured during Kobe earthquake

both for displacement and accelerations. Similarly, largest peak displacement and

acceleration errors are reported for the Morgan Hill earthquake.
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Figure 3.11: Transfer function comparison between experimental data and updated

models

It is natural that systems having been identified based on impact testing parameters

may behave differently when excitation input used for the model validation is a
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different source, e.g. ground motion. Dynamic characteristic of the system in time

domain is often ignored while frequency domain processes linearize the system that

contains small local nonlinearities and other dynamic impurities such as out-of-plane

movements or torsion.

After all, a model is a mathematical explanation of the system it represents. User

requirements define a basis for the assumptions made to eliminate discretizations at

the expense of modeling inaccuracies. Development of a computationally inexpensive

model due to time constraints of hard real-time simulation is a major requirement for

this study.

Table 3.2: Evaluation criteria for model verification

Ground Motion Location
Evaluation Criteria Criteria

AverageJ1 J2 J3 J4

El Centro

First Floor 8.17 12.08 0.65 15.25 9.04

Second Floor 4.81 10.92 1.22 10.21 6.79

Third Floor 1.54 11.46 1.56 10.07 6.16

Kobe

First Floor 5.14 13.85 4.09 17.31 10.10

Second Floor 2.71 14.80 10.16 14.45 10.53

Third Floor 4.82 16.23 1.58 12.98 8.91

Morgan Hill

First Floor 10.95 10.70 10.68 9.28 10.40

Second Floor 13.19 11.07 0.20 7.41 7.97

Third Floor 11.84 11.24 5.96 7.79 9.21

EQ Average

First Floor 8.09 12.21 5.14 13.95 9.85

Second Floor 6.90 12.26 3.86 10.69 8.43

Third Floor 6.07 12.98 3.03 10.28 8.09
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3.7 Conclusion

To validate dRTHS with experimental data, an accurate model of the test structure

is necessary. In this chapter, theoretical background on system identification via

dynamic impact hammer testing and novel MCK model updating methodology based

on identified structural parameters are described. To verify the proposed updating

method, the test structure is excited using shake table when no MR damper device

is attached and the global responses of the system to several ground motions were

compared to those of pure numerical model.

Overall, the new model updating method has proven to be superior compared

to its predecessors for estimating non-observable states while relying completely on

identified structural characteristics.
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CHAPTER 4

MAGNETO-RHEOLOGICAL DAMPER CHARACTERIZATION AND

SEMI-ACTIVE VIBRATION CONTROL DESIGN

Both RTHS and dRTHS setups at IISL use a magneto-rheological damper as the

physical substructure for the validation tests. However, the damper utilized during

the shake table tests conducted at HIT is different from the one that is used for Purdue

tests. For the sake of a fair comparison between shake table and dRTHS results, the

main differences between two damper should be understood. This chapter focuses

on the working principle, modeling and semi-active control of MR damping devices.

Section 4.1 presents a brief background on vibration control and the development idea

behind semi-actively controllable devices. Section 4.2 explains behavior characteriza-

tion and modeling procedure of the MR dampers used at HIT and IISL for this study.

In addition, this chapter discusses the main differences of physics in HIT and Purdue

damper and prescribes a method to describe one damper in terms of the other one,

mathematically. In Section 4.3, the theory behind a common semi-active controller,

clipped-optimal control algorithm is introduced, including its implementation. Finally,

a summary of this chapter is presented.

4.1 Introduction

The seismic performance of a building is related to the damage and loss its struc-

tural and non-structural elements can take during an earthquake (Deierlein et al.,

2010). Although aseismic design practices improve perseverance of civil structures

and reduce life loss significantly by sacrificing non-structural elements, severe eco-

nomic losses may be still inevitable considering dynamic nature of ground motions

(Constantinou et al., 1998). ASCE (2007) provides a guideline on three performance
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levels: Immediate Occupancy; Life Safety; and Collapse Prevention. By separating

structural frame from energy dissipative structural elements and adding vibration

control devices, an improvement in the safety level of buildings can be achieved.

Roots of vibration control reach back to 1972 with the conceptual introduction

by Yao (1972). From this date forward, the evolution of the civil engineering field

in structural control has been rapid, attracting many researchers for decades and

the topic still continues to mature (Housner et al., 1997). Among vibration control

devices currently available on the market, passive damping devices are often con-

sidered as the first solution to control structural vibration since they can dissipate

energy directly by increasing the damping of the structure. As an example to this

device category, passive base isolation systems for seismic protection have become

an accepted design strategy in low- and medium-rise buildings, in US and worldwide

(Kelly and Konstantinidis, 2011). Even though those devices are commonly used in

the practice, they may not be, in fact, effective for every type of excitation, especially

where stochastic nature of the input governs its overall behavior (Chang et al., 2009).

To overcome the limitations of passive devices, active control strategies have been

developed. Essentially, active devices can adapt themselves to the excitation and

structural responses by imposing external forces supplied by actuators (Spencer and

Nagarajaiah, 2003). For successful operation of those devices, uninterrupted power

source for actuation and computer systems, that monitor structural responses and

enforce command to these devices based on a predefined control strategy, are needed.

An extensive study on the effectiveness of this device type is explored by Dyke (1996)

and Loh et al. (2007).

As a major drawback, the active control device may be ineffective or at risk of

becoming unstable in such cases where uncertainties and disturbances in the system

affect structural integrity. To ensure a fail safe operation of control system and still to

minimize the structural vibration, a new generation of control devices have been de-

veloped. Namely, semi-active devices that combine best features of passive and active

control system offers a great range of adaptability and reliability (Soong and Spencer,
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2002). By nature, a semi-active device is a controllable passive device. By using small

amount of external power of ≈100 W, system stiffness and damping characteristics

can be modified via control signal tuned according to structural responses, and system

can consume the motion of the structure to develop control forces. The device does

not increase mechanical energy in the structure and bounded input - bounded output

stability is guaranteed during its operation. Moreover, in the event of loss of power

due to impact loads caused by earthquakes, the system can still rely on its passive

damping features.

Vibration control using semi-active force generators dates back to 1974 (Karnopp

et al., 1974). Among many semi-active devices developed so far, MR fluid dampers

have received a lot of attention due to their reliability and adaptability, in the last

decade. A typical MR damper contains a special type of fluid called MR fluid that

consists of a suspension of micron-sized magnetic iron particles that can be controlled

with the help of magnetic field. By exposing to the magnetic field, the viscous MR

fluid can turn into a semi-solid state instantly and generate large amount of resisting

forces, as shown in Figure 4.1. Since an appropriate magnetic field can be imposed

with a very small amount of electrical current, MR dampers are counted as sustainable

devices. Combining high reliability with meager power consumption, the MR damper

becomes a strong candidate for vibration control applications. An illustration of MR

damper is provided in Figure 4.2.

Figure 4.1: Particulate alignment in MR fluid
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Pilot studies conducted by Dyke et al. (1996b) and Johnson et al. (1998) demon-

strated through laboratory experiments that MR damper can reduce seismic response

of structures compared to passive configurations. In addition, the success of this

novel technology has been proven in small-scale mechanical systems such as vehicular

suspension by Karkoub and Zribi (2006) and large-scale civil engineering structures

as in Dongting Lake Cable-stayed Bridge, China by Chen et al. (2003) and National

Museum of Emerging Science and Innovation, Tokyo. To persuade contractors, es-

pecially in US, hesitant to apply MR damper technology on current structures and

future designs, many research projects nationwide are focused on investigation of

the effectiveness of MR dampers and development of appropriate design procedures

(Friedman et al., 2010; Jiang and Christenson, 2011; Phillips and Spencer, 2013).

Piston

MR Fluid

Electromagnetic 
Coil

Accumulator
Wires to

Electromagnet Ori�ce

Figure 4.2: MR damper internals

4.2 Damper Identification and Modeling

MR dampers are highly nonlinear devices and their force-velocity relationship

shows a hysteretic behavior that cannot be easily represented using simple math-

ematical relationships (Zapateiro de la Hoz, 2009). There has been serious effort

on modeling of MR damper hysteresis to ease the implementation and performance

evaluation of new controllers and to simulate the behavior in numerical analyses and

real-time hybrid simulations where experimentation in full-scale is not possible. As for
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damper models, there exists two mainstream models: parametric and non-parametric.

While parametric models are developed loosely based on mechanical properties of the

damper, non-parametric models do not have a physical ground (Sahin et al., 2010). A

tree of known models are listed in Figure 4.3. This dissertation will focus on a member

of parametric model family, the phenomenological Bouc-Wen model introduced by

Dyke et al. (1996b) and Spencer et al. (1997).

MR Damper

Models

Non-

Parametric

Cheby-

shev

Neural

Networks

Fuzzy

Logic

Parametric

Bingham

Hys-

teresis

Bouc

Wen

Hyper-

bolic

Tangent

Dahl

Figure 4.3: MR damper models

4.2.1 Modeling of the MR Damper

A phenomenological MR damper was proposed by Spencer et al. (1997). This

model, which combines Bouc-Wen equations proposed by Bouc (1971) and Wen (1976)
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with a series of springs and dashpots in parallel, was sufficient in simulating dynamics

of prototype dampers by Lord Corp. A mathematical idealization of this model

is shown in Figure 4.4. In addition, a simplified version of Bouc-Wen model was

developed by Dyke et al. (1996b) with the aim to portray force-velocity characteristics

of a specific MR damper family more accurately. This dissertation will focus on the

complex MR damper model.

fc0

k0
c1

k1

Bouc-Wen

xy

Figure 4.4: Phenomenological Bouc-Wen hysteresis model of the MR damper

According to phenomenological Bouc-Wen model, an MR damper can be charac-

terized by the following equations:

c1ẏ = αz + k0(x− y) + c0(ẋ− ẏ) (4.1a)

ż = −γ|ẋd − ẏ|z|z|n−1 − β(ẋd − ẏ)|z|n + A(ẋd − ẏ) (4.1b)

F = αz + c0(ẋ− ẏ) + k0(x− y) + k1(x− x0) (4.1c)
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where F represents the total damper force, k1 represents the accumulator stiffness, c0

represents the viscous damping observed at larger velocities, c1 produces roll-off at low

velocities, k0 controls the stiffness at large velocities and x0 is the initial displacement

of spring, k1.

For a passive damper system, where voltage kept constant, identifying the param-

eters mentioned above is adequate. However, for achieving optimal performance, a

semi-active control scheme needs to be implemented through commanding voltage

signal using a current driver. In view of that, any change in voltage will create a

fluctuation in the magnetic field. In other words, damping constants given in Equa-

tion (4.1) will vary virtually linearly with the applied voltage. The equations given

below reveal this relationship:

α(u) = αa + αbu (4.2a)

c0(u) = c0a + c0bu (4.2b)

c1(u) = c1a + c1bu (4.2c)

u̇ = −η(u− v) (4.2d)

where v and u are the command voltage sent to current driver and filtered voltage,

respectively, and η is the lag constant. Equation (4.2d) can be recognized as a filter

that defines a basic model of the current driver and dynamics of MR fluid reaching

rheological equilibrium.

Equations (4.1) and (4.2) can be implemented as an input-output block or hard-

coded inside embedded function block in MATLAB/Simulink (MATLAB, 2011).

4.2.2 Identification Process

The damper parameters mentioned in the Equation (4.1) are determined based

on characterization tests. In a typical parameter identification process, for each

supply voltage level, the damper attached to an actuator is excited with a sinusoidal

displacement and damper reaction force is measured. Since MR damper is a nonlinear
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device, its behavior may change with respect to the frequency and amplitude for

the given displacement. Thus, for the sake of best performance in characterization,

the frequency and amplitude of the sine wave should be adjusted according to the

characteristic dynamics of the test structure, to which damper is going to be attached.

To obtain the parameters related to each voltage supplied to the damper, lsqcurvefit,

nonlinear curve-fitting algorithm is used, which has already been implemented in

MATLAB. The identification process should be set up in such a way that different

voltage levels should yield same values for k0, k1, γ, β and A, while varying α, c0 and

c1. Since the parameters n, η and x0 are pre-defined based on damper properties, they

are not required to be part of the curve-fit algorithm. Finally, using characterization

results and Equation (4.2), αa, αb, c0a, c0b, c1a and c1b are calculated.

4.2.3 Damper Characterization Results

In this section, the identification process explained above are applied to MR

dampers located at HIT and IISL/Purdue. The characterization results of those

dampers, as well as representation of Purdue damper with HIT damper equations are

also given in subsequent sections.

(i) HIT Damper

Characterization tests conducted at HIT are performed with MR damper #RD-

1005-3 attached to the uniaxial servohydraulic load frame (see Section 2.4). A sinu-

soidal displacement input with a magnitude of 5 mm at a frequency close to the first

mode of the test structure, 2.9 Hz is tested, when the damper is subjected to constant

voltage levels of passive-off (0 V) and -on (1.7 V). Since damper characteristics are

different between pushing and pulling state, load response is detrended to remove the

offset.

The force-time history, force-displacement and force-velocity relationships are

given in Figure 4.5. In Figure 4.6, comparison between the experimentally obtained
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responses and the identified Bouc-Wen model is presented. It is observed that the

Bouc-Wen model is effective at capturing the dampers behavior. Optimization routine

yielding Bouc-Wen model parameters are listed in Table 4.1. A relative standard

deviation error of 15 % to 18 % is found between experimental data and model.
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Figure 4.5: HIT MR damper experimental data for 0 V and 1.7 V constant voltage

levels
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Figure 4.6: Comparisons for HIT MR damper experimental data vs identified model

(ii) Representation of Purdue Damper with HIT Damper Behavior

Since MR damper and current driver used at HIT are different from the devices

used at IISL, it is expected the change in mechanical properties of these devices will

affect the damper behavior.

Therefore, to perform successful dRTHS tests and understand sources of experi-

mental errors due to the use of physical substructures, it is imperative that a compar-

ison between their mechanical behaviors should be employed. For this reason, both

dampers are subjected to constant voltage levels in passive-off and -on modes while

driven by a sinusoidal displacement input damper with a magnitude of 5 mm at 2.9 Hz.

The comparison results are presented in Figure 4.7.
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Table 4.1: Identified Bouc-Wen model parameters for HIT damper

Parameter Value Unit

αa 2740.734 N m−1

αb 10010.25 N m−1 V−1

c0a 175.13 N sec m−1

c0b 1709.24 N sec m−1 V−1

c1a 3353.68 N sec m−1

c1b 175.13 N sec m−1 V−1

k0 1940.41 N m−1

k1 1.58 N m−1

γ 36332.07 m−2

β 36332.07 m−2

A 155.32 -

x0 0 m

n 2 -

η 60 sec

It is observed that two dampers show similar passive-off (0 V) behavior before the

saturation occurs, both in force-displacement and force-velocity relationships. On the

other hand, at peak saturation level, Purdue damper is generating 80 N more force

than HIT damper. As for the passive-on mode, the force generated at 1.7 V for HIT

damper is equivalent to the behavior of Purdue damper at 2.1 V. The two dampers

show similar force-displacement and force-velocity relationships.

Based on the observations, to simulate HIT damper on the shake table on a

RTHS/dRTHS platform at IISL/Purdue, the Purdue damper should be driven at

constant 0 V and 2.1 V for passive-off and -on modes, respectively.
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Figure 4.7: Comparisons for HIT vs Purdue dampers

4.3 Semi-active Control Algorithm

Essentially, MR dampers represent a class of controllable devices where the shear

force of the fluid is controlled by a magnetic field (Carlson et al., 1996; Carlson and

Spencer, 1996). The effectiveness of an MR damper in controlling vibration highly

depends on developing a proper control strategy. However, for designers, generating

control algorithms for MR damper is often a challenge due to nonlinear nature of

the fluid. To overcome the difficulty in controlling MR damper, Dyke (1996); Dyke

et al. (1996a,b) proposed a Linear Quadratic Gaussian (LQG) regulator based clipped

optimal controller that uses acceleration feedback while eliminating the need for states
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of velocities and displacements, which are difficult to measure for real civil structures.

Although the clipped optimal control ignores dynamics of the MR damper, LQG

control block attempts to linearize the nonlinear plant, herein, MR damper, with

a bang-bang control. Thus, the optimal controller has still the ability to track the

control force.

4.3.1 Implementation of Clipped-optimal Control Algorithm

A structure controlled with an MR damper can be idealized as in Figure 4.8.

The structure produces structural responses, ym, when seismically excited with ẍg.

Reactively, MR damper develops force, fm that is feedback to the structure. The

system has already been formulated in Section 3.1. The force generated by the MR

damper cannot be controlled directly, however, by varying the voltage input, the

magnetic field can be adjusted such that a desired force history can be induced.

Nevertheless, a control algorithm needs to be implemented to achieve an optimal

control force while reducing structural responses. Determination of the desired force,

fc is determined with a linear optimal controller gain, Kc as:

fc = L−1
−Kc(s)L

 ym

fm

 (4.3)

where L is the Laplace transform, ym is the measured system response, and fm is the

measured force. To utilize desired force, fc, clipped optimal control (COC) proposed

by Dyke et al. (1996b) is used. Essentially, COC compares the sign of the desired

force and the measured force of the damper and applies maximum voltage if the signs

match, otherwise zero voltage using a bang-bang controller, as given in Equation (4.4):

v = VmaxH
(
(fc − fm)fm

)
(4.4)

where fc represents selected optimal control force, fm represents measured damper

force and H(x) is the Heaviside step function.
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Figure 4.8: An idealization of structural control with MR damper

4.3.2 Implementation of H2/LQG Control

Assuming earthquake is a stochastic process, an optimal control problem to es-

timate Kc with the aim towards optimal minimization of structural responses can

be constructed using H2/LQG. Fundamentally, LQG is the combination of a linear-

quadratic estimator (LQE) with a linear-quadratic regulator (LQR). In general, LQR

is sufficient to estimate the control force only with the internal states, such as velocity

and displacement responses of a structure. In reality, it is hard to measure such states

without fixed reference points. Fortunately, many accelerometer forms are classified

as inertial sensors, have their reference frame inside the sensor mechanism and allow

measuring acceleration without any issues. Later, unobserved internal states can be

restored with the help of observed states with LQE and are feed-forward to LQR

(Kalman, 1960). A typical LQG regulator can be described such as:

˙̂x = (A− LC)x̂+ Lym + (B − LD)fm (4.5)

where x̂ is estimated unobserved states and L is quadratic estimator gain. With the

help of Equation (4.5), Equation (4.3) can be simplified to:

fc = K ˙̂x (4.6)

where K is quadratic regulator gain.
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Computation of LQR Gain

For a continuous-time state-space model with state-feedback presented in Equa-

tion (4.6), infinite horizon performance index or cost function, J to be minimized can

be formulated:

J(fm) =

∫ ∞
0

yTo QLQRyo + fTmRLQRfm dx (4.7)

where yo is the system responses to be optimized, QLQR and RLQR are weighting

matrices determining the relative importance of state variables and control forces. A

Riccatti equation can be formed using QLQR, RLQR and state space of the system.

ATS + SA− (SB)R−1LQR(BTS) +QLQE = 0 (4.8)

Finally, regulator gain, K can be derived as:

K = R−1LQRBS (4.9)

Computation of LQE Gain

LQE, i.e. Kalman state estimator filter provides an optimal solution of unobserved

states for a given system with process and measurement noise. A system described

in Equations (3.4) and (3.5) can be rewritten including such noises:

ẋ = Ax+Bu+Gw (4.10)

y = Cx+Du+Hw + v (4.11)

where w and v are white process and white measurement noises with the following

definitions:

E(w) = E(v) = E(wvT ) = 0 (4.12a)

E(wwT ) = QLQE (4.12b)

E(vvT ) = RLQE (4.12c)
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Here, G and H correspond to E and F in Equations (3.4) and (3.5). Equation (4.12)

implies that ground excitation is a process noise and both process and measurement

noises are Gaussian stationary white noise with zero mean. Estimated state, x̂ can

be obtained by minimizing error covariance such as:

P = lim
t→∞

(
{x− x̂}{x− x̂}T

)
(4.13)

A Ricatti equation can be assembled to solve P :

ATP + PA− (PCT )R−1(CP ) +QLQR = 0 (4.14)

which leads to the computation of the estimator gain, L:

L =
(
PCT +GQLGEH

T
) (
RLGE +HQHT

)−1
(4.15)

For typical implementations of COC, first, regulator and estimator gains are

determined from built-in lqry.m and lqew.m MATLAB scripts. Later, Equations (4.4)

and (4.5) are formulated as block diagrams in Simulink.

4.4 Summary

In this chapter, a general way to characterize and model MR dampers are discussed.

Following that, a parametric model of the MR damper located at HIT is developed. In

addition, force-displacement and force-velocity relationships of the Purdue damper are

tried against HIT damper at passive-off and -on modes. The motivation and concepts

of semi-active control strategies, particularly, LQG control and its implementation

are discussed for its use in shake table tests, RTHS and dRTHS. In the following

chapters, the control algorithm introduced here will be employed in several numerical

simulations, experiments and hybrid simulations.
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CHAPTER 5

VALIDATION OF ANALYTICAL SIMULATIONS WITH SHAKE TABLE TESTS

In this chapter, a description of the experimental study is given to validate the model

of the three story structure equipped with MR damper by comparing the responses

with those of shake table tests. First, Section 5.1 discusses the selection and design of

MR damper controllers aimed towards effective structural control. Next, Section 5.2

illustrates post-processing procedure of the structural responses yielding from shake

table tests and simulations for comparison purposes. In Section 5.3, performance of

the structural model introduced in Chapter 3 is evaluated using a variety of earthquake

inputs through both numerical simulation and shake table tests under different damper

control strategies. For all cases, error in relative displacement, absolute acceleration

in the global sense of the structure is examined including other evaluation criteria

discussed in Section 3.5. Finally, a summary of the chapter, that interprets and

concludes main findings in the comparisons, is given in Section 5.4.

In order to perform a successful comparison between shake table experiments and

pure analytical simulations, several steps must be taken, including (i) modeling of the

existing test structure, (ii) characterization of the MR damper which will be used in

analytical simulations, and (iii) design of MR damper semi-active control algorithms.

Step (i) was already explained in Chapter 3 in detail. Furthermore, steps (ii) and

(iii) were discussed in Chapter 4. In the following sections of this chapter, design of

the MR damper controllers is also discussed.

5.1 Design of MR Damper Controllers

For pure simulations, the damper model based on HIT damper is utilized. Three

cases are considered for structural control problem based on this damper. Those are
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(i) passive-off case where a constant 0 V is sent to the current driver; (ii) passive-on

case where damper is fed with a constant 1.7 V; and finally (iii) semi-active control

case where clipped-optimal control strategy is implemented. The principle of semi-

active control has already been discussed in Chapter 4. For semi-active control,

displacement responses are estimated from three floor accelerations and first floor

relative MR damper displacement. To ensure effectiveness of the structural control

in reducing accelerations, R matrix is selected to be the identity matrix with proper

order, whereas a wide range of Q matrices were tested using a variety of earthquakes.

Finally, Q matrix is selected to be 23000 with equal weighting on all floor accelerations

of the structure, for shake table tests and pure simulations.

5.2 Post-processing of Data

Each shake table test record lasts 60-200 seconds or longer. For the initial 10–60

seconds of the recorded data, shake table is kept at zero position. After stand-by time,

the actual earthquake input is initiated which takes 50–60 seconds. Finally, another

10–60 seconds of data is recorded until the structural responses fully decay and test

setup is ready for a new test.

The recorded data are long and also contains noise due to the test apparatus used

during the experiments. Therefore, post-processing is required to make it presentable

for further analysis. It should be noted that the results of the shake table tests and

simulation results are similarly post-processed as explained in the following sections.

5.2.1 Time Windowing

To employ a robust visual comparison between records, a boxcar function is applied

to isolate structural responses in time domain where ground motion is dominant. An

example is illustrated in Figure 5.1, where first floor displacement response from

Morgan Hill semi-active control case is windowed for the time range of 13–28 sec.

After windowing, the start of the response is assumed as t = 0.
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Figure 5.1: Application of rectangular window function to first floor displacement

response for Morgan Hill semi-active control case

For relative RMS and peak error calculations, the responses are windowed even

further, where the earthquake is strongest. For already windowed responses, this

range is 2–5 sec for El Centro, 3–6 sec for Kobe, and 1.5–4 sec for Morgan Hill.

5.2.2 Filtering

The structural responses obtained experimentally from shake table tests may

contain some artifacts that can affect comparisons of simulations results. Mostly, such

artifacts are comprised of measurement errors due to (a) unwanted forced vibrations

caused by the actuator driving the shake table and (b) amplification of the forced

vibration by the structure, and (c) strong ground motion affecting off-plane dynamics

of the test structure.
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Since hydraulic fluid is compressible, it has a finite stiffness. When a hydraulic

actuator system is coupled with mass, the fluid resonates with mass. This phenomenon,

often called oil-column resonance, tend to cause vibration issues. Eventually, if the

coupled mass is large enough, the resonance can leak into frequency content of the

structure. Considering the fact that shake table represents a very large mass, oil-

column resonance frequency is low enough to affect the structural responses (Nakata,

2013).

The proposed modeling approach discussed in Chapter 3 discretizes the continuous-

time system test structure into 3-DOF model. Although the applied ground motion is

unidirectional along the weak-plane of the structure, the test setup is not perfect and

therefore, it is inevitable that higher modes including torsional and off-plane modes

of the system will be induced.

Those artifact can be reduced substantially by filtering responses of the system.

A 5th order Butterworth filter with a cut-off frequency of 50 Hz is used to eliminate

such responses. The same filter is also applied to the pure simulation results. An

example is illustrated in Figure 5.2 to demonstrate the effectiveness of the filter. It

should be noted that the acceleration response is smoothed.

5.2.3 Frequency-Domain Calculations

In addition to time-domain post-processing, results were also evaluated in fre-

quency domain. In the course, power spectral density (PSD) of the strong motion

response are calculated using pwelch command in MATLAB. PSD estimates are de-

termined as one-sided with no window-averaging and overlapping using windowed

responses of 2–6 seconds for all three earthquakes.
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Figure 5.2: Effect of Butterworth filtering to third floor acceleration response for

Morgan Hill semi-active control case

5.3 Comparison of Shake Table Test Responses with Pure Simulation

Results

To employ a proper comparison between simulation and experimental results, a

good understanding of the test structure is required. The test structure used in

the shake tables tests was explained in detail in Chapter 2. Development of the

accurate model of the structure in MCK format was provided in Chapter 3. To

simulate the behavior of MR Damper under various control voltages, a model was

proposed in Chapter 4. Excitation input to the structure is selected as El Centro, Kobe

and Morgan Hill earthquakes. The ground motion in displacement form calculated

by double integrating each earthquake is fed to the shake table actuator controller.

More detail on the selected earthquakes and tracking performance of the shake table

are given in Section 2.3.3. All floor accelerations for the shake tables tests are
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sampled at 5000 Hz. The ground acceleration of the shake table is captured with

two accelerometers and the response is averaged. For each structural control case,

the averaged ground acceleration recorded during the specific test is applied as the

excitation input to the numerical model, as-is without further modifications. As the

shake table tests, numerical simulations are also conducted at a rate of 5000 Hz. An

illustration of the Simulink diagram containing numerical structure and MR damper

model is given in Figure 5.3.

z
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Figure 5.3: A representative Simulink model of the analytical simulation

The experimental plan for evaluation and validation of the integrated model is

focused on replicating the dynamic response of the seismically-excited three story

structure equipped with damper device at passive on/off and semi-active control

modes. To assess accuracy of the proposed model, the shake table responses are

compared to simulation results using the evaluation criteria proposed in Chapter 3.

Particularly, RMS, peak and sliding RMS errors are utilized for recorded displace-

ments and accelerations. To sum up, nine individual comparisons, containing three
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earthquake cases each with three control modes, are conducted to achieve the study

goals.

5.3.1 El Centro

In this section, results between shake table and pure simulations are compared for

El Centro earthquake. Passive-off (POFF), -on (PON) and semi-active (SA) cases are

considered for the comparisons.

Passive-off

Displacement and acceleration comparisons are given in Figures 5.4 and 5.5. RMS

and peak response errors are tabulated in Table 5.1 in percentage. Likewise, in

Figure 5.6, moving RMS errors are illustrated.

While the reported peak error of floor accelerations and displacements are ranging

from 4 % to 15 %, the normalized RMS errors are trending from 15 % to 20 %. In

addition, range-normalized RMS errors are no more than 15 %. Both time- and

frequency-domain responses are in correlation.

Passive-on

For PON case, related comparisons and error tables are given in Figures 5.7 to 5.9

and table 5.1. Although time-domain displacement responses are not in an ideal

correlation, the power spectrum demonstrates that the frequency contents still agree.

There is a deviation observed in the first floor displacement time-domain responses

around 3–9 seconds. This same trend is also observed in moving RMS error plot.

Considering the fact that the first floor acceleration responses are very similar, the

aforementioned discrepancy does not indicate a modeling error, but LVDT failure.

By inspecting the results, one can conclude that MR damper LVDT might have been

stuck due to friction when cyclic displacements are small enough (±0.5 mm).
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Figure 5.6: Moving RMS error for El Centro earthquake ST–AS POFF case

RMS and peak response errors for floor accelerations and displacements are ranging

from 4 % to 45 %. The criteria-averaged RMS error is varying from 15 % to 30 %. The

elevated errors indicate that with increasing levels of MR damper forces, it is harder

to match structural responses in time-domain.

Semi-active

The comparisons for SA case are given in Figures 5.10 to 5.12 and table 5.1.

RMS and peak response errors vary from 3 % to 25 %, while criteria-averaged RMS

errors are reaching up to 15 %. Compared to PON case, the errors are much smaller

since MR damper forces fall in between PON and POFF cases.

5.3.2 Kobe

In this section, results between shake table and pure simulations are compared for

Kobe earthquake. POFF, PON and SA cases are considered for the comparisons.
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Figure 5.9: Moving RMS error for El Centro earthquake ST–AS PON case

Passive-off

Shake table vs. simulation response comparisons are given in Figures 5.13 and 5.14.

This case has the smallest error among all cases including El Centro and Morgan Hill

earthquakes.

Passive-on

PON case comparisons are given in Figures 5.16 and 5.17. In Figure 5.9 and ta-

ble 5.1, error tables and moving RMS error plot are provided.

Although errors are similar to El Centro and Morgan Hill PON cases, discrepancy

due to LVDT is most evident in this case. RMS and peak response errors range from

10 % to 60 %, while criteria-averaged errors are bounded to 30 % to 35 %.

Semi-active

In Figure 5.19 and Figure 5.20, SA case comparisons are presented.
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Figure 5.12: Moving RMS error for El Centro earthquake ST–AS SA case

Like in El Centro case, this SA case produced less errors compared PON case. The

peak and RMS errors and criteria-averaged errors are in the range of 3 % to 30 % and

12 % to 16 %, respectively.

5.3.3 Morgan Hill

In this section, results between shake table and pure simulations are compared for

Morgan Hill earthquake. POFF, PON and SA cases are considered for the compar-

isons.

Passive-off

Time- and frequency-domain comparisons for POFF case are provided in Fig-

ures 5.13 and 5.14. The reported errors are in the range of 5 % to 27 % and consistent

with El Centro and Kobe cases. The averaged errors are as high as 9 %.
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Figure 5.15: Moving RMS error for Kobe earthquake ST–AS POFF case

Passive-on

Displacement and acceleration comparisons are given in Figures 5.25 and 5.26.

Although the time- and frequency-domain responses are in correlation, the errors are

as high as the other two earthquake cases, closer to Kobe case.

RMS and peak response errors for accelerations and displacements are ranging

from 6 % to 60 %. On the other hand, the criteria-averaged RMS error is varying from

19 % to 28 %.

Semi-active

SA case comparisons are presented in Figures 5.19 and 5.20. The RMS and peak

response errors are confined within 3 % to 18 %. All criteria-averaged errors are

concentrated near 10 %.
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Figure 5.18: Moving RMS error for Kobe earthquake ST–AS PON case



107

0
3

6
9

12
15

−
15

−
10−
5051015

SecondFloor-mm

0
3

6
9

12
15

−
15

−
10−
5051015

FirstFloor-mm
D
is
p
la
ce
m
en
t

0
3

6
9

12
15

−
5

−
2.
50

2.
55

FirstFloor-m/sec
2

A
cc
el
er
at
io
n

0
3

6
9

12
15

−
5

−
2.
50

2.
55

SecondFloor-m/sec
2

0
3

6
9

12
15

−
5

−
2.
50

2.
55

T
im

e
-
se
c

ThirdFloor-m/sec
2

0
3

6
9

12
15

−
15

−
10−
5051015

T
im

e
-
se
c

ThirdFloor-mm

E
x
p

er
im

en
t

S
im

u
la

ti
on

F
ig

u
re

5.
19

:
K

ob
e

ea
rt

h
q
u
ak

e
re

sp
on

se
co

m
p
ar

is
on

in
ti

m
e

d
om

ai
n

fo
r

S
T

–A
S

S
A

ca
se



108

0
10

20
30

40
50

−
15
0

−
10
0

−
50050

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

0
10

20
30

40
50

−
15
0

−
10
0

−
50050

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB
D
is
p
la
ce
m
en
t

0
10

20
30

40
50

−
5005010
0

15
0

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

A
cc
el
er
at
io
n

0
10

20
30

40
50

−
5005010
0

15
0

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

0
10

20
30

40
50

−
5005010
0

15
0

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

0
10

20
30

40
50

−
15
0

−
10
0

−
50050

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

E
x
p

er
im

en
t

S
im

u
la

ti
on

F
ig

u
re

5.
20

:
K

ob
e

ea
rt

h
q
u
ak

e
re

sp
on

se
co

m
p
ar

is
on

in
fr

eq
u
en

cy
d
om

ai
n

fo
r

S
T

–A
S

S
A

ca
se



109

3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

80

90

100

Time - sec

S
li
d
in
g
R
M
S
E
rr
or

-
in

P
er
ce
n
ta
ge Floor 1 - Disp

Floor 2 - Disp
Floor 3 - Disp
Floor 1 - Acc
Floor 2 - Acc
Floor 3 - Acc

Figure 5.21: Moving RMS error for Kobe earthquake ST–AS SA case
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Figure 5.24: Moving RMS error for Morgan Hill earthquake ST–AS POFF case
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Figure 5.27: Moving RMS error for Morgan Hill earthquake ST–AS PON case
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Figure 5.30: Moving RMS error for Morgan Hill earthquake ST–AS SA case

5.3.4 Discussions

Considering POFF cases for all earthquakes, the average errors are found below

20 %. However, for the PON cases, the errors elevated up to 60 % for the first floor

and 50 % for the second and third floors. Three reasons can be related to the increased

errors:

i. In Chapter 4, it has been stated that the MR damper model has up to 18 % of

standard deviation error, both for POFF and PON cases. The force generated

by the damper in POFF mode is small enough, it doesn’t have a considerable

impact in distorting structural responses. On the other hand, large PON forces

are affecting structural responses notably. Consequently, it is justifiable to observe

relatively large errors for PON case comparisons due to damper modeling error.

Furthermore, the lessened error for SA case comparisons, where the level of force

are between POFF and PON case, supports this claim.
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ii. It is observable from PSD comparisons that around the third mode of the structure,

the curves are deviating from each other. MR damper is characterized specifically

with a sine wave displacement of an amplitude of 5 mm at 2.9 Hz. It is possible

that the damper model may not be successful in capturing force levels at higher

frequencies.

iii. In PON mode, the structural responses are reduced due to increased damping.

However, it appears that for very small displacements, the first floor LVDT tends

to stick, eventually causing faulty readings. This behavior is especially noticeable

in the sliding RMS error plots.

The overall averaged errors reported in Table 5.1 are 7 % to 10 % and 10 % to 15 %

for POFF and SA cases, respectively. For PON case, the first floor error is close to

30 %, whereas for second and third floors, it is about 20 %.

5.4 Conclusions

To compare and validate shake table responses with pure simulation results, the

three story structure located at HIT with an MR damper attached to its first floor is

tested. To perform the comparison successfully, system identification of the structure,

characterization and modeling of the MR damper, integration of COC and selection

of control parameters are carried out.

The global responses of the system to several ground motions such as relative

displacements and absolute accelerations at each level are compared to pure simulation

results for POFF, PON and SA cases. For the evaluation of the comparisons, peak,

RMS, and sliding RMS errors are computed. In addition, PSD of the shake table and

simulations responses are also presented.

In general, the pure simulations predicted shake table results. Further, in terms of

displacements and accelerations, strong correlation is found between results. Tracking

of the first floor displacements displayed elevated errors due to a sensor hardware error,
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however, PSDs showed a good match in frequency domain. Overall, pure simulation

results has proven to be successful in predicting shake table responses.
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Table 5.1: Evaluation criteria for pure simulation verification

Ground Motion Controller Location
Evaluation Criteria Criteria

AverageJ1 J2 J3 J4 J5 J6

El Centro

POFF

First Floor 19.25 12.74 22.38 14.60 4.76 4.54 14.75

Second Floor 19.12 10.28 14.35 5.70 4.61 3.32 10.81

Third Floor 20.31 8.46 13.29 4.18 4.86 3.20 10.22

PON

First Floor 43.25 43.35 37.19 24.62 8.44 6.39 31.37

Second Floor 34.47 9.92 27.31 4.78 6.66 4.49 16.63

Third Floor 34.51 13.61 21.89 16.02 6.77 4.23 18.56

SA

First Floor 24.21 14.99 24.77 4.62 5.31 4.77 14.78

Second Floor 20.36 4.32 17.11 12.90 4.31 3.17 11.80

Third Floor 21.50 6.91 11.73 11.62 4.45 2.34 11.24

Kobe

POFF

First Floor 5.64 3.63 14.73 1.39 1.82 3.85 5.44

Second Floor 6.25 6.00 5.87 7.67 2.01 1.83 5.56

Third Floor 5.65 5.69 8.07 6.60 1.83 2.71 5.57

PON

First Floor 62.47 27.22 38.44 10.18 13.25 6.12 30.31

Second Floor 48.68 17.33 37.04 12.08 10.37 6.22 25.10

Third Floor 46.17 16.36 26.86 25.98 10.13 4.64 25.10

SA

First Floor 26.49 11.28 25.45 13.80 6.58 4.80 16.72

Second Floor 27.28 7.90 16.85 3.54 6.78 3.82 12.47

Third Floor 27.81 10.65 11.01 5.57 6.78 2.46 12.36

Morgan Hill

POFF

First Floor 9.26 3.38 23.24 7.14 2.59 5.98 9.12

Second Floor 9.05 4.31 8.00 5.63 2.50 2.14 5.90

Third Floor 8.69 1.96 10.73 4.40 2.38 2.98 5.63

PON

First Floor 60.22 13.58 40.05 10.91 12.61 5.66 27.47

Second Floor 37.92 4.87 36.44 6.96 8.86 8.02 19.01

Third Floor 34.35 7.25 31.25 23.59 8.53 7.19 21.00

SA

First Floor 18.46 6.07 25.16 5.35 4.03 4.90 11.81

Second Floor 17.76 1.99 14.91 15.38 3.96 2.88 10.80

Third Floor 17.26 2.15 11.52 7.25 3.75 2.51 8.39

EQ Average

POFF

First Floor 11.38 6.58 20.12 7.71 3.06 4.79 9.77

Second Floor 11.47 6.86 9.40 6.33 3.04 2.43 7.42

Third Floor 11.55 5.37 10.70 5.06 3.03 2.96 7.14

PON

First Floor 55.31 28.05 38.56 15.23 11.43 6.06 29.72

Second Floor 40.35 10.71 33.60 7.94 8.63 6.24 20.25

Third Floor 38.35 12.41 26.67 21.86 8.48 5.35 21.55

SA

First Floor 23.05 10.78 25.12 7.93 5.31 4.82 14.44

Second Floor 21.80 4.74 16.29 10.61 5.02 3.29 11.69

Third Floor 22.19 6.57 11.42 8.15 4.99 2.44 10.66
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CHAPTER 6

VALIDATION OF RTHS WITH SHAKE TABLE TESTS

dRTHS platform inherits all features provided by RTHS configuration. It also means,

any error related to RTHS will also appear in dRTHS. In this chapter, experimental

study to validate RTHS with shake table test is given, to interpret the comparisons

between dRTHS and RTHS, as well as shake table tests and to understand the source

of discrepancies that may appear in the comparisons. First, an accurate dynamic

model of the actuator and an efficient control algorithm to compensate actuator

dynamics, both of which are essential elements of successful RTHS, are introduced

in Section 6.1. In Section 6.2, a general implementation of the RTHS is discussed.

Next, in Section 6.3, results of RTHS are compared to shake table results. For all

cases, error in relative displacement, absolute acceleration in the global sense of the

structure is examined including other evaluation criteria discussed in Section 3.5.

Finally, a summary of the chapter that interprets and concludes main findings in the

comparisons is given in Section 6.4.

A successful comparison between shake table experiments and RTHS, hence,

dRTHS depends on the following tasks: (i) modeling of the existing test structure that

will serve as the analytical substructure in the RTHS scheme, (ii) characterization of

the MR damper which will be used as the physical substructure of RTHS, and (iii)

actuator tracking controller design, particularly to ensure stable and high performance

RTHS. Steps (i) and (ii) were already introduced in the previous chapters. In the

following sections, system modeling and actuator tracking are also discussed. Later,

in the subsequent sections, results of RTHS implemented based on these previously

introduced concepts are studied.
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6.1 Design of Tracking Controller to Compensate Actuator Dynamics

The transfer function system of a hydraulic actuator, Gxm,xc can be idealized

by servo-hydraulic system, including servo-valve and servo-valve controller, as well

as the actuator and specimen. The system can be represented in block diagram

as in Figure 6.1. In this diagram, xc is the command input, xm is the measured

output and f is the force applied by the actuator to the specimen. An inner loop

PID control is often provided within the servo-valve controller that promises basic

tracking of command. Although this inner loop control is adequate for slow-rate tests

and non-real-time hybrid simulations, strict requirements of RTHS, such as low time

delay between desired input and measured output, make the PID control meager.

To improve the performance of the actuator control, actuator dynamics should be

compensated via a proper control scheme.

In the following subsections, modeling of actuator and development of a novel

Robust Integrated Actuator Control (RIAC) algorithm is briefly discussed.

As

Gs(s) Ga(s) Gx  f(s)
xc f xm+

_

Natural Velocity Feedback

ActuatorServo-Valve Controller
and Servo-Valve

Specimen

m

+
_

Figure 6.1: Servo-hydraulic system diagram

The performance of servo-hydraulic system can be extended by introducing an

outer loop control algorithm that ensures tracking of desired response as simplified in

Figure 6.2. In this diagram, xd is the desired input, and in a RTHS setting, it can

be considered as a response of numerical substructure to be imparted to the physical

substructure through actuator.
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xd xc xm

Outer Loop Feedback

Outer Loop
Control

Inner Loop Control
&

Servo-Hydrauilic System

+
_

Figure 6.2: Introduction of outer loop control

6.1.1 Modeling of Servo-hydraulic Actuator

The actuator dynamics often manifest as a drop in frequency response magnitude

and as lag in phase, undesirable for conducting successful RTHS. Developing an

effective compensation control system depends on an accurate model that describes

such dynamics over the operational frequency content of the target structure. For

the purpose stated above, system identification for the HIT and Purdue setups are

discussed.

HIT Setup

The hydraulic system at HIT is identified with MR damper attached using a 0–100

Hz band-limited white noise input signal in open loop control setting. The resulting

response of the actuator system is stored as the measurement data. The time domain

response of the system is shown in Figure 6.3.

Since the loading capacity of the actuator is very large compared to the MR damper

maximum force, the resulting transfer functions for passive-off and -on control cases

for the damper are assumed to be same. The plant model is determined using invfreqz

command in MATLAB. The zero-pole system is written as a fourth order transfer

function as given Equation (6.1):

Gxm,xc,HIT =
1.5091× 108

s4 + 281.795s3 + 6.6017× 104s2 + 6.0044× 106s+ 1.4966× 108
(6.1)
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Figure 6.3: Open loop system input and output in time domain for HIT setup

The frequency domain response including identified transfer function of the open loop

system is shown in Figure 6.4. It is observed that there is drop in gain (∼− 0.5 dB/Hz)

and lag in the phase (∼− 6.75 dB/deg) as the frequencies increase.

Purdue Setup

Purdue actuator is identified with MR damper attached using a 0–100Hz band-

limited white noise signal when damper is at passive-on and -off mode. The time

domain response of the system is shown in Figure 6.5.

Two transfer functions are developed from desired input to measurement output

for each case. Since the Purdue damper is relatively small, the effect of the damper

mode on the transfer functions are noticeable. To minimize uncertainties due to this

behavior, a new transfer function by averaging passive-on and -off results are taken as



127

0 10 20 30 40
−30

−20

−10

0

10

Frequency - Hz

G
ai
n
-
d
B

0 10 20 30 40
−270

−180

−90

0

90

Frequency - Hz

P
h
as
e
-
d
eg

Experiment
Model

Figure 6.4: Frequency response and identified model of the open loop system for HIT

setup

the final transfer function to be modeled. The resulting zero-pole systems are written

as given in Equation (6.2):

Gxm,xc,OFF,Purdue =
3.12× 109

s4 + 517.47s3 + 3.008× 105s2 + 5.49× 107s+ 3.17× 109
(6.2a)

Gxm,xc,ON,Purdue =
4.70× 109

s4 + 639.55s3 + 3.50× 105s2 + 7.51× 107s+ 4.79× 109
(6.2b)

Gxm,xc,AV G,Purdue =
3.91× 109

s4 + 578.51s3 + 3.25× 105s2 + 6.50× 107s+ 3.98× 109
(6.2c)
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Figure 6.5: Open loop system input and output in time domain for Purdue setup

The frequency domain response including identified transfer functions of the open

loop system is shown in Figure 6.6. The average transfer function shows a drop in

gain (∼− 0.3 dB/Hz) and lag in the phase (∼− 4.5 dB/deg) for the actuator.

6.1.2 Control Scheme for Actuator Tracking

As stated before, a novel compensation method, RIAC is used as the outer loop

control to track desired displacement. RIAC integrates three key components: (i)

loop shaping feedback control based on H∞ optimization, (ii) a Linear Quadratic

Estimator (LQE) block for minimizing noise effect and (iii) a feed-forward block for

reducing small delay. The combination of these components provides flexibility in

controller design to accommodate setup limits while preserving the stability. A block

diagram of the controller is illustrated in Figure 6.7. RIAC is described in detail by

Ou et al. (2014).

Loop shaping feedback control was first introduced by Gao et al. (2013). By nature,

H∞ controller has a trade off between performance and sensitivity. The controller has

limitations in performing perfect tracking while attenuating high frequency noise. A

deterioration in performance can manifest when the noise/signal ratio in the system is
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Figure 6.6: Frequency response and identified model of the open loop system for

Purdue setup

high. To reduce the impact of noise and improve phase response efficiently, a Kalman

filter is integrated into RIAC. Considering the small residual delay may still exist,

to further enhance the efficiency of the RIAC, an inverse compensation algorithm

proposed by Chen and Ricles (2009) is implemented.

RIAC can be applied to any servo-hydraulic system regardless the size or flow

limitation of the actuator. In the following section, performance of the controller for

HIT and Purdue setups is presented.



130

Inverse
Compensation H∞ Controller

LQE
Kalman Filter

disturbance

noise

Gx    , x  (s)
m c

Inner Loop Control

xd

xm

+

+

+

++
_

Figure 6.7: RIAC control block diagram

6.1.3 Verification of Controller

The performance of the actuator motion controller can be assessed by deriving the

closed-loop system transfer function from desired and measured signals. Furthermore,

the effect of the size and speed of the actuator on the controller efficiency, both

large-size HIT and small-size Purdue actuators are tested. To obtain the transfer

function, a band limited white noise bounded with 0-20 Hz is given to the actuators

for 30 seconds in RIAC controlled closed loop setting. The transfer function is then

compared to unity gain. In Figures 6.8 and 6.9, HIT and Purdue closed loop transfer

functions are presented. For both actuators, an optimal performance close to unity

gain is obtained. Ultimately, it is shown that RIAC can be used for two completely

different actuators.
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Figure 6.8: Performance of RIAC for HIT actuator

In time domain, RMS errors between desired and measured signals for both actu-

ators varied in the range of 3 % to 10 %.

6.2 RTHS Implementation

Experimental RTHS setup at IISL has been previously discussed in Section 2.5.

In this section, the RTHS implementations is explained thoroughly.

As shown in Figure 6.10, based on the given ground excitation, analytical sub-

structure simulated in real-time by MATLAB/xPC generates global responses. Only



132

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

1.5

2

Frequency - Hz

G
ai
n
-
M
ag
n
it
u
d
e

0 2 4 6 8 10 12 14 16 18 20 22 24
−40

−20

0

20

Frequency - Hz

P
h
as
e
-
d
eg

Unity Gain
RIAC Simulation
Experiment

Figure 6.9: Performance of RIAC for Purdue actuator

the first floor displacement, which is compensated with RIAC, is sent to the actuator

to engage the MR damper. Eventually, MR damper produces a force response to the

given displacement which is fed back to the analytical substructure for the next time

step.

A simplified implementation of RTHS configuration in MATLAB/Simulink is

provided in Figure 6.11.



133

Physical Substructure Analytical Substructure
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Figure 6.10: Communication between physical and anayltical substructure in a RTHS

frame

6.3 Comparison of Shake Table Test Responses with RTHS Results

In this section, RTHS conducted at Purdue is compared to the shake table tests

performed at HIT. The experimental plan for the validation of the RTHS is focused on

simulating the seismically-excited three story structure while testing the damper device

physically at passive on/off and semi-active control modes. Results obtained from

RTHS are compared to shake table responses and accuracy of the RTHS configuration

is assessed with evaluation criteria proposed in Chapter 3.

As in Chapter 5, passive on/off and semi-active control cases are considered for

the comparison. Excitation input to the structure in RTHS setup is selected as El

Centro, Kobe and Morgan Hill earthquakes measured by two accelerometers placed

on the shake table. No filtering is applied to the ground accelerations. A sampling

and integration rate of 5000 Hz is selected for the RTHS for a fair comparison.

6.3.1 El Centro

In this section, results between shake table and RTHS are compared for El Cen-

tro earthquake. Passive-off (POFF), -on (POFF) and semi-active (SA) cases are

considered for the comparisons.
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Passive-off

Displacement and acceleration comparisons are given in Figures 6.12 and 6.13.

RMS and peak response errors are tabulated in Table 6.1 in percentage. In addition,

moving RMS errors are illustrated in Figure 6.14.

Compared to shake table-pure simulation comparisons, the reported peak errors

for floor accelerations and displacements are slightly large and ranging from 10 % to

30 %. On the other hand, the RMS error are lower and varying from 4 % to 15 %.

Range-normalized RMS errors for RTHS and pure simulations are close to each other.

Passive-on

For PON case, displacement and acceleration comparisons are given in Figures 6.15

and 6.16. Related errors are tabulated in Figure 6.17 and Table 6.1.

As observed in shake table-pure simulation results, there is a deviation in the first

floor displacement responses concentrated at around 6–9 seconds.

RMS and peak response errors for floor accelerations and displacements are lower

than pure simulation errors and are ranging from 2 % to 35 %. The criteria-averaged

RMS error is varying from 14 % to 20 %. It has been noted that the first floor errors

are smaller than those of pure simulation case, possibly due to the fact that physical

MR damper is showing better performance than its analytical model despite the

difference in the force levels between HIT and Purdue dampers.

Semi-active

The comparisons for SA case are given in Figures 6.18 to 6.20 and Table 6.1.

As observed in the previous chapter, the reported averaged errors for SA case are

between PON and POFF cases. RMS and peak response errors vary from 3 % to

238 % and the criteria-averaged RMS error is around 10 %.
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Figure 6.14: Moving RMS error for El Centro earthquake ST–RTHS POFF case

6.3.2 Kobe

In this section, results between shake table and pure simulations are compared for

Kobe earthquake. POFF, PON and SA cases are considered for the comparisons.

Passive-off

The related response comparisons are given in Figures 6.21 and 6.22. The errors

observed for this case are higher than pure-simulation results. The differences between

Purdue and HIT damper POFF forces can be held accountable for this elevated

disturbances.

Passive-on

PON case comparisons, error tables and moving RMS error plot are given in

Figures 6.17, 6.24 and 6.25 and Table 6.1.
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Figure 6.17: Moving RMS error for El Centro earthquake ST–RTHS PON case

For this case, RMS and peak response errors range from 5 % to 50 % which are

lower than pure simulation comparisons. Likewise, the criteria-averaged errors are

concentrated around 20 %, which are also smaller compered to pure simulation errors.

Semi-active

In Figure 6.27 and Figure 6.28, SA case comparisons are presented. The reported

errors and criteria-averaged errors are similar to pure simulation comparisons and in

the range 4 % to 27 % and 12 % to 16 %, respectively.

6.3.3 Morgan Hill

In this section, results between shake table and pure simulations are compared for

Morgan Hill earthquake. POFF, PON and SA cases are considered for the compar-

isons.
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Figure 6.20: Moving RMS error for El Centro earthquake ST–RTHS SA case

Passive-off

Time- and frequency-domain comparisons for POFF case are provided in Fig-

ures 6.21 and 6.22. The reported errors and moving RMS errors are in the range of

5 % to 14 %. The averaged errors are nearly 10 % for all criteria.

Passive-on

Displacement and acceleration comparisons are given in Figures 6.33 and 6.34.

RMS and peak response errors for accelerations and displacements are ranging from

7 % to 40 % and are lower than pure simulation errors. The criteria-averaged error is

varying from 16 % to 21 %.



145

0
3

6
9

12
15

−
25

−
20

−
100102025

SecondFloor-mm

0
3

6
9

12
15

−
25

−
20

−
100102025

FirstFloor-mm
D
is
p
la
ce
m
en
t

0
3

6
9

12
15

−
8

−
4048

FirstFloor-m/sec
2

A
cc
el
er
at
io
n

0
3

6
9

12
15

−
8

−
4048

SecondFloor-m/sec
2

0
3

6
9

12
15

−
8

−
4048

T
im

e
-
se
c

ThirdFloor-m/sec
2

0
3

6
9

12
15

−
25

−
20

−
100102025

T
im

e
-
se
c

ThirdFloor-mm

E
x
p

er
im

en
t

R
T

H
S

F
ig

u
re

6.
21

:
K

ob
e

ea
rt

h
q
u
ak

e
re

sp
on

se
co

m
p
ar

is
on

in
ti

m
e

d
om

ai
n

fo
r

S
T

–R
T

H
S

P
O

F
F

ca
se



146

0
10

20
30

40
50

−
15
0

−
10
0

−
5005010
0

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

0
10

20
30

40
50

−
15
0

−
10
0

−
5005010
0

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB
D
is
p
la
ce
m
en
t

0
10

20
30

40
50

−
5005010
0

15
0

20
0

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

A
cc
el
er
at
io
n

0
10

20
30

40
50

−
5005010
0

15
0

20
0

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

0
10

20
30

40
50

−
5005010
0

15
0

20
0

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

0
10

20
30

40
50

−
15
0

−
10
0

−
5005010
0

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

E
x
p

er
im

en
t

R
T

H
S

F
ig

u
re

6.
22

:
K

ob
e

ea
rt

h
q
u
ak

e
re

sp
on

se
co

m
p
ar

is
on

in
fr

eq
u
en

cy
d
om

ai
n

fo
r

S
T

–R
T

H
S

P
O

F
F

ca
se



147

3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

80

90

100

Time - sec

S
li
d
in
g
R
M
S
E
rr
or

-
in

P
er
ce
n
ta
ge Floor 1 - Disp

Floor 2 - Disp
Floor 3 - Disp
Floor 1 - Acc
Floor 2 - Acc
Floor 3 - Acc

Figure 6.23: Moving RMS error for Kobe earthquake ST–RTHS POFF case

Semi-active

SA case comparisons are presented in Figures 6.27 and 6.28. The RMS and peak

response errors are confined within 3 % to 18 %. The criteria-averaged errors are

around 10 %.
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Figure 6.26: Moving RMS error for Kobe earthquake ST–RTHS PON case



151

0
3

6
9

12
15

−
15

−
10−
5051015

SecondFloor-mm

0
3

6
9

12
15

−
15

−
10−
5051015

FirstFloor-mm
D
is
p
la
ce
m
en
t

0
3

6
9

12
15

−
5

−
2.
50

2.
55

FirstFloor-m/sec
2

A
cc
el
er
at
io
n

0
3

6
9

12
15

−
5

−
2.
50

2.
55

SecondFloor-m/sec
2

0
3

6
9

12
15

−
5

−
2.
50

2.
55

T
im

e
-
se
c

ThirdFloor-m/sec
2

0
3

6
9

12
15

−
15

−
10−
5051015

T
im

e
-
se
c

ThirdFloor-mm

E
x
p

er
im

en
t

R
T

H
S

F
ig

u
re

6.
27

:
K

ob
e

ea
rt

h
q
u
ak

e
re

sp
on

se
co

m
p
ar

is
on

in
ti

m
e

d
om

ai
n

fo
r

S
T

–R
T

H
S

S
A

ca
se



152

0
10

20
30

40
50

−
15
0

−
10
0

−
50050

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

0
10

20
30

40
50

−
15
0

−
10
0

−
50050

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB
D
is
p
la
ce
m
en
t

0
10

20
30

40
50

−
5005010
0

15
0

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

A
cc
el
er
at
io
n

0
10

20
30

40
50

−
5005010
0

15
0

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

0
10

20
30

40
50

−
5005010
0

15
0

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

0
10

20
30

40
50

−
15
0

−
10
0

−
50050

F
re
q
u
en
cy

-
H
z

ThirdFloor-dB

E
x
p

er
im

en
t

R
T

H
S

F
ig

u
re

6.
28

:
K

ob
e

ea
rt

h
q
u
ak

e
re

sp
on

se
co

m
p
ar

is
on

in
fr

eq
u
en

cy
d
om

ai
n

fo
r

S
T

–R
T

H
S

S
A

ca
se



153

3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

80

90

100

Time - sec

S
li
d
in
g
R
M
S
E
rr
or

-
in

P
er
ce
n
ta
ge Floor 1 - Disp

Floor 2 - Disp
Floor 3 - Disp
Floor 1 - Acc
Floor 2 - Acc
Floor 3 - Acc

Figure 6.29: Moving RMS error for Kobe earthquake ST–RTHS SA case
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Figure 6.32: Moving RMS error for Morgan Hill earthquake ST–RTHS POFF case
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Figure 6.35: Moving RMS error for Morgan Hill earthquake ST–RTHS PON case
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Figure 6.38: Moving RMS error for Morgan Hill earthquake ST–RTHS SA case

6.3.4 Discussions

Considering POFF cases, El Centro for RTHS case yielded a maximum average

error of 16 % which is lower than the pure simulation comparison. On the other hand,

RTHS errors for Kobe and Morgan Hill are around 15 %, relatively and slightly larger

than the pure simulation errors. The differences between force-displacement behavior

of Purdue and HIT dampers at POFF mode can be accounted for the elevated errors.

Despite these discrepancies, PSDs of shake table and RTHS responses demonstrate

strong correlation.

RTHS and pure simulation comparisons for SA cases present similar level of

averaged errors. For the PON cases, the averaged errors, particularly, errors for the

first floor responses are reduced.

The overall averaged errors reported in Table 6.1 are near 18 % and 20 % for POFF

and SA cases, respectively. The PON case averaged errors are in the range of 24 % to

36 %.
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Table 6.1: Evaluation criteria for for ST–RTHS comparison

Ground Motion Controller Location
Evaluation Criteria Criteria

AverageJ1 J2 J3 J4 J5 J6

El Centro

POFF

First Floor 15.95 11.62 27.59 7.31 3.94 5.59 12.00

Second Floor 15.56 12.34 15.43 5.78 3.75 3.57 9.41

Third Floor 15.22 10.96 14.28 3.88 3.64 3.44 8.57

PON

First Floor 33.78 29.50 30.60 10.37 6.60 5.26 19.35

Second Floor 34.05 6.88 28.18 2.11 6.57 4.62 13.74

Third Floor 33.56 8.93 23.98 21.48 6.57 4.63 16.52

SA

First Floor 22.40 13.36 30.13 10.37 4.91 5.80 14.50

Second Floor 18.51 7.67 19.88 17.29 3.92 3.69 11.83

Third Floor 19.36 9.54 13.84 11.30 4.01 2.77 10.14

Kobe

POFF

First Floor 17.96 11.19 22.35 7.90 5.79 5.84 11.84

Second Floor 17.56 13.84 17.78 16.68 5.65 5.55 12.84

Third Floor 16.13 13.71 20.39 16.93 5.23 6.85 13.21

PON

First Floor 51.12 12.29 37.71 16.02 10.85 6.01 22.33

Second Floor 45.81 4.19 37.06 6.93 9.76 6.23 18.33

Third Floor 43.59 4.04 26.26 20.95 9.57 4.54 18.16

SA

First Floor 26.68 7.38 29.93 17.59 6.63 5.67 15.65

Second Floor 27.59 6.32 19.34 9.01 6.86 4.37 12.25

Third Floor 27.45 6.23 15.54 8.87 6.69 3.47 11.37

Morgan

POFF

First Floor 13.53 9.01 23.89 9.81 3.78 6.15 11.03

Second Floor 13.19 7.83 13.72 14.06 3.65 3.67 9.35

Third Floor 12.14 5.28 15.69 4.23 3.33 4.36 7.50

PON

First Floor 41.45 5.56 41.03 23.84 8.68 5.79 21.06

Second Floor 30.65 7.56 45.25 7.61 7.16 9.94 18.03

Third Floor 27.26 5.56 29.73 24.13 6.77 6.83 16.72

SA

First Floor 17.25 9.89 28.86 9.31 3.76 5.61 12.45

Second Floor 17.13 5.89 17.36 21.10 3.82 3.35 11.44

Third Floor 15.64 4.23 14.44 8.42 3.39 3.14 8.21

EQ Average

POFF

First Floor 15.81 10.61 24.61 8.34 4.51 5.86 11.62

Second Floor 15.44 11.34 15.64 12.17 4.35 4.26 10.53

Third Floor 14.49 9.98 16.79 8.35 4.07 4.88 9.76

PON

First Floor 42.12 15.78 36.45 16.74 8.71 5.68 20.91

Second Floor 36.84 6.21 36.83 5.55 7.83 6.93 16.70

Third Floor 34.81 6.18 26.66 22.19 7.64 5.33 17.13

SA

First Floor 22.11 10.21 29.64 12.42 5.10 5.70 14.20

Second Floor 21.08 6.63 18.86 15.80 4.87 3.80 11.84

Third Floor 20.82 6.67 14.60 9.53 4.70 3.13 9.91
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6.4 Conclusions

In this chapter, shake table responses of MR damper controlled three story struc-

ture located at HIT are compared to RTHS responses. In RTHS configuration, the sys-

tem is partitioned into physical substructure represented by the Purdue MR damper,

and analytical substructure simulated by the model of the test structure.

For the RTHS configuration, ground motions recorded by the accelerometers are

used as the excitation input, while MR damper is driven in POFF, PON, and SA

mode. Resulting relative displacements and absolute accelerations of each floor are

compared to shake table responses. To assess the performance and validate feasibility

of RTHS, peak, RMS, and sliding RMS errors are computed. PSDs of the shake table

and RTHS responses are also supplemented to show the RTHS efficiency in frequency

domain.

In summary, RTHS was able to predict shake table test responses successfully.

The results of evaluation criteria also validated that RTHS can be a valid alternative

to shake table tests.
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CHAPTER 7

DEVELOPMENT AND EVALUATION OF DRTHS PLATFORM

Before considering the validation of dRTHS with shake table test results, it is im-

perative to explain what the Internet network is and how dRTHS architecture is

implemented based on network communication. Since dRTHS architecture proposed

here has not been tested before, it is best to start with a simple, focused example where

the only source of error is delays in the Internet. Accordingly, the performance of the

example test is assessed using an MR damper as the numerically simulated physical

substructure and a two story structure as the numerical substructure in virtual dis-

tributed dRTHS (vdRTHS) configuration. The setup selected for the validation of the

architecture is distributed between IISL at Purdue University and Smart Structures

Technology Laboratory (SSTL) at University of Illinois in Urbana-Champaign.

This chapter begins with a brief discussion of the Internet topology as presented

in Section 7.1. Following, in Section 7.2, MATLAB/xPC components used to conduct

dRTHS are introduced. Section 7.3 outlines the architecture of dRTHS and describes

how components fit to the large picture. In Section 7.4, the minimal working example

is explained and methods to compensate the network time delays are discussed. Later,

Section 7.5 introduces the proposed use of the estimator to determine initial network

time delay that improves performance of compensation methods. In Section 7.6, a

vdRTHS is conducted to validate the architecture and the delay estimator. Finally,

main findings and observations are presented in Section 7.7.

7.1 Introduction

The Internet is a global system of networks and the procedure for the commu-

nication between each element on the net is standardized in seven layers such as
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link, network, transport and higher application layers, also conceptualized as Open

Systems Interconnection (OSI) model (ISO, 1196). Each layer contains a number

of communication protocols to handle certain Internetworking tasks as presented in

Table 7.1. By definition of OSI, layers can function properly when the layers below

are in operation.

Table 7.1: OSI model

Model Layer Description

Application Layer User interface responsible for interpretation of the data

Presentation Layer Syntactic representation and encryption of data

Session Layer Management of connection sessions

Transport Layer End-to-end communication services

Network Layer Packet relay through intermediate routers

Data Link Layer Low level transmission of data between adjacent networks

Physical Layer Medium for physical transmission of raw bits

For instance, distributed systems over the Internet mainly use Internet Protocol

version 4 IPv4. Details on IPv4 are described by Postel (1981a), in depth. However,

IPv4 by itself is not sufficient for transmitting data to the application layer where

user interacts with the software. Consequently, an intermediate transport layer that

can act as a middleman between application and Internet protocol is used. There are

two main protocols called TCP and UDP. Basically, TCP is a connection-oriented

protocol inheriting attributes such as flow, traffic, reliability and congestion control,

and acknowledgment check (Postel, 1981b). These properties make TCP a perfect

candidate for applications requiring reliability. On the other hand, TCP is heavy-

weight and does not guarantee low network delays the due to the time taking control

checks.



167

Opposite to TCP, UDP is a connectionless protocol that doesn’t have any connec-

tion quality control and therefore has less overhead (Postel, 1981b). This advantage

makes UDP suitable for real-time applications that requires minimal time delay such

as VoIP or dRTHS. It should be considered that this lightweight protocol promises

less network delays at the cost of possible data loss. However, considering the fact

that network backbones are becoming more advanced in terms of technologies, data

loss will be significantly less as compared to what might have occurred when UDP

was first developed.

There are other such protocols that promise speed of UDP with reliability of TCP,

such as Real-time Transfer Protocol (RTP) built on UDP, but they are designed for

media streaming purposes (Schulzrinne et al., 2003), and are not the scope of this

chapter.

7.2 Components of Real-time Communication

There are many real-time target platforms that might be used for performing

RTHS. While the infrastructure described here can be applied to many of those, xPC

is selected for this study, since MATLAB provides readily available network modules

for distributed testing.

There are three main block libraries implemented in Simulink. Those are: (i)

Ethernet-based, (ii) TCP-based and (iii) UDP-type data exchange blocks. As the

Ethernet block uses link layer, each data packet is sent from a source MAC address

to destination MAC address. This is an ideal mechanism for communication between

nodes located under same Local Area Network (LAN). However for geographically

distributed systems, data needs to be transmitted over a transport layer, i.e. IP.

The second option, data transport over TCP may not be a viable option since it

may introduce significant transmission delays as mentioned before. Additionally, as

TCP block implemented for xPC responsible for target-target communication, and
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host-target communication share the same resources over a single network interface

card (NIC), a concurrency issue may arise and cause even further transmission delays.

The third option, UDP is forked into two branches. The first branch is similar

to TCP in the sense that all communications are performed on the same NIC. The

second branch, or the so-called Real-time UDP (RT-UDP) block, however, uses a

dedicated NIC for target-target communication. Another nice feature of this block

that is not implemented in other options, is the availability of buffering of the incoming

data. Basically, buffer is a routine that compensates differences in data flow rate, by

queuing incoming packets in first in-first out (FIFO) mechanism into a temporary

medium, as illustrated in Figure 7.1. When the buffer is full and a buffered package is

required, it is removed from the queue. Respectively, jittering in the transmission can

be eliminated using this method. xPC block expects to get a data package at each

time step. If a package doesn’t arrive on time, xPC registers it as lost. This type of

anticipation can be easily satisfied in locally distributed nodes with a low buffer size

since almost no jitter will be observed, and low and deterministic network delay is

still guaranteed. On the other hand, for dRTHS, in the case of degraded QoS, the flow

rate may be interrupted. To take care of this problem, buffer size can be increased at

the expense of delay.

p4 p3 p2 p1 p0

incoming package p5 
 at time t5

bu�er queue with a length of 6
requested package p0 

 at time t5

Figure 7.1: A generic buffering application

Each UDP packet sent over IPv4 layer contains 28 Bytes of overhead. A typical

overhead is composed of at least 20 Bytes sized, IPv4 protocol dictated header in-
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cluding essential protocol requirements such as source and destination addresses, and

of 8 Bytes sized UDP header encapsulating source and destination ports, length of

data and a checksum field, as given in Tables 7.2 and 7.3. When encapsulated with a

double precision floating-point data with a size of 8 Bytes, the total packet size will be

36 Bytes. As observed, only a quarter of the packet is real data, while the rest of the

package is header data. In addition, if an IP packet is transmitted over the Ethernet

frame, a header of 18 Bytes for Ethernet should be added to the total size. It should

be also noted that there is a minimum size requirement of 64 Bytes for an Ethernet

packet.

Table 7.2: IP header structure

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 Version Length Service Options Total Length

32 Identification Flag Fragment Offset
64 Time to Live Protocol Checksum
96 Source IP

128 Destination IP
160 Options (not required unless Service Options indicate)

Table 7.3: UDP header structure

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 Source Port Destination Port

32 Length Checksum

For geographically distributed systems, Internet may not always sustain such

inefficient high-rate real-time communication. Instead of transmitting small packets

containing large overheads, by framing, multiple data blocks can be sent at once at

lower rates encapsulated under a single overhead. For example, instead of sending one

data package at a rate of 1000 Hz, four data can be transmitted in a single package at

a rate of 250 Hz, which will eventually yield smaller package size per data block and

therefore more efficient transmission. The concept of framing is illustrated Figure 7.2.
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It should be noted that framing causes the transmission to be delayed by the

number of framed packages, thus it will introduce another source of time delay within

the closed loop constituting the dRTHS.

p3

p3

p2

p2

p1

p1

p0

p0

t3 t2 t1 t0 t3

produced data pi at time ti framed data to be sent

p7 p6 p5 p4

t7 t6 t5 t4

p7

p6

p5

p4

t7

Figure 7.2: A generic framing application

In addition, both buffering and framing do not ensure data integrity, i.e. the

incoming data may be corrupted on its way, get rejected by the RT-UDP Simulink

block and lost forever. Ultimately, UDP is not designed to correct such issues. Still,

in a healthy network, including the advantages aforementioned, RT-UDP remains an

ideal candidate for dRTHS.

In MATLAB, the RT-UDP protocol is accompanied with several blocks, including

a Network Configuration, Receive and Send blocks, given in Figure 7.3. The network

configuration block determines several properties such as IP, subnet mask and gateway

addresses, and type of the dedicated NIC. Send and Record blocks regulate destination

address and port to send to and source address and port to receive from.

7.3 dRTHS Architecture

An overview of the proposed architecture is shown in Figure 7.4. The xPC target

computer node, realizing actuator control and measuring physical substructure re-
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Network Configuration

Network Configuration 

UDP
Send

S end 

UDP
Receive

Receive 

Figure 7.3: xPC RT-UDP blocks

sponses is located in Intelligent Infrastructural Systems Laboratory (IISL) at Purdue

University. The numerical substructure is simulated at Smart Structures Technology

Laboratory (SSTL) at University of Illinois, Urbana-Champaign (UIUC). The host

computer responsible for compiling and downloading xPC code to the nodes is also

located at IISL.

The RT target node at IISL (xPC1) is a SpeedGoat system (model # 1474)

running on xPC that acts as a digital controller. It employs the following tasks; (i)

exchange data with the RT target node at SSTL, (ii) compensates actuator dynamics

to realize the received desired signal coming from SSTL node, and (iii) collects the

measured force from the physical substructure selected as LORD MR damper (model

# RD-8041-1) and sends to remote node.

As for the SSTL site, the RT node configured on a Dell Optiplex 780 (xPC2)

performs the following: (i) simulates the numerical model, (ii) generates the desired

displacement and sends to IISL, and (iii) receives the feedback force from IISL, and

finally (iv) compensates for the network time delays using Smith predictor. The design

for the Smith predictor will be explained in the next section.

The host computer running on a Dell Optiplex 960 is tasked (i) to compile simu-

lation files into a special form with the file extension, *.dlm that can be executed by

xPCs, (ii) download *.dlm files to related nodes, and (iii) download binary formatted

simulation results after a test is conducted.

All host, SSTL and IISL systems are equipped with Intel 82559 NICs compatible

with MATLAB/xPC.
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7.3.1 Connection Map

A connection map of dRTHS architecture shown above is illustrated in Figure 7.5.

The two RT nodes are away from each other at a bird-eye distance of 70 miles or

110 km. An ICMP (ping) packet reached from IISL to SSTL about 9–12 msec. Route

trace analysis showed that ping trails on 14 hops before reaching its destination.

Although ping is a good way to quantify QoS, it does not guarantee data integrity or

stable network time delays.

The host at IISL is located at a Local Area Network (LAN) behind Bowen Labo-

ratory gateway (10.3.3.1) and addressed as 10.3.3.50. The gateway is a low-end

Dell GX260 running on Unix-like operating system FreeBDS.

As mentioned earlier, each RT target system has two NICs, each compatible

with MATLAB/xPC and assigned a unique IP address. xPC1 has IP addresses,

10.3.3.100 and 128.46.160.50, on its first and second NICs, respectively. IP address

of the first NIC is also located behind the Bowen Laboratory router.

Bowen Lab router creates a Network Address Translation (NAT) enabled private

network, known as subnet. NAT allows nodes on the same subnet to have unique

private IP addresses while they share same public address. NAT can be also used as a

primitive network security layout where all inbound connections can be rejected accord-

ing to firewall restrictions. All target-host communications for XPC2 are designed, by

choice, to be conducted inside Bowen Lab subnet, so that xPC2 is minimally exposed

to the Internet. On the other hand, the second NIC of xPC2 is directly connected

to Bowen Laboratory Gateway (128.46.160.1) set by the Engineering Computer

Network (ECN) to bypass router rules and reduce the number of network hops, and

hence, the delay. The gateway is an enterprise grade Cisco Catalyst 3750-E series

switch.

For SSTL site, first and second NICs of xPC2 are assigned 130.126.240.42 and

130.126.240.38. Both IPs are behind Newmark Laboratory Gateway (130.126.240.38)

and firewalled strictly by Campus Information Technologies and Education Services
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(CITES). However, very few ports including TCP/UDP-3283 used by Apple Remote

Desktop service are open.

The host downloads simulation codes or sends command execution commands

always through the first NIC of RT nodes. Such communication are processed through

local source port TCP-22222 as defined by MATLAB, by default. However, the remote

destination ports may be different according to the network structure of the system.

In this case, for SSTL site, destination source is selected as TCP-3283 due to firewall

restrictions.

The second NIC of xPC1 and xPC2 is dedicated to RT target-target communication

and only active when a simulation is executed. Although the destination and source

ports can be selected arbitrarily, xPC1 is located behind CITES firewall, and therefore,

all inbound transmission to 130.126.240.38 should be processed through UDP-3283.

7.4 Validation System

Since dRTHS architecture proposed here is not tested before, it is best to start

with a minimal working example where the only source of error is going to be the

Internet. To examine the performance of the architecture, a vdRTHS configuration

is prepared, where arbitrarily selected physical and numerical substructures are simu-

lated numerically and data is exchanged between the xPC computer through Internet

connection.
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For the numerical substructure, representation of a two floor structure developed

by Kim et al. (2012) is used, as given in Equation (7.1). The frequencies of the

analytical model are determined as 1.00 Hz and 2.61 Hz.

[M ] =

2.7 0

0 2.7

 tonne (7.1a)

[C] =

 588 −280

−280 280

 N

mm
(7.1b)

[K] =

 3.68 −1.23

−1.23 2.46

N
sec

mm
(7.1c)

A, B, C and D state matrices are generated to produce relative displacements and

velocities to the ground and absolute accelerations, as prescribed in Equations (3.6)

and (3.7). Ground motion is used as the excitation input to the system. The measured

MR damper force responding to the first floor displacement is applied again to the

first floor of the structure as an external feedback force. The damper is numerically

modeled after the Bouc-Wen hysteresis model developed for Purdue damper, given in

Table 7.4.

7.4.1 Design of the Smith Predictor

Arguably, one of the trickiest challenge for real-time network applications is com-

pensation of the dead time, which is basically the network time delay between the

targets. The network time delays in the dRTHS platform can be idealized as given

in Figure 7.6. Here, τ1 and τ2 are the transmission delays due to Internet for the

inbound and outbound packets between SSTL and IISL sites, respectively. These

transmission delays can be regarded as dead time, hence, can be treated with Smith

predictor (Smith, 1959).

The Smith predictor control structure proposed by Kim et al. (2012) is illustrated

in Figure 7.7. The Smith predictor uses an internal model of the MR damper to predict
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Table 7.4: Identified Bouc-Wen model parameters for Purdue damper

Parameter Value Unit

αa 2740.734 N m−1

αb 10010.25 N m−1 V−1

c0a 175.13 N sec m−1

c0b 1709.24 N sec m−1 V−1

c1a 3353.68 N sec m−1

c1b 175.13 N sec m−1 V−1

k0 1940.41 N m−1

k1 1.58 N m−1

γ 36332.07 m−2

β 36332.07 m−2

A 155.32 -

x0 0 m

n 2 -

η 60 sec

the delay-free and delayed model responses, Fa(t) and Fa(t− (τ̂1 + τ̂2)), respectively.

τ̂1 + τ̂2 is the estimated round-trip delay prior to the testing. To compensate network

time delay, the delay-free response is fed to the numerical substructure while delayed

model response cancels the delayed physical substructure response. The control

structure can be formulated as given in Equation (7.2).

F̂e(t) = Fa(t) + [Fe(t− (τ1 + τ2)− Fa(t− (τ̂1 + τ̂2))] (7.2)

where Fe(t) is MR damper plant force and F̂e(t) is the delay-compensated plant force.
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Ground Motion
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Figure 7.6: vdRTHS architecture including network time delays
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+
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Figure 7.7: Implementation of Smith predictor
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7.5 Initial Network Time Delay Estimator

The Smith predictor requires the dead time to be known prior to testing for the

optimal operation and it may not always be possible to estimate the network time

delay accurately since network conditions change continuously. The performance of

the Smith predictor could be enhanced if network time delay could be determined

just at the start of each test. In order to fulfill this objective, a network time delay

estimator is developed. Essentially, this estimator calculates the time delay between

the distributed nodes using the relationship between first transmitting and receiving

signals only for one time at the beginning of the test.

RT-UDP Receive block provides two output ports for processing incoming data.

The first port contains received data in bytes. Respectively, the second port outputs

size of the incoming packet. At a certain time step, zero from the second port indicates

that the data has not arrived on time. Using the outputs from this port, arrival of

packet can be checked during simulation time. This feature provides the basis of the

delay estimator. An algorithmic flowchart of the estimator is given in Figure 7.8.

Fundamentally, this algorithm checks if some data is coming from the remote

computer and whether the incoming data is a real data. As soon as a real data drops,

it starts a time step counter. While this counter runs, the real data is looped back

intentionally. Eventually, the timestep difference between the real data and looped-

back data is determined. This timestep difference is in fact the dead time required

by the Smith predictor.

Procedurally, the algorithm first initialize an arrival flag (arv flag) and time

delay (delay) variables. For the first time step, the algorithm will check if the size

of the packet is zero (arv check) until data arrives. When first packet is received

(arv check = 1), arv flag will be raised and delay will be fixed to the number

of the current time step produced by a counter. Once arv flag is raised, delay

will persistently contain the already estimated time step number until the end of

simulation.
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This algorithm is applied at numerical simulation site to the inbound feedback force

coming from physical substructure, before compensated by Smith predictor control

structure block. The output of this algorithm, which is the estimated time delay (in

fact, it is now the true time delay), is fed to the Smith predictor. An implementation

in Simulink is given in Figure 8.2

One main disadvantage of this algorithm manifest itself, when data losses occur.

Since the proposed algorithm doesn’t account for corrupted or unbuffered data, such

packages may cause additional delays that cannot estimated by the estimator correctly.

As another drawback of the estimator, still an initial assumption of the time delay

should be guessed until a signal is received from remote computer and estimator

starts to calculate the initial time delay based on the incoming signal. However,

unless the assumed time delay and estimated time delay are far away from each other

(∼100 msec), it should not impose any considerable error.

7.6 Validation of dRTHS Architecture

To demonstrate effectiveness of the dRTHS when exposed to Internet communica-

tion, a series of virtual RTHS experiments are conducted. All components of those ex-

periments, excluding Internet are numerically simulated in real-time including the vir-

tual physical MR damper. Responses from three RTHS cases are compared: (i) single

site virtual RTHS (vRTHS); (ii) multi-site virtual distributed RTHS (vdRTHS); and

(iii) multi-site virtual distributed RTHS with framed packages (vdRTHS (Framed)).

A sampling rate of 1000 Hz is selected for both IISL and SSTL sites. Transmission

is achieved at 1000 Hz for the non-framed simulation and at 200 Hz for the 5 packet-

framed data. MR damper is kept in semi-active mode and the command voltage

produced at SSTL is sent to remote target at IISL. The same command voltage is

also used in Smith predictor MR damper plant in the SSTL simulation. El Centro

earthquake is selected as the ground motion. The duration of experiment is 18 sec.
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A buffer size of 10 and 80 in RT-UDP blocks is chosen for SSTL and IISL sites,

respectively, to minimize data loss between the sites, when unframed data test is

employed. For the framed data test, the buffer size for IISL site is decreased to

20. The initial network time delay estimator determined network delay as 90–110

time steps or 90 msec–110 msec for repeated number of trials. While small buffer

size for SSTL node was sufficient for receiving the incoming data, IISL node was

having difficulty to obtain the incoming transmission on time. Since the dedicated

network card of IISL node is not behind a firewall, it is possible that the undesired and

unrejected traffic is disrupting the communication, thus creating unbalanced network.

A comparison of responses from vRTHS, vdRTHS, and vdRTHS (Framed), is

given in Figures 7.9 and 7.10. For the given comparisons, all three cases have the

identical numerical models of the structure and MR damper. In addition, vdRTHS

and vdRTHS (Framed) has the same estimated network time delay. Smith predictor

is able to compensate the delayed MR damper force perfectly. Since the source of

errors due to network delay and imperfect models in these experiments are nullified,

exact responses are expected for all three cases. As a result, comparisons yield 0.0 %

error.

7.7 Conclusion

In this chapter, a platform to conduct geographically distributed RTHS over UDP

is presented. Since MATLAB/xPC is selected as the development environment, this

platform provides versatility for researchers to integrate their own applications com-

pared to some of the previous dRTHS middleware. Using this flexible platform, a

network time delay predictor is used in conjunction with a Smith predictor, and intro-

duced to handle network indeterminacy. The performance of the platform along with

the predictor has been demonstrated through a series of virtual dRTHS considering a

numerical two story structure equipped with a physical MR damper on its first floor.

The analytical model of the structure is simulated at SSTL whereas the physical
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damper is simulated via a Bouc-Wen model at IISL. Excellent agreement is found

between vRTHS and vdRTHS tests.

Although RT-UDP opens new venues to expand capabilities of RTHS, it should be

noted that this protocol may not be suitable for all types of distributed applications.

For example, UDP does not guarantee data integrity. Hence, experiments that require

high fidelity data transmission, cannot rely on UDP. However, MATLAB/Simulink

is flexible enough for a possible data integrity control implementation without much

overhead.

As mention before, UDP is not a secure protocol and is vulnerable to cybersecurity

attacks such as spoofing and data modifications. Even for well protected networks,

such attacks may cause total loss of test setup and human life. To protect data

transmission, at least the exchanged data should be hashed with a secure hash al-

gorithm. Further actions can be taken by taking the whole communication system

behind virtual private networks.
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CHAPTER 8

VALIDATION OF DRTHS WITH SINGLE SITE RTHS AND

SHAKE TABLE TESTS

In previous chapters, modeling of the analytical substructure, characteristics of the

physical substructure, actuator tracking controller, and conceptual setup of geograph-

ically distributed RTHS were discussed. In this chapter, to validate dRTHS to its full

extent, a setup similar to the single site RTHS, where MR damper and 3-DOF test

structure are used as the physical and numerical respective substructures, is studied,

and communication between substructures is carried out through Internet.

First, a general implementation of dRTHS is discussed in Section 8.1. Towards

validation of dRTHS, responses of dRTHS are compared to single site RTHS in

Section 8.2. In Section 8.3, the effect of incorrect delay estimation on the dRTHS

responses are investigated experimentally, to demonstrate the efficiency of the network

time delay estimator. Results of dRTHS are compared to shake table responses in

Section 8.4. Finally, a summary of the chapter concluding the main findings is given

in Section 8.5.

8.1 Implementation

The system architecture proposed in Section 7.3 is used with minimal modification

for validation tests of dRTHS. For the physical portion of the test, the numerically

simulated device is replaced with the physical MR damper used in comparisons pre-

sented in Chapter 6. The Simulink implementation for SSTL and IISL nodes is given

in Figures 8.1 and 8.2 for unframed case. For the framed case, the implementation is

provided in Figures 8.3 and 8.4.
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The sampling rate for the simulation is chosen as 5000 Hz at both sites. Two cases

are considered for the communication speed between sites, where 5000 Hz, for the

unframed transmission and 500 Hz, for the 10 package framed transmission are selected.

First floor displacement and command voltage for the MR damper is transmitted from

SSTL to IISL, and MR damper force and the loopback first floor displacement is sent

from IISL to SSTL. All signals are considered as double precision data.

The transmission speed is estimated to be 1.67 Mbps for the unframed case and

0.72 Mbps for the framed case. The difference between transmission rates is due to

packet overheads included for each packet in unframed case. To sustain a lossless

transmission for the test duration (at least 14 sec) between the sites, a buffer of 300

and 30 time steps are selected for the unframed and framed data, respectively for the

IISL node. For SSTL node, a buffer of 10 time steps for the unframed and framed data

are sufficient for uninterrupted transmission. The delay is estimated by the initial

network time delay block as ∼ 400 time steps or ∼80 msec for both the unframed and

framed transmissions. It has been observed that the estimated delay is very close to

the one in the validation setup discussed in Chapter 7. The Smith predictor used

to estimate delayed MR damper forces using the estimated delay is modeled after

Purdue damper.

8.2 Comparison of RTHS Responses with dRTHS Results

In this section, the dRTHS results are compared to the RTHS responses. The semi-

actively controlled El Centro earthquake case is selected as the basis of comparison.

Time domain comparisons, as well as RMS and peak displacement, acceleration and

force errors are shown to quantify the performance of dRTHS.

In Figures 8.5 and 8.9, the acceleration and displacement responses of RTHS and

dRTHS are compared in the time domain for unframed and framed cases. Likewise, in

Figures 8.6 and 8.10, MR damper force comparisons are given. The frequency domain
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Table 8.1: Evaluation criteria for RTHS–dRTHS comparisons

Case Location
Evaluation Criteria Criteria

AverageJ1 J2 J3 J4 J5 J6

dRTHS

Unframed

First Floor 9.03 0.66 27.73 28.75 1.95 5.53 12.27

Second Floor 8.11 0.78 17.19 5.06 1.73 3.59 6.08

Third Floor 8.30 0.60 15.45 1.24 1.75 3.12 5.08

dRTHS

Framed

First Floor 7.78 2.26 23.91 10.33 1.68 4.77 8.45

Second Floor 6.96 0.56 13.84 4.70 1.48 2.89 5.07

Third Floor 7.02 0.70 11.89 0.71 1.48 2.40 4.03

comparisons are presented in Figures 8.7 and 8.11. Additionally, sliding RMS plots

are shown in Figures 8.8 and 8.12. Finally, in Table 8.1, the errors are tabulated.

It is observed from time domain comparisons that, for either framed or unframed

case, dRTHS captures the general behavior of RTHS responses. When examining at

MR damper force comparisons, it is noted that the Smith predictor is able to simulate

the damper forces with respect to the given first floor displacements. Performance

criteria are varying between 0 % to 30 %. Most of the evaluation criteria are below

10 %. On the other hand, for the first floor responses, RMS and peak acceleration

errors are largest (J3 and J4). This increase is due to the slight underestimation of

RTHS acceleration around t = 3 sec in the simulation where the ground motion is

strongest and the RTHS MR damper force overshoots the dRTHS damper force.

Overall, it can be concluded that the proposed dRTHS platform yields quite similar

results as the single-site RTHS tests despite the network time delay for this particular

structure. It is also shown that this delay can be compensated with the help of Smith

predictor and network time delay estimator.
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Figure 8.6: MR damper force response comparison in time domain for RTHS–unframed

dRTHS SA case
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Figure 8.8: Moving RMS error for RTHS–unframed dRTHS SA case
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Figure 8.10: MR damper force response comparison in time domain for RTHS–framed

dRTHS SA case
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Figure 8.12: Moving RMS error for RTHS–framed dRTHS SA case
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8.3 Quantifying the Effect of Network Time Delay on dRTHS Results

Assume that a network having a delay of ∆τR is compensated with a predictor

designed according to ∆τP . When ∆τP is lower than ∆τR, in other words, the

delay is underpredicted, the predicted force does not correspond to the measured

displacement. Consequently, the error between predictor plant and actual plant

behavior due to phase lag manifests as a pure time delay. This effect introduces

additional energy to the system equivalent to negative damping and can lead to

instability when overall damping of the system is smaller than the introduced negative

damping. This phenomenon is discussed by Horiuchi et al. (1996) in detail. Similarly,

for overpredicted delay, positive damping will be imposed on the system. Accordingly,

system responses will be underestimated.

To understand the effects of prediction and to underline the usefulness of including

the initial network time delay estimation block, incorrect estimation of network delay

on the performance of dRTHS is investigated through a series of experiments. Here,

estimated delays are over- and underpredicted by 10 % and 20 %, intentionally. The in-

correctly predicted displacement and acceleration responses are compared to correctly

estimated dRTHS results. The effect of delay on the first floor displacement responses

is given in Figures 8.13 and 8.15 for unframed and framed cases. Additionally, first

floor acceleration response comparisons are given in Figures 8.14 and 8.16. Errors are

tabulated in Table 8.2. For all comparisons, the reference is taken as dRTHS with

correctly predicted time delays.

For all unframed cases, under- and overpredicted delay estimations do not signifi-

cantly alter overall dRTHS displacement responses. On the other hand, for accelera-

tion responses, the effect of incorrect prediction is significantly more noticeable. The

tabulated error for the unframed cases points that incorrect delay estimation causes

deviations, especially for the first floors.

It is observed that the framed case responses are more sensitive to under- and

overprediction in time domain. Specifically, for acceleration responses, underpredicted
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Table 8.2: Evaluation criteria for dRTHS induced network time delay estimations

Case Location
Evaluation Criteria

J1 J2 J3 J4 J5 J6

Unframed

Underpredicted

%20

First Floor 11.96 5.51 64.04 10.67 2.45 10.62

Second Floor 7.88 2.38 26.72 10.45 1.64 5.18

Third Floor 7.89 0.48 22.53 6.62 1.66 4.76

Unframed

Underpredicted

%10

First Floor 7.79 2.86 29.98 13.66 1.60 4.97

Second Floor 5.02 1.51 15.46 6.31 1.04 3.00

Third Floor 4.92 0.78 12.63 6.58 1.04 2.67

Unframed

Overpredicted

%10

First Floor 12.60 2.84 32.97 17.23 2.59 5.47

Second Floor 10.87 1.99 18.21 8.43 2.26 3.53

Third Floor 10.77 0.34 17.20 2.25 2.26 3.63

Unframed

Overpredicted

%20

First Floor 13.45 2.60 35.85 4.95 2.76 5.94

Second Floor 11.39 2.32 21.18 4.50 2.37 4.10

Third Floor 11.18 1.44 18.01 2.55 2.35 3.81

Framed

Underpredicted

%20

First Floor 27.95 10.02 138.40 81.80 5.93 26.11

Second Floor 24.96 10.32 56.35 29.73 5.24 11.57

Third Floor 24.75 7.62 36.14 24.80 5.17 7.34

Framed

Underpredicted

%10

First Floor 9.56 6.21 45.11 33.48 2.03 8.51

Second Floor 7.58 3.45 27.58 8.10 1.59 5.66

Third Floor 7.37 3.22 16.54 1.27 1.54 3.36

Framed

Overpredicted

%10

First Floor 6.65 3.59 25.20 12.74 1.41 4.75

Second Floor 4.87 1.05 14.04 2.60 1.02 2.88

Third Floor 4.81 0.24 11.31 5.06 1.00 2.30

Framed

Overpredicted

%20

First Floor 6.94 3.49 29.85 6.23 1.47 5.63

Second Floor 4.81 1.76 15.98 6.40 1.01 3.28

Third Floor 4.71 0.58 12.13 3.16 0.98 2.46



208

delay estimation causes large overshooting. Likewise, undershooting due to overpre-

diction of delay is also evident in acceleration responses. Errors are slightly elevated

for the underpredicted delay comparisons. For the unframed case, simulation inte-

gration and transmission rates are same. Hence, structure responds to the delayed

force feedback at each time step and generates first floor displacement to be sent

to the remote node, accordingly. That also means, at each time step, the Smith

predictor can match the delayed force with the on-time displacement. However, for

the framed case, 10 time step data is transmitted at 1/10th of the simulation rate,

at once. Therefore, for each time step, the local and remote nodes receive 10 force

measurements and 10 displacement measurements at once, respectively. When the de-

lay is constant and is estimated correctly, the Smith predictor processes the incoming

force without any problem. However if delay is incorrectly estimated for the framed

case, the error between predictor plant and actual plant is accumulated through 10

time steps. Consequently, it is expected that framed case is relatively sensitive to

incorrect delay prediction, compared to unframed case.

Overall, the Smith predictor is generally stable as long as the error between model

and actual plant is small. However, with increasing time delay prediction error, the

Smith predictor starts to deviate from the physical MR damper. Likewise, framing of

data amplifies the error in the event of incorrect prediction.

8.4 Comparison of Shake Table Test Responses with dRTHS Results

In this section, dRTHS conducted between IISL and SSTL sites is compared to

the shake table test performed at HIT. Particularly, responses for semi-active control

case for El Centro earthquakes are considered. dRTHS cases, where network time

delays are under- and overpredicted, are ignored.

In Figures 8.17 and 8.20, the acceleration and displacement responses of shake

table and dRTHS are compared in time domain for both the unframed and framed

cases. The frequency domain comparisons are presented in Figures 8.18 and 8.21.
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Table 8.3: Evaluation criteria for ST–dRTHS comparison

Case Location
Evaluation Criteria Criteria

AverageJ1 J2 J3 J4 J5 J6

dRTHS

Unframed

First Floor 23.64 13.58 29.94 21.68 5.18 5.77 16.63

Second Floor 20.45 6.93 19.55 15.57 4.33 3.63 11.74

Third Floor 21.33 9.17 15.73 10.86 4.41 3.14 10.77

dRTHS

Framed

First Floor 23.36 13.60 31.19 6.20 5.12 6.00 14.25

Second Floor 19.90 7.85 22.23 18.02 4.21 4.12 12.72

Third Floor 20.60 9.36 15.44 11.25 4.26 3.08 10.67

Additionally, sliding RMS plots are shown in Figures 8.19 and 8.22. Finally, in

Table 8.3, the evaluation criteria are tabulated.

Comparisons for dRTHS vs shake table test in time domain presents similarity

to RTHS vs shake table comparisons. Both unframed and framed cases yield similar

power spectra, compared to shake table response spectra. It is observed that dRTHS

captures the modes of the test structure obtained from shake table experiment rea-

sonably well in the frequency domain. For the acceleration responses, spurious modes

at 30 Hz–40 Hz range could not be tracked. A similar behavior was also observed for

the RTHS vs shake table tests. As stated previously in Chapter 6, a possible reason

for the discrepancy is the torsional and higher frequency modes of the structure that

were excited by the vibration of the shake table and they were not included in the

numerical model intentionally.

The reported errors for unframed and framed cases are varying from 3 % to 30 %.

The largest errors are observed in first floor response RMS criteria for both cases. In

addition, moving RMS errors demonstrate that all errors except first floor acceleration

are trending at 20 %–25 % band. It should be noted that dRTHS configurations are

using an MR damper different from the one used during the shake table tests. Addi-
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Figure 8.19: Moving RMS error for ST–unframed dRTHS SA case
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Figure 8.22: Moving RMS error for ST–framed dRTHS SA case
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tionally, numerical substructure simulating the test structure has already a baseline

line error when not controlled. Consequently, high errors in the comparisons are not

predictable.

In Figure 8.23, the evaluation criteria, where unframed dRTHS, framed dRTHS

and RTHS cases are compared to shake table tests, is represented as a bar chart.

Here, almost all dRTHS and RTHS yield similar error level. The only main difference

is observed at first floor J4. The variations in the errors can be attributed to the

Internet QoS during the time of dRTHS testing. In addition, unlike RTHS, dRTHS

uses a Bouc-Wen model simulating the MR damper within the Smith predictor to

compensate network delays. Thus, the model may not capture the MR damper

behavior perfectly.

In conclusion, it is shown that dRTHS can capture the response of shake table

response of the test structure for El Centro ground motion when MR damper is

controlled at semi-active mode. The error levels resulting in dRTHS are similar to

those in RTHS when compared to shake table test. Overall, it can be concluded

that the proposed dRTHS platform, along with the network time delay estimator

provides a viable testing environment for geographically distributed labs having limited

experimental resources.

8.5 Conclusion

In this chapter, dRTHS responses performed between Purdue University and

University of Illinois at Urbana-Champaign are compared to RTHS and shake table

responses of the MR damper controlled three story structure located at HIT.

In the dRTHS configuration, the physical substructure represented by the Purdue

MR damper is tested at Purdue University, while the analytical substructure acting

as the model of the test structure is simulated at UIUC. The signal transmission

between two universities is performed over Internet using User Datagram Protocol.
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For the dRTHS configuration, El Centro ground motion is used as the excitation

input, while MR damper is driven in SA mode. Resulting relative displacements and

absolute accelerations are compared to RTHS and shake table responses. To assess

the performance and to validate feasibility of dRTHS, peak, RMS, and sliding RMS

errors and PSDs are computed.

In addition to validation tests, to demonstrate the effectiveness of the network

time delay estimator, estimated delays are intentionally over- and underpredicted.

The resulting responses are compared to true dRTHS responses. The comparisons

shows that especially for the framed case, correct estimation affects performance and

quality of the test positively.

In summary, time and frequency domain comparisons, as well as evaluation criteria,

showed that dRTHS can be considered as a valid testing environment for geographically

distributed labs having limited experimental resources, alternative to RTHS and shake

table testing.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

This dissertation discusses the development, implementation and validation of geo-

graphically distributed real-time hybrid simulation (dRTHS) platform. This platform

is proposed in response to the lack of fully customizable environment with real-time

execution, and information exchange capabilities to conduct distributed hybrid sim-

ulation. This chapter summarizes important research findings, observations and the

capabilities of this proposed platform in Section 9.1. In addition, future work to

advance the research is presented in Section 9.2.

9.1 Conclusions

To deliver the information in the most convenient way, first, a literature review

emphasizing previous work on dRTHS is given. The shortcomings of previous studies

were explored to build up and deliver a concrete motivation for the development of the

new dRTHS platform. To explore the capabilities of the proposed dRTHS platform,

a test scenario is established. According to the test plan, a three story test structure

equipped with an MR damper is tested on the shake table located at Harbin Institute

of Technology (HIT). The results are step-by-step compared to numerical simulations,

RTHS conducted at Purdue University and finally dRTHS conducted between Purdue

University and University of Illinois at Urbana-Champaign.

Before discussing the test results, an extensive review of the experimental setup,

including the test structure, equipment, sensors and software for shake table tests is

presented. Furthermore, the hardware to perform RTHS, including inner and outer

loop controllers and servo-hydraulic systems are also discussed.
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Next, a novel modeling and system updating technique based on system identi-

fication results of Eigensytem Realization Algorithm is introduced. This modeling

method is focused on eliminating the drawbacks of its predecessors. Using this pro-

posed tool, a MCK matrix of the test structure is derived. Later, the performance

of this model is validated using shake table responses. This analytical model is also

used as the basis of the numerical substructure of the dRTHS.

Since the MR damper used at HIT is similar but somewhat different than the

one at Purdue, characterization of both dampers is required. By comparing force-

displacement and force-velocity curves of those two dampers, equivalent voltage levels

for the Purdue damper is determined to imitate necessary HIT damper force at

passive-off and -on mode. In addition, an analytical model of both dampers based on

Bouc-Wen hysteresis model is utilized. This model is also used in the pure simulation

- shake table comparisons which will be discussed next.

To develop a baseline for dRTHS - shake table comparisons and understand main

sources of error that may manifest during dRTHS validation tests, an integrated simu-

lation including analytical models of the test structure and MR damper is conducted.

The pure simulations predicted the global responses of the shake table tests accurately.

The source of errors are explored and the possible reasons are described.

Conducting successful RTHS and dRTHS requires an actuator controller. Thus, a

state-of-art controller, Robust Integrated Actuator Control to compensate actuator

dynamics is introduced. Essentially, RIAC is a model based H∞ type controller

that integrates a loop-shaping filter to handle delay and magnitude dynamics of the

actuator and a Kalman filter to reject the noise in the measurements. To study the

impact of the size and speed of the actuator on the tracking performance, the controller

is verified by comparing desired and measured displacement of the actuator through

band-limited white noises at HIT’s large and Purdue’s small actuators. To investigate

the controller performance further, an RTHS test is employed at Purdue, where

damper and test structure are selected as the physical and numerical substructures,

respectively. The results of RTHS compared to shake table responses has shown that
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the errors produced by RTHS are marginally lower than those of pure simulations.

This observation leads to the conclusion that RIAC can be considered as a viable

controller for this particular test case.

Prior to actual validation of dRTHS with shake table and RTHS responses, the

distributed architecture for the data transmission is explained in detail, by introducing

new concepts, for example, Internet and standard protocol suites such as UDP and

TCP. Furthermore, a model based predictor to handle network time delays, known as

the Smith predictor is described. Since the Smith predictor requires delay to be known

prior to testing, a network time delay estimator is also implemented. Subsequently,

to verify the dRTHS architecture, a two story structure with MR damper equipped at

its first floor is tested. In this setup, both the analytical substructure representing the

structure located at Smart Structures Technology Laboratory (SSTL) of UIUC and

the physical substructure, MR damper located at Intelligent Infrastructure Systems

Laboratory (IISL) of Purdue is simulated analytically, while communication between

two laboratories is employed through the Internet. The single-site and multi-site test

results show excellent correlation.

Finally, by testing the physical MR damper at IISL and simulating analytical

model of three story HIT test structure at SSTL with the proposed architecture,

dRTHS is performed and results are compared to RTHS and shake table responses.

Additionally, the effectiveness of the network time delay estimator is investigated by

comparing the dRTHS results with the wrong predicted delay cases.

Some key observations were drawn from the comparisons presented in this study:

• A new model updating methodology discussed in this dissertation captures the

structural behavior in the frequency domain and offers more flexibility compared

to its predecessor.

• A new control algorithm, RIAC presented here compensates the actuator dy-

namics robustly and is less prone to noise compared to previous H-inf type

controller.
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• Satisfying agreement between RTHS and shake table responses is achieved for

each testing scenario.

• Flawless match in global responses is achieved for dRTHS, when all substructures

are numerically simulated and the Internet infrastructure is used as the message

passing interface between test sites.

• Comparisons between shake table and RTHS with dRTHS further validated the

effectiveness of the platform.

• Since the force-displacement behavior of the MR damper used in shake table

tests at HIT is different from the one utilized in RTHS/dRTHS tests at Purdue,

errors are observed in ST-RTHS and ST-dRTHS comparisons, especially at the

first floor level. Considering the fact that MR damper is attached to the test

structure at the first floor, it is expected that most of the nonlinearities due the

damper behavior will be observed at this floor level. As a result, the differences

in the hysteresis loops of HIT and Purdue dampers will lead to different level of

nonlinearity, and thus errors are introduced in the comparisons, mainly at the

first floor. On the other hand, it has been also shown that, compared to RTHS,

dRTHS platform does not introduce additional error in the comparisons.

The features of the proposed dRTHS platform can be summarized as follows:

• This platform is built for use in MATLAB/xPC. By relying only on MATLAB

tools, the platform enables researchers to conduct dRTHS over UDP/Internet

without any additional middleware. Additionally, since the platform provides a

flexible built-in programming environment, researchers can execute customized

scripts according to their own needs.

• The Internet Quality of Service (QoS) may not be always maintained during

testing. Eventually, jittering during data transmission between sites may cause

packets to be lost and experiment to fail. The platform gives user the option to
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adjust a buffer for the incoming traffic to avoid jittering at the expense of time

delay.

• The Smith predictor used as a common delay compensation mechanism, requires

the delay to be known prior to the testing. By integrating a network time delay

estimator to the dRTHS control loop, network delay can be determined on-the-fly

and optimum operation for Smith predictor can be ensured.

9.2 Future Work

Some recommendations for future studies related to this work are:

• The model updating methodology proposed in Section 3.3 have been verified with

comparison tests. Although this method provides more flexibility in modeling

the system while still pertaining physical properties of the system, it fails to

recreate the perfect damping and stiffness matrices given in Equations (3.2a)

and (3.2b) like its predecessor. Section 3.4 discusses this issue in depth. A new

search algorithm must be developed that induces error in the identified mode

shapes and estimated seismic masses at the expense to be coherent with direct

stiffness and damping matrices and, yet, trace the system behavior in time and

frequency domain.

• Most of the compensation controllers for the actuators, for example H∞, are

based on linearized model of the actuator while ignoring nonlinear behavior of

the physical substructure. As mentioned by Carrion and Spencer (2007), a more

adaptive controller should be implemented that can respond to changes in the

nonlinear plant.

• Although H∞ actuator control promises an excellent tracking, noise in the load

cell may cause performance loss since it will excite higher modes of the numerical

model. Nonlinear Kalman filters of the MR damper to reject unwanted noise
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should be developed. Some ideas on this aspect were explored by Song and

Dyke (2013).

• The dRTHS experiments of this study are performed using only one physical

and numerical substructure. Frameworks that involve multiple numerical and

physical substructures should be investigated to validate dRTHS.

• For the sake of performance and stability, dRTHS systems, that are sensitive

to network time delays, requires a plant predictor to estimate delayed response

of the physical substructure. However, in the cases where modeling of physical

portion is difficult, other approaches are needed. Use of adaptive and predictive

plants for delayed real-time systems should be studied.

• The proposed dRTHS implementation is managed through insecure UDP, which

is, by nature, vulnerable to cybersecurity attacks. Methods to improve the

cyberinfrastructure should be investigated to prevent loss of test setup.

• Although the proposed platform is specifically designed for geographically dis-

tributed simulations, the infrastructure can be used as a low-cost alternative to

SCRAMNet shared memory system for locally distributed RTHS applications

(ldRTHS). The effectiveness of ldRTHS is studied in a multirate RTHS (mr-

RTHS) application where a high degree-of-freedom finite element model running

at low sampling frequency and a low degree-of-freedom lumped mass model

utilized at higher sampling frequency are coupled (Maghareh et al., 2014c). In

addition, another case is investigated where numerical model of a moment resist-

ing frame is simulated along with a computationally intensive model updating

algorithm, both running on two locally distributed real-time systems in parallel

(Ou et al., 2015). Finally, a showcase for virtual RTHS (vRTHS) is based on this

work (Hacker et al., 2013). Other applications should be sought that extends

potential capabilities of the proposed dRTHS platform.
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• It is possible that the use of impulsive dynamic loads may not fully exploit

dRTHS platform. Especially, high frequency and short duration characteristics

of such ground motions combined with the network delay and numerical infidelity

regarding the plant model in Smith predictor will constrain performance of

dRTHS.

• In order to asses performance and stability of future dRTHS applications, pre-

dictive performance indicator (PPI) and predictive stability indicator (PSI) can

be used (Maghareh et al., 2014a,b). Eventually, with the help of PPI and PSI,

tolerance of the system to the given network time delay can be determined and a

delay compensation method best suited to the testing needs can be implemented.
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