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ABSTRACT

Lenjani, Ali Ph.D., Purdue University, Aug 2020. Developing Arti�cial Intelligence-Based
Decision Support for Resilient Socio-Technical Systems. Major Professors: Shirley J.
Dyke, Ilias Bilionis.

During 2017 and 2018, two of the costliest years on record regarding natural disasters,

the U.S. experienced 30 events with total losses of $400 billion. These exuberant costs arise

primarily from the lack of adequate planning spanning the breadth from pre-event pre-

paredness to post-event response. It is imperative to start thinking about ways to make our

built environment more resilient. However, empirically-calibrated and structure-speci�c

vulnerability models, a critical input required to formulate decision-making problems,

are not currently available. Here, the research objective is to improve the resilience of the

built environment through an automated vision-based system that generates actionable

information in the form of probabilistic pre-event prediction and post-event assessment

of damage. The central hypothesis is that pre-event, e.g., street view images, along with

the post-event image database, contain su�cient information to construct pre-event prob-

abilistic vulnerability models for assets in the built environment. The rationale for this

research stems from the fact that probabilistic damage prediction is the most critical input

for formulating the decision-making problems under uncertainty targeting the mitigation,

preparedness, response, and recovery e�orts. The following tasks are completed towards

the goal. First, planning for one of the bottleneck processes of the post-event recovery

is formulated as a decision making problem considering the consequences imposed on

the community (module 1). Second, a technique is developed to automate the process of

extracting multiple street-view images of a given built asset, thereby creating a dataset

that illustrates its pre-event state (module 2). Third, a system is developed that automati-

cally characterizes the pre-event state of the built asset and quanti�es the probability that
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it is damaged by fusing information from deep neural network (DNN) classi�ers acting

on pre-event and post-event images (module 3). To complete the work, a methodology

is developed to enable associating each asset of the built environment with a structural

probabilistic vulnerability model by correlating the pre-event structure characterization

to the post-event damage state (module 4). The method is demonstrated and validated us-

ing �eld data collected from recent hurricanes within the US. The vision of this research

is to enable the automatic extraction of information about exposure and risk to enable

smarter and more resilient communities around the world.
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1. INTRODUCTION

In the literature, resilience refers to the ability of a system to overcome disruptions and

return to a normal state while minimizing loss [1–3]. The loss includes casualties, damage,

socio-economic, and ecological impacts associated with the disruption. Here disruption

can refer to any type of external hazard-event, internal malfunctioning or deterioration

of systems elements. A signi�cant amount of e�ort has been devoted to understanding

what characteristics make a system resilient [4–9]. Since the concept of resilience can

be applied to almost any type of system, it has been studied from many perspectives.

The focus of much of the recent research ranges from assessing the risk in the system,

studying the impact of an event on the system, or analyzing the recovery of the system

over time [10–12].

A common approach to evaluate the resilience of a system includes four criteria,

speci�cally robustness, rapidity, redundancy, and resourcefulness [13, 14]. However, the

required methods to evaluate these criteria in a system are not clear. On the other hand,

there is no guarantee that satisfying these criteria will improve the utility of the system.

Here, a general framework is proposed which includes the required steps to assess the

resilience of a system. In general this framework breaks down into three majors phases

of: 1) system state estimation, 2) short-term decision making, and 3) long-term decision

making.

To evaluate the in�uence of possible strategic decisions on the resilience of the system,

it is required to evaluate the overall system performance over the speci�ed time period

{0, . . . ,) }. The overall system performance can be evaluated through assessing the system

state trajectory at each time step C . The system state at time step C depends on the systems

state at time C − 1, disruptions to the system, and short-term decision made at time step

C − 1. Short-term decisions at time C should be made based on the system state at time

C − 1, and availability of the resources. To assess the overall system performance over
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Fig. 1.1.: Schematic of system dynamics

time period {0, . . . ,) }, it is assumed that short-term decisions at time C are optimal. To

develop such decision support to make the optimal operational decisions, predicting the

future states of the system plays an important role. The bi-directional relationship of the

three major phases are illustrated in Fig. 1.1.

Here are the detail steps required for implementation of the three major phases. Figure

1.2 shows a schematic of the proposed framework, including the associated ten potential

steps required for the resilience evaluation of a system:

1. Modeling the disruptions in the system

2. Gathering required pre-disruption data of the system

3. Characterizing the system

4. Developing element-speci�c probabilistic vulnerability models

5. Modeling the interdependencies in the system

6. Modeling the uncertainties in the system

7. Estimating system state
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Fig. 1.2.: General diagram showing the required steps for resilience evaluation of a socio-
technical system.

8. Developing the decision support to make the post-disruption short-term decisions

9. Evaluating the performance of the system after applying long-term decisions (re-

sources allocation, design)

10. Evaluating the consequences of the long-term decisions (resources allocation, de-

sign) on stakeholders

For some applications it is possible that certain steps shown in the framework are not

applicable to a particular system, e.g., if inter-dependency between elements is negligible,

step 5 is not applicable. On the other hand, it is also possible that some of the steps may

already be available, e.g., if a model of the system is already available, information about

steps 2 and 3 is already available.

The proposed framework is designed to apply to a wide range of socio-technical sys-

tems. To demonstrate the capabilities an illustrative application is used with particular

characteristics and goals. The illustrative application focuses on automated techniques
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Fig. 1.3.: Relationship between general framework and illustrative application.

to evaluate the e�ect of post-event inspection resource allocations on communities. Four

research problems designed to address this module are introduced in Sec. 1.1. The Four

accomplished research are discussed in detail in Secs. 2, 4, 3, and 5. Fig. 1.3 shows the

linkage between general framework and illustrative application.

1.1 Illustrative application

As millions of people across the east coast, the Gulf of Mexico, Puerto Rico and other

Caribbean Islands expecting severe hurricanes to make landfall each year and cause dam-

age in their infrastructure, it is critical to ask how these communities could be made more

resilient. During only 2017 and 2018, two of the costliest years on record regarding natural

disasters, the U.S. experienced 30 events with total losses of $400 billion. These exuberant

costs arise primarily from the lack of adequate planning spanning the breadth from pre-

event preparedness to post-event recovery. Understanding the nature of the risk in our

complex infrastructure before such a natural disaster will enable decisions to be made at

a national, community, or individual level to reduce risk and mitigate losses.



5

There is a strong consensus that an essential element of resilience is the preparation for

and conduct of rapid and e�cient assessment of the post-event situation, e.g., see [15–17].

In the case of the built environment, post-event building assessment takes the form of

expert inspection which is scheduled after the event. The classi�cation of a structure’s

safety level is necessary both for preventing further loss of life and for planning recovery

actions to return the community to normalcy. The approach used in ATC-20 is to classify

structures as inspected (no considerable damage and residents are allowed to occupy the

building), restricted use (partially damaged but some parts of the building are usable), or

unsafe (severely damaged and all persons are restricted from entering) [18] Variations on

this exist in various places in the world, and for di�erent types of stakeholders. A major

post-disaster challenge that hinders community resilience is the backlog created from the

sheer volume of buildings needing inspection [19]. For example, the average wait time

for a �eld inspection after Hurricane Harvey was 45 days, and after Hurricane Irma it

was about a month [20]. As insurance payments are curbed and rebuilding is stalled, the

recovery of the a�ected community is halted, and victims remain in limbo. There is an

urgent need to make the post-event inspection process of the built environment more

informative and more e�cient.

To support decision-making during routine inspection procedures for infrastructure

systems, several methods have been developed to strategically mitigate risks [21–24]. For

instance, regulations in place in many nations around the world require that bridges over

a certain size be inspected at least every 24 months, with certain local variations in the de-

tails [25]. However, in the immediate aftermath of a disruptive hazardous event, planning

the post-event inspection of the infrastructure systems poses a di�erent type of chal-

lenge [26]. Restrictions in the time and resources available and wide-ranging scope of

the inspections needed require that strategic decisions be made quickly. [27] developed

a handbook for the inspection of the Indiana bridge network, focusing on how to evalu-

ate the condition of each type of bridge. The prioritization of those inspections was left

to the state agency. [28] used a Bayesian network and in�uence diagrams to analyze the

performance of a centrally-managed infrastructure system (here, a bridge network) and
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its components after an extreme event. Using a network-level approach, they considered

whether or not to inspect each bridge component, or to implement mitigation actions, e.g.,

reduce operation or completely shut down the component to avoid further losses. [28] also

introduced the concept of the value of information (VoI) pertaining to assessment in spa-

tially distributed infrastructures to determine a temporal ordering of the inspection of the

structure’s components based on the output of the in�uence diagram. VoI is used to quan-

tify the bene�t of gathering additional information before taking action, e.g., a decision

to shut down a component or keep it in operation. Among the possible inspection alter-

natives, the approach taken here is that the highest-priority alternative is the one that

derives the largest bene�t from an inspection.

Indeed, the method discussed above is powerful in terms of integrating various types

and levels of information in restoration decisions. However, implementation of this method

does require access to comprehensive inventories, detailed asset descriptions and spatial

information. It is well-suited for dealing with networks of privately-operated (e.g., rail-

ways) or publicly-managed (e.g., bridges and dams) infrastructure under the control of a

single owner that has kept detailed maintenance records. There are three main reasons

why, at the present time, this framework may not be appropriate in general for com-

munities. First, the detailed datasets needed for the implementation of the framework is

not typically available in communities because of the high monetary cost associated with

their maintenance. Second, this method is not intended to weigh the estimated cost of in-

spections, or the potential consequences (e.g., costs) of making incorrect decisions under

such traumatic conditions. Finally, this method focuses only on the response in the after-

math of an observed event. Limitations arise when dealing with uncertain future events.

Forward-thinking communities interested in promoting resilience should be ready to act

after an event, but should also prepare for such an unforeseen event by deciding on their

objectives.

To reach a target level of resilience, we need to employ rigorous decision-making

approaches to prepare for and mitigate the impact of disastrous events. The decision-

making approach for such a complicated task can be e�ective, only if it is comprehensive
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and analyzes the consequences from various perspectives. A comprehensive analysis of

disruptive events management needs a clear understanding of processes involved in that

event, and of the challenges these processes pose for administrators and communities

[29,30]. To support more communities to cope with realistic large-scale disruptive events,

a simple and �exible approach is needed that can be applied to communities with varying

levels of data inventory.

Here, the research objective is to develop an end-to-end automated decision support

methodology to improve resilience of the built environment. This research is focused on

providing a community with the means to plan and allocate resources in advance of an

event to achieve the desirable resiliency goals of the community. In this study, a method-

ology is developed intended to one of the strategic post-event decisions to estimate the

amount of resources for post-event inspections which pose the minimum consequences on

the administrators and community. The required actionable information to enable making

a risk-informed decision would be generated through an automated vision-based system

in the form of probabilistic pre-event prediction and post-event assessment of damage.

This method requires the buildings physical characteristics and vulnerability models of

the built environment, and the proper decision making algorithm to �nd the post-event

inspection priorities. For developed communities available data repositories can provide

buildings physical characteristics and vulnerability models. However these information

is not available for all communities. To address this need automated techniques are de-

veloped to rapidly extract the building inventory.

Fig. 1.4.: Diagram showing the four modules to accomplish the socio-technical systems
resilience evaluation.

The research objective is accomplished through the following modules, See Fig. 1.4:
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Module 1: Formulating the resources allocation of the post-event inspection

The objective of this module is to formulate the problem of allocating the resources

toward the task of post-event inspection as a risk-informed decision-making problem. The

working hypothesis is that a complex strategic decision of post-event inspection resource

allocation can be formulated using limited information about the built environment. This

method uses the building physical attributes and the corresponding vulnerability models

to determine the post-event inspection priorities, and make risk-informed decisions to

minimizes the consequences imposed on the community. The outcome of this module

is a decision-making methodology that optimize the amount of resources for post-event

inspection due to resilience objectives of the community, See chapter 2.

Module 2: Collect and preprocess images from building assets at risk

The objective of this module is to automatically extract data that characterize the as-

sets included in a built environment before a disaster. These data will consist of GPS

locations of individual assets along with a set of asset images. The working hypothesis is

that these data can be extracted from existing 360° photos available through street-view

service providers, e.g., Google street-view. These 360° photos include geolocation infor-

mation and are suitable for capturing each building from di�erent viewpoints by adjusting

the viewing directions and �eld of view. Object recognition techniques and computer vi-

sion algorithms are implemented to identify, extract and construct multiple views of each

asset, e.g. front and sides views. These images are needed to extract the physical attributes

of the buildings that characterize the building performance during disruptive event. The

outcome of this module is a methodology that automatically extracts asset geolocation

and visual information from street-view image data, See chapter 3.

Module 3: Develop vision-based exposure detection

The objective of this module is to detect structural characteristics, e.g., structural type,

number of stories, roof style, height of the �rst �oor from ground, of each asset of the built

environment using the dataset collected as part of module 2. The working hypothesis is

this identi�cation can be carried out using deep neural network (DNN) classi�ers from
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the extensive labeled datasets. Convolutional Neural Networks (CNNs) based classi�ers

are trained to automatically recognize these key structural characteristics in the images

of each asset. The outcome of this module is algorithms that turn raw visual asset data to

features that characterize the structural response, See chapter 4.

Module 4: Generate probabilistic vulnerability models

The objective of this module is to automate the process of developing empirical prob-

abilistic vulnerability models using pre- and post-event images. The working hypothesis

is that the vulnerability of the assets can be predicted based on the key structural and

nonstructural characteristics of the built environment calibrated empirically to pre- and

post-event information of the similar geographical regions. Using the dataset, the input-

output pairs for each observed asset are generated consisting of structural characteristics

before the hurricane (input) and its damage state after the hurricane (output). Using these

input-output pairs a model is created that predicts the probability of a speci�c damage

level conditional on the asset characteristics and the magnitude of the disaster (local wind

speed, inundation depth, etc.). The outcome of this module is a methodology that auto-

matically predict the vulnerability of assets,using the empirically calibrated probabilistic

vulnerability models, with known structural characteristics, See chapter 5.

Chapter 2, explains the resilience-based methodology developed for prioritizing the

post-event inspection, module 1. Chapter 3, describes the automated technique to extract

multi-view pre-event images, module 2. The method developed to detect the character-

istics of the built environment is explained in chapter 4, module 3. Chapter 5 describes

the automated process of empirical vulnerability generation, module 4. Summary and

conclusion are discussed in chapter 6.
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2. A RESILIENCE-BASED METHOD FOR PRIORITIZING
POST-EVENT BUILDING INSPECTION

One important step post-disruption planning is predicting the extent of the damage in

the built environment for potential hazards. In this study, I developed a methodology to

support rapid post-event decision-making about inspection priorities with limited infor-

mation to enable communities to make rapid cost-based decisions related to inspection of

their building inventory. The objective of this research is to provide a simple approach

and an associated computational tool to support rapid decision-making related to post-

event inspections. With such a capability, a community can make rapid decisions related

to inspection of their building inventory, based on the likely economic cost associated

with restricting access to that inventory, and given a pre-determined budget. This can be

achieved through the combination of structure-speci�c fragility functions and cost-based

decision-making. According to the scope of the decisions I can pose the decision making

problem as a single or multi-agent system [31, 32]. Here, I formulate this problem math-

ematically by assuming that the community is a rational agent seeking to minimize the

expected cost of the disruption as well as the risk of its actions. The inputs are the cost of

closure of each building when it is the correct action to take, the cost of closure when it is

unnecessary (i.e., when the structure is actually not unsafe and the building is mistakenly

restricted), and the likelihood of damage to each structure for a given intensity event. The

output of the approach is the prioritized order for inspection to most e�ectively allocate

resources on a limited budget. With this capability a community will reduce recovery

time after an event by accelerating the inspection process to restore con�dence in our

structures.

The advantages of this approach are that it (i) is simple, (ii) requires minimal inventory

data, (iii) is easily scalable, and (iv) does not require signi�cant computing power. In

addition, it can be used either immediately after a disruptive event or in the planning stage
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to set a budget to prepare for potential future disruptive events with that community’s

objectives in mind. This method also generates actionable information that a community

can choose to implement to be prepared for future events, i.e., to become more resilient.

The approach is demonstrated using a crowd-sourced dataset, collected as a part of the

EU-funded project, SASPARM2.0 [33]. However, the approach can readily be adapted to

consider spatially-distributed networks of other classes of infrastructure, or combinations

thereof, and to support other types of decisions when resources are limited.

The remainder of this chapter is organized as follows. Sec. (2.1) presents the problem

statement and formulation. Sec. (2.2) provides an illustrative example to demonstrate the

methodology including results and discussion. Please see the archived [34] and published

versions [3].

2.1 Methodology

2.1.1 Post-event inspection as a decision-making problem

Consider a community with = buildings with exposure to hazards. Let 8 ∈ {1, . . . , =}

be the index assigned to identify each building. With the variable 18 I denote the building

characteristics, e.g., number of stories, type of construction, �oor area. The random vari-

able (r.v.) - ∈ [0,∞) characterizes the hazard intensity. To indicate a building’s safety

level I use the discrete-valued r.v. (8 . The de�nition and number of these safety levels

should be determined by relevant stakeholders, and di�erent approaches have been taken

in various regions [18, 35, 36]. Without loss of generality, I assume that (8 takes values in

{1, 2, 3} and that structural damage is more severe as (8 increases. The conditional proba-

bility of building 8 being at safety level (8 = B8 after a hazardous event with intensity- = G

is denoted by P[(8 = B8 |- = G], see Sec. 2.1.2.

Let 38 ∈ {1, 2, 3} be the decision variable corresponding to the safety level assigned

each building (1 = “safety level 1”, 2 = “safety level 2”, 3 = “safety level 3”). I can determine

38 in one of two ways: (1) I can perform a �eld inspection revealing the true state of the

building, but at a �xed costF8 , see Sec. 2.1.3; or (2) I can select 38 based on building char-
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acteristics 18 and the observed hazard event intensity - = G without an inspection, i.e.,

using a decision function 3∗8 (G), see Sec. 2.1.3. The latter is an e�ective option when there

is a high post-event probability of the building being at a given state, e.g., when the model

is con�dent that the building is either safe or is damaged signi�cantly (i.e., it is not safe to

enter). Being wrong, however, can be costly to the community. This misprediction cost,

denoted as 28 (38, B8) := 2 (38, B8 ;18), is an increasing function of the discrepancy between

the predicted state 38 and the true state B8 . The misprediction cost also depends on the

use of the structure. To construct 3∗8 (G) I minimize the expected cost of a wrong safety

level assignment, see Sec. 2.1.3 for the mathematical details. For this section, let 2∗8 (G) be

the minimum expected cost of potential casualties, economic, social, and environmental

losses, resulting from selecting 3∗8 (G). Given a �xed budget A > 0 allocated at time C0 = 0,

how should the community choose which buildings to inspect in case an event with in-

tensity G occurs at time C? If the community is risk-neutral, then it should minimize the

expected discounted cost of its actions, see Sec. 2.1.3. Let I8 be a binary decision vari-

able representing whether to accept the optimal predetermined safety level for building 8 ,

I8 = 0, or to inspect the building, I8 = 1. Collectively, let I1:# = (I1, . . . , I# ) be the vector

representing the decisions for all buildings. The optimal decision, I∗1:# (C, G ; A ), minimizes

the expected cost subject to inspection budget constraints. Mathematically, the optimal

decision solves:

min
I1:=∈{0,1}#

#∑
8=1

2∗8 (G) (1 − I8), (2.1)

subject to the budget constraint:

=∑
8=1

4WCF8I8 ≤ 4UCA, (2.2)

where W > 0 is in�ation rate, and U ≥ 0 is the return rate of the safe asset in which the

community invested its budget at time C0 = 0. The optimization problem by Eqs. (2.1)

and (2.2) is known as a knapsack problem [37]. I can solve this problem through the dy-

namic programming algorithm implemented in OR-Tools Python library [38].
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But how should the community set its initial inspection budget A? To answer this

question, assume that the community responds to an event of intensity - occurring at a

random time) by solving the above-mentioned knapsack problem. Then, the cost� to the

community is the cost of inspection plus the cost to the community from making incorrect

predictions (note that correct predictions do not add to the cost to the community), i.e.,�

is the r.v.

� (),-, (1:# ) =

4W)
#∑
8=1
[F8I8 (),- ; A ) + 28 (3∗8 (- ), (8) (1 − I∗8 (),- ; A ))], (2.3)

where (1:# = ((1, . . . , (# ). A risk-neutral community would seek to minimize its dis-

counted expected cost, i.e., it would select the budget by solving:

min
A∈[0,∞)

E[4−V)� (),-, (1:# )], (2.4)

where E[·] denotes the expectation over all random variables, and V > 0 is the discount

rate of the community. Now, a risk-averse community would be interested in keeping the

variance of � under control, it would also seek to solve:

min
A∈[0,∞)

V[4−V)� (),-, (1:# )], (2.5)

where V[·] is the variance operator. In Sec. 2.1.4, I discuss how I derive the Pareto front

of the stochastic multi-objective optimization problem de�ned by Eqs. (2.4) and (2.5).

2.1.2 Quantifying the conditional probability of a building’s safety state given

the event intensity

The conditional probabilities associated with the damage levels of the building after

the hazard are de�ned as a set of fragility functions [39–41]. A fragility function �8,; (G)

describes the conditional probability of the 8-th building response .8 exceeding a certain
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threshold X8,; of damage level ; , given the event intensity - = G , and is mathematically

de�ned as:

�8,; (G) = P[. > X8,; |- = G], for ; = 0, 1. (2.6)

To predict the post-event safety state of the building I need to determine the probability

of experiencing each safety state using the concept of fragility function. The �rst step is

to associate the safety sates of the buildings with certain damage level ranges. Assuming

that the building is in the “safety level 1” state when .8 < X8,0, in the “safety level 2” state

when X8,0 < .8 < X8,1, and in the “safety level 3” state when .8 > X8,1, I have:

P [(8 = “safety level 1”|- = G] =

P
[
.8 < X8,0

��- = G
]
=

1 − P
[
.8 > X8,0

��- = G
]
=

1 − �8,0(G),

(2.7)

P [(8 = “safety level 2”|- = G] =

P
[
X8,0 < .8 < X8,1

��- = G
]
=

P
[
.8 > X8,0

��- = G
]
−

P
[
.8 > X8,1

��- = G
]
=

�8,0(G) − �8,1(G),

(2.8)

and

P [(8 = “safety level 3”|- = G] =

P
[
.8 > X8,1

��- = G
]
=

�8,1(G).

(2.9)

To assign the proper fragility function to the building 8 , I consider the pre-event charac-

teristics of the building, e.g., number of stories and structural construction and con�gu-
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ration, denoted as 18 . The pre-event characteristics of the buildings can be extracted by

using automated methods, developed recently [42–44].

2.1.3 Predicted safety level optimization

Predicting the safety level of the buildings based on their pre-event characteristics is

subject to errors. To minimize the adverse consequences of these decisions, �rst I need

to quantify the imposed cost of each decision on the community. Speci�cally, let 28 (38, B8)

be the cost (in dollars) imposed on the community by selecting the predicted safety level

38 when the actual building safety state is B8 . This cost represents a monetary expression

of the potential casualties, the economic, social, or environmental loss, and it encodes the

goals of the community. I assume that the cost grows with the in�ation rateW . I determine

the optimal predicted safety level, 3∗8 (G), for building 8 , by minimizing the expected cost

of this decision, i.e.,

3∗8 (G) = arg min
38
E [28 (38, (8) |- = G] . (2.10)

The optimal expected cost is simply:

2∗8 (G) = E
[
28 (3∗8 (G), (8) |- = G

]
(2.11)

2.1.4 Pareto front

To derive the Pareto front of the problem de�ned by Eqs. (2.4) and (2.5), I need to quan-

tify the expected cost and the variance of the cost for all budget levels. First, I generate a

set of budget levels, A1 < A2 < · · · < A: , where A1 = 0, and A is the budget level required to

inspect all buildings. Then, for each: = 1, . . . ,  , I sample" events,
{(
C (<), G (<), B (<)1:#

)}"
<=1
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using the probability distributions of the occurrence time, ) , the event intensity - , and

the state of the building (8 conditioned on - . Then, I approximate the expected cost by:

E
[
4−V)� (),-, (1:# ) |A = A:

]
≈ �̄ (A:) :=

1
"

"∑
<=1

4−VC
(<)
�

(
C (<), G (<), B (<)1:# ; A = A:

)
, (2.12)

and the variance by:

V
[
4−V)� (),-, (1:# ) |A = A:

]
≈ f2

�
(A:) :=

1
"−1

∑"
<=1

{
4−VC

(<)
�

(
C (<), G (<), B (<)1:# ; A = A:

)
− �̄ (A:)

}2
,

(2.13)

respectively. After calculating the expected cost and variance of the cost for each possible

budget level, I plot the Pareto frontier to visualize the budgets that are not dominated.

2.2 Illustrative Example

2.2.1 The data set

To demonstrate the approach and illustrate the information it can supply, I use a

crowd-sourced dataset moderated by a group of researchers in the European Centre for

Training and Research in Earthquake Engineering (EUCENTRE) in Pavia, Italy. This

dataset was collected within the EU Consortium project, SASPARM2.0, to demonstrate

a crowdsourcing based framework to facilitate the completion or creation of an expo-

sure model and its corresponding physical vulnerability model. Citizens, practitioners,

and students �lled out speci�c forms developed for this project, which focused on docu-

menting the structural characteristics of 581 buildings in the city of Nablus, a commercial

and cultural center located in the northern West Bank that is adjacent to the seismically

active Dead Sea Transform and associated geological faults. The dataset includes typo-

logical and metric data for the structures, e.g., building construction and con�guration,

number of stories, �oor area, and associated fragility functions. The fragility function sets
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were generated, based on SP-BELA procedures, to be appropriate for the structures in the

dataset [45].

Description of the building inventory

Fig. 2.1.: Building inventory taxonomy.

Table 2.1.: Categories used for the building inventory to represent �oor area.
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Fig. (2.1) shows a statistical summary of the key characteristics of the building inven-

tory, including the type of construction, the number of stories, and the �oor area category.
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(a) Original �oor area category distribution.
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(b) Rede�ned �oor area category distribution.

Fig. 2.2.: Floor area category distribution of the building inventory.

Each building is assigned a designation in terms of its construction and structural con�g-

uration as: masonry (M), reinforced concrete (RC), reinforced concrete shear wall (RCS).

In the case of geometric irregularities that would result in torsional behavior the letter “T”

is added to its designation, e.g., RCT or RCST. The fragility functions of these irregular

buildings are also updated with respect to their regular counterparts using a simpli�ed

approach that makes use of correction coe�cients [33]. The vast majority of the build-

ings contained in this inventory are M, RC, and RCT, and there are only three buildings

designated as RCS and two designated as RCST [45]. Each building in the inventory is

also assigned to a category based on its �oor area. The original building inventory uses

alphabetic letters to represent these categories (see Table (2.1)). However, I rede�ne these

categories according to the assumed cost of �eld inspection grouped by area. Fig. (2.2)

shows the distribution of buildings using both the original and rede�ned categories. The

actual use of each of the buildings in the inventory is not documented. However, for

purposes of demonstrating the method, I assign each building into one of three usage cat-

egories. In particular, 565 buildings are classi�ed as residential, 12 as commercial, and 4

as critical facilities (e.g., hospitals, police/�re stations). To implement and demonstrate

the methodology, I need to identify: (i) the type of construction and the number of stories

to properly assign a representative fragility function to each building; (ii) the �oor area
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category, which is used to estimate the �eld inspection cost; and (iii) the designated use

of each building. These data are used to quantify the cost imposed on the community.

Fragility functions of the data set

Fragility functions are assigned to each building to estimate its most probable state

after the event. An original set of fragility functions for this particular building inven-

tory was developed by [45] based on the available data, including construction, geometric

information (e.g., �oor area, number of stories) and the structural con�guration (e.g., reg-

ular, irregular) of each of the buildings. Observed damage data were not available for

Palestine, and thus [45] used results obtained for Italian buildings with similar construc-

tion. The set of fragility functions was generated using a simpli�ed pushover-based earth-

quake loss assessment (SP-BELA). SP-BELA was initially developed as a means to rapidly

assess the vulnerability of Italian buildings. SP-BELA procedures were speci�ed for ma-

sonry buildings, RC frame buildings, and precast concrete buildings [46–48]. Originally

SP-BELA featured three limit states: light damage (LS1), signi�cant damage (LS2), and

collapse (LS3). However, [49] adapted the set of fragility functions developed based on

this data set to correspond to the EMS98 scale [49]. This scale involves �ve damage levels,

i.e., slight damage (D1), moderate damage (D2), extensive damage (D3), complete damage

(D4), and collapse (D5). The relationship between damage level and limit state was de-

�ned using observed damage data in a series of recent Italian earthquakes beginning in

1976 with the Friuli event through to 2002 with the Emilia event [50].

According to the EMS98 scale, D4 and D5 refer to building states de�ned as completely

damaged and collapsed, respectively, and thus are clearly well beyond a state in which

they can be considered usable. Inspection to distinguish between these two states is not

necessary. Thus, based on the de�nitions in EMS98 and for purposes of illustration, I pair

the D1 fragility function with a safety level 1, D2 with the safety level 2 state, and D3 and

above with safety level 3. Also, the original building inventory used to determine the set of

fragility functions consists of buildings that are not seismically designed. Our simulations
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show that, with even a small intensity event, there is a high probability of all buildings

in the inventory reaching safety level 3. Thus, to consider an inventory that is more

representative of a typical community with modern construction and designed according

to seismic building codes, I modify the set of fragility functions by multiplying both ` and

f by a selected coe�cient. The coe�cient is selected based on judgment as 2.5, 3.0 and

3.5 for residential buildings, commercial buildings and critical facilities, respectively, to

better represent reasonable performance levels for seismically designed buildings.
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(a) Fragility function.
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Fig. 2.3.: Example showing (a) the fragility functions for a 2 story RC residential building,
and (b) the corresponding probability functions.

To apply the method developed herein, I need to interpret the fragility functions for

a given building to represent the probability of the occurrence of each safety level. To

accomplish this, I �rst select the fragility function that corresponds to a given safety level

and then transform that fragility function, which is de�ned as the probability of exceed-

ing a particular limit state, to a curve that corresponds to the probability of the post-event

building state being associated with each safety level. To demonstrate these steps, con-

sider the fragility functions of a 2 story RC residential building. Fig. (2.3a) shows the

fragility functions for this building corresponding to damage states D1 (green dashed),

D2 (yellow solid), and D3 (red dotted). Fig. (2.3b) shows the corresponding probability
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functions, which represent the probability of that building being in the corresponding

state (in this case, the associated safety level) after the event, as explained in Sec. (2.1.2).

2.2.2 Cost function to quantify losses due to incorrect classi�cation

I de�ne an intuitive cost function to compare the consequences of the decisions. The

cost function has two terms, corresponding to: (i) the estimated cost of building inspec-

tions to the community, (ii) the estimated cost associated with making an incorrect deci-

sion regarding the state of a building. The values in the cost function are approximated

and for a speci�c community, and they should be adjusted to represent the actual costs for

that target community. The cost of a �eld inspection for a building is determined based

on the size of the building, and is constant within a given category of building. Thus,

it is the product of the number of stories, the average �oor area of the building based

on its category (as de�ned in Table (2.1)), and the cost per unit area for a �eld inspec-

tion. The inspection cost increases with the �oor area category, and is selected as $500

for the �rst category (0-100<2) and increases by $500 for each subsequent �oor area cat-

egory. This value represents the actual monetary cost for a structural engineer to do a

�eld inspection [51, 52]. Due to the high-demand for quali�ed structural engineer’s time

in emergency conditions, I adjust this �eld inspection rate. Here I magnify this value by

a factor of 10. The second term in the cost function is associated with the incorrect as-

signment of predetermined safety states, and represents the cost that a wrong decision

will impose on the community. If every building is inspected by a quali�ed engineer af-

ter the event, the resulting cost to the community will be a �xed amount. However, if,

for instance, the predetermined safety level and the actual state of every building match,

the resulting additional cost to the community would be zero. If any single building is

under-rated (i.e., the predetermined safety level is lower than the actual safety level), that

incorrect decision introduces a degree of risk associated with the error (i.e., allowing res-

idents to enter a safety level 3 building), and this may result in casualties and thus may

impose a tremendous additional cost to the community [53]. On the other hand, if the
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building is over-rated, the incorrect decision is conservative (i.e., unnecessarily restrict-

ing access to a building that is functional), and this may impose a considerable additional

cost to the community in the form of lost revenue for commercial buildings, hotel costs

for occupants of residential buildings, or a gap in critical services (e.g., hospital services,

police and �re services). These costs may not, however, be as massive as in the previous

case.

Table 2.2.: Cost function for residential buildings (in $ per �oor area category).

Decision
safety level 1 safety level 2 safety level 3

safety level 1 0 350,000 750,000
safety level 2 3,750,000 0 500,000
safety level 3 7,250,000 3,600,000 0

Ac
tu

al
St

at
e

Table 2.3.: Cost function for commercial buildings (in $ per �oor area category).

Decision
safety level 1 safety level 2 safety level 3

safety level 1 0 3,000,000 5,500,000
safety level 2 89,000,000 0 4,000,000
safety level 3 14,500,000 7,200,000 0

Ac
tu

al
St

at
e

Table 2.4.: Cost function for critical facilities (in $ per �oor area category).

Decision
safety level 1 safety level 2 safety level 3

safety level 1 0 7,750,000 15,000,000
safety level 2 25,750,000 0 10,000,000
safety level 3 36,250,000 18,000,000 0

Ac
tu

al
St

at
e

The cost function for the three types of buildings includes the same terms, but the

contributing costs and their weightings are di�erent. For this example, the added cost

of under-rating in the case of commercial buildings and critical facilities are set to be
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two times and �ve times that of residential buildings, respectively. The added cost of

over-rating in the case of commercial buildings is much larger due to both the short-term

and long-term e�ects on the community’s economy. If a commercial building is over-

rated as “safety level 3”, any businesses in the building will be closed until an inspection

can be performed. For buildings containing critical facilities, over-rating has a severe

impact in terms of the resulting gap in critical services available to the community. Here

I include an importance coe�cient associated with each building type to represent the

relative costs. The importance coe�cients are 1, 2, and 5 for residential, commercial, and

critical buildings, respectively. Tables (2.2), (2.3) and (2.4) provides the relative additional

costs associated with predetermined safety levels used in this case study.

2.2.3 Discussion on consequences of communities risk-oriented decisions

To demonstrate the method, I consider four communities with di�erent attitudes to-

ward risk. The four communities are described as: unprepared, risk-neutral, risk-averse,

and extremely risk-averse. Here the term risk refers to the risk originating from erro-

neous decisions in pre-classifying the post-event safety level. Thus, at the one extreme,

I assume that the extremely risk-averse community will prefer to inspect all buildings in

the community to eliminate any uncertainty due to this source of risk. Alternatively, at

the other extreme, the unprepared community does not allocate a budget for inspection,

and must rely on the predetermined safety levels assigned to all buildings, which is the

typical output of many recent past projects that targeted the development of urban or

regional risk models to assist decision-making. The risk-neutral community simply aims

to minimize the expected present value of the total cost imposed on the community. The

risk-averse community prefers to allocate a reasonable inspection budget, which supports

minimizing both the risk and the expected total cost imposed on the community.

The results for these sample communities are shown in Fig. (2.4a) which shows the

mean vs. the standard deviation of the cost imposed on each of the communities for a

range of budgets between zero and the maximum budget required to perform a �eld in-
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(a) mean vs. the standard deviation of the cost.
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(b) Non-exceedance probability of the cost for each com-
munity.

Fig. 2.4.: Sample communities.

spection on all buildings. In this case, this value is $60,120,000. To obtain these results, I

sample the event intensity from a lognormal distribution with mean and standard devia-

tion of -0.8 and 0.3, respectively, i.e., ln- ∼ N(−0.8, 0.09) and the next occurrence time of

the event from an exponential distribution with a rate of 300, i.e.,) ∼ E(1/300) . For each

budget level I run 1000 simulations and I calculate the actual total cost for each simulation.

Using these 1000 simulations I can estimate the expected cost and risk as described in Sec.

(2.1.4). I assume the interest rate, the discount rate and the in�ation rate are equal in this

case, U = W = V = 0.03. I used dynamic programming algorithm to solve the knapsack

problem [38]. In case of a shortage of memory, e.g., for larger-scale analysis, I can use a

meta-heuristic algorithm to solve this optimization problem [54–56].

Based on the results shown in Fig. (2.4a), it is clear that changing the allocated in-

spection budget can have a dramatic e�ect on the expected cost to the community. Ad-

ditionally, the allocated inspection budget will also a�ect the actual level of risk in the

community, or the volatility, which is captured in the standard deviation. The two note-

worthy budget levels mentioned in Section 2 are noted in the �gure including: (i) the

risk-neutral community having the budget level which causes the lowest Sharpe ratio
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(the minimum risk-adjusted cost); and (ii) extremely risk-averse community having the

budget level which causes the lowest volatility (minimum standard deviation).

Next, I consider the distribution of the resulting cost for each of the de�ned communi-

ties based on a certain pre-determined inspection budget. To examine this distribution, I

simulate the event by sampling the event parameters from intensity level and occurrence

time distributions, and sampling the pre-classifying decisions from the safety level dis-

tributions. I perform 1,000 random simulations, and for each simulation I compute the

total cost imposed on the community. Fig. (2.4b) shows the resulting non-exceedance

probability of the total cost for each sample community.
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(b) Risk-neutral community.

SL 1 SL 2 SL 3
0

100

200

300

400

500

N
um

be
r 

of
 b

ui
ld

in
gs

PGA = 0.1

SL 1 SL 2 SL 3

PGA = 0.4

SL 1 SL 2 SL 3

PGA = 0.7
Pre-classification
Inspection

(c) Risk-averse community.
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(d) Extremely risk-averse community.

Fig. 2.5.: Statistics of the results for three events with di�erent intensities for the di�erent
communities.
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Figs. (2.5a), (2.5b), (2.5c), and (2.5d) show the corresponding results for the unprepared,

risk-neutral, risk-averse, and extremely risk-averse communities, respectively. Here I as-

sume an event happened right now, and I consider three di�erent �xed intensity levels

for the event, 0.1, 0.4 and 0.7. For each intensity level, I demonstrate the distribution

of the optimal predetermined safety states of the buildings. Furthermore, for each pre-

determined safety state, I show the distribution of the buildings that are selected to be

either inspected or pre-classi�ed. Regardless of the intensity of the event, the extremely

risk-averse community allocates the full inspection budget and performs a structural in-

spection on each building. Based on the building inventory used in this example, and the

inspection costs assumed, $60, 120,000 is necessary to inspect all buildings in the commu-

nity no matter what event occurs. Fig. (2.5d) provides the statistics of the results for the

extremely risk-averse community. The distribution of the minimum cost predetermined

safety levels assignment for each intensity level in the case of the unprepared community

is the same as that of the extremely risk-averse community. However, the resulting deci-

sions regarding performing an inspection or using the predetermined safety levels for each

of the buildings are entirely di�erent. Because the budget allocated for inspection in the

unprepared community is zero, all buildings must use their predetermined safety levels,

as shown in Fig. (2.5a). It is likely that the extremely risk-averse approach to inspection

is not feasible in the real-world for economic reasons, but this is included for purposes of

illustrating the consequences of di�erent approaches. The opposite approach, the unpre-

pared community (an especially risk-taking attitude) will also impose a signi�cant cost

on the community which is likely to exceed that of the other cases. The risk-neutral com-

munity takes the approach of minimizing the total cost, which, based on these results, is

expected to occur by specifying $30,450,000. Fig. (2.5b) shows the distribution of decisions

made, considering the three levels of event intensity, for the risk-neutral community.

The budget that minimizes the imposed cost on the community may not necessarily

minimize the variation of the cost. So let us consider how to determine the inspection

budget that minimizes both the expected value and the variation of the cost. I thus de�ne

a risk-averse community as one which decides to rationally reduce the total cost imposed



27

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Standard deviation of cost ($) 1e4

0.5

0.6

0.7

0.8

0.9

1.0
E

xp
ec

te
d 

va
lu

e 
of

 c
os

t (
$)

1e5

Pareto Frontier
Min Sharpe Ratio
Min Volatility
Risk-averse

0

1

2

3

4

5

6

In
sp

ec
tio

n 
bu

dg
et

 ($
)

1e4

(a) Full view.

0.0 0.5 1.0 1.5 2.0 2.5
Standard deviation of cost ($) 1e3

4.8

5.0

5.2

5.4

5.6

5.8

6.0

E
xp

ec
te

d 
va

lu
e 

of
 c

os
t (

$)

1e4

Pareto Frontier
Min Sharpe Ratio
Min Volatility
Risk-averse

0

1

2

3

4

5

6

In
sp

ec
tio

n 
bu

dg
et

 ($
)

1e4

(b) Zoomed view.

Fig. 2.6.: Pareto front.
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(a) Hourly inspection rate is half.
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(b) Hourly inspection rate is double.

Fig. 2.7.: Cost distribution and Pareto front for regions with di�erent hourly inspection
rates.

on community, avoiding risk as much as possible. To accomplish this goal, I use modern

portfolio theory which argues that an investment’s risk and return characteristics should

not be viewed alone, but should be evaluated by how the investment a�ects the overall

portfolio’s risk and return [57]. Because the application examines investing the budget in

performing post-event inspections, instead of maximizing the return I need to minimize
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(a) Hourly inspection rate is half.
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(b) Hourly inspection rate is double.

Fig. 2.8.: Non-exceedance probability of the cost for each community for regions with
di�erent hourly inspection rates.

the cost while minimizing the risk. The fundamental objective of this analysis is to identify

an e�cient set of budgets, known as an e�cient frontier, that o�ers the minimum expected

costs for a given level of risk. The gray dashed line in Fig. (2.6a), and (2.6b) shows the

e�cient frontier. Fig. (2.6b) is the zoomed view of the dotted box shown in (2.6a). Once I

have the e�cient frontier, a decision-maker can determine the desired inspection budget,

considering other criteria, e.g., a maximum threshold of the budget or a maximum risk

tolerance of the community. Here I assume that such a risk-averse community has set

a maximum threshold of $45,090,000 on the budget, as shown in Fig. (2.6). This result

indicates that as long as the allocated budget is selected to be on the Pareto front, applying

the other decision criteria of the community would not lead to a catastrophic result.

Fig. (2.5c) provides the statistics of the results for the risk-averse community for three

events with di�erent levels of intensity, including 0.1, 0.4 and 0.7. By selecting a reasonable

inspection budget in advance, a majority of the high priority buildings are identi�ed for

�eld inspection while the buildings with lower priority are pre-classi�ed.

The appropriate budget for a community to allocate does depend on the relative cost

of inspection and the cost to the community for making incorrect predictions, see Eq.
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(2.3), which depend on the region. To consider such regional variations, I consider two

other communities with lower (half) and higher (double) relative hourly inspection rates.

Fig. (2.7a) shows the resulting cost distribution and Pareto front for the region with lower

inspection rates. Here, half of the maximum budget is su�cient to inspect all the buildings.

However, in a region with higher inspection rates, shown in Fig. (2.7b), spending the

maximum considered budget will reduce the standard deviation considerably but it can

not make it zero. Figs. (2.8a) and (2.8b) show the non-exceedance probability of the total

cost for the sample communities in regions with both lower and higher inspection rates,

respectively. In a community with a lower inspection rate, Fig. (2.8a) shows that the

inspection budget assigned for the risk-neutral community will result in a very small

chance of imposing more than 30,000 $ cost on community. However, in a community

with a higher inspection rate, Fig. (2.8b), it is probable that the resulting cost on the

community would be 10 times larger, in this case 300,000 $.
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3. AUTOMATED BUILDING IMAGE EXTRACTION FROM
360-DEGREE PANORAMAS FOR POST-DISASTER EVALUATION

In this study, I develop an automated technique to detect and extract curated pre-event

building images from typical street view panoramas. This technique is intended to sup-

port research investigating the impact of disasters on a building inventory. The extracted

images capture the external appearance of a building from several viewpoints. As a pre-

liminary step, a classi�er is �rst trained to detect buildings within images using a large

ground-truth building image set. The region-based convolutional neural network algo-

rithm is exploited to design a robust building classi�er [58]. Ideally, in the real-world

application of this technique, a user can simply provide, as the input, a geotagged image

(or similarly, a GPS coordinate) recorded near the target building, and the rest of the pro-

cess is fully automated. The physical location of the target building is estimated using

the geometric relationship between the panoramas and the building. Then, the optimal

projection plane for each of the panoramas is determined to produce a high resolution,

undistorted 2D building image from the corresponding panoramas. The region (position)

of the building on each 2D image is determined using the trained classi�er, and an image

of the building is extracted from each 2D image. The output of the technique is a set of

several undistorted images of the building, taken from all available viewpoints. Generat-

ing multiple image reduces the possibility of an obstruction (e.g. trees, cars or fences) in a

particular viewpoint and, thus, enables robust visual assessment. Also, by using this pro-

cedure with data from multiple street view services, a user can collect street view images

obtained over many past years to observe the target building over time. The performance

of the technique developed here is demonstrated and validated using residential build-

ings a�ected by Hurricane Harvey (in 2017) in Holiday Beach, TX. Real-world post-event

reconnaissance images, collected by engineers in the �eld, are used as the input for this
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validation, and pre-disaster views of the buildings in those reconnaissance images are

automatically extracted from Google Street View [59].

The major contribution of this study is to provide a practical and feasible solution to a

problem that is grounded in the needs of engineers who seek to learn from disasters. With

the capability to analyze post-disaster building scenarios by readily accessing pre-disaster

images and post-disaster data, engineers are equipped with the tools to rapidly develop

a greater understanding of the performance of our infrastructure. The technique devel-

oped automatically provides high-resolution undistorted multiple view pre-event images

of each building. The key technical contributions are in automatically removing the in-

herent distortion of the 2D projection of panorama images and in rapidly extracting a set

of images of each post-disaster target building with multiple viewpoints. Additionally, a

side bene�t of this technique is the ability to exploit the vast amounts of legacy visual data

that exist from past disasters. With such visual databases being collected and established,

and the cost of image acquisition and data storage decreasing, this technique o�ers just

one example of how to automate the reuse of existing data through the novel application

of state-of-art computer vision algorithms to solve real-world problems.

This chapter is structured as follows. First, the challenges in using street view images

for this application are introduced in Section 2. The technical details of the technique

are explained in Section 3, and in Section 4, it is demonstrated using Google Street View

images gathered from Holiday Beach in Texas, United States, which was heavily a�ected

by Hurricane Harvey in 2017. Please see the archived [44] and published versions [60] for

more details.

3.1 Problem Statement

The 360-degree panorama image is an image that is able to capture all around (spher-

ical) scenes from a given location. The merit of panoramas is that, after the data are

collected, one may quickly navigate to scenes of interest in any direction from the given

location. This advantage does not apply to 2D images. With 2D images, the direction in
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which the data are being collected must be determined at the data collection stage. Thus,

panoramas are quite useful when for reconnaissance because when they are collected

from multiple locations, several di�erent external views of a given building are automat-

ically recorded (e.g., front or sides). In the panorama viewers typically implemented by

street view service providers, 2D rectilinear images are rendered from the panoramas in

real-time based on the selected viewing direction (represented by a pitch and yaw) and

zoom level. When rendered in this way, the rectilinear images are just the 2D images

that would typically be obtained with an ordinary (non-�sheye) camera. These images

represent scenes in the world as people actually see and perceive them. For instance, a

straight line in the 3D world is represented as a straight line in the corresponding rectilin-

ear image [61]. Such viewers also frequently overlay directional arrows to enable a user

to move to nearby panoramas. Although such viewers provide accessible, easy-to-use and

easy-to-view panoramas, a great deal of manual e�ort is now required to retrieve data for

a particular building. First, the user must read the GPS coordinate from a geotagged image

and enters the GPS coordinates into the viewer. Then, by panning and zooming, the user

�nds the target building and determines the best perspective for a clear view the front

of the building. The user captures the rectilinear image shown on the screen and crops

the image to extract and save the building region to document this view. Next, to observe

the side of the building (or any other angle), the user must click on the directional arrows

to move to nearby panoramas and repeat the extraction procedure. This entire process

is repeated for each of the panoramas (locations) yielding several images of the building

from various viewpoints. This manual process is time-consuming and ine�cient. Gath-

ering multiple pre-disaster images for a large number of buildings in a subdivision or city

would take a great deal of time for a human.

To automate this process, I incorporate two key capabilities into the technique de-

veloped. First, the position of the building on each image is identi�ed. Herein, to avoid

confusion, I use the term ‘position’ when I mean the location of the building on the 2D

images. The term ‘location’ is used only for its geolocation in the world (3D). I exploit a

recently developed deep convolutional neural network algorithm, which has led to break-



33

(a) Hurricane Katrina in 2005 (b) Hurricane Harvey in 2017

Fig. 3.1.: Sample images collected during post-event building reconnaissance missions
(Courtesy of Timothy P. Marshall and Thomas P. Smith, respectively).

(a) Incorrect direction of projection (b) Correct direction of projection

Fig. 3.2.: Rectilinear images created from the same panorama.
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Fig. 3.3.: Overview of the technique developed.

throughs in object recognition [58]. Using a large number of labeled building images, a

robust building classi�er is trained to accurately identify the presence of the building and

detect its position in the pictures. The details of this algorithm are explained in Section 3.

Next, the optimal viewing direction (direction of projection) is determined. The direction

of projection is de�ned as the viewing direction that generates a rectilinear image from

the panorama to yield an undistorted view in the selected direction. However, inaccurate

selection of the direction of projection may result in signi�cant distortion of the target

building. For example, Fig. 2 demonstrates the e�ect of

projection direction on rectilinear images. Both sets of images are generated from the

same panorama. When the target building is located further from the center of a rec-

tilinear image, its quality is degraded due to a large distortion. Thus, the most suitable

direction of projection of each panorama should be determined to generate the 2D rec-

tilinear image with the best available quality. The implementation of this capability is

presented in Section 3.
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3.2 Methodology

The technique developed herein is explained in Fig. 3. The details are as follows. Users

provide a geotagged image of the target building (which includes the GPS coordinate near

that target building) and the input, and several images of the corresponding building are

automatically extracted from street view images and the outputs. The resulting images

contain views of the building acquired from various viewpoints and with negligible dis-

tortion. This technique will enable the user to readily examine images of the entire front

and sides of the building in its pre-event condition. The overall technique is divided into

four main processes: Steps 1 and 2 (captioned in light blue) download all panoramas ac-

quired near the target building from the street view service. Steps 3 to 8 (captioned in dark

blue) approximate the building location in the GPS coordinate system using the geometric

relationship between the building and the panoramas. Rectilinear images are generated

from a couple of the closest panoramas, and the trained building detector is applied to

�nd the building position on the rectilinear images. Then, the location of the building is

identi�ed in each of the camera coordinate systems, and transformed into the GPS coor-

dinate system. Note that this intermediate step is not yet intended to extract high-quality

building images because the rectilinear images are generated without considering the op-

timal direction of rectilinear projection. Steps 9 to 10 (captioned in green) are generate

the rectilinear image from each of the panoramas by considering its optimal direction of

projection. Lastly, Steps 11 to 12 (captioned in purple) detect the target building in each

of the optimal rectilinear images using the same building detector and extract the build-

ing images for the �nal use. Again, once a geotagged image is provided in Step 1, the

rest of the process is fully automated. The detailed description and pseudocode for each

step are provided in the following paragraphs. Table 1 shows all parameters used in the

pseudocodes and their de�nitions.

Table 1. Parameters and de�nitions

In Step 1, the GPS coordinate near the target building (hereafter, the input GPS co-

ordinate) is obtained from the EXIF metadata of the input geotagged image(s). Note that
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Table 3.1.: Parameters and de�nitions.

Parameter De�nition
8<6 Geotagged post-event image
�8<6 GPS location of 8<6
�8 GPS location of %#8
%#8 8Cℎ panorama
"8 Metadata of %#8
\ Field of view (FOV)
U Projection angle in degrees
⊥ Perpendicular projection angle, ⊥∈ {90◦, 270◦}
U∗8 Optimal U for %#8
') U

8
Rectilinear image generated from %#8 using U

') ∗8 Rectilinear image generated from %#8 using U∗8
11>G⊥8 Detected bounding box of a building in ')⊥8
11>G∗8 Detected bounding box of a building in ') ∗8
:?8 Detected key points in ')⊥8
34B8 Descriptors corresponding to :?8
<?8 Matched key points among :?8
=<? Number of the matched key points presented in the bounding box
G8 :?8, 8 ∈ {0,−1, 1} where 8 is selected by comparing =<?
%8 8Cℎ projection matrix
� Essential matrix
8G8 Inliers matched key points among G8
' Rotation matrix between %8
) Translation matrix between %8
?G8 Building image location on ')⊥8
-� Estimated location of a building in camera coordinate
-� Estimated location of a building in GPS coordinate
18<68 Resulting building image extracted from ') ∗8
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this image is only needed for providing the GPS information near the target building and

thus, its quality or visual contents do not a�ect this technique. Alternatively, a user may

manually provide approximate GPS information for the target building. The pseudocode

for step 1 is shown in Algorithm 1.

Algorithm 1
Input: img
Output: �8<6

1: �8<6 ← Read GPS location from metadata in 8<6

Step 2 is to download a sequence of panoramas acquired near the input GPS coordinate,

denoted as %#8 (8 = −=, . . . , +=), from the Street View API. Herein, 8 = 0 represents the

index for the panorama that is closest to the building, and 8 = −= and 8 = += represent

the indices for the far left and far right panoramas in the selected set, respectively. The

sequence to be downloaded begins with %#( − =) where the nearest available panorama

is set to %#0. For example, I assign that %#1 becomes the panorama closest to %#0 in one

direction along the route where the panoramas are collected. Here, n is the maximum

allowable number of panoramas to be used in one direction. The user may initially select

this number. Panoramas that are captured far from the input GPS coordinate are not so

useful because the building will be too small on the image. Thus, a reasonable quantity

should be set (e.g., 3 or 5). Note that, depending on the building location, the number of

available panoramas may not be 2n+1. For instance, a building located close to a dead-end

or a cul-de-sac will have fewer panoramas available in one direction. Each downloaded

panorama contains panorama heading information in the form of an angle with respect

to North (see Fig. 4) which is necessary for �nding the optimal direction of projection. In

Google Street View, since this panorama heading is set to the driving direction of the data

collection vehicle, the panorama heading of a given panorama is closely aligned with the

direction of the street. The pseudocode for step 2 is shown in Algorithm 2.

In Step 3, front projection rectilinear images, denoted ') U
8

, are generated from %#8 (8 =

−1, 0, 1, U = 90° or 270°). As mentioned in Section 2, a rectilinear projection is one type

of projection to reproduce 3D scenes using 2D images, and results in the most natural
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Algorithm 2
Input: �8<6
Output: %#−=, . . . , %#=, "−=, . . . , "=

1: "0 ← Read metadata of the nearest panorama to �8<6 using Street View APIs
2: %#0 ← Download the panorama corresponding to "0
3: for 9 ∈ [−1, 1] do
4: 8 ← 1
5: while 8 ≤ = do
6: : ← 9 ∗ 8
7: ": ← Find the linked panorama from " 9∗(8−1)
8: if ": exists then
9: %#: ← Download the panorama corresponding to ":

10: 8 ← 8 + 1
11: else
12: break
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way for the viewer [62]. The scenes (images) available in typical street image viewers

are rectilinear images that have been projected to the direction that the user selects. This

direction corresponds to the direction of projection in Fig. 4. Rectilinear images are pro-

duced by mapping the panorama scene (here, panorama scene shown along the curve

from � to �) to the rectilinear image plane (��). Due to the available quality of street

view imagery, which reduces the chance of imperfection in panoramas, the projection

error is negligible. (��) is determined by de�ning a projection angle (U) and a �eld of

view (\ ). Thus, an in�nite number of rectilinear images can be generated from a single

panorama by using di�erent projection directions. %# in Fig. 3, and (��) in Fig. 4 are

represented by pixels. The �eld of view \ should generally be less than 120° because a

large �eld of view produces large distortion in the contents of the scene at the edges of

the image. In this step, only those panoramas immediately adjacent to %#0 (%#( − 1)

and %#1) are used for computing the building location in the GPS coordinate system. I

only consider %#8 (8 = −1, 0, 1) because the corresponding ') U
8

are most likely to include

the target building (8 = −1, 0, 1). Since the true GPS coordinate for the building is un-

known, the precise direction of projection for each ') U
8

cannot be determined. Here, I

reasonably assume that the building is located along the route of the street where the

panoramas are captured. Thus, the direction of projection is approximately set to either

90° or 270°, making it perpendicular to the direction of the panorama heading (the direc-

tion of the street). Depending on the location of the input GPS coordinate with respect to

the panorama location and the projection angle is selected to be either 90° or 270°, here

denoted as ⊥. Note that this is not the projection direction used for extracting the �nal

building images. Thus, images extracted using this projection direction are referred to

here as front heading rectilinear images, ')⊥8 . Herein, the actual projection direction for

generating rectilinear images is represented by two angles, azimuth and pitch. However, I

only consider the azimuth angle in this study, which is illustrated in Fig. 4. Thus, \ and U

are the viewing and projection "azimuth" angles, respectively. Accordingly, (��) becomes

the projection plane in the horizontal direction. For the vertical direction, the pitch angle

of the projection is set to zero, and \ for the vertical direction is selected to be identical
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Fig. 3.4.: Geometry of a panorama and rectilinear image.

to the value for the horizontal. In low-rise buildings, since the optimal projection pitch

angle is relatively small compared to the azimuth angle, the pitch angle does not need

to be controlled, and when it is set to zero, distortion in the rectilinear linear image is

insigni�cant. However, in the case of high-rise buildings, the pitch angles should also be

controlled so that the view of the building in a vertical direction can be fully included in

a corresponding rectilinear image. The pseudocode for step 3 is shown in Algorithm 3.

Algorithm 3
Input: %#−1, %#0, %#1,�8<6, \0 = 120
Output: ')⊥−1, ')

⊥
0 , ')

⊥
1

1: �0 ← Read the GPS location of %#0 from "0
2: \ ← Set FOV of rectilinear images as \0

3: VA4;0C8E4 ← Calculate an angle between the true north and the vector −−−−−→�0�8<6
4: VA4 5 4A4=24 ← Read a panorama heading angle w.r.t. the true north from "0
5: V ← VA4;0C8E4 − VA4;0C8E4
6: if V < 180 then
7: ⊥← 90
8: else
9: ⊥← 270

10: for 8 ∈ [−1, 0, 1] do
11: ')⊥8 ← Generate a rectilinear image from %#8 using ⊥ and \

In Step 4, the position of the target building in ')⊥0 is detected using a trained building

(object) classi�er. This building classi�er is trained in advance using a large volume of
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ground-truth building images. The details of the object detection procedure are explained

in Sections 3 and 5.1. The same trained classi�er is also used later in the technique in Step

11. The ground-truth building images used for training the classi�er must include images

of buildings that have a similar appearance as the target building. For instance, if the

building images used for training only contain wooden buildings, the classi�er may not

be su�ciently accurate when classifying images of masonry or concrete buildings [63].

After applying the classi�er to ')⊥0 , I determine a tight bounding box for the building in

that image. If more than one building is detected in ')⊥0 , the bounding box that is closest

to the center of ')⊥0 is selected, denoted as 11>G⊥0 (the subscription indicates the order, or

index, of the image). The pseudocode for step 4 is shown in Algorithm 4.

Algorithm 4
Input: ')⊥0
Output: 11>G⊥0

1: 11>G⊥0 ← Detect a bounding box of a building closet to the center of ')⊥0

Step 5 is to extract and match the visual features between ')⊥8 (8 = −1, 0, 1). The fea-

tures extracted from ')⊥0 must be matched with the corresponding features from ')⊥−1 and

')⊥1 . One of the conventional visual features and descriptors (SURF) is used for this pro-

cess [64]. These visual features and their descriptors represent unique key points across

the images and are used for computing the geometric relationship (essential matrix in this

study) between images. Then, a single rectilinear image is selected from either ')⊥−1 or

')⊥1 , which is chosen as the one with the larger number of matched features, denoted as

')⊥2 . This process is intended to improve the accuracy of building location estimation by

using more information. For example, the building on')⊥0 is often shifted slightly because

the input GPS coordinate may not be recorded at the location of the panorama closest to

the house. In such a case, either ')⊥−1 or ')⊥1 may be far from the panorama closest to

the building, and the other panorama is unlikely to include the same building, causing a

failure in estimating the building location. Unless the building is far from the street along

which the panoramas were captured, the building often occupies a large portion of each

image, and thus many features generated from the building regions will be matched. A
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subset of key points on ')⊥0 which are matched with ')⊥2 and included in the boundaries

of 11>G⊥0 is called G0. The corresponding subset of key points on the ')⊥2 is called G2 . The

pseudocode for step 5 is shown in Algorithm 5.

Algorithm 5
Input: ')⊥−1, ')

⊥
0 , ')

⊥
1

Output: x0, xc
1: :?0, 34B0 ← Extract keypoints and descriptors from ')⊥0
2: =<? ← 0
3: for 8 ∈ [−1, 1] do
4: :?8, 34B8 ← Extract keypoints and descriptors from ')⊥8
5: <?8,<?0 ← Find matched keypoints from :?0 and :?8 using 34B0 and 34B8
6: =<?8 ← Count the number of matched features inside 11>G⊥0
7: if =<? < =<?8 then
8: =<? ← =<?8
9: x0 ←<?0

10: xc ←<?8

In Step 6, the projection matrices of ')⊥0 and ')⊥2 are computed. The projection ma-

trix is a 34 matrix which represents the mapping from 3D points in the world to 2D points

in an image. In this study, the projection matrices of ')⊥0 and ')⊥2 are computed using an

essential matrix between two images (see Eq. 3), and the corresponding projection matri-

ces are denoted as %0 and %2 in (see Fig. 3), respectively. The essential matrix is a special

case of a fundamental matrix for which the intrinsic (calibration) matrix for both cameras

is known [65]. Since the essential matrix has only �ve degrees of freedom to be estimated

from ')⊥0 and ')⊥2 , fewer degrees of freedom than the fundamental matrix, more accu-

rate projection matrices can be computed. Based on the pairs of visual feature matches

in Step 5, the essential matrix is estimated using the �ve-point algorithm combined with

RANSAC (RAndom SAmple Consensus) [66, 67]. The Principal points and focal length in

the intrinsic matrix are obtained using the panorama’s geometry in Fig 4. The intrinsic
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matrices  for ')⊥0 and ')⊥2 are identical. For the mathematical representation of this

process, the intrinsic matrix is represented as:

 =


5G 0 ?G

0 5~ ?~

0 0 1


=


5 0 ?

0 5 ?

0 0 1


(3.1)

, where f and p are the focal length and the coordinates of the principal point, and the

subscripts G and ~ indicate the width and height directions, respectively. Since I consider

the same viewing angle in the horizontal and vertical directions, so 5G and 5~ (and ?G and

?~) are the same regardless of the direction. In Fig. 4, �� and (��) = �� are 5 and ? ,

respectively. Thus, 5 becomes:

5 = ? arctan\/2 (3.2)

, where p is half of the size of the rectilinear image in pixels, meaning that the principal

point is the center of the rectilinear images. The pairs of matched feature points are trans-

formed by multiplying the inverse of  by their points coordinates (in the homogeneous

coordinate system). Then, those points are expressed in a normalized coordinate system,

denoted as G=0 in ')⊥0 , and G=2 in ')⊥2 [65]. The essential matrix � satis�es the following

relationship:

G=2
)
�G=0 = 0 (3.3)

The �ve-point algorithm based on this relationship is utilized as a hypothesis-generator

(model) for RANSAC to count the number of inliers and outliers, and the inliers are used

for estimating E [65, 68]. The inliers on ')⊥0 and ')⊥2 are called 8G0, and 8G2 , respectively.

These points will be used for computing the building location in Step 7. The estimated

E enables us to extract %2 if %0 is assumed to be a canonical projection matrix %0 = [� 0]

where � is a 33 identity matrix) [65]. In this case, the origin of the camera coordinate

system is the camera center (focal point) of ') ?0 (generated from %#0). The pseudocode

for step 6 is shown in Algorithm 6.
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Algorithm 6
Input: x0, xc
Output: P0, Pc, ix0, ixc

1: xn0, x
n
c ← Normalize x0 and xc

2: E, ix0, ixc ← Calculate the essential matrix using xn0, x
n
c

3: R,T← Use ix0, ixc and E to recover relative camera rotation and translation
4: P0, Pc ← Use R and T to estimate the projection (camera) matrix
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In Step 7, the approximate 3D locations of the building are identi�ed in the camera

coordinate system. When the direction of projection is generally aimed toward the cen-

ter of the building façade, distortion on the rectilinear images can be minimized. Given

the projection matrices %0 and %2 , I can compute the 3D points in the camera coordinate

system that correspond to a pair of matched image points (point correspondence) using

a linear triangulation algorithm [65]. From Steps 4 and 5, I have a set of matched image

points between ')⊥0 and ')⊥2 . However, the visual features and/or the matched sets are

randomly distributed over the building region on those images, and thus it is not guar-

anteed that I will obtain the exact center of the building façade. Moreover, depending on

the locations of %#0 and %#2 with respect to the building and the width of the building,

they may include a portion of the side of the building, meaning that the center of the

bounding box may not be the center of the building façade. Thus, I reasonably de�ne the

3D building location (in the camera coordinate system) as the 3D point generated from

the matching feature closest to the 11>G∗0 . Once I �nd the matching feature nearest to this

point, its corresponding location in 3D space is identi�ed in the GPS coordinate system.

The estimated building location is denoted as -� . The pseudocode for step 7 is shown in

Algorithm 7.

Algorithm 7
Input: P0, Pc, ixo, ixc
Output: -�

1: ?G0 ← Find a point from ixo close to the center of 11>G⊥0
2: ?G2 ← Find a point from from ixc corresponding to ?G0
3: -� ← Compute a 3D location by triangulating ?G0 and ?G2

Step 8 is to perform a 2D similarity transformation to de�ne -� in the GPS coordinate

system, denoted as -� . In Step 2, each of the panoramas downloaded from street view

services has its own accurate GPS information and the 3D locations of %#0, %#2 , and -�
are computed in the camera coordinate system using Steps 3 7. However, these two control

points (the same points in two di�erent coordinate systems) are not entirely su�cient

to compute a 3D similarity transformation between the two coordinate systems (Horn,
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1987). Since the positions of the camera when it is acquiring the data (panoramas) are

almost co-linear (because the street view vehicle is driving along a street), adding one

additional control point by considering another (3rd) camera location does not add a new

equation to obtain a unique transformation. Alternatively, I choose to eliminate one of

the dimensions in both coordinate systems. Because the panoramas are captured from

a street view vehicle, the camera acquiring the panoramas moves along a path that is

almost entirely in a single plane with a consistent height (negligible street slope exists

between two panorama locations) in the camera coordinate system. Accordingly, I can

assume that the variation in the camera’s altitude in the GPS coordinate system is minimal

and can be ignored. With two pairs of camera locations in both the camera coordinate

system (considering only the image width and depth directions) and the GPS coordinate

system (considering only latitude and longitude), I have a su�cient number of equations

to perform the 2D similarity transformation using the two translational, two rotational,

and one scaling parameters that are available. Here, the camera location in %#0 is [0 0 0]

and %#2 becomes &−1?4 where & is the left 33 submatrix of %2 and ?4 is the last column

of %2 [65]. GPS coordinates are typically recorded in geodetic coordinates (represented as

longitude and latitude). Note that this system is not a Euclidean space, as the one used in

the camera coordinate systems. The geodesic datum should thus be represented by the

equivalent values in Euclidean space [69]. Since the distance between the two panoramas

is relatively small compared to the radius of the Earth, I can use the �at Earth assumption

in which the values are transformed into an Earth-north-up (ENU) coordinate system [70].

The ENU coordinates are formed from a plane tangent to a �xed point on the Earth’s

surface. Coordinates of the points are found by computing translational movements on

the tangential plane to East (- ) and North (. ) from the �xed point. Then, �nally, I can

identify the 2D similarity transformation matrix using these two pairs of control points

de�ned in two di�erent Euclidian coordinate systems. The transformation matrix is then

applied to -� to obtain -� . The pseudocode for step 8 is shown in Algorithm 8.

In Step 9, the correct projection directions for %#8 (8 = −=, . . . , +=) are computed to

generate the optimal rectilinear images. %#8 have the panorama heading with respect to
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Algorithm 8
Input: �0, -�
Output: -�

1: -� ← Transform the coord. of -� from ENU to Geodetic with the reference �0
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North, and their locations are de�ned in the ENU coordinate system obtained in Step 8.

Thus, as shown in Step 9 in Fig. 3, the correct projection angles (U∗8 ) can be computed.

The pseudocode for step 9 is shown in Algorithm 9.

Algorithm 9
Input: -� , "−=, . . . , "=

Output: U∗−=, . . . , U∗=
1: for 8 ∈ [−=, . . . , =] do
2: �8 ← Read the GPS location from "8

3: UA4;0C8E4 ← Calculate an angle between the true north and the vector −−−→-��8
4: UA4 5 4A4=24 ← Read a panorama heading angle w.r.t.the true north from "8

5: U∗8 ← UA4;0C8E4 − UA4 5 4A4=24

In Step 10, ') ∗8 are generated from %#8 using U8 computed in Step 9 (8 = −=, . . . , +=),

and these are the optimal rectilinear images. This step repeats the same process in Step

3 for all panoramas, although at this point the process is performed using the correct

projection angles. Since the projection direction is aimed toward the target building, the

target building is now at the center of each ') ∗8 . The pseudocode for step 10 is shown in

Algorithm 10.

Algorithm 10
Input: %#−=, . . . , %#=, U∗−=, . . . , U∗=, \0 = 120
Output: ') ∗−=, . . . , ') ∗=

1: \ ← Set FOV of rectilinear images as \0
2: for 8 ∈ [−=, . . . , =] do
3: ') ∗8 ← Generate a rectilinear image from %#8 using U∗8 and \

In Step 11, the position of the target building in each ') ∗8 is detected using the trained

building classi�er, which is identical to the classi�er used in Step 4. The only di�erence

compared to Step 4 is that here I detect the building within the optimal rectilinear images

generated from all panoramas, which contain undistorted views of the target building.

The pseudocode for step 11 is shown in Algorithm 11.

Finally, in Step 12, I obtain the set of highly localized target building images captured

from various viewpoints. The detected target building images having various viewpoints
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Algorithm 11
Input: ') ∗−=, . . . , ') ∗=
Output: 11>G∗−=, . . . , 11>G∗=

1: for 8 ∈ [−=, . . . , =] do
2: 11>G∗8 ← Detect a bounding box of a building close to the center of ') ∗8
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are cropped from ') ∗8 , which are captured from di�erent locations. The pseudocode for

step 12 is shown in Algorithm 12.

Algorithm 12
Input: 11>G∗−=, . . . , 11>G∗=, ') ∗−=, . . . , ') ∗=
Output: 18<6−=, . . . , 18<6∗=

1: for 8 ∈ [−=, . . . , =] do
2: 18<68 ← Extract a region of 11>G∗8 from ') ∗8

In this study, the visual recognition of the building is used both for estimating its

3D location by computing the geometric relationship between the panoramas (Step 4 in

Fig. 3) and for detecting and cropping its region on each rectilinear image (Step 11 in

Fig. 3). Accurate detection and positioning of each building on the images are critical

for achieving the successful extraction of pre-event building images from the panoramas.

Recently several CNN based high performance object detection algorithms have been pre-

sented [58,71,72]. I incorporate a state-of-art object detection method, called faster region-

based convolutional neural network (Faster-RCNN) into this technique [58]. Faster-RCNN

is an evolved version of region-based convolution neural network in terms of speed and

accuracy [58, 71, 73–78]. Recently, an enhanced version of Fast R-CNN, in terms of speed

and accuracy. Many other architectures have been introduced to reduce the training and

testing speed as well as the accuracy, but there is always a trade-o� between the accuracy

and computational e�ciency [72,79]. In this study, I implement the original Faster R-CNN

to detect buildings on the images. To close this section, I comment on some assumptions

used in the technique that one must remember for successful implementation. First, of

course, the panoramas used must contain the target building. Updates on the panoramas

in the street view are infrequent in remote areas, and this highly depends on the location

(i.e., urban or rural regions), although data collection is generally increasing in frequency.

Recently constructed buildings may not be captured in the panoramas, and renovated

buildings may not always have up-to-date images. One possible solution is to explore

various street view services as their data collection periods and frequencies are di�erent.

Second, the geotagged image used as the input to the technique should be collected from
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a location near the target building. The GPS coordinates stored in the metadata should be

close to the target building. Recall that the actual visual contents of this input image is not

actually used in the technique, and its quality is not relevant. However, it is recommended

that each post-disaster geo-tagged image include only one building to prevent confusions

while comparing the images with pre-disaster images. For example, if the input image

is acquired from a location that is closer to a di�erent building, images of the wrong

building may be generated. Third, the technique relies highly on the availability and ac-

curacy of information in the street view service used. Here the panoramas and related

metadata are directly obtained from street view services. If such information has limited

availability or it is not accurate, the results will be incorrect. For example, incomplete or

erroneous GPS coordinates for the panoramas would yield the wrong a building location,

followed by erroneous projection direction estimation. However, GPS data is generally

accurate enough for this purpose, and I have not observed any errors in the data to date.

Although I successfully demonstrate the technique using Google Street View, I have not

tested it using panoramas available through the other street view services. Fourth, the

panoramas acquired must have su�cient spatial coverage (roughly not more than 10 me-

ters). If the distance between adjacent panoramas is too far to contain the same target

building, the technique will fail to correctly estimate the location of the building in Steps

3 to 6. Moreover, such sparse panoramas hinder the goal to obtain several high-quality

building images. Fifth, there should be a reasonable distance between the panoramas and

the building, enough to ensure that the panorama does exclusively contain the building

in a rectilinear image. Since most of the panoramas are captured along the street, their

distances from the building are often su�ciently far from the target building (e.g., more

than the width of a single lane). However, when the distance between the buildings and

the panorama location and/or their height or width are large, a greater FOV is needed to

capture the entire view of the building. This limitation would cause a large distortion in

the rectilinear images.
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(a) Geolocation of a selected path used
for constructing house image database

(b) Samples of damaged residential buildings
after Hurricane Harvey in 2017 (Metz, 2017)

Fig. 3.5.: Test site for experimental validation, Holiday Beach.

3.3 Experimental Validation

3.3.1 Description of the test site

To demonstrate the performance of the technique, I use residential buildings in Holi-

day Beach in Rockport, Texas as

this case study. Hurricane Harvey in 2017 is the second-most costly hurricane in U.S.

history, in�icting $125 billion in damage, primary due to catastrophic rainfall-triggered

�ooding in the Houston metropolitan area (Smith, 2018). Harvey made landfall as a Cat-

egory 4 Hurricane in southern Texas, and Rockport was directly in the path of Harvey,

causing tremendous wind and storm surge damage (Metz, 2017). Holiday Beach, shown in

Fig. 5(a), is a residential community and most of its residential buildings (more than 80%)

(hereafter, houses) in the region were substantially damaged (Villafranca, 2017). Several

reconnaissance teams were dispatched to these regions in the weeks and months after

the event to evaluate structures, characterize the event, and collect data to learn from this

event (FEMA, 2018). Several such teams published their data through designsafe-ci.org

and weather.gov (Metz, 2017; Stark and Wooten, 2018). Geotagged images collected from

Holiday Beach are also available, the selection of sample images shown in Fig. 5(b) high-

lights the need for observing their pre-disaster condition. It is evident that when presented

with such photos of severely damaged houses, little information is available to identify
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(a) panorama (b) optimal rectilinear image

Fig. 3.6.: Sample panorama and the corresponding optimal rectilinear image for a target
house.

(a) Sample 1 (b) Sample 2

Fig. 3.7.: Sample building images used for training a residential building (house) classi�er.

the vulnerabilities that may have existed. Here, these post-disaster reconnaissance im-

ages are the input to the technique and are used solely for providing GPS coordinates to

automate the process of extracting useful photos of the target houses.

3.3.2 Construction of residential building image database

A large volume of ground-truth house images is prepared to train a residential build-

ing classi�er using the algorithm discussed in Section 3. The house images used for this

training process should be similar in appearance (architecture style) to those expected

for actual testing and implementation. For instance, the goal here is to detect wooden

residential buildings for single family residence. Wood is a standard construction mate-

rial for houses across the Southern part of the United States. Training a classi�er using
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images of high-rise apartments or concrete buildings would not improve its performance

unless those are expected to be present in the images collected from the testing and im-

plementation regions. For simplicity, I prepare the ground-truth training images using

representative scenes from Holiday Beach to ensure the buildings have similar styles and

appearances. The distribution of the buildings used in the ground-truth dataset is quite

similar to the appearance of houses across the other coastal areas of the United States. To

prepare the training images for the classi�er, I exploit Steps 1 to 10 from the technique

developed to generate a large volume of optimal rectilinear images. Then, I manually label

that large volume of images to construct the ground-truth residential building database.

Note that the resulting residential building classi�er is generally applicable, and is trained

in advance for use across many events and regions. The database can also be expanded

over time to encompass other building types, materials, architecture and styles. First,

panoramas along the selected route on the waterfront in Fig. 5a (marked a red line) are

downloaded from Google Street View. Google Street View does not provide a service to

directly download high-resolution panoramas, but does have an API to download (show)

a portion of the panorama when the user speci�es a horizontal and vertical position and

a size. The tool that I developed automatically downloads the tiles of each panorama and

stitches them together to generate high-resolution panoramas. The resolution of each

panorama is 13,312 × 6,656 pixels. Each panorama is constructed by stitching 338 tiles

having a resolution of 512 × 512 pixels. A total of 128 panoramas are available along these

routes. A sample of a high-resolution panorama is shown in Fig. 6(a). Second, I manu-

ally select the GPS locations of many of the houses along the chosen route in Fig. 5(a).

A footprint (outline) of each house can be viewed in Google Maps, and thus, its GPS lo-

cation can be easily obtained. 100 houses are considered along the route having similar

house styles (e.g., number of �oors, roof style, elevated house foundation). Note that for

constructing the ground-truth database, this manual process is necessary and replaces the

geotagged images that would be used in the implementation of the technique following

Steps 3 to 8. Third, optimal rectilinear images are generated from the downloaded panora-

mas. Since here I know the GPS coordinates of each of the downloaded panoramas as well
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(a) PR curve (b) ROC curve

Fig. 3.8.: The performance of the residential building detector for the testing set.

as the houses, the optimal projection angles can be directly computed. Here, n is set to

be �ve, which is the maximum allowable number of images on one side of the closest

panorama location. Thus, for each house, a maximum of 11 rectilinear images are con-

structed from the corresponding panoramas (houses at a dead-end along the route would

have fewer than 11 panoramas), and each house is positioned at the center of each of the

rectilinear images. \ and �� are 120° and 2,048 pixels, respectively. As a result, a total

of 1,056 rectilinear images having a resolution of 2,048 × 2,048 pixels are generated for

the database. Figure. 6(b) shows the optimal rectilinear image generated from the sample

panorama in Fig. 6(a). Finally, the houses on the rectilinear images are manually labeled.

I used a Python-based open source labeling tool to label a tight bounding box around

each house [80]. Only houses that satisfy the following two conditions are labelled: (1)

less than 70% of the front and side views of the house are obstructed by foreground ob-

jects, and (2) the height or width of the bounding box encompassing each house is larger

than 200 pixels, which is around a tenth of the rectilinear image size in pixels. Samples of

labeled houses are shown in Fig. 7. Here, only bounding boxes with solid blue lines are la-

beled as a house, while the other houses in these images are not included as ground-truth

data. Those houses are marked with a red dotted line purely for purposes of illustrating

non-labeled house data. The left image in Fig. 7, the red dotted bounding box around the
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Fig. 3.9.: Samples of detected residential buildings using Faster R-CNN algorithm.
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house on the left has height less than 200 pixels, and thus it does not contain su�cient

information for this purpose. Similarly, in the right image in Fig. 7(b), all non-labeled

houses are obstructed by the foreground objects (e.g., vehicle, tree, or other house) or are

only partially visible. A total of 3,500 ground-truth residential buildings are labeled from

the rectilinear images, and this database is utilized for training the classi�er.

3.3.3 Training and testing residential building detector

An open-source library of Faster R-CNN deployed using Python is used for training

and testing the residential building detector [81]. A single NVIDIA Tesla K80 is used for

this computation. A total number of 3,500 residential houses have been labeled from 1,050

images. This set includes di�erent views of 100 houses in Holiday Beach. Sets containing

60%, 10%, and 30% of the images of target houses are randomly chosen as training, vali-

dation, and testing sets, respectively. The Residual Network Model (called ResNet 101) is

selected for learning robust features and increasing its e�ciency [82]. I manually chose

the hyper-parameters for Faster R-CNN based on trial-and-error. Then, the ConvNets and

Fully-connected layers are initialized by zero-mean Gaussian with standard deviations of

0.01 and 0.001, respectively. Hyperparameters including learning rate, momentum and

weight decay for training R-CNN and RPN networks are set to 0.001, 0.9, and 0.0005,

respectively. The learning rate is de�ned as the amount the weights are adjusted with

respect to the loss gradient. The decay weight is set to avoid over�tting by decaying the

weight proportionally with its size. I set the momentum to 0.9 to make the gradient decent

achieve a faster convergence. I used three di�erent aspect ratios (0.5, 1, and 2) and anchor

sizes (128, 256, and 512 pixels). In the test stage, in cases in which a set of the detected

proposals that overlap each other with greater than a 0.3 intersection over union (IoU), an

additional process is needed to obtain a precise bounding box. In each set, the proposal

having the highest con�dence score (probability) remains, and the others are disregarded.

This process is called non-maximum suppression. Then, a threshold is set to keep only

proposals having high con�dence scores. In this study, this threshold is set to 0.5. I eval-
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uate the performance of the trained residential building detector using the testing image

set. Precision-recall (PR) and receiver operating characteristic (ROC) curves are used to

evaluate the performance of the classi�er quantitatively. To construct the PR curve, each

detection �rst maps to its most overlapping ground-truth object samples. In this study,

the threshold for considering a detection as successful is de�ned as an overlap of more

than 50% IoU. True positive is de�ned as a detection with the highest-score (probability)

mapped to each ground-truth sample, and all other detections are considered as false-

positives. Precision is de�ned as the proportion of true positives to all detections. Recall

is the proportion of the true positives to total number of ground-truth samples. Plotting

the sequence of precision and recall values yields the PR curve shown in Fig. 8(a). The

typical method to evaluate the performance of the object detector is to calculate the aver-

age precision (�% ) [58,76], which is the area under the PR curve [83]. The results show an

AP of 85.47% for the single class of residential house detection. An ROC curve, which rep-

resents the relationship between sensitivity (recall) and speci�city (not precision), is also

used to evaluate the performance of the detector. As mentioned previously, each detection

is considered to be positive if its IoU ratio with its corresponding ground-truth annota-

tion is higher than 0.5. By varying the threshold of detection scores, a set of true positives

and false positives will be generated which is represented as the ROC curve. From Fig.

8(b), I can interpret this result to mean that the residential building detector consistently

achieves impressive performance in terms of the ROC curve by obtaining true positive

rates of 81.49% and 88.07% at 100 and 200 false positives, respectively. Samples of de-

tected houses using the optimal rectilinear images are shown in Fig. 9. Figures 9(a) and

(b) shows typical successful cases in which all bounding boxes are correctly detected and

tightly encompass each of house areas. Figures 9(c), (d), (e) and (f) show more challenging

cases, which likely produce incorrect results. These results can be polished by adjusting

the parameters used in the technique. Figures. 9(c) and (d) show two particular images

which, in addition to correctly detecting houses, erroneous objects are also detected as a

house. Figure. 9(c) demonstrates a case in which a boat is detected as a house with a score

of 0.779. Also, in Fig. 9(d) a cargo trailer is detected as a house with a score of 0.571 which



59

Fig. 3.10.: Post-disaster building reconnaissance images of two di�erent houses after Hur-
ricane Harvey.

is not of interest in this study. As illustrated, all incorrect detections yield a low score,

less than 0.8, which enables us to simply remove them using a higher threshold value for

positive detection. Since in this application the target house is only likely to appear close

to the center of the optimal rectilinear image, the target house would be detected with

a high score, usually more than 0.95, unless either the image was captured far from the

target house, or obstacles conceal the target house. Therefore, the problem of erroneous

detections can be remedied by merely increasing the con�dence threshold, here 0.8, to

retain only the objects that receive a high score.

Figures. 9(e) and (f) illustrate cases in which all houses are correctly detected, even

though they are partially occluded by foreground objects such as trees, as with the houses

in the far left and middle of the images shown in Fig. 9(e) and (f), respectively. However,

the occluded detected houses are not informative or useful for inspection purposes. As is

mentioned in section 4.3, the appearance of the residential house to be used for inspection

purposes is a critical characteristic of the object of interest. Since the ground-truth dataset

is generated based on this principle, the building detector also associates a lower score

with these non-informative appearances of houses. For instance,

the occluded houses shown in Fig. 9(a) and (b) are detected with scores of 0.839 and

0.507, respectively, which are considerably lower than the non-occluded houses appearing

in these images. Although these objects are correctly detected as a house, the images are
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(a) Sample 1

(b) Sample 2

(c) Sample 3

Fig. 3.11.: Samples of the pre-disaster house images generated from Google Street View:
(a) and (b) shows the same houses in Fig. 10 (a) and (b), respectively, before Hurricane
Harvey and (c), shows a house in the same neighborhood with two others but its post-
disaster geo-tagged image cannot be accessed.
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not useful for inspection purposes. Considering the fact that I extract several (here, 11)

optimal rectilinear images for each target house, every image need not be informative

for inspection, and I can safely increase the con�dence threshold to remove those non-

informative house detections.

3.3.4 Sample implementation

In this section, the implementation of the technique developed is demonstrated using

real-world post-event reconnaissance geotagged images collected from Holiday Beach,

Texas after Hurricane Harvey in 2017. Pre-disaster images of two selected houses are au-

tomatically generated from the corresponding geotagged post-disaster images in Fig. 10.

The house in Fig. 10(a) is merely a shell gutted by the hurricane and its appearance before

the hurricane is hard to guess. The house on the right in Fig. 10(b) has signi�cant shingle

damage on the roof. One additional house is added, which does not have a geotagged

image. The approximated GPS information near that second house is manually provided,

rather than through a geotagged image. The locations of these houses are along the

selected route in Fig. 5(a). All pre-disaster images for these three di�erent houses are

automatically generated using the technique developedThe proposed approach incorpo-

rates several program libraries including OpenCV [84] and PyMap3D (Hirsch, 2018), and

an implementation Faster R-CNN algorithm in TensorFlow (Chen and Gupta, 2017), and is

deployed as a Python script. For this testing, I utilize the same computing resources to run

this script, which are used for training the house classi�er. For setting up the parameters

introduced in Section 3, n is set to �ve, so the maximum number of house images available

is 11. \ and�� are 90° and 2,048 pixels, respectively, which are the same as those used for

generating training images. With this setup, at each house, the approximate processing

time for conducting the four main processes explained in the �rst paragraph of Section

3 are approximately 130, 210, 180 and 6 seconds, respectively. As mentioned in Section

4.2, high-resolution panoramas cannot be downloaded from Google Street Views directly.

It takes a considerable time to create each panorama by stitching an array of the images.
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Fig. 3.12.: Reason to observe the house from multiple viewpoints: Optimal rectilinear
images with the bounding boxes of the detected house from multiple views. Since the
views of the house are partially or entirely obstructed by the foreground objects (here,
trees), many images from di�erent viewpoints should be considered to observe the entire
front and side views of the house.

Unfortunately, this cannot be technically addressed in the front-end software, unless in

the near future one is allowed to download panoramas from Google Street View directly.

However, the rest of the three processes are relatively fast and can be potentially im-

proved by exploiting better hardware or optimizing the deployment of the Python scripts.

The results in Fig. 11 show the pre-disaster house images automatically extracted from

Google Street View using this technique. Figures. 11(a) and (b) show the pre-event appear-

ance of the houses shown in Fig. 10(a) and (b), respectively, and Fig. 11(c) demonstrates

the generation of pre-event images of the same house without a post-event geo-tagged

image. The seven images of houses shown in Fig. 11(a) and (b) and the �ve images of

houses shown in Fig. 11(c), from various viewpoints are detected from the 11 optimal rec-

tilinear images, although only four representative samples of those images are provided

in Fig. 11. It is clear from these samples that including images of each house from mul-

tiple viewpoints is important for enabling observation of the entire side and front façade

of the house. Clearly, they provide valuable information about the pre-hurricane state of

the house. For example, the pre-event appearance of the house shown in Fig.11(a) can

hardly be imagined using only the post-disaster image in Fig. 10(a). Figure 12 shows

the six optimal rectilinear images generated for the house in Fig. 11(c). The bounding
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box of the corresponding house in each rectilinear image is marked. This example further

demonstrates why multiple images from di�erent viewpoints should be extracted (in other

words, n should be set to more than two). Since large trees in front of this house block its

view, multiple images are needed to observe the entire view of the house. This situation

commonly occurs in cluttered scenes where various sources of foreground objects are po-

tentially present in a street view, for instance, large street signs, parked vehicles, trees, or

pedestrians. This issue can be minimized by increasing n to consider more viewpoints.

4.5 Technique validation

For further evaluation of the technique developed, I introduce a new metric, denoted

Overall Practicality ($% ). In this technique, the potential sources of error include: (1)

incorrect estimation of the GPS location of the building due to a feature matching failure

(Steps 3 8), (2) false building detection on the rectilinear images using the trained classi�er,

and (3) incorrect GPS records for the street view panoramas. The new metric, $% , is

designed to quantitatively evaluate the likelihood of extracting a su�cient set of building

images of the quality of the resulting images in Fig. 11. $% is formulated as:

$% = #D/(#C − #>), (3.4)

where, #D is the number of extracted images that contain a satisfactory view of the

target building on the corresponding rectilinear images. When the extracted building is

not placed near the center of the rectilinear images, due to the projection direction error,

it does not contribute to #D although it contains enough of the building’s appearance.

Also, if the trained classi�er only detects a portion of the building or does not tightly

estimate its region with a bounding box, it is also not included in #D . #C is the number

of all building images which can be extracted from the available panorama. It can be

calculated as #C = #1 (2= + 1) −∑#1

8=1 <8 , where #1 is the total number of target buildings,

n is the maximum allowable number of images (see Section. 5.2), and <8 is the number

of missing panoramas at building 8 . As mentioned in Section 3 (Step 2), if a building is

located close to a dead-end or a cul-de-sac, street view panoramas are not available. #>
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is the number of occluded images. The occlusion due to foreground objects (e.g. tree,

car, or fence) is inevitable, and can obstruct the view of the building. Thus, it is a clear

basis for needing multi-view images. This number is not contained in either #D or #C .

To evaluate the performance of the technique developed using OP, I randomly select 50

residential buildings along a di�erent street (marked using a black line in Fig. 5(a)). In

the actual implementation, the input of the technique is a geo-tag image which must

be captured close to the building-of-interest. However, existing data sets rarely have a

su�cient number of geo-tagged images available. Thus, in this evaluation, I manually

provide similar GPS information for each building with the assumption that these GPS

data can be obtained from geo-tagged post-disaster images during actual usage of the

technique (step 1 in Fig. 3). Recall that this GPS information corresponds to a location

on the street close to each building, and not the location of the buildings. Having this

GPS information, I input GPS information to Step 2 and execute the rest of the steps. The

performance is quite successful, and I obtain an OP of 0.838. Among 50 buildings, only

one building has three missing panoramas, and thus, #C = 547 and #> and #D are 39 and

426, respectively.
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4. PRE-EVENT AND POST-EVENT DATA COLLECTION AND
ANALYSIS USING ARTIFICIAL INTELLIGENCE

Here the objective is to develop and validate an automated technique to directly support

engineers and architects as they conduct a preliminary survey. The physical and struc-

tural attributes of the buildings are of the critical features for predicting the response of

the building to disruptive events [41,85–87]. I establish the ability to categorize buildings

based on their physical and structural characteristics and on their overall post-event struc-

tural condition. An enabling factor in the proposed method is the availability of powerful

convolutional neural network algorithms (CNNs) that are implemented for scene (image)

classi�cation to identify the structural characteristics and condition of the target buildings

on the images. The technique is developed by dividing it into pre-event and post-event

streams, each with the goal to �rst extract all possible information about the target build-

ings from pre-event images and post-event images. I verify and validate the proposed

technique using post-event images captured during hurricane Harvey and Irma recon-

naissance missions collected by a structural wind and coastal engineering reconnaissance

team, NSF Structural Extreme Events Reconnaissance (StEER) Network.

The signi�cant contribution of this research is to develop a technique capable to over-

come real-world challenges to fuse the extracted information from multiple pre-event and

post-event images to reliably categorize buildings based on their key physical attributes

and rapidly determine their post-event overall buildings condition. Recent studies have

conducted to facilitate the particular applications of damage detection using images that

were collected with the intention of using them for that speci�c purpose. This technique

is supposed to be used in real-world applications rather than focusing on image classi�-

cation. So, I designed the technique be able to deal with the typical unorganized images

captured during preliminary reconnaissance missions in real-world post-event circum-

stances, including relevant and irreverent images, and ultimately classify the buildings
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based on the �eld engineers’ desirable goals. Using the visual contents of the images, this

technique classi�es the images and selects only the images that potentially can be used

for the overall structural condition of the building. I �ne tune a decision fusion algorithm

to integrate the result of the CNN-based classi�ers of all images properly and determine

the physical attributes and overall structural condition. I also consider the quality and

completeness of the data collected in the �eld after the real-events which highly bias the

results to make the ultimate decisions. Considering the fact that the damage is not visible

on all the post-event images, the result of all images of each building will automatically

be fused to make the �nal decision about the overall structural condition of the build-

ing. However, to detect the physical attributes of the buildings, an agreement between all

points of view is the key to make the �nal decision.

The remainder of this chapter is organized as follows: Sec. 4.1 provides the problem

formulation. Sec. 4.2 provides a demonstration and validation of its e�ectiveness. Please

see the archived [43] and published versions [88] for more details.

4.1 Technical approach

A general diagram of the technique developed is shown in, Fig.4.1. The input is a

collection of geo-tagged, post-event images of the residential buildings in a region. The

output is the information needed for an assessment of each residential building, including

automatically generated physical and structural attributes plus post-event condition in-

formation. Certain necessary physical and structural attributes are best obtained from the

pre-event condition, so multiple pre-event images are automatically extracted from exist-

ing street view databases. Post-event building condition information is obtained directly

from post-event images.

The technique is implemented through two branches of data analysis, conducted in-

dependently. I call these two branches the post-event data analysis stream and the pre-

event data analysis stream. The post-event stream detects assesses the overall damage

condition of the building after the event based on the images collected during the pre-
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A1 A2

B1 B2

Detecting the buildings’ 
attributes using pre-event 

images

Post-event data 
analysis  stream

Pre-event data 
analysis stream

Detecting the buildings’ 
condition using post-event 

overview images

Detecting overview images of 
the buildings

Physical attributes

Post-event condition

Reading the GPS location  of the 
buildings and post-disaster images

Input Output

Extracting multi-view pre-
event images of the buildings  

from street view services

Fig. 4.1.: Diagram showing the steps in the automated procedure.
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liminary survey. The pre-event stream extracts building physical attributes to be used for

the preliminary screening, as well as several pre-event views of the building from vari-

ous perspectives. These two sets of complementary information are organized in a way

that assists the decision-making process of human inspectors regarding where to focus

resources during a detailed survey. For clarity, I design a classi�cation schema speci�c

to post-event preliminary surveys. The schema can be easily extended to support other

applications. In the subsequent paragraphs, I discuss the process use to develop each data

analysis stream. The detailed de�nitions for the classi�cation schema are provided in Sec.

4.1.1.

The post-event data analysis stream requires the design and training of two image

classi�ers which are implemented sequentially. The �rst classi�er is intended to �lter out

images that contain useful information about the condition of the building, step B1. The

best images for detecting the overall condition of the building for hurricane assessment

are images that provide a view of the entire building. However, the data collected for a

given target building may include close images of components or details, or even irrele-

vant images (e.g., cars, trees, windows, doors, etc). Including these in the dataset to be

automatically analyzed may bias the results, or increase the processing time. The �ltered

data are passed to the next classi�er, which is trained to detect the overall condition of

the structure, step B2, see Sec. 4.1.1.

The pre-event data analysis stream automatically detects certain physical attributes of

each building that are useful in a preliminary post-event survey using image classi�cation.

Since post-event images of buildings that have experienced severe damage cannot reliably

be used to determine the original physical attributes, it is more appropriate to use pre-

event images for this purpose. To this end, I developed a fully automated technique to

extract pre-event images from street view imagery services, step A1. These pre-event

images along with the ground truth labels, provided by the �eld engineers [89], are used

to design and train a set of image classi�ers, that can detect certain physical attributes,

explained in Sec. 4.1.1, step A2.
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In some cases, reliable determination of a physical attribute or even the condition of

the building requires that classi�cation results from several images containing multiple

views of the building be used. For instance, if several post-event images are collected

from a building, and only one of those images provides a view of the damaged region, the

classi�er will only detect damage in that one speci�c image; The speci�c image containing

the damage cannot be known in advance. Therefore, the relevant images available must

be used collectively to make a determination. I have developed an approach to fuse the

information from several images to make such decisions. The problem formulation is

provided in Sec. 4.1.2 and the demonstration is included in Sec. 4.2.

4.1.1 Design of the classi�cation schema

The classi�cation schema designed to support preliminary hurricane surveys is shown

in, Fig. 4.2, (the abbreviations are de�ned later). Classi�ers are much more e�ective when

clear boundaries exist to distinguish the visual features of the images in di�erent classes.

This is especially true to achieve robust classi�cation in the real world when using such

unstructured and complex data, as is often the case in reconnaissance datasets. Thus, a

clear de�nition for each class is needed to establish consistent ground-truth data that are

suitable for training. The de�nitions for those comprising the post-event and pre-event

streams are discussed in the following sections.

Classi�ers used in the post-event stream

The procedure used in the post-event data analysis stream is shown in, Fig. 4.3. Two

classi�ers are used for classi�cation of the post-event data, one to �lter out less valuable

images from the larger set, and a second to determine the condition of the building. These

are applied to the dataset sequentially, as shown in, Fig. 4.2b.

The �rst classi�er needed for post-event data analysis is called the Overview classi-

�er. This is a binary classi�er that �lters �ags images that show a su�cient view of the
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(a) Pre-event (b) Post-event

Fig. 4.2.: Hierarchy of classi�ers used in pre-event and post-event data analysis streams.

Fig. 4.3.: Detailed steps in the post-event data analysis stream.
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(a) OV (b) NOV

Fig. 4.4.: Samples of images classi�ed as overview (OV) and non-overview (NOV).

building. Each post-event image is classi�ed as either “Overview” or “Non-Overview,” as

indicated in Step 2A.

The Overview classi�er is de�ned as:

• Overview (hereafter, OV): Images classi�ed as OV show the entire building, irre-

spective of whether it is damaged or not, in the sense that they contain more than

70% of the facade (with either a front view or a side view) and they include portion of

the roof. To include the possibility of severe damage, an image with some standing

columns, or a pile of debris which can clearly be identi�ed as a collapsed building,

is also classi�ed as OV. Examples of the latter include images of the general overall

view of standing structural members or a collapsed roof. An additional restriction

of OV images is that no more than 20% of the image area shows the surrounding
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(a) MD (b) NMD

Fig. 4.5.: Samples of images classi�ed as major damage (MD) and non-major damage
(NMD).

buildings. In some cases, partial obstruction, by trees, cars, and other buildings,

is an inevitable challenge. However, if the obstruction hides less than 30% of the

building facade, I still consider the image as an OV.

• Non-overview (hereafter, NOV): Images that are not OV are NOV. Examples of

NOV include images of the interior of the building, measurements, GPS devices,

drawings, multiple buildings, building facades occluded by trees, cars or other build-

ings.

Samples of images de�ned as OV and NOV are shown in Figs. 4.4a and 4.4b, respectively.

Next, as shown in, Fig. 4.3, the subset of images classi�ed as OV are analyzed col-

lectively to determine the overall building condition. A classi�er is trained to determine

whether a single OV image should be labeled as “Major damage” or “Non-major damage,”

which includes both minor and no damage. I call this binary classi�er the Damage clas-

si�er. Note that a single image is not su�cient to characterize a building as it may be
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showing a side from which damage is not visible. Therefore, after classifying the damage

in each OV image of a given building, the overall condition must be decided by fusing

all available information (this will be discussed in Sec. 4.1.2). The Damage classi�er is

de�ned as:

• Major damage (hereafter, MD): Images classi�ed as MD contain visual evidence

of severe damaged by wind, wind-driven rain, or �ood. Speci�c examples include

signs of roof collapse, and column, wall or exterior door failure. In the case of severe

water intrusion/damage, I also classify the image as MD. Considerable damage to

the roof or exterior doors or windows or garage doors, either from �ooding or water

intrusion in the case of a hurricane, are also interpreted as major damage.

• Non-major damage (hereafter, NMD): Images that are not MD are NMD. No

damage, or minor damage, such as cracked, curling, lifted, or missing shingles, miss-

ing �ashing, or dents on the doors, are all considered as NMD.

Samples of images de�ned as MD and NMD are shown in Figs. 4.5a and 4.5b, respectively.

Classi�ers used in the pre-event stream

The sequence of steps used to perform the pre-event data analysis stream is shown in,

Fig. 4.6. In the pre-event stream, multiple external views of each building, collected before

the event, are required. I employ an automated method I previously developed to extract

suitable pre-event residential building images from typical street view panoramas [44,90].

I design three independent classi�ers, shown in, Fig. 4.2a, to label the scenes con-

taining each view of the pre-event target building. These classi�ers detect: �rst �oor

elevation, number of stories, and construction material. To successfully train the classi-

�ers to detect building attributes, I need a clear de�nition of each class. In what follows,

I describe these de�nition in detail.

One important physical attribute of a residential building is �rst �oor elevation, which

is de�ned as the elevation of the top of the lowest �nished �oor, which must be an enclosed
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Fig. 4.6.: Detailed steps in the pre-event data analysis stream.
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area, of a building. I train a classi�er to determine whether a single building image should

be classi�ed as “Elevated” or “Non-elevated”. The Elevation classi�er is de�ned as:

• Elevated (hereafter, EL): This class includes buildings with a �rst �oor that ap-

pears to be elevated more than 5 feet (or, half a story). Buildings are considered as

EL when their ground �oor, below the �rst �nished �oor, is not covered by walls

or cladding and is thus visually distinguishable from an occupied �oor. The lack of

coverings or walls is present to potentially allow water to pass through in case of

�ood to reduce hydrodynamic impact loads. In a typical elevated building, the �rst

�oor only contains supporting columns (sometimes referred to as slits) which are

visually identi�able in the images. Fig 4.7a shows samples of EL images.

• Non-elevated (hereafter, NEL): This class has the opposite meaning as the ele-

vated class. It includes images of buildings without �rst �oor elevation, or with a

�rst �oor elevation of less than 5 feet. Any images of buildings with a �rst �oor

that is covered by walls or cladding are classi�ed as NEL. Fig (4.7b) shows samples

of NEL images.

Another useful physical attribute is the number of stories. Because I focus on residen-

tial buildings here, the vast majority of the images will contain buildings that have either

one or two stories. So, I train a two-class classi�er to classify each of the images as either

as “One-story” or as “Two-stories.” This classi�er does not consider any �oors that are

not visible, for instance in a case where a �oor may be below grade. This classi�er is the

Number-of-stories classi�er, and these two classes are de�ned as follows:

• One-story (hereafter, 1S): This class includes images of buildings which can be

considered to have one-story from a structural engineering point of view (i.e., dy-

namically, it behaves like a single story). If any elevation is present in the image, it

must not be enough to be classi�ed as EL (i.e., less than about half a story). Fig 4.8a

shows samples of One-story images.

• Two-stories (hereafter, 2S): This class includes images of buildings which can be

considered to have two-stories, from the structural engineering viewpoint. Either a
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two story building with no �rst �oor elevation, or a one story building with greater

than 5 feet of elevation at the �rst �oor is included in the Two-stories category. Fig

4.8b shows samples of Two-stories images.

The third classi�er applied to the pre-event images is trained to detect the construc-

tion material of the building. In a preliminary survey, it is important to know if wood is

the main construction material, or if there is an abundance of other materials present, for

instance masonry structural components or veneers. Based on the common construction

practices in this geographical region, wood is the main material used for residential con-

struction [91, 92]. The Material classi�er, distinguishing between “Wood” and “Masonry,”

is de�ned as:

• Wood (hereafter WO): Images in this class provide visible evidence that wood is

the main construction material in the building. Note that all materials may not be

visible in each image (or even in any image). If all visible parts of the building in the

image, including columns, posts, roof structure, exterior load-bearing walls, beams,

and girders, are made of wood, the image is classi�ed as WO. Fig 4.9a shows samples

of WO images.

• Masonry (hereafter, MA): When more than 70% of the visible portions of the

exterior of the building in the image consists of masonry, the image is classi�ed as

MA. Fig 4.9b shows samples of Masonry images. Note that sloped roof buildings

with masonry walls generally have wooden roofs.

4.1.2 Information fusion

I discuss how to make decisions using a probabilistic approach that fuses the classi-

�cation results from several images. Let � be the random variable (r.v.) corresponding

to a given physical building attribute taking values in the set C. Now consider = images

G1, . . . , G= of the same building and let �1, . . . ,�= be the set of r.v.’s corresponding to the

detection of the physical attribute each one of the images. The �8 ’s also take values in C,
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(a) Elevated (b) Non-elevated

Fig. 4.7.: Samples of images classi�ed as Elevated and Non-elevated building images.

(a) One Story (b) Two Stories

Fig. 4.8.: Samples of images classi�ed as (a) One-story and (b) Two-stories.
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(a) Wood (b) Masonry

Fig. 4.9.: Samples of images classi�ed as (a) Wood and (b) Masonry.
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but they are distinctly di�erent. The former,�8 , only tells us which attribute was detected

in image 8 , whereas the latter, � , which attribute was detected in the entire building. The

two are di�erent because an attribute may not be visible in all images. Since �8 depends

only on the 8-th image, I have:

? (�8 = 28 |G1, . . . , G=) = ? (�8 = 28 |G8) := 5CNN,28 (G8), (4.1)

where 5CNN,2 (G) is the CNN-based classi�er corresponding to the attribute. How can I use

the classi�cation of each image (�8 ) to classify the entire building (�)? I have:

? (� = 2 |G1, . . . , G=) =
∑
21,...,2=∈C ? (� = 2 |�8 = 21, . . . ,�= = 2=, G1, . . . , G=)·

? (�1 = 21, . . . ,�= = 2= |G1, . . . , G=)

=
∑
21,...,2=∈C ? (� = 2 |�8 = 21, . . . ,�= = 2=)·

? (�1 = 21, . . . ,�= = 2= |G1, . . . , G=)

=
∑
21,...,2=∈C ? (� = 2 |�8 = 21, . . . ,�= = 2=)·∏=

8=1 ? (�8 = 28 |G1, . . . , G=)

=
∑
21,...,2=∈C ? (� = 2 |�8 = 21, . . . ,�= = 2=)·∏=

8=1 ? (�8 = 28 |G8).

(4.2)

Here, going from the �rst to the second step I assumed that the raw data G1, . . . , G= do

not provide any additional information about the building label� if image labels�1, . . . ,�=

are known. This assumption is discussed again in Sec. 4.1.2. For the next steps, I use

the sum rule of probability, and observe that the �8 ’s are independent conditional on the

images, and then apply Eq. (4.1), w The term ? (� = 2 |�1 = 21, . . . ,�= = 2=) gives the

probability that the target building is labeled 2 , given the available images are labeled

as 21, . . . , 2= . This fusion probability is attribute-speci�c, as discussed in Secs. 4.1.2 and

4.1.2 for post-event and pre-event attributes, respectively. Note that, in this case, the set

of possible classes C always contains two elements. Without loss of generality, in what
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follows, I am going to denote it with C = {0, 1} with 2 = 1 corresponding to the positive

detection of an attribute and 2 = 0 to detection of the alternative.

Finally, let D be the set of possible decisions that are available to us with regard to a

given building, and one void class, here called No Decision (ND), added to skip making

a decision when a con�dent decision is not available. For example, in case of predicting

the overall damage condition, it will include MD, NMD and ND. De�ne a loss function de-

noted ℓ (3, 2) which represents the resulting loss if I choose decision 3 inD when the true

attribute is 2 in C. Ignoring risk preferences, the rational decision is the one minimizing

the expected loss:

3∗(G1, . . . , G=) = arg min
3∈D

∑
2∈C

ℓ (3, 2)? (� = 2 |G1, . . . , G=). (4.3)

Here, the loss represents the threshold for making a decision about the building or leaving

it as ND. The loss function parameters can be tuned by the reconnaissance teams for a

speci�c reconnaissance goal, such as to either make the best possible decision about all

cases, or to make decision only when it is highly con�dent. The loss function is structured

to handle the trade-o� between the accuracy and informativeness of the results through

adding ND class to skip making a decision in case of not being su�ciently con�dent.

Post-event

The case of the post-event stream, and in particular the MD (� = 1) vs NMD (� = 0)

problem, is inherently asymmetric. On one hand, one must consider the whether or not

the set of images shows the building from all sides. For example, a single image classi�ed

as NMD is not su�cient to conclude that the building is indeed NMD since the damage

may simply not be visible from the viewpoint of that image. So, to classify a given building

as NMD, I need to ensure that all sides of the building are shown in the set of images (in

this case, I say that the building is covered). If all of these individual images are classi�ed

as NMD, only then can the building be categorized as NMD. On the other hand, to classify

a building as MD, it is su�cient to have a single image classi�ed as MD.
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De�ne a binary r.v. / taking values {0, 1} indicating that the building is not covered

and is covered, respectively. Let ? (/ = 1|�1 = 21, . . . ,�= = 2=, G1, . . . , G=) be probability

that the available images su�ciently cover the target building, hereafter coverage proba-

bility. This dataset does not provide any information about / (the images do not include

su�cient geolocation information). Therefore, I may write:

? (/ = 1|�1 = 21, . . . ,�= = 2=, G1, . . . , G=) =

? (/ = 1|�1 = 21, . . . ,�= = 2=) = @=,
(4.4)

where in the last step I used the observation that only the number of images are a�ects the

state of knowledge about / , i.e., the labels themselves are uninformative about Z. Obvi-

ously, @1 = 0 and @2 = 0 since one or two images cannot cover the building. Furthermore,

I should have that 0 ≤ @8 ≤ @8+1 ≤ 1. The speci�c numerical choice of this series of

probabilities depends on the state of knowledge about how the data were collected. For

example, if I knew that any three images cover the building, then I would set @1 = @2 = 0

and @= = 1 for = ≥ 3.

Now, I use the sum rule on the fusion probability:

? (� = 1|�1 = 21, . . . ,�= = 2=) = ? (� = 2 |�1 = 21 . . . ,�= = 2=, / = 1)

· ? (/ = 1|�1 = 21, . . . ,�= = 2=)

+ ? (� = 1|�1 = 21, . . . ,�= = 2=, / = 0)

· ? (/ = 0|�1 = 21, . . . ,�= = 2=)

= ? (� = 1|�1 = 21 . . . ,�= = 2=, / = 1)@=

+ ? (� = 1|�1 = 21, . . . ,�= = 2=, / = 0) (1 − @=).

(4.5)

The two terms that I need to specify are the probabilities of labeling the building as

MD (� = 1) given the image labels and whether or not the building is covered. For the

covered case, I set:
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? (� = 1|�1 = 21 . . . ,�= = 2=, / = 1) =
⌈∑=

8=1 28
=

⌉
, (4.6)

where d·e is the �rst integer greater than its argument. This means that there is at least

one image labeled as MD, then the entire building is labeled MD. For a covered building

to be labeled NMD, all images must be labeled NMD. There are no intermediate cases. For

the uncovered case, I set:

? (� = 1|�1 = 21, . . . ,�= = 2=, / = 0) =

max
{⌈∑=

8=1 28
=

⌉
, \=

}
,

(4.7)

where \= represents the probability that the building is MD but the damage is not visible

in = images. Again, \= depends on what I know about data collection. In general, I must

have 0 ≤ \8 ≤ \8+1 ≤ 1. In the case studies, I simply pick \= = 0.5 for all =. So, for the

uncovered case, a single MD labeled image is su�cient to characterize the building as MD.

However, if all images are labeled NMD, there is still a probability, \= , that the building is

MD but the damage is not visible.

Pre-event

In the pre-event stream, I detect binary physical attributes, i.e., EL vs NEL, 1S vs 2S,

and WO vs MA. All these cases are similar in nature. The more often an attribute is

detected in the images the more likely it is really there. The simplest model that encodes

this intuition is:

? (� = 1|�1 = 21, . . . ,�= = 2=) =
∑=
8=1 28
=

. (4.8)

Here, I exploit the 0-1 encoding of the binary class. The probability on the right hand side

is simply the average number of ones in the = images. Essentially, the r.v. � conditional on

the r.v.’s�1, . . . ,�= has a Bernoulli distribution. The approach can be trivially generalized,

using a Categorical distribution, to the case where C contains more than two options.
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Table 4.1.: Hyper-parameters used to train the classi�ers

Classi�er name Learning rate Momentum Weight decay coe�cient

Overview 1 × 10−5 9 × 10−1 1 × 10−6

Damage 5 × 10−6 9 × 10−1 1 × 10−6

Elevation 1 × 10−6 9 × 10−1 1 × 10−6

Number-of-stories 5 × 10−7 9 × 10−1 1 × 10−7

Material 1 × 10−7 9 × 10−1 1 × 10−7

4.2 Experimental validation

I verify the individual classi�ers and validate the overall technique using a high-quality

published and curated post-event dataset. These perishable information were captured

during reconnaissance missions that took place shortly after hurricanes Harvey and Irma,

led by the NSF-funded Structural Extreme Events Reconnaissance (StEER) Network, with

data collection supported by the Fulcrum App [89]. CNNs-based algorithms are the most

powerful image classi�ers that have recently been used successfully in a wide range of ap-

plications [93,94]. I have tried three networks, Inception v3 [95], InceptionResNetV2 [96],

and Xception [97], as the image classi�ers, and Xception network slightly outperformed

the two others. I implemented Xception with Depthwise Separable Convolutions network,

in Keras [98].

In this implementation I used Stochastic Gradient Descent(SGD) optimizer. The SGD

hyper-parameters used for the classi�ers were �ne-tuned using grid search to train each

of the classi�ers. I tuned the hyper-parameters, particularly the learning rate which is the

most important hyper-parameter [99], carefully to improve the performance of the classi-

�ers. I set the grid to search for 1) learning rate in {1 × 10−1, 5 × 10−2, . . . , 5 × 10−9, 1 × 10−10},

2) momentum in {1 × 10−1, . . . , 9 × 10−1 and 99 × 10−2}, 3) weight decay coe�cient in

{1 × 10−1, . . . , 1 × 10−10}. I randomly separate the train and test set with 70% and 30% ,

respectively, of the data for each classi�er. To avoid over-�tting, I randomly sample out

10% of the train set to use for hyperparameters �ne-tuning. Table 4.1, shows the hyper-

parameters used to train these �ve required classi�ers.
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The StEER network was formed to document the damage induced and enable research

to understand the e�ects of a series natural hazard events [100, 101], including hurri-

canes Harvey, Irma and Maria in 2017 [102, 103], and hurricane Florence and Michael in

2018 [104–106], on the built environment. An overview of the dataset [101,107] is shown

in, Fig. 4.10. Detailed damage surveys of more than 4,000 buildings were conducted door-

to-door [89,108]. The data include assessments of the post-event condition of most of the

buildings. Other documentation includes primary structural typologies, construction ma-

terials, and certain component damage levels. The documentation available for this data

also includes both building attributes plus observations of the overall damage condition

of the building after the hurricane. Thus, these data are well-suited for validation of the

technique developed.

For training the classi�ers I used data from 3,141 buildings, including 2,020 buildings

collected after hurricane Harvey in Texas, and 1,121 building collected after hurricane

Irma in Florida. The data vary greatly from building to building in terms of complete-

ness and number of images collected. Thus, not all the data collected from these 3,141

buildings are useful. I pre-process the dataset as follows. I made adjustments to the pre-

event attributes documented in the original dataset that were necessary to conform with

the de�nitions. The �rst �oor elevation is reported as an estimated height of elevation

in the original documentation. Here, I use the threshold of 5 feet to manually label the

data for training, testing and validation. Then, if the building is elevated, I also add one

to the number of stories reported to conform to the de�nition. Regarding the construc-

tion material, I make use of the attribute in the original data called structural framing.

However, most of these building actually use wood for the structural framing, or the load

bearing elements, and thus I rede�ne it as the main construction materials visible on the

exterior of each building as explained in Sec. 4.1.1. When multiple items are provided in

the original data, I simply use the �rst material listed.

Because the data I use for validation do not contain geo-location information, I only

consider the number of available images (see Sec. 4.1.2). In Sec. 4.1.2, I de�ned the prob-

ability that = images are su�cient to cover the building as ? (/ = 1|�1 = 21, . . . ,�= =
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Harvey

Irma

Fig. 4.10.: Post-event reconnaissance dataset collected after Harvey and Irma and pub-
lished on DesignSafe-CI and Fulcrum [89, 107, 108].
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(a) Accuracy of the classi�ers for post-event stream.
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(b) Accuracy of the classi�ers for pre-event stream.

Fig. 4.11.: Accuracy plots of classi�ers.

2=) = @= . Currently the typical number of images captured in wind-event reconnaissance

missions is quite small. Furthermore, there is a certain bias in the collection process since

the data collector is, typically, interested in collecting images of damage. For example, I

observe that data collectors take fewer images of buildings that have no damage or only

minor damage. In these circumstances, if only one image is captured, then I may conclude

that the building is su�ciently covered, i.e., @= = 1 for all = ≥ 1. In a more objective data

collection process, one has to adjust coverage probability accordingly, see Sec. 4.2.1.

I evaluate the performance of the pre-event and post-event data analysis streams inde-

pendently. The validation of the method involves �rst evaluating the performance of the

individual steps in each branch (i.e., of each classi�er), as well as considering the end-to-

end performance of each data analysis branch. Fig.4.11a and 4.11b show only the accuracy

of the classi�ers used for post-event and pre-event stream, respectively. However I evalu-

ate the end-to-end performance of the method developed in Sec. 4.2.1 and Sec. 4.2.2. The

input to each branch is the set of geo-tagged raw images of the buildings. To validate each

of these, I use raw available data from all of the 1,121 buildings collected after hurricane

Irma. Here I explain both the post-event and pre-event data analysis streams validation

results. In the post-event stream, �rst I demonstrate the results for an example loss func-
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Table 4.2.: Loss function.

Decision
ND MD NMD

MD U1 0 1
NMD U2 1 0Tr

ue
la

be
l

tion assuming all buildings are su�ciently covered. Then, I discuss how the results can

be improved if I re�ne the coverage probability, @= in Eq. 4.4. Subsequently, I study the

e�ect of the loss function parameters on the trade-o� between accuracy and ND rate, rate

of ND predictions over all permissible predictions. In the post-event stream, I illustrate

the results for an example loss function, and then the procedure for tuning of the loss

function parameters is discussed.

4.2.1 Post-event stream validation

As described earlier, each OV post-event image is passed through the damage classi�er.

Predicting the overall condition of the building, based only on images, is subject to error,

see Sec. 4.1.2. Even if the building is covered, it may still be di�cult to make the decision

based entirely on the images. For example, the damage shown in the image may not be

su�ciently severe to be labeled MD, nor minor enough to con�dently labeled as NMD.

Under these circumstances, even human inspectors face di�culties and the situation calls

for a more detailed inspection.

The general form of the loss function is shown in, Table 4.2. Without loss of generality,

I can set the loss of correct predictions to zero. The cost of mistakenly characterizing an

MD (NMD) building as NMD (MD) is 1. The cost of labeling as ND when the building

state is MD (NMD) is U1 (U2). These parameters are selected to re�ect the goals of the

preliminary survey, see Sec. 4.2.1.
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Fig. 4.12.: Density of the fusion predictive probabilities corresponding to each di�erent
decision, assuming all buildings are su�ciently covered (with @= = 1 for = ≥ 1).

Table 4.3.: Confusion matrix using a loss function with parameters (U1 = U2 = 0.3) ;
assuming all buildings are su�ciently covered.

Decision
No OV ND MD NMD All

No label 26 6 5 17 54
MD 44 16 151 39 250

NMD 109 71 71 566 817
All 179 93 227 622 1,121Tr
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Fig. 4.13.: Sample of a correct MD detection.

Sample results

First, consider the case in which all of the buildings are assumed to be captured ad-

equately with the images available, @= = 1 for all = ≥ 1, and pick a loss function with

U1 = U2 = 0.3. This choice of the loss function making mistakes has a unit cost, while not

deciding costs thirty percent of the mistake cost. In Fig. 4.12, I visualize the density of the

fusion predictive probabilities corresponding to each di�erent decision and true label, i.e.,

density of decisions made at a given fusion probability. It shows six combination of the

two true labels, MD and NMD, and three possible decisions, MD, NMD and ND. The cor-

rect decisions for the buildings with NMD (MD) true labels, depicted in red (blue), show

low-variance right (left)-skewed density with a mode close to 0 (1). However, the densities

of the incorrect decisions for both MD and NMD buildings, have more variance. Table 4.3

provides the confusion matrix, table of true labels versus predicted, for the results of the

demonstration of the end-to-end post-event stream data analysis. Out of a total of 1,121

buildings visited after hurricane Irma, the dataset includes 54 buildings with no true label,

and 179 buildings with no OV images. Also, 26 buildings are not distinct and those data

are merged into one building set. Therefore I have 914 labeled buildings with OV images.

The results show that 717 buildings are correctly categorized, 110 buildings are classi�ed

incorrectly, and 87 buildings labeled ND.

To understand the limitations of the approach, it is informative to examine some spe-

ci�c building examples of correct (incorrect) decisions as well as ND. Figure 4.13 shows

four images of a representative case in which a building is correctly categorized as MD. In

this case, the �rst three raw images, numbered as 1, 2, and 3, do not show any evidence of
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Fig. 4.14.: Sample of a ND building categorization.

Fig. 4.15.: Sample of an incorrect building categorization.
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damage. However, image number 4 does show the damage clearly, and the CNN classi�es

it as MD with a high probability. The fusion formula, Eq. (4.6), categorizes the building as

MD with high probability.

Figure 4.14 includes six images corresponding to an ND case. The true label of the

building is MD. The three images in top row, numbered as 1, 2, and 3 are each individually

classi�ed as NOV with a high probability. However, image number 4 does show signs of

damage on the roof, albeit with a 51.79% probability. Images 5 and 6 do not show any

evidence of damage. The fusion formula, also gives an almost �fty-�fty chance of MD.

Figure 4.15 corresponds to a case that is incorrectly categorized as NMD due to a

shortage of informative images. In particular, there is not an adequate number of images

to cover the building (remember that in this case study I have set @= = 1, i.e., the frame-

work mistakenly “thinks” that the building is covered). Only one image (front view of the

building facade, numbered 1) is classi�ed as OV. Image number 2 shows canonical view of

the building and potentially could capture the damage, but is highly obstructed by trees.

Therefore, image 2 is classi�ed as NOV and is not used for building categorization. Thus,

image number 1 is the only image available for detecting the overall damage condition

which does not have any evidence that the building should be categorized as having ma-

jor damage, and is not classi�ed as damaged. However, image number 3, which is the top

view of the building capture through aerial imagery, which is not part of the data collected

in preliminary survey, does show the damage on the back side of the building clearly. Note

that this image would have been �ltered out automatically by the overview classi�er. It is

included manually here for demonstrating the true building label. Investigating the case

shown in 4.15 reveals that the need for capturing multiple post-event images that cover

all around the building is critical for correct building categorization, see Sec. 4.4.

Discussion on selecting the coverage probability

The results presented in Table 4.3 are based on the assumption that each given building

is su�ciently covered, and human data collectors may have taken only 1 or 2 images of the



92

Table 4.4.: Confusion matrix using a loss function with parameters (U1 = U2 = 0.3) ;
considering a sample coverage probability, @1 = 0.2, @2 = 0.5, @3 = 0.9, @= = 1 for = ≥ 4.

Decision
No OV ND MD NMD All

No label 26 19 5 4 54
MD 44 45 151 10 250

NMD 109 355 71 282 817
All 179 419 227 296 1,121Tr
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Fig. 4.16.: Fusion probabilities.
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NMD buildings. However, the method is capable of dealing with unbiased data collected

automatically. This is possible through proper setup of ? (� = 2 |�1 = 21, . . . ,�= = 2=),

introduced in Sec. 4.1.2. In Table 4.4 I illustrate the results of considering a sample cover-

age probability, @1 = 0.2, @2 = 0.5, @3 = 0.9, @= = 1 for = ≥ 4. The results in Table 4.4 show

that the number of MD buildings which are incorrectly characterized as NMD is reduced

by almost 75%, compared with Table 4.3. These building are moved to the ND class. For

example, the case discussed in Fig. 4.4 is characterized as ND after modifying the cov-

erage probability. Figure 4.16a shows the density of the fusion predictive probabilities

corresponding to di�erent decision. However, since one or two images are deemed insuf-

�cient to consider the building covered, the number of correctly detected NMD buildings

also decreases by about 50%, and again these are moved to the ND class. These conse-

quences of incorporating coverage information can be interpreted as an indication that

human data collectors typically have an inherent bias to take fewer images of buildings

with no or minor damages, or NMD buildings. The human collectors see things that are

not depicted in the images they take. For future utilization of this method, assuming the

collected dataset contains more images of the target buildings, it is recommended to use

realistic choice of coverage probability, e.g., @1 = @2 = @3 = 0, @= = 1 for = ≥ 4. Density

of the fusion predictive probabilities corresponding to di�erent decisions are depicted in

Fig. 4.16b

Discussion on tuning the loss function

In Tables 4.3 and 4.4, the ratio of the correct, incorrect and ND prediction is highly

dependent on the loss function parameters. The choice of these parameters should re�ect

the objectives of the reconnaissance team. To develop some intuition about these param-

eters, I investigate their e�ect on the results, I change U1 and U2 from 0.1 to 1 and calculate

the results for all combination sets of the parameters. Figure 4.17a demonstrates the e�ect

of loss function parameters on the accuracy of the post-event buildings overall damage

categorization.
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Fig. 4.17.: Accuracy vs ND rate.
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According to, Fig. 4.17a, decreasing both the parameters U1 and U2, results in higher

accuracy. However according to, Fig. 4.17b, decreasing U1 and U2, results in a high ND

rate, rate of ND predictions over all permissible predictions. To explain it more clearly, I

describe two scenarios corresponding to two teams with di�erent goals. The �rst scenario

refers to a team that has limited but su�cient resources to visit all potential MD buildings,

and prefers to not miss any of the MD buildings. In this scenario, high accuracy is not

critical, albeit they want avoid a high ND rate which may lead to missing some MD cases.

They can encode this objective in the loss function by picking the U1 and U2 very high,

e.g., 0.9. The second scenario refers to a team that has a limited resources and prefers to

spend it more conservatively and only visit the buildings that have high probability of

falling into MD category. In this scenario, the goal is to increase the accuracy, however,

having high ND rate is not a big concern. They can encode this objective by picking the

U1 and U2 very small, e.g., 0.1.

4.2.2 Pre-event stream validation

In the pre-event stream, images of 807 of the 1,121 buildings visited after hurricane

Irma are successfully extracted from street view panoramas. The 314 buildings excluded

from the pre-event images extraction are not available because (1) the building’s address

is not available, (2) the street view panoramas are not available, (3) the building facade

maybe occluded by other objects, e.g., trees, cars or other buildings, (4) in some geo-

graphical regions street view images are not up to date and have a very low resolution.

So I set the pre-event image extraction tool to �lter out those images. Here, all of these

807 buildings are assumed to be captured adequately with the images available.

The general form of the loss function for determining pre-event attributes is shown

in, Fig. 4.5. Similar to the post-event loss function, the loss of a correct prediction is set

to zero, but the loss of making mistakes, 1, or labeling as ND, U1 and U2, represents the

relative penalties.
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Table 4.5.: Loss function.

Decision
ND Attribute 1 Attribute 2

Attribute 1 U1 0 1
Attribute 2 U2 1 0Tr

ue
la

be
l

Table 4.6.: Confusion matrix of �rst �oor elevation using a loss function with parameters
(U1 = U2 = 0.3).

Decision
ND Elevated Not Elevated All

Elevated 111 136 35 282
Not Elevated 143 20 362 525

All 254 156 397 807Tr
ue

la
be

l

Table 4.7.: Confusion matrix of number of stories using a loss function with parameters
(U1 = U2 = 0.3).

Decision
ND One Two All

One 137 226 34 397
Two 67 19 209 295

Unknown or more than Two 16 12 87 115
All 220 257 330 807Tr

ue
la

be
l

Table 4.8.: Confusion matrix of construction material using a loss function with parame-
ters (U1 = U2 = 0.3).

Decision
ND Masonry Wood All

Masonry 27 102 10 139
Wood 119 28 116 263

Unknown or Others 164 136 105 405
All 310 266 231 807Tr

ue
la

be
l
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Tables 4.6, 4.7, and 4.8 provide the confusion matrix for the results of the demonstra-

tion of the end-to-end, pre-event stream data analysis. These results are obtained with

a loss function with U1 = U2 = 0.3. Table 4.6 provides the confusion matrix for the re-

sults of the demonstration of the end-to-end, pre-event stream data analysis for �rst �oor

elevation attribute. Out of a total of 807 buildings, 498 buildings in the dataset posted

are correctly categorized, 55 buildings are classi�ed incorrectly, and 253 buildings labeled

ND. Table 4.7 provides the confusion matrix for the results for number of stories attribute.

Out of a total of 807 buildings, 115 buildings in the posted dataset have an unknown or

more than two stories true label. Therefore data from the 692 one and two story labeled

buildings are used here. The results show that 435 buildings are correctly categorized,

53 buildings are classi�ed incorrectly, and 204 buildings labeled ND. Table 4.8 shows the

confusion matrix for the results for construction material attribute. Out of a total of 807

buildings, 405 buildings have unknown or other types of material, and 402 buildings are

labeled as either wood or masonry buildings. Out of these 402 buildings, the automated

data analysis procedure results show 218 buildings are correctly categorized, 38 buildings

are classi�ed incorrectly, and 146 buildings are labeled ND.
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5. AUTOMATING DATA-DRIVEN PROBABILISTIC
VULNERABILITY MODEL GENERATION

Probabilistic vulnerability models are a key component of predictive models.

The term “vulnerability model” refers to the conditional probability of an undesir-

able phenomenon, e.g., an speci�c level of damage, given the intensity of an excitation,

e.g., wind or seismic load [109]. Vulnerability models are classi�ed into three categories:

empirical models, models based on experts judgment, and analytical models [85].

One category of the vulnerability models entirely relies on the judgment of the experts.

The designated are estimating the probability of exceeding certain levels of damage of an

element at risk for di�erent given levels of loading. [85]. For example, the vulnerability

models of the roads and tunnels used in HAZUS for are developed using the expert method

described in the ATC-13 documents [110, 111].

Analytical methods to develop these functions are typically based on simulations. In

these methods, the damage is estimated based on the simulated response of the element

at risk under various loadings. Due to the necessary levels of complexity and accuracy,

several analytical methodologies have been developed [41, 112–114].

Empirical vulnerability models are based on observational data of the real-world events

[39]. Empirical methods bene�t from the real event data and can account for various local

e�ects, e.g., construction quality and geographical site impacts. In case of an earthquake,

this may be interpreted as a shortcoming that the empirical vulnerability models remain

speci�c to a given region with particular conditions and event parameters. However, in

the case of an event like a hurricane that may happen with a reasonably short return pe-

riod in the same/similar geographical region, the empirical vulnerability models can take

into account the associated uncertainties with the site and event [85, 110].

The resulting prediction of damage or loss form di�erent selection of vulnerability

models would deviate considerably, and likely bias the decision-making. Currently, there
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is no consensus concerning an ideal method as all the described approaches have their

strengths and shortcomings [41, 110]. Further, the available vulnerability models are val-

idated merely through comparison with other existing models or against relatively small

real-world datasets. The outcome of analysis could be highly biased when the insu�-

ciently validated vulnerability models are used in real-world applications [41]. This gap

in validation originated from the burden of on-site real-world data collection and data

cleaning. Due to the considerable improvement of data collection platforms and com-

putational resources, this burden can be considerably mitigated through automating the

bottlenecks in the process.

The objective here is to develop an automated algorithm for hurricane loss predic-

tion to support the national, state and local planners and decision-makers. The contri-

bution here is to automate the process of empirical vulnerability generation using post-

event building images. Using a dataset that was collected after hurricane Harvey in 2017,

I generate input-output pairs for each observed asset consisting of structural and non-

structural characteristics before the hurricane (input) and its damage state after the hur-

ricane (output). Using these input-output pairs, I create a vulnerability model that predict

damage level of structures. Taking advantage of the automated data preparation tech-

niques [60,88], the credibility and comprehensiveness of the empirical vulnerability model

can be improved as I collect more data over the newly occurred events.

This vulnerability model is generated based on the past data can be used to plan for

future events. I generate synthetic events scenarios using the hazard maps of the region,

and use the vulnerability model to predict the probability of a speci�c damage level con-

ditional on the asset characteristics and the intensity of the event. Each damage level is

associated with an approximated percentage of the building net value. I estimate the net

value of the assets using commercial real estate tools, e.g. Zestimate [115], to predict the

regional loss.

The remainder of this chapter is structured as follows. Section (5.1) presents the gen-

eral methodology and problem formulation. Section (5.2) provides an illustrative example

of hurricane Harvey to demonstrate and validate the methodology and discuss the results.
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5.1 Methodology

Fig. 5.1.: Schematic of the process developed to generate empirical vulnerability models

Fig. 5.2.: Predicting regional loss of a future event with a regional inventory and potential
range of event intensity
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Figure 5.1 demonstrates the process of generating probabilistic vulnerability models,

I provide the details in Sec. 5.1.1. Figure 5.2 visualizes the application of the vulnerability

models for regional loss prediction in hypothetical future events, see Sec. 5.1.2 for the

details. In the phase of vulnerability model generation I am using the historical regional

data, and in the loss prediction phase I am using the data of the regional inventory being

considered.

5.1.1 Automated vulnerability model generating

I use the common mathematical notation in which random variables (r.v.) are indi-

cated by upper case whereas their values by the same lower case letters. For example, the

variable - represents a r.v. and the variable G a possible value of - . With ? (- = G) I

denote the probability mass function of- , if- is discrete, or the probability density func-

tion (PDF), if - is continuous. When there is no possibility of ambiguity, I am going to

write ? (G) instead of ? (- = G). Abusing a little bit the terminology, I will be referring to

? (G) as the “probability” of G irrespective of whether the r.v. - is discrete or continuous.

If . is another random variable, then ? (- = G,. = ~) (or ? (G,~)) will denote the joint

PDF of - and . and ? (- = G |. = ~) will denote the PDF of - conditioned on observing

. = ~.

Let 8 = 1, . . . , = represent the index of assets in a built environment with = assets.

The characteristics of asset 8 are denoted by �8 . These characteristics could be structural,

e.g., number of stories and �rst �oor elevation, or non-structural, e.g., �oor area and zip

code. The characteristics�8 are random variables because they are not directly observable,

i.e., there is epistemic uncertainty regarding their value. With the nonnegative r.v. / I

capture the event intensity, e.g., maximum wind speed or inundation depth. The discrete

r.v. (8 represents the damage level of asset 8 after an event. I assume that (8 takes values

in {0, 1, 2} that 0, 1, 2 corresponding to no damage, considerable damage, and destroyed,

respectively. Using the notation, the conditional probability that building 8 is at damage
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level (8 = B8 after a hazardous event with intensity / = I is denoted by ? ((8 = B8 |�8 =

28, / = I) or, more simply, by ? (B8 |28, I). The function ? (B8 |28, I) is the vulnerability model.

The preliminary steps to automatically generate the vulnerability models are discussed

in [60, 88]. In [60] I developed the algorithm to automatically extract multi-view pre-

event images of the built environment from street-view imagery. In [88] I describe a

methodology for inferring the physical attributes�8 , using :pre
8

pre-event images denoted

as Gpre
8

=

(
G

pre
8,1 , . . . , G

pre
8,:

pre
8

)
, and the damage level (8 of the buildings, using :ost

8 post-event

images denoted as Gpost
8

=

(
G

post
8,1 , . . . , G

post
8,:

post
8

)
. These procedures essentially yield the pos-

terior probabilities ? (28 |Gpre
8
) and ? (B8 |Gpost

8
).

5.1.2 Regional loss prediction

The direct monetary loss that building 8 with characteristics of 28 that experience the

damage level B8 , denoted as ; (B8, 28).

Then, to quantify the future regional loss of an inventory under consideration !, I

have:

!(/ = I) =
#∑
8=1

∑
B∈S

∑
2∈C

ℓ8 (B8, 28)·

? ((8 = B8 |28, / = I)? (�8 = 28 |G8,1, . . . , G8,:), (5.1)

where the ? (�8 = 28 |G8,1, . . . , G8,:) can be determined through fusing the extracted in-

formation of multiple pre-event images to detect the characteristics of the building [60,88].

Here I brie�y describe this step which are used both in vulnerability generation and re-

gional loss prediction phases. I consider : images G8,1, . . . , G8,: of the building 8 and let

�8,1, . . . ,�8,: be the set of r.v.’s corresponding to the detection of the physical attribute

each one of the images. The �8, 9 ’s also take values in C, but they are distinctly di�erent.

The former,�8, 9 , only tells us which attribute was detected in image 9 , whereas the latter,

�8, 9 , which attribute was detected in the entire building. The two are di�erent because
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an attribute may not be visible in all images. Since �8, 9 depends only on the 9-th image, I

have:

? (�8, 9 = 28, 9 |G8, 9 ) := 5CNN,28, 9 (G8, 9 ), (5.2)

where 5CNN,2 (G) is the CNN-based classi�er corresponding to the attribute. How can I use

the classi�cation of each image (�8, 9 ) to classify the entire building (�8 )? I have:

? (�8 = 28 |G8,1, . . . , G8,:) =∑
28,1,...,28,:∈C

? (�8 = 28 |�8, 9 = 21, . . . ,�8,: = 28,:)·

:∏
9=1

? (�8, 9 = 28, 9 |G8, 9 ), (5.3)

The ;8 (B8, 28) can be estimated using commercial tools, e.g. Zestimate.

5.2 Illustrative Example

I use the real-world data collected post hurricane Harvey reconnaissance mission by

StEER Network to demonstrate and validate the empirical vulnerability model generation.

The validation of the presented technique can be break down in three core parts: 1) auto-

mated exposure detection, 2) Assets net value estimation, and 3) empirical predictive vul-

nerability model generation. Part 1 is already demonstrated and validate in [60, 88]. Part

2 is relying on the commercial tools that are already validated. Here I focus on demon-

stration and validation of the part 3.

The post hurricane Harvey dataset contains the key characteristics of the 1988 build-

ings in Texas. Figure 5.3 shows the statistics of the data. The construction material, Fig.

5.3a, the occupancy group, Fig. 5.3b, and the number of stories, Fig. 5.3c, of the collected

data is highly unbalanced. I develop predictive vulnerability models only for the intersec-

tion of the dominant categories, wood structure and single family residence, and one and
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(a) Construction material. (b) Occupancy group.

(c) Number of stories. (d) Damage level.

Fig. 5.3.: Taxonomy of the raw data collected after hurricane Harvey [89, 101, 107].
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(a) Original wind map of the hurricane Harvey published
by National Weather Service.

(b) Geographical distribution of the visited buildings by
Steer team on the retrieved wind map.

Fig. 5.4.: Assigning the approximate wind speed to the building inventory using the hur-
ricane Harvey wind map [116].

Fig. 5.5.: Damage states for residential construction classes [117]
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(a) Inundation depth. (b) Damage level.

Fig. 5.6.: Visualization of the 156,099 buildings visited by FEMA after hurricane Harvey
[118].
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two stories buildings. Filtering out the minority categories, in total I use 1649 building

samples.

Figure 5.3d demonstrate the distribution of the damage level, de�ne by [117], in the

dataset. Referring to this de�nitions, here I de�ne the recovery cost into three levels of: a)

0% of the net value corresponded to damage level 0, b) 50% of the net value corresponded

to damage levels 1,2,and 3, c) 100% of the net value corresponded to damage level 4.

Typically hurricanes produce heavy precipitations. Wind speed and inundation depth

are the hazard parameters to be considered for loss prediction. However the dataset does

not include the wind speed and inundation depth. I need to assign the estimated values

from other available sources using the geo-spatial information. Estimating the wind speed

after a hurricane is a complicated task [119,120] and typically are presented in wind map

contours [116]. Due to inaccessibility of the original wind speed data, I retrieved this in-

formation from the hurricane Harvey wind map contours published by National Weather

Service [116], and then assigned the estimated wind speed to each building, See Fig. 5.4.

An inundation depth of more than 156,000 buildings are estimated by FEMA [118].

However the visited buildings by FEMA has no overlap with the buildings visited by StEER

team. To estimate the inundation depth of the buildings in StEER data, I �nd the closest

building visited by FEMA for each building, See Fig. 5.6.

To �nd the conditional probability of P[(8 = B8 |28, / = I], I use the extreme gradient

boosting (XGBoost) algorithm [121, 122] to train the vulnerability model in a form of a

classi�er. I implement a grid search and compute the cross-validation loss function for

each combination of the hyperparameters, e.g., learning rate, maximum depth, minimum

child weight, gamma, lambda, alpha, sub-sample, column sample.

The receiver operating characteristic (ROC) curve is a performance metric demon-

strating the relationship between true positive rate and false positive rate for di�erent

threshold settings. The ROC curve is typically used to investigate the e�ect of threshold

setting for binary classi�cation problems. Although the problem is a multi-class classi�-

cation I binaries each class to demonstrate the performance of model for each class. The

ROC curve of each class and the micro and macro average, Fig. 5.7a, demonstrates the
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(a) ROC Curve. (b) Regional loss prediction of potential future events.

Fig. 5.7.: Validation and prediction results.
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promising result of the classi�er. However, the more data of the real-world event I collect

I can improve the credibility of the vulnerability models for wider range of events and

geographical regions.

Here I demonstrate how this technique can be used to support planning for the future

events using a sample of 675 buildings. To keep the demonstration simple I assume the

net value of the all buildings are equal to 1. However for a real application I can use

the commercial tools, e.g., Zestimate that is provided by Zillow Inc., to estimate the net

value for the buildings more realistically. Considering the true labels of the buildings

collected by �eld engineers after hurricane Harvey, the total recovery cost of the 675

buildings sample is 332.5. To predict the loss for future events I generate synthetic data

with multiplying a variational ratio to the event parameters, e.g., wind speed, and the key

characteristics of the buildings, e.g., e�ective age, and calculate the total relative loss, total

predicted loss divided by estimated loss using true labels. Figure 5.7b showes the variation

of the predicted relative total loss of the sample set of buildings with respect to multiplied

ratio to the wind speed and the e�ective age of the buildings. One application of this

analysis is that the decision makers and insurance adjusters can evaluate the e�ectiveness

of retro�tting the buildings, decreasing the e�ective age, of the buildings on the projected

regional loss in various possible event scenarios.
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6. SUMMARY AND CONCLUSION

Communities aiming to be resilient need tools at their disposal that empower them to

both respond to and prepare for extreme events. With minimal inventory data, commu-

nities can set desired objectives, and plan based on those desired objectives to cope with

future disruptive events. One of the strategic decisions to prepare for extreme events is to

determine an appropriate budget, based on desired objectives, that the community can set

aside to prepare for building inspections after a potential future event. Here an approach

and the associated computational techniques are developed that can be used for various

types of disruptions, and with varying levels of detailed data. This approach is broken

down into four modules, as shown in Fig. 6.1.

Fig. 6.1.: Overview of the approach.
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The method developed in module 1, discussed in chapter 2, is intended for rapid and

e�ective planning of building inspections while also minimizing the expected cost of this

process to the community. The key idea behind prioritizing the structures for inspection is

that the post-event safety level of some structures can be predicted reliably using available

information. These predicted safety levels can be adopted with minimum consequences

for the community. This approach goes beyond past projects focused on developing urban

or regional risk models. This approach is relatively simple and supplies necessary guid-

ance for decisions in the case of a disruptive event. Furthermore, this study represents an

example of how the typical outcome of numerous urban or regional risk analysis initia-

tives can be used in practice, as well as assessing the impact of using eventually inaccurate

information of that sort.

This approach is illustrated using a realistic building inventory, manually collected

data, to demonstrate its use to determine �eld inspection priorities for hypothetical events.

Not all of the preliminary data to implement this approach may be readily available in all

communities. Two other techniques are developed here to prepare the required prelimi-

nary information. Both of the associated techniques are fully automated, which enables

communities around the world to readily use this approach.

The �rst automated technique which is developed as module 2, discussed in chapter

3, presents an automated technique to extract pre-event building images from street view

panoramas, publicly available online. The technique developed herein automates the pro-

cess of extracting building images from existing street view panoramas to support the

building reconnaissance process. Once an approximate location of a buildings are pro-

vided, several high-quality external views of the entire building are rapidly generated for

use. The performance of the technique developed here is successfully demonstrated us-

ing actual reconnaissance images as well as Google Street View panoramas collected from

Holiday Beach and Rockport, Texas, which su�ered signi�cant damage during Hurricane

Harvey in 2017. These images were collected by �eld investigators during a post-disaster

reconnaissance mission. All of the pre-disaster images, corresponding to the house in

each post-disaster image, are successfully extracted from Google Street View panoramas.
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The technique represents a promising example of how to easily and automatically add

value to both newly collected and existing (legacy) volumes of visual data.

The second automated technique which is developed as module 3, discussed in chapter

4, is focused on categorizing buildings based on their key physical attributes and assess

their post-event overall condition. This technique is intended to use pre-event and post-

event images and rapidly provide the reliable and su�ciently comprehensive information

required to support inspection planning. The input to the technique is a collection of

post-event images collected from residential buildings in the e�ected region. The output

of the technique is the building attributes, and the damage classi�cation for the build-

ings in that region. The technique incorporates several steps designed to automate this

process. The technique is divided into pre-event and post-event streams, each intending

�rst to extract all possible information about the target buildings using both pre-event and

post-event images. The technology enabling this research is convolutional neural network

algorithms (CNNs) that are implemented for scene (image) classi�cation. A hierarchical

classi�cation schema is designed to organize the data. Robust scene classi�ers are de-

signed for speci�c scene classi�cation tasks. Information fusion methods are developed

to combine the results from multiple images, yielding a result that collectively consid-

ers the individual results of multiple images. Valuable lessons on how to achieve robust

classi�cation are also discussed. The technique is validated using a publicly-available,

real-world data set collected by the NSF-funded StEER teams during the 2017 and 2018

hurricanes. The technique provides automated capabilities, reducing e�ort, improving

consistency, and accelerating decisions after a major event.

The last part of this research, module 4, focuses on developing the building-speci�c

empirically-calibrated probabilistic vulnerability models automatically. The key contri-

bution of this research is to automate the process of developing empirical probabilistic

vulnerability models using post-event images. The vulnerability models are generated

and validated using �eld data, including key structural and nonstructural characteristics

of the built environment. These empirically calibrated vulnerability models are used to

demonstrate the application of vulnerability models in regional loss prediction for the
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similar/same geographical regions. The data collected after hurricane Harvey, in 2017, in

Texas, is used as the reference dataset. This dataset is captured during reconnaissance

missions led by the NSF-funded Structural Extreme Events Reconnaissance (StEER) Net-

work, with data collection supported by the Fulcrum App [89].

As demonstrated in Fig. 6.1, the associated computational techniques developed along

with this approach can be used by policymakers in determining a suitable �eld inspection

budget in advance. Di�erent communities, with di�erent perspectives regarding budget

and what level of risk is tolerable, can adopt this approach and use the results to support

their decisions in case of a disruptive event. With their relevant input data, communities

can use this approach to determine a suitable budget and plan for a range of resilience

goals based on risk tolerance. One of the signi�cant advantages of this approach is the

applicability of the technique as wide as the street view imagery coverage. The appli-

cation of the approach is highly a�ordable because of the availability of the commercial

street view services and the historical post-disaster data repositories. When resources are

limited in the aftermath of a disruptive event, the results support the community to per-

form the �eld inspection by prioritizing certain buildings and pre-classifying less critical

ones based on expected performance levels. This capability will reduce overall costs and

support a faster start to the rest of the recovery processes. This approach is shown to sup-

port informed decision-making at a community-level, but also at a national or individual

level, to prepare for and mitigate the impact of disruptive events.
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