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“We have not succeeded in answering all our problems – indeed we sometimes feel we have not 

completely answered any of them. The answers we have found have only served to raise a whole 

new set of questions. In some ways, we feel we are as confused as ever, but we think we are 

confused on a higher level about more important things.”   - Earl C. Kelley 
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ABSTRACT 

The ability to rapidly assess the condition of a structure in a manner which enables the 

accurate prediction of its remaining capacity has long been viewed as a crucial step in allowing 

communities to make safe and efficient use of their public infrastructure. This objective has 

become even more relevant in recent years as both the interdependency and state of deterioration 

in infrastructure systems throughout the world have increased. Current practice for structural 

condition assessment emphasizes visual inspection, in which trained professionals will routinely 

survey a structure to estimate its remaining capacity. Though these methods have the ability to 

monitor gross structural changes, their ability to rapidly and cost-effectively assess the detailed 

condition of the structure with respect to its future behavior is limited.  

 Vibration-based monitoring techniques offer a promising alternative to this approach. As 

opposed to visually observing the surface of the structure, these methods judge its condition and 

infer its future performance by generating and updating models calibrated to its dynamic behavior. 

Bayesian inference approaches are particularly well suited to this model updating problem as they 

are able to identify the structure using sparse observations while simultaneously assessing the 

uncertainty in the identified parameters. However, a lack of consensus on efficient methods for 

their implementation to full-scale structural systems has led to a diverse set of Bayesian approaches, 

from which no clear method can be selected for full-scale implementation. The objective of this 

work is therefore to assess and enhance those techniques currently used for structural identification 

and make strides toward developing unified strategies for robustly implementing them on full-

scale structures. This is accomplished by addressing several key research questions regarding the 

ability of these methods to overcome issues in identifiability, sensitivity to uncertain experimental 

conditions, and scalability. These questions are investigated by applying novel adaptations of 

several prominent Bayesian identification strategies to small-scale experimental systems equipped 

with nonlinear devices. Through these illustrative examples I explore the robustness and 

practicality of these algorithms, while also considering their extensibility to higher-dimensional 

systems. Addressing these core concerns underlying full-scale structural identification will enable 

the practical application of Bayesian inference techniques and thereby enhance the ability of 

communities to detect and respond to the condition of their infrastructure. 
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 INTRODUCTION 

Our communities are inexorably enmeshed with the complex and evolving environment 

we’ve built to support them. Despite the foundational role these infrastructure systems play in 

society, they are often viewed as static monuments as opposed to the dynamic, and often 

deteriorating, structures we trust for health, safety, and productivity. Due to insufficient 

rehabilitation and expansion efforts, the United States infrastructure system is risking the safety of 

its citizens and impeding the nation’s ability to compete in a global economy  [1]. The 2017 ASCE 

infrastructure report card gives the nation a grade of D+ overall and shows major concerns across 

different sectors, such as the 9% of bridges with known structurally deficiencies [2]. They predict 

that a $4.5 trillion overhaul will be necessary to bring the system back into shape for a competitive 

and sustainable future. However, the current national investment in infrastructure, approximately 

2.4% of the GDP [3], is not sufficient to overcome this gap and lags far behind both the 

performance of and investment in infrastructure internationally, with European nations on average 

spending 5% of their GDP on infrastructure [1]. With the limited resources currently available for 

improving the condition of the nation’s infrastructure, it is critical to develop and implement 

information-based strategies for condition monitoring to prioritize rehabilitation planning that 

support the safety and productivity of our communities. This is the role of structural health 

monitoring.     

 Infrastructure monitoring is most commonly approached through visual inspection, in 

which structures are visited regularly by trained inspectors who judge the level of the deterioration 

in the structure by its outward appearance. Although inspection-based procedures and processes 

are already in place for a number of critical systems, such as the bridge [4] and dam [5] networks, 

this approach to infrastructure assessment has been shown to fall short in a number of cases. Take, 

for example, the collapse of the I-35W bridge in 2007. This structure had been inspected annually 

since 1993, and although classified as “structurally deficient” was thought to have sufficient 

capacity to remain in service until replacement in 2020-2025 [6]. Though the root of this particular 

collapse was found to be due to errors in construction rather than deterioration in the members, 

this and other tragedies have brought increased attention to the challenges of visual inspection for 

performance estimation, such as the reliability and consistency of infrastructure ratings, the 

accessibility of structures, the cost of inspections, and the safety of inspectors [7]–[9]. Some of 
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these concerns are being addressed by recent research in robotic inspection and image processing 

[10], but at its core this method of structural health monitoring still stretches to predict structural 

behavior from surface-level observations.  

A promising alternative to this approach is to directly observe the dynamic behavior of the 

structure and make judgements concerning its condition through vibration-based monitoring 

techniques. These automated infrastructure assessment approaches can be broadly classified into 

two categories, signal processing methods and model updating methods. Signal processing 

methods assess the current condition of a structure in relation to pre-determined quantitative 

behavioral thresholds. Model updating methods, in contrast, use observations from the structure to 

iteratively identify a model which describes its current state and predicts its future behavior. 

Variations in the parameters of this model over time are indicative of localized areas of concern in 

the physical structure. Ideally, the updated model can also be used to forecast the performance of 

the structure with regard to future events. Although each of these methods are valuable for 

infrastructure inspection and monitoring, model updating methods are uniquely powerful due to 

the level of actionable information they provide for infrastructure planning and rehabilitation 

efforts.  

Methods based on Bayesian inference are well-suited to the model updating problem due to 

their ability to produce models of varying fidelity with sparse observations while simultaneously 

assessing the uncertainty in the identified parameters. The application of these methods to full-

scale structural identification has been studied from a variety of perspectives, such as their 

robustness to noise and system nonlinearity [11], [12], their ability to continuously track and 

update changes in the model parameters [13], [14], and their real-time implementation [15], [16]. 

However, to date there has been little agreement as to which particular method adequately 

addresses all of the concerns raised in structural health monitoring applications. For example, 

particle filters have been recognized for their increased accuracy and ability to handle nonlinear 

models with non-Gaussian distributions, but they lag far behind the extended and unscented 

Kalman filters in terms of computational speed, making them inefficient for real-time or even rapid 

implementation [12]. Effective implementation of Bayesian inference methods for structural health 

monitoring requires that the selected approach address these and other unresolved challenges, 

including: scalability [17], model selection [18], [19], sparse observations of structural behavior 

[20], [21], identifiability [22], and sensitivity to uncertain experimental conditions. To evolve 



 

 

18 

Bayesian structural identification methods toward general full-scale structural health monitoring 

implementations, the available approaches must first be assessed and enhanced to address these 

issues.   

 The objective of my dissertation is to develop a scalable approach to Bayesian structural 

identification which also addresses concerns specifically related to real-time implementation and 

experimental uncertainty. My research therefore centers around the following questions: 

1. For a given nonlinear system, how can appropriate excitation signals be selected in advance 

of experimentation to ensure the successful identification of the system model from its 

dynamic response?  

2. How can Bayesian identification approaches be implemented to reliably produce a 

representative model of the structure in the face of experimental uncertainties? 

3. How can the flexibility of the Bayesian approach best be balanced with its scalability such 

that Bayesian identification methods can be applied to realistic engineering structures?  

I pursue the answers to these questions through the experimental identification of a small-scale 

nonlinear energy sink device, which is described in detail in Chpt. 4. This device poses a particular 

challenge for identification due to the dual stability it exhibits in its response behavior, such that 

two separate modes of operation are evident when different levels of input energy are applied. The 

complexity of the device behavior, coupled with the inherent limits of modeling techniques to fully 

capture experimental variability, provide a rich experimental basis to evaluate novel approaches 

to Bayesian predictive modeling.  

The theoretical framework for Bayesian inference on structural systems and some seminal 

literature regarding several methods common to structural health monitoring research is 

summarized in Chpt. 2 to provide a common foundation for the developments in this dissertation. 

Of these methods, the unscented Kalman filter is identified as the most likely to be effective in 

practical structural health monitoring scenarios, and is therefore the focus of the innovations in 

scalability and experimental reliability in Chpts. 5 and 6, respectively. Recent innovations in 

Bayesian approximations in the field of variational inference are discussed in Chpt. 3. This 

promising approach to Bayesian approximation is adapted for use in structural systems in Chpt. 7, 

and a novel approach to variational filtering for structural systems is developed in Chpt. 8. 

Conclusions from this project as well as extensions of the research for future study are discussed 

in Chpt. 9. It is the hope of the author that by addressing the fundamental challenges of 
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identifiability, experimental robustness, and scalability in a controlled experimental setting, the 

practical implementation of these methods for information-based infrastructure management will 

gain greater acceptance and utility in the field.  
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 BAYESIAN FILTERS FOR THE PREDICTIVE MODELING OF 

STRUCTURAL SYSTEMS 

Bayesian methods for system identification allow us to address the inherent epistemic uncertainties 

that arise in the formulation of predictive models for structural systems. These methods operate 

according to Bayes Theorem 

𝑝(𝐱, 𝛉|𝐲) =
𝑝(𝐲|𝐱, 𝛉)𝑝(𝐱|𝛉)𝑝(𝛉)

𝑝(𝐲)
, (2. 1) 

in which beliefs concerning the latent model, 𝐱, and its calibration parameters, 𝛉, are updated 

through observations, 𝐲, of the true system. The epistemic uncertainties associated with predictive 

modeling, which are generally classified as parametric uncertainty, model uncertainty, observation 

uncertainty, and interpolation uncertainty [1]–[3], are incorporated directly into the Bayesian 

formulation by their implied association with the probability density functions (PDFs) of different 

variables.  

Parameter uncertainty expresses the lack of knowledge concerning the precise values of 

particular calibration parameters in the model, such as stiffness or damping for structural systems. 

Though these parameters may not be known precisely, they can typically be specified with some 

certainty within a particular range. This belief as to the range of values of the parameters can be 

stated precisely by expressing it in the form of a PDF, 𝑝(𝛉). Likewise, the model uncertainty 

describes the limited capacity of a computational model to fully capture the range of behavior 

expressed by the physical system, and is encapsulated within 𝑝(𝐱|𝛉). Collectively, the term 

𝑝(𝐱|𝛉) ∙ 𝑝(𝛉) forms what is called the prior, referring to modeler’s prior knowledge of the system 

which can be concisely defined in terms of a stochastic computational model.  

Observation uncertainty is defined through the likelihood function, 𝑝(𝐲|𝐱, 𝛉) , and 

describes the errors associated with data collection. The likelihood function itself then represents 

the probability that computations with the prior will yield accurate predictions of the true 

experimental observations.  

Interpolation uncertainty refers to the inherent errors in our formulation of the predictive 

model which arise due to limited data which gives only partial information concerning the system 

behavior. This uncertainty is captured in the posterior, 𝑝(𝐱, 𝛉|𝐲) , which gives an updated 

expression of our model based on all available information. As more data becomes available and 
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the model is continuously updated, the variance of the posterior naturally decreases. A single step 

of this process is shown in Fig. 2.1, in which the prior is adjusted by the likelihood to form a more 

confident system model in the posterior.  

 

 

Fig. 2.1 – Graphical representation of Bayes’ Theorem 

 

The final term in the Bayesian formulation is the marginal likelihood, 𝑝(𝐲), which is also 

referred to as the evidence. Because all the data has been observed, this term evaluates to a constant 

which is used to normalize the computation such that the posterior meets the definition of a PDF 

(i.e. integrates to 1). For the majority of physical systems however, the evidence is difficult to 

compute. As will be discussed later in the chapter, this complexity has inspired a number of 

approximate approaches to Bayesian system identification.  

 To apply the Bayesian formulation to structural systems, it is first necessary to define the 

interactions of the basic system variables, which are shown by the graphical interaction model in 

Fig. 2.2. For structural systems, the latent model, 𝐱, is described by the interaction of a variety of 

dynamics states which characterize the system behavior, such as displacement and velocity. As 

Fig. 2.2 shows, these states exhibit an inherent dependency structure in time, which is typically 

described using a Markovian transmission probability 𝑝(𝐱𝑘|𝐱𝑘−1, 𝛉, 𝐮𝑘−1), where  𝐮𝑘−1 is the 

control input, at discrete time intervals 𝑡𝑘 = 𝑘Δ𝑡, where 𝑘 = 1, 2, 3, … , K. As evidenced in the 

transmission probability model, the dynamic behavior of these states is also influenced by the 

geometric and material properties of the system, such as stiffness and damping. These properties 

form the calibration parameters, 𝛉, of the system, and are typically modeled as constant, global 

system variables. Changes in the value of these variables due to environmental variations or system 
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degradation can be included in the model, but do not form the focus of this study. Our 

understanding of the system behavior is also characterized by its emission probability 

𝑝(𝐲𝑘|𝐱𝑘, 𝛉, 𝐮𝑘), which forms the likelihood model. If they were to be interpreted deterministically, 

the transmission and emission probabilities would be equivalent to the transition and observation 

equations that form the state space model for a general dynamical system. The use of the 

transmission and emission probabilities in the description of the system model simply allows for 

the explicit incorporation of uncertainty into the known computational model.  

 

 

Fig. 2.2 – Probabilistic model of a general dynamical system. 

 

 With the stochastic system model fully defined, the posterior can be formulated according 

to Bayes theorem,  

𝑝(𝐱0:K, 𝛉|𝐲1:K, 𝐮1:K) =
∏ 𝑝(𝐲𝑘|𝐱𝑘, 𝛉, 𝐮𝑘)∏ 𝑝(𝐱𝑘|𝐱𝑘−1, 𝛉, 𝐮𝑘−1)

K
𝑘=1

K
𝑘=1 𝑝(𝐱0, 𝛉|𝐮1:K)

𝑝(𝐲1:K, 𝐮1:K)
, (2. 2) 

where 𝑝(𝐱0, 𝛉) is the joint prior distribution on the initial conditions of the dynamic states and 

system parameters and 𝑝(𝐲1:K, 𝐮1:K) is the model evidence given all observations of the control 

and the response in the time series. This interpretation of Bayes theorem infers the full joint 

posterior on the states and parameters, 𝑝(𝐱0:K, 𝛉|𝐲1:K, 𝐮1:K), from all data points simultaneously, 

meaning that either all data must be available at the time of inference or that the posterior must be 

recalculated with increasingly large data sets as new observations become available. In light of 

this dependence on the full data set, methods which use this approach are typically referred to as 

batch methods.  

 Batch methods for predictive modeling of structural systems are advantageous in that they 

are designed to completely characterize the posterior of complex, nonlinear system models using 

all data and knowledge of the uncertainty simultaneously. Using approximation techniques tailored 

for batch Bayesian analysis, researchers have had great success in tackling practical issues such as 
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model class selection [4]–[9], model updating under ambient/environmental conditions [10], and 

damage detection [11],[12]. A comprehensive review of the state-of-the-art in these techniques is 

available from Huang et al. [13]. Despite their many benefits, these approaches are limited due to 

their computational complexity. Because of the longer times and memory capabilities needed to 

compute the posterior model approximation, real-time techniques, referred to as Bayesian filtering 

approaches, are often preferred for structural health monitoring applications.   

Filtering methods operate recursively by determining 𝑝(𝐱𝑘, 𝛉|𝐲1:𝑘 , 𝐮1:𝑘) , the marginal 

posterior of states and parameters at the current time step, as opposed to the full joint posterior, 

𝑝(𝐱0:K, 𝛉|𝐲1:K, 𝐮1:K). The marginal posterior is constructed by first determining the marginal prior 

through the Chapman-Kolmogorov equation,  

𝑝(𝐱𝑘, 𝛉|𝐲1:𝑘−1, 𝐮1:𝑘−1) = ∫𝑝(𝐱𝑘|𝐱𝑘−1, 𝛉, 𝐮𝑘−1)𝑝(𝐱𝑘−1, 𝛉|𝐲1:𝑘−1, 𝐮1:𝑘−1) 𝑑𝐱𝑘−1, (2. 3) 

and then developing the marginal posterior with Bayes’ Theorem,  

𝑝(𝐱𝑘, 𝛉|𝐲1:𝑘 , 𝐮1:𝑘) =
𝑝(𝐲𝑘|𝐱𝑘, 𝛉, 𝐮𝑘)𝑝(𝐱𝑘, 𝛉|𝐲1:𝑘−1, 𝐮1:𝑘−1)

𝑝(𝐲𝑘 , 𝐮𝑘|𝐲1:𝑘−1, 𝐮1:𝑘−1)
. (2. 4) 

If necessary, the full posterior,𝑝(𝐱0:K, 𝛉|𝐲1:K, 𝐮1:K), can then be constructed by iterating backwards 

in time with a smoothing algorithm [3], though it should be noted smoothing algorithms have 

disadvantages similar to batch methods with regard to real-time applications. Even without the 

implementation of a smoothing algorithm, the marginal posterior on the parameters at time K, 

𝑝(𝛉|𝐲1:𝑘 , 𝐮1:𝑘), is equivalent between the batch and filtering interpretations due to the treatment 

of 𝛉 as constant in Eq. (2.3).  

As mentioned previously, the analytical tractably of this solution scheme is dependent on 

the computation of the model evidence 𝑝(𝐲𝑘 , 𝐮𝑘|𝐲1:𝑘−1, 𝐮1:𝑘−1). For linear systems in which the 

transmission and emission probabilities can be adequately described by Gaussian probability 

densities, the evidence can be explicitly defined and requires fixed computational time at each step, 

𝑘. The majority of systems for which structural health monitoring would be beneficial do not fit 

this mold. The inherent uncertainties in modeling these complex nonlinear systems often result in 

issues in constructing the model evidence, such that it either cannot be expressed in closed form 

or requires exponential time to compute [14]. Significant research has therefore been devoted to 

the development of strategies which circumvent these issues through various computational 

methods.  
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 Over the past 60 years, a number of solutions have been developed to address these issues. 

For the purposes of structural health monitoring we are primarily interested in those algorithms 

which can be implemented sequentially, as in the construction given above, as they have the 

potential to provide real-time health monitoring and model updating information concerning the 

structures of interest. Such approaches can be broadly classified as analytical methods, sampling 

methods, and optimization methods. The analytical and sampling methods, which are more 

common to current research and implementation in structural health monitoring, will be described 

in the remainder of this chapter. Optimization methods for predictive modeling of structural 

systems are described in Chpt. 3.  

2.1 Analytical Methods for Bayesian Filtering 

Exact analytical solutions to the Bayesian filtering equations are possible for linear, Gaussian 

distributed, stochastic dynamical systems. Succinct algorithms were developed for this purpose in 

the 1950s and 60s, the most notable being the Kalman filter, developed by R.E. Kalman in 1960 

[15] as a special case of the Weiner filter.  

 The Kalman filter treats systems with transmission and emission probabilities of the form  

𝑝(𝐱𝑘|𝐱𝑘−1, 𝐮𝑘−1, 𝛉𝑘−1) =  𝑁(𝐱𝑘|𝐀𝑘−1𝐱𝑘−1 + 𝐁𝑘−1𝐮𝑘−1, 𝐐𝑘−1) (2. 5) 

𝑝(𝐲𝑘|𝐱𝑘, 𝐮𝑘, 𝛉𝑘) = 𝑁(𝐲𝑘|𝐂𝑘𝐱𝑘 + 𝐃𝑘𝐮𝑘, 𝐑𝑘) (2. 6) 

where 𝐀 is the state transition matrix,  𝐁 is the input matrix, 𝐂 is the measurement matrix, 𝐃 is the 

direct transmission matrix, and 𝐮 is the system input vector. The covariance matrices 𝐐𝑘 and 𝐑𝑘 

are representative of the process noise and the measurement noise, respectively. These terms are 

noted as time varying in the Eqs. (2.5) and (2.6), but can often be interpreted as time invariant. 

The prior distribution which initializes the algorithm is inferred using information from the known 

behavior of the system such that 𝐱0~𝒩(�̂�0, 𝐏0). The full Kalman filter algorithm then develops 

the Gaussian posterior over the states through matrix manipulations on the computational model, 

as shown in Algorithm 2.1.  

A critical implication of the Kalman filter structure is its lack of an inherent capacity for 

structural identification. Expressing the parameters as unknown would imply nonlinearity in the 

system and therefore violate fundamental assumptions of the analytical filtering solution. This 

shortcoming has most commonly been overcome through direct optimization of the parameters to 
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find the maximum of the likelihood (ML) or posterior (MAP) distributions using methods such as 

the expectation-maximization algorithm [14] or by sampling from the posterior distribution using 

Markov chain Monte Carlo (MCMC) methods [3]. However, these approaches to parameter 

identification negate the advantages in computational speed that are the hallmark of the Kalman 

filter, as they require several iterations over the data to determine the optimal parameters. Wan and 

Nelson [16],[17] proposed an alternative approach that allows for parameter estimation in real 

time, which they term the dual Kalman filter. Dual estimation splits the problem into two 

interconnected filtering implementations, in which one filter estimates the state and the other 

estimates the parameters. This approach has been shown to be an effective and stable form of 

predictive modeling [18],[19].  

 

Initialize with:  

 �̂�0 =  𝔼[𝐱0] 
𝐏0 =  𝔼[(𝐱0 − �̂�0)(𝐱0 − �̂�0)

𝑇] 
State Prediction: 

 �̂�𝑘
− = 𝐀𝑘−1�̂�𝑘−1 + 𝐁𝑘−1𝐮𝑘−1 

𝐏𝑘
− = 𝐀𝑘−1�̂�𝑘−1𝐀𝑘−1

𝑇 + 𝐐𝑘−1 

Observation Prediction: 

 �̂�𝑘 = 𝐂𝑘�̂�𝑘
− + 𝐃𝑘𝐮𝑘 

𝐏𝐲𝑘𝐲𝑘
= 𝐂𝑘𝐏𝑘

−𝐂𝑘
𝑇 + 𝐑𝑘  

𝐏𝐱𝑘𝐲𝑘
= 𝐏𝑘

−𝐂𝑘
𝑇  

Correction: 

 𝓚𝑘 =  𝐏𝐱𝑘𝐲𝑘
𝐏𝐲𝑘𝐲𝑘

−1  

�̂�𝑘 = �̂�𝑘
− + 𝓚𝑘(𝐲𝑘 − �̂�𝑘) 

𝐏𝑘 = 𝐏𝑘
− − 𝓚𝑘𝐏𝐲𝑘𝐲𝑘

𝓚𝑘
𝑇 

Algorithm 2.1 The Kalman Filter  

 

Though the analytical nature of the Kalman filter promotes scalability to high-dimensional 

structural systems, the constraint to a linear dynamical model severely limits its applicability to 

the complex nonlinear systems typical of structural health monitoring applications. To alleviate 

this concern while still taking advantage of the efficient Gaussian framework of the Kalman filter, 

several approximations to the algorithm have been developed. These approaches can be divided 

into extended Kalman filters (EKF) and sigma point Kalman filters (SPKF).  

Common among these approximate analytical approaches is their philosophy for parameter 

identification. The overwhelming majority of applications apply joint [20]–[23] parameter 
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identification, though dual [16],[24],[25] estimation is also fairly common. In joint estimation, the 

state vector, 𝐱𝑘, is augmented with the unknown system parameters such that a new state vector, 

𝐳𝑘 = [𝐱𝑘
𝑇, 𝛉𝑘

𝑇]𝑇 , is formed. The identification then progresses by replacing 𝐱𝑘  with 𝐳𝑘  in the 

selected filtering algorithm. Theoretically, each of these applications can develop the MAP 

solution over the parameters [26]. In practice, these approaches, and the joint filtering approach in 

particular, may experience convergence issues due to modeling the parameters as constant 

dynamical states, which can generate numerical errors in the algorithm such that the covariance 

matrix 𝐏 becomes singular [3],[27]. 

2.1.1 Extended Kalman Filters 

The EKF was developed in response to the problems in nonlinear state estimation that arose in 

configuring the orbital guidance system for the Apollo missions in the early 1960s [28]. A natural 

extension of the Kalman filter algorithm to the nonlinear filtering problem, the method operates 

by linearizing the transition and observation equations about the current state of the nonlinear 

system [29],[30]. A detailed outline of the approach is given in Algorithm 2.2. 

 

Initialize with:  

 �̂�0 =  𝔼[𝐱0] 
𝐏0 =  𝔼[(𝐱0 − �̂�0)(𝐱0 − �̂�0)

𝑇] 
State Prediction: 

 �̂�𝑘
− = 𝐟(�̂�𝑘−1, 𝐮𝑘−1) 

𝐅𝐱𝑘
= [∇𝐱 𝐟

𝑇(𝐱, 𝐮)]𝐱=�̂�𝑘−1

𝑇  

𝐏𝑘
− = 𝐅𝐱𝑘

𝐏𝑘−1𝐅𝐱𝑘
𝑇 + 𝐐𝑘−1 

Observation Prediction: 

 �̂�𝑘 = 𝐡(�̂�𝑘
−, 𝐮𝑘) 

𝐇𝐱𝑘
= [∇𝐱 𝐡

𝑇(𝐱, 𝐮)]𝐱=�̂�𝑘
−

𝑇  

𝐏𝐲𝑘𝐲𝑘
= 𝐇𝐱𝑘

𝐏𝑘
−𝐇𝐱𝑘

𝑇 + 𝐑𝑘 

𝐏𝐱𝑘𝐲𝑘
= 𝐏𝑘

−𝐇𝐱𝑘
𝑇  

Correction: 

 𝓚𝑘 =  𝐏𝐱𝑘𝐲𝑘
𝐏𝐲𝑘𝐲𝑘

−1  

�̂�𝑘 = �̂�𝑘
− + 𝓚𝑘(𝐲𝑘 − �̂�𝑘) 

𝐏𝑘 = 𝐏𝑘
− − 𝓚𝑘𝐏𝐲𝑘𝐲𝑘

𝓚𝑘
𝑇 

Algorithm 2.2 The Extended Kalman Filter  
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 Since Yun and Shinozuka demonstrated in 1980 that the method was valid for identifying 

parameters of linear structural models [31], a number adaptations have been proposed to better suit 

the algorithm to the purpose of civil structural identification. Hoshiya and Saito [32] implemented 

the EKF with a weighted global iteration procedure to enhance its stability and convergence on 

some common nonlinear structural models. Solonen et al. [33] and Yuen and Kuok [34] adjusted 

the algorithm for online estimation of the error covariance matrices, 𝐐 and 𝐑, thereby eliminating 

some of the uncertainty in constructing the necessary prior information. Naets et al. [20] tackled 

the issue of output-only structural identification, which has since been explored in other works, 

such as [35],[36]. The development of these enhanced EKF algorithms has been supplemented by 

their practical implementation on a number of experimental structures, such as in [35],[37],[38]. 

Overall, EKF methods have been and continue to be one of the more widely used tools in vibration 

based structural identification [21]. However, some limitations still exist that prevent its broad 

application for structural health monitoring.  

 The nature of the EKF approximation, in which the system is linearized through a first-

order Taylor series approximation, inherently limits the accuracy of the resulting estimation when 

applied to highly nonlinear systems [39]. Other challenges arise in the implementation of the 

method, such as the nontrivial computation of the necessary Jacobian matrices and the high 

sampling frequencies needed to ensure stability [40]. Therefore, despite its real-time operation and 

potential to scale to high-dimensional systems, the EKF appears ill-suited to the general structural 

health monitoring problem. 

2.1.2 Sigma Point Kalman Filters 

SPKFs were first introduced through the unscented Kalman filter (UKF), which was developed by 

Julier et al. in a series of papers from 1995-1998 [40]–[42] in answer to concerns over the accuracy 

and analytical complexity of the EKF. While the EKF addresses the nonlinear system directly 

through linear first-order approximations, the UKF instead take the stance that Gaussian 

distributions are far easier to approximate than arbitrary nonlinear functions [40]. The resulting 

filter captures better estimates of the higher order moments caused by the nonlinear transformation 

than the EKF, achieving 3rd order accuracy in mean estimate and 1st order accuracy in the 

covariance estimate [43]. Attempts to generalize and improve this implementation have led to the 

development of the Gauss-Hermite Kalman filter and central difference filter by Ito and Xiong 
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[44], the divided difference filter by Norgaard et al. [45], and the cubature Kalman filter by 

Arasaratnam and Haykin [46], among others [39]. This broad group of SPKF approaches, also 

known as Gaussian filters, is characterized by their use of deterministic Gaussian integral 

approximations to estimate the mean and covariance of the nonlinear transformation on the state 

distributions [47]. These methods progress through the data by recursively forming and 

propagating a deterministically selected and weighted sample of ‘sigma points’ through the 

nonlinear system equations, from which the appropriate distributional parameters can be 

approximated to update the estimate of the state vector. A general algorithm for this class of 

Kalman filters is given in Algorithm 2.3. A more exhaustive definition of the different types of 

SPKFs can be found in [3] and [39].  

SPKFs have been found in a number of comparative studies to be superior in accuracy and 

stability to the EKF [21],[24],[40],[44],[48],[49]. Further increases in accuracy have been obtained 

by varying the deterministic approach to sigma point selection to further enhance this higher order 

moment approximation [50]–[55]. However, these modifications often result in an increased 

number of sigma points. Because the number of sigma points increases in proportion to the 

dimensionality of the problem, such modifications present some difficulty in scaling the method 

to high-dimensional physical systems. As such, several approaches have been proposed to 

minimize the number of sigma points while maintaining the accuracy of the algorithm [56],[57]. 

Other improvements to the SPKF methods have primarily addressed the treatment of the noise 

covariances. Kontoroupi and Smyth [22], for example, developed an approach for the online 

estimation of the error covariance matrices with the UKF, while Wu et al. [58] determined that 

augmenting the error covariances in the implementation of the UKF typically generated more 

accurate results than using the method in its original, non-augmented form.  

  Of the available SPKF methods, applications of the UKF are by far the most common in 

structural health monitoring applications, reinforcing its potential to be applied to general 

structural systems. The performance of the UKF with respect to Bouc-Wen hysteretic structures 

has been explored in simulation [59],[60] and in experimental tests [61], with significant success 

in its use for real-time dynamic model updating [62],[63] and real-time hybrid simulation [23]. 

Mariani and Ghisi demonstrated that the UKF can also be used to effectively determine the model 

of softening dynamic systems [64]. Though the scalability of this method to high-dimensional 

systems is still a challenge, Ghorbani and Cha [65],[66] were able to implement a combined 
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cubature-unscented Kalman filter on a 10 story linear structural system, while Olivier and Smyth 

[67] have had some success with high-fidelity finite element models through the use of 

marginalization techniques. Azam [68] takes a different approach by suggesting a reduction in the 

dimensionality of the structural model through orthogonal decomposition. Song et al. approach 

another practical identification issue by developing an adaptive unscented Kalman filter to jointly 

estimate the process and measurement noise during the monitoring process [69]. Chen and Feng 

seek to further the effectiveness of these strategies by applying them in a predictive modeling 

context rather than a monitoring context, and do so by evaluating a central difference filtering 

approach to predictive modeling on an experimental bridge specimen [70]. 
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Correction: 
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†Weights associated with sigma points ‡Sigma point generation function (deterministic) 

Algorithm 2.3 Generalized Sigma Point Kalman Filter 

 

Overall, the class of SPKFs is very promising for application to the high-dimensional, highly 

nonlinear problem of structural health monitoring. Though some challenges still exist, such as the 
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sensitivity of the method to the selection of tuning parameters [53] and the inference of prior 

information [22], there is a general consensus that the method is highly informative for structural 

identification and model updating. Further examination of these issues, as well as detailed 

experimental examination of algorithm scalability, will be required prior to general application. 

2.2 Sampling Methods for Bayesian Filtering 

Sampling approaches to Bayesian filtering, which are more commonly referred to as particle filters 

(PF) or sequential Monte Carlo (MC) approaches, determine an approximate solution to the 

Bayesian inference problem by exploiting MC methods to generate numerical approximations of 

analytically intractable posterior densities. The accuracy of the approximation is therefore 

dependent on the number of samples; the approximation converges in expectation to the true 

posterior as the number of samples approaches infinity [14]. These methods are particularly 

attractive for generalized nonlinear systems as they place no constraints on the linearity of the 

model nor on the form of the associated probability densities.  

 Sampling methods have their foundation in sequential importance sampling (SIS), which 

was developed in the early 1970s [71]. The basic premise of SIS is that the expectation over the 

posterior density  𝑝(𝐱𝑘|𝐲1:𝑘), which is difficult to draw samples from, can be decomposed with 

respect to an importance distribution 𝜋(𝐱𝑘|𝐲1:𝑘), which is simple to draw samples from, such that  

∫ h(𝐱𝑘) 𝑝(𝐱𝑘|𝐲1:𝑘)d𝐱 = ∫[
h(𝐱𝑘)𝑝(𝐱𝑘|𝐲1:𝑘)

𝜋(𝐱𝑘|𝐲1:𝑘)
] 𝜋(𝐱𝑘|𝐲1:𝑘)d𝐱 (1) 

where h(𝐱𝑘) is a nonlinear function on the states [3]. By expressing the Bayesian update equations 

in terms of the importance distribution, a weighted sampling approximation to the true posterior 

can easily be developed. Issues with degeneracy in SIS, where a single particle becomes weighted 

significantly more heavily than the remaining particles, limited its use prior to 1993, when Gordon, 

Salmond, and Smith [72] proposed a resampling step in their bootstrap filter. Since then, a number 

of techniques have been developed which improve upon this resampling approach [71],[73]–[77], 

including an adaptive resampling approaches based on an effective number of particles [78], 

generally referred to as sequential importance resampling (SIR) [3], which is given in Algorithm 

2.4. 
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Else: 

 𝐱𝑘
(𝑗) = �̂�𝑘

(𝑗)
 

†Number of particles ‡Several strategies available 

Algorithm 2.4 Sequential Importance Resampling Particle Filter 

 

The selection of the importance distribution has a nontrivial effect on the performance of 

the filter. Using the optimal importance distribution [73],[79]  

𝜋(𝐱𝑘|𝐱0:𝑘−1, 𝐲1:𝑘) = 𝑝(𝐱𝑘|𝐱𝑘−1, 𝐲1:𝑘), (2. 7) 

allows for a filtering strategy that is with minimal variance in the sampling distributions and 

generally quick convergence with a relatively small number of particles. When the optimal 

importance distribution cannot be directly used, other distributions have been used successfully in 

its place. Gordon et al. [72], for example, use the transition probability 𝑝(𝐱𝑘|𝐱𝑘−1, 𝛉, 𝐮𝑘−1) as the 

importance distribution. This model significantly simplifies the implementation of the particle 

filter algorithm at the cost of increasing the variance of the sampling distribution, and therefore 

requiring more particles for concise convergence. Alternatively, Pitt and Shephard [80] proposed 
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an auxiliary sequential importance resampling (SIR) filter which mimics the optimal importance 

distribution by resampling at step 𝑘 − 1  using the measurement available at time 𝑡𝑘 . Other 

common approaches for the selection of the importance distribution emphasize local linearization 

through by combining the particle filter approach with various Kalman filtering methods. These 

combination approaches will be discussed further in Section 2.3. 

Sample impoverishment represents the final major computational issue that impedes the 

implementation of the particle filter, and can be particularly detrimental for joint state and 

parameter estimation applications. This effect occurs when the noise variance on a particular state 

is set to be, or converges to, a very small value. When this occurs, many of the particles will have 

exactly the same value, yielding what is essentially a point distribution that is propagated forward 

in time and is not indicative of the true statistics of the state. Techniques such as ‘roughening’, 

where a slight artificial increase in variance is introduced to the state, were initially proposed and 

used to great effect by several researchers [72],[73],[81]. Chatzi and Smyth [82], for example, used 

this approach to great effect in determining a predictive model for a three story structure with a 

Bouc-Wen hysteretic component. However, the non-trivial issue of selecting a roughening 

variance which provides sufficient reduction of sample impoverishment without significantly 

increasing the sampling variance led researchers to generate a variety of other approaches to 

combat this issue, such as evolutionary mutation [83], resample-move algorithms, regularization, 

and MCMC steps [73],[79]. Most recently Rao-Blackwellization approaches, which allow for 

computations on some of the states to be performed analytically, have been shown to be 

particularly effective in approaching this issue [73],[74],[84]. Oliver and Smyth [85] and Storvik 

[86] have had particular success with this approach as it applies to the identification of static 

parameters in structural systems.  

 Research into the application of particle filtering techniques for the predictive modeling of 

structural systems has had some success, though application of Kalman filtering techniques are 

still far more common. Wang et al. for example, developed a method to extract the fundamental 

mode of a bridge from ambient vehicle excitations using a particle filter approach [87], Wan et al. 

develop a modified particle filter for joint input-state-parameter identification [88], and Xue et al. 

applied the auxiliary particle filter to the problem of inferring abrupt parameter changes [89]. 

Olivier and Smyth addressed some practical uncertainties in these methods through a study on 

their effectiveness with systems having various identifiability properties, which determined that 
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the particle filter is informative in developing distributional characteristics of parameters in 

unidentifiable and locally identifiable structural systems [90]. Several researchers, such as Erazo 

and Hernandez [49] and Azam [68], have performed comparison studies which demonstrate that 

though the particle filter can be useful in some cases, it nonlinear Kalman and combination 

approaches can often give better stability and computational efficiency.  

 Despite the success of the particle filter in relatively low-dimensional systems, degeneracy 

and impoverishment issues are known to be exacerbated in high-dimensional systems. The 

convergence of the algorithm to the expectation of the true posterior is guaranteed through the 

central limit theorem as the number of samples approaches infinity [3], regardless of dimension. 

However, the number of samples required to maintain the accuracy of the approximation have 

been shown to increase exponentially with the dimensionality of the system [85],[91]. Various 

solutions have been suggested to mitigate these issues, including marginalization [3],[71],[85] and 

dimension reduction [68] approaches. Though these solutions have shown promise in mitigating 

the issues associated with the dimensionality of the solution, they remain computationally 

intensive, limiting their effectiveness for structural health monitoring applications.  

2.3 Combination Methods 

In addition to traditional implementations of analytical and sampling filters, several adaptive 

Bayesian filtering methods have been generated which seek to take advantage of the strengths of 

these respective methods. This section seeks to provide a brief summary of these methods, with 

examples of their application to predictive modeling in structural health monitoring.  

2.3.1 Ensemble Kalman Filter 

The ensemble Kalman filter (EnKF) was developed by Evensen in 1994 [92] as a Monte Carlo 

based approach to solve some of the issues that arise with the EKF.  Specifically, Evensen seeks 

to use the EnKF to address the computational complexity of covariance matrix propagation in 

large-scale systems and the neglect of higher-order nonlinearities seen in the EKF. The EnKF 

achieves these goals by first generating an initial ‘ensemble’ of states by selecting a best-guess 

estimate of the initial states and then adding perturbations to form other ensemble members. This 

initial ensemble is then propagated forward through the filter, being used in the predictor and 
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corrector steps to form Gaussian error statistics to develop the Kalman gain on the stochastic 

dynamical system. A detailed look on the theoretical developments, major adaptations, and 

applications of this method are available from Evensen in [93]. 

The EnKF has shown improved performance over the EKF in several areas of research, 

and in particular with respect to structural health monitoring problems. Practical applications of 

the EnKF include the work by Akita et al. [94] and Slika and Saad [95], who respectively use the 

filter to perform joint state and noise identification on a deployable frame structure and employ 

the filter to develop a predictive model of chloride-induced corrosion in reinforced concrete 

structures. Ghanem and Ferro [96] directly compare the EKF and EnKF in their ability to develop 

non-parametric models of complex nonlinear systems with non-Gaussian process noise, finding 

that the EnKF to have a robust performance in damage identification and state estimation. Perhaps 

most enlightening is the comprehensive comparison study by Erazo et al. [49], in which he uses 

the case study of a simulated 10-story structure with nonlinear elements to compare the state 

estimation performance of the EKF, UKF, EnKF, PF. He found that the UKF and EnKF generally 

performed better than the other filters, though the UKF had the best performance overall.  

2.3.2 Monte Carlo Kalman Filter 

Similar to the EnKF, the Monte Carlo Kalman filter (MCKF) develops the Gaussian error statistics 

of the Kalman filter scheme through samples of the marginal prior. The key distinction between 

the methods, and indeed between the MCKF and the particle filter, is that new samples are drawn 

in each predictor and corrector phase instead of the samples being propagated through the filter 

from some initial draw [39]. Applications of the MCKF are uncommon in structural health 

monitoring applications.   

2.3.3 Gaussian Particle Filter 

As described in Section 2.2, proposal distributions for the particle filter govern the stability and 

convergence rate of the approximation. Ideal implementations of the particle filter take advantage 

of the optimal proposal distribution, given in Eq. (2.7). However, determining this proposal 

distribution in practical filtering scenarios can be extremely difficult, resulting in the use of simpler 

proposals, such as the transition probability used by Gordon et al. [72], which are prone to fail 
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when new measurements appear in the tail of the prior or if the likelihood function is has 

significantly lower variance than the prior.  

 In response to these issues, researchers have proposed several adaptations of the particle 

filter method which augment the proposal distribution with Kalman filter updates. Initial 

implementations worked with the EKF [97], but van der Merwe et al. found greater success in 

using the UKF to augment the proposal distribution [98]. The methods proceed by propagating 

each particle of the filter through the nonlinear Kalman filter to develop a posterior approximation. 

Particles are then samples, and are weighted from a proposal distribution characterized by that 

posterior, 𝜋(𝑥𝑡
(𝑖)|𝑥0:𝑡−1

(𝑖) , 𝑦1:𝑡) = 𝑁(�̅�𝑡
(𝑖), �̅�𝑡

(𝑖)), where 𝑖 = 1,… , N refers to each individual particle. 

The advantage of this approach over the transition probability is that it incorporates the current 

observation into the proposal distribution, essentially eliminating issues in convergence due to an 

inability to account for overly precise or unlikely measurements. Several variants of this approach 

have been introduced which use the wide variety of sigma point Kalman filters to generate a couple 

Kalman-particle filter approach [99]–[103]. 

 A few examples the implementation of these methods exist structural health monitoring 

applications. For example, Azam and Mariani [18] improve upon the scalability and accuracy of 

the unscented particle filter on simulated structural systems with a dual EKF-PF approach. 

Additionally, Monsouri et al. [104] proposed an iterated square-root unscented particle filter, and 

subsequently improved upon it with an iterated square-root central difference Kalman particle 

filter [100], validating the performance of both of these methods against several other Kalman and 

particle filter variance on simulated structural systems. These researchers found, in general, great 

improvement in these methods over traditional sigma-point Kalman and particle filter approaches.  

2.4 Other Topics in Practical Predictive Modeling 

To be effective in a practical health monitoring setting, Bayesian filtering methods must also 

address a number of non-algorithmic considerations. Some issues of note that are currently being 

addressed by active research are summarized below. Though these issues characterize much of the 

current research narrative in the practical implementation of Bayesian predictive modeling tools 

for structural health monitoring, this dissertation addresses in detail only a small subset of these 

topics, particularly the selection of excitation signals for system identifiability, as will be discussed 
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in detail in Chpt. 5. I instead focus in more detail on issues of algorithm robustness which are not 

well studied in the current literature, such as the selection of the prior distributions on the states 

and parameters, sensitivity to inaccurate model error predictions, and the adaptability to varying 

levels of sensors noise. These issues are explored in great detail in Chpts. 5, 6, and 7.  

2.4.1 Experimental Design for System Identifiability 

Experimental design includes the selection of excitation signals and sensor locations to improve 

the identifiability of the experimental system. These topics have been addressed in a number of 

ways for structural systems, including through Bayesian analysis frameworks.  

 Traditionally, experimental identifiability from the standpoint of a given experimental 

system from either a structural, practical, or sensitivity-based standpoint. Structural methods 

directly analyze the system under the assumption of a perfect model with no measurement noise 

in the response and are typically mathematically intensive [105]. With the advent of a variety of 

generalized software tools [106]–[108] and specific methods for engineering applications [109]–

[111], these methods have become more accessible to the general user. However, experimental 

systems exhibit behaviors that often deviate significantly from the computational models, leading 

to which are structurally identifiable, but practically unidentifiable [90],[105],[112]. Practical 

methods seek to overcome some of these limitations by assessing the identifiability of nonlinear 

system models in the presence of noise, though the absence of modeling errors is still assumed. 

Several methods have been proposed for offline analysis prior to experimentation [113],[114] and 

online assessment operating in parallel with Bayesian inference techniques [7],[90]. Sensitivity-

based approaches strike a balance between the other methods by interpreting identifiable 

parameters as those which the model is most sensitive to, or which produce the most variation in 

its output. Though these approaches share the same assumptions as the structural methods 

regarding model form and measurement noise, they also require the user to identify nominal 

parameter values or ranges over which to evaluate the sensitivity, as with practical methods [105]. 

Applications of this class of methods for the purpose of establishing identifiability almost 

exclusively use local analysis methods [114],[115], which are not computationally intensive, but 

are less effective for models with severe nonlinearities and parameters of varying levels of 

uncertainty [116]. Global sensitivity analysis methods [117]–[122] can offer a greater depth of 
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information and are explored in Chpt. 5 as an alternative way to establish identifiability with 

respect to excitation signal selection.  

 Specific attention has also been given to alternative methods for sensor network 

optimization for structural dynamics, resulting in a number of new methods and adaptations of the 

above techniques. Sensor network optimization techniques seek to develop, either sequentially or 

as a batch, the optimal network of sensors to promote identifiability in a system with respect to a 

particular metric. A clear summary of the classes of metrics used for optimization are given by 

Yuen and Kuok [123] in their paper on multi-type sensor network optimization. They classify these 

methods as being  

• modal parameter based, in which the network is optimized for the determination of modal 

parameters, [124]–[126];  

• response reconstruction based, in which the network is optimized to minimize the mean 

square error in the reconstructed structural response, [127]–[130];  

• energy based, in which the network is optimized to maximize the kinetic energy, and 

therefore the modal contributions, of the observed structure [131],[132]; or  

• information based, in which the network is optimized through either deterministic or 

Bayesian means to maximize the information delivered by each sensor [124]–[126],[133]–

[139].  

As is clear by the numerous examples associated with these methods, the topic of sensor network 

optimization is still an open question in experimental design, though methods using Bayesian 

information theory for optimization do seem to be an effective and simple approach, particularly 

for sequential sensor selection and multi-type sensor systems.  

2.4.2 Model Selection 

The common objective of predictive modeling problems is to efficiently find the most useful model 

to capture the desired aspect of the system response behavior, given the knowledge that no 

computational model will be able to capture all aspects of the response perfectly. Model selection 

algorithms typically seek to achieve this by proposing a single flexible model or set of increasingly 

complex models which are tuned and eventually narrowed down to a single representative system 

model as observations of the system become available. Bayesian techniques for model selection 

are particularly efficient, as the structure of the Bayesian algorithm enforces the principle of 
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Occam’s Razor, that the selected model should be the most simple version which adequately 

describes the system behavior, thereby reducing the possibility of over-fitting [140].  

 Current practice in predictive structural modeling tends to favor the Bayesian approach to 

model selection. Several authors have adapted Bayesian model selection techniques for structural 

systems, such as Kerschen et al., who used a simple Markov Chain Monte Carlo variant [6], Yuen, 

who combined Bayesian model selection techniques with artificial neural networks for structural 

damage detection [9], Worden and Hensmen, who apply the approach to Duffing and Bouc-Wen 

hysteretic systems [8], and De et al., who seek to increase the computational efficiency of the 

technique for high-dimensional systems [141]. Beck et al. in particular have proposed several 

incremental improvements to Bayesian model selection algorithms for structural systems over the 

past 20 years, moving from a basic Bayes-theoretic approach [4] to take advantage of new 

techniques such as transitional Markov Chain Monte Carlo [7], asymptotically independent 

Markov sampling [142], hierarchical sparse Bayesian learning and Gibbs sampling [11],[143], and 

second-order Langevin Monte Carlo [144]. Though these methods primarily emphasize batch 

techniques, several real-time model selection algorithms have also been proposed by Chatzi et al. 

[61], Yuen and Mu [145] and Kontoroupi and Smyth [146]. 

 Regardless of the quality of the models which result from these model selection techniques, 

there will inevitably be discrepancies between the true experimental system and the selected 

computational model. Quantifying and mitigating the effect of these uncertainties form the other 

side of the model selection issue. Kennedy and O’Hagan first defined the model discrepancy in 

detail in 2001 [2], highlighting the issues involved in calibrating computational models in the face 

of uncertainty. Arendt et al. [1] and Brynjarsdottir and O’Hagan [147] further clarify the impact 

of misrepresenting this model uncertainty on the calibration of model parameters. When the model 

uncertainty is either extremely large or inadequately quantified, the remaining computational 

model may suffer from miscalibration, where the identified model parameters are not 

representative of the physical system. Current efforts for mitigating these issues include grey-box 

modeling [148], Bayesian history matching [149], and detailed uncertainty quantification 

techniques [150],[151].  
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2.4.3 Input Identification 

The joint identification of the input signal is currently of vital interest to the structural health 

monitoring community, particularly in applications related to wind, wave, and vehicle vibrations. 

These applications where the exact location of the input force is often unknown, pose a particular 

challenge for predictive modeling. These techniques can be most easily categorized by their 

approach to joint identification, i.e. whether they perform only input identification, input-state 

identification, or input-state-parameter identification. 

 Input-only identification techniques tend to focus on the robustness and practical 

implementation of the general class of methods, in preparation for their application in conjunction 

with other identification techniques. For example, Maes et al. derive the specific conditions and 

sensor network configurations necessary for the identifiability of the system input, with particular 

consideration of the stability and uniqueness of the identification [152]. Nguyen et al. [153] 

develop two approaches, using the minimum variance unbiased filter and an augmented Kalman 

filter, with the intent of increasingly the computational efficiency and accuracy of the force 

identification. Song et al. [154] use a square-root cubature Kalman filter to estimate both the 

magnitude and location of input forces in experimental and simulated application. Though such 

studies are extremely helpful in determining ideal practical implementations for force 

identification, most of the work in this field emphasize joint identification techniques.  

 Joint input-state identification is well studied in its application to civil infrastructure 

systems, and has been found to be particularly useful for condition monitoring and damage 

detection. Many applications us a state augmentation approach to develop the joint inference on 

the states and input forces, such as Lourens et al. [155] and He et al. [35] who respectively use 

state augmentation with a standard and extended Kalman filter. Nayek et al. [156] also use an 

augmented EKF to identify the state and input forces, but vary the system characterization by 

modeling the input force as a Gaussian process. Azam et al. [19] improve the stability of the state 

augmentation approach using a dual UKF, where the states are estimated using a UKF and the 

inputs are inferred used a parallel Kalman filter. Gillijns and De Moor [157] develop a novel filter 

to approach the problem which separates the recursive process between the state and input 

estimation. Maes et al. improve upon and apply this approach to civil structural systems in [158] 

and further adapt it to consider time-delay in force estimation due to non-collocated sensing in 

[159].  
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 Joint input-state-parameter identification adds another level of difficulty to the inference 

process, but is extremely helpful in generating predictive structural models in practical monitoring 

scenarios. Yuen and Kuok [34], Ebrahimian et al. [160], and Naets et al. [20] all demonstrated 

successful joint input-state-parameter identification through variations on the augmented EKF, 

while Lei et al. [161] found greater success in adapting an augmented UKF approach. Al-Hussein 

and Haldar [162] seek to improve the accuracy and stability of joint input-state-parameter 

identification through the combined use of the UKF and an iterative least squares technique and 

successfully illustrate the approach on a number of simulated nonlinear structural systems in [163]. 

They further improve the approach to identify damage states in high-dimensional systems through 

the incorporation of a weighted global iteration procedure in [164]. Dertimanis et al. [165] 

approach the same problem through the combination of a dual and augmented UKF, where a 

Kalman filter is used to estimate the input force in parallel with a UKF to identify the parameters 

and states. This method was further validated through a numerical study on fatigue damage 

prediction in steel structural systems [166]. Erazo and Nagarajaiah [167] also endeavor to avoid 

the instability caused by state augmentation, but achieve it instead through a re-parameterize of 

the state predictive distribution. They then implement an offline method which combines the UKF 

and MCMC sampling to generate a recursive algorithm which can handle arbitrary priors and 

posteriors. Rogers et al. [168] take work in a different direction through a Gaussian process latent 

force modeling approach, through which they infer the parameters and latent force using MCMC 

inference.  

 Despite the multitude of methods which have been developed for output-only inference, 

there is no clear consensus on a set of effective approaches for predictive structural modeling. The 

research community is very active on this topic and will continue to unravel the practical issues 

barring these methods from real-world implementation.  

2.5 Conclusions 

One of the key points to draw from this review is that there has been an immense amount of work 

done on the topic of Bayesian predictive modeling without a clear collection of the innovations in 

algorithm development and practical usage into a single set of techniques that can be generally 

applied. From this review it should be evident that no single technique will work well for the 

identification of an arbitrary structural system, let alone in a practical setting where issues such as 
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identifiability, model uncertainty, and unknown input forces are a reality. Though the definition of 

a suite of effective predictive modeling techniques for structural engineering is still under 

development, the remainder of this dissertation seeks to address some of the core issues in 

algorithmic robustness and scalability which could bring us closer to this goal.  
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 VARIATIONAL INFERENCE FOR THE PREDICTIVE MODELING 

OF STRUCTURAL SYSTEMS 

Current methods common to predictive modeling for civil infrastructure systems exploit analytical 

or sampling approximations to Bayesian inference, as discussed in Chpt. 3. Variational inference 

represents a third and relatively new class of inference approximations, which develop the 

posterior through optimization. This approach can be seen as striking a balance between the speed 

of analytical techniques and the flexibility of sampling approaches. Variational inference tends to 

be more computationally efficient than sampling approximations when faced with complex models 

and large data sets [1]. Though its speed cannot compare to the efficiency of analytical methods, 

its overall flexibility in comparison with these techniques make it a promising alternative for 

predictive structural modeling.  

Variational inference can be described by the four key steps shown in Fig. 3.1. The 

algorithm begins with the definition of the stochastic model of the system 𝑝(𝐳, 𝐲|𝐮), which asserts 

any prior beliefs about the latent variables, 𝐳, of the system and the relationship of these variables 

with observed system behavior, 𝐲, given the control input, 𝐮. A distributional form, 𝑮, is then 

proposed which serves as an approximation of the posterior density,  𝑝(𝐳|𝐲, 𝐮). This distributional 

form, called the variational family or guide, represents a family of distributions whose members, 

𝑔(𝐳;𝛟𝒊), can be specified by tuning the distributional parameters, 𝛟𝒊, to different values. For 

succinctness, I will refer to members of the variational family as 𝑔(𝐳). Optimization is then 

performed by finding the member of the variational family which is most similar to the true 

posterior as defined by the Kullback-Leibler (KL) divergence 

�̂� =  arg min
𝑔 ∈ G

KL(𝑔(𝐳) ∥ 𝑝(𝐳|𝐲, 𝐮))                                         

                    =  arg min
𝑔 ∈ 𝑮

 (𝔼𝑔(𝒛)[log 𝑞(𝐳)] − 𝔼𝑔(𝒛)[log 𝑝(𝐳, 𝐲|𝐮)] + log 𝑝(𝐲, 𝐮)), (3. 1)
 

a measure of the information lost by approximating 𝑝(𝐳|𝐲, 𝐮)  with 𝑔(𝐳)  [2]. Although it is 

possible to propose a guide for any distributional form, using a simple and flexible guide allows 

for efficient computation of a posterior approximation which is well representative of the true 

posterior. 
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Fig. 3.1 – Key steps of the variational inference algorithm. 

3.1 Literature Review 

Variational inference emerged in the late 1980s as an efficient learning algorithm for neural 

networks, resulting from the adaptation of mean-field theory from statistical physics by Peterson 

and Anderson [3] and in parallel by Hinton and van Camp [4]. These initial innovations, coupled  

with important insights from Neal and Hinton [5] on their relation to the expectation-maximization 

algorithm, soon led to the adaptation of the method to a wide variety of statistical models [6]–[14], 

with the first comprehensive statement of the method and its general application introduced by 

Jordan et al. in 1999 [15]. Initially, the explicit dependence of the optimization process on the 

analytical form of the approximate posterior restricted the implementation of the variational 

inference approach to small-scale data sets described by a limited selection of approximate 

posterior densities [1]. Adaptations of the method were primarily developed in the form of 

optimization frameworks to work with different types of stochastic models [16]–[21] and 

implementations for specific applications, such as linguistics [22],[23], image processing [24],[25], 

and computational biology [26]–[28]. Significant attention was also given to adapting variational 

inference to online learning [28]–[31], particularly by merging it with other well-known filtering 

methods such as the Kalman filter [32]–[35]. The development of filtering approaches for state 

space models will be discussed in more detail in Chpt. 8.  

The true power of variational inference was revealed with the development of two key 

algorithmic improvements in the early 2010s. The first, referred to as stochastic variational 

inference, resulted from a push toward online learning on massive data, which was at the time 

infeasible due to the lack of scalability of the coordinate ascent method [1] commonly used to 

optimize the KL divergence. Researchers at Princeton replaced this approach with the stochastic 

gradient descent method introduced by Robbins and Monro [36] and leveraged the natural 

gradients of the loss function [37] to iteratively optimize the global parameters on local subsets of 

the data. The resulting method, called stochastic variational inference, was successfully applied 

to massive data sets in probabilistic topic modeling [38],[39] before being fully refined and 
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presented by Hoffman et al. [40] in 2013. The second advancement, referred to as black box 

variational inference, arose in response to the need to optimize complex variational objectives 

whose analytical gradients were difficult to define. This approach instead allows the user to write 

the gradient of the loss function as an expectation, compute MC estimates of it, and then use those 

estimates to update the global parameters of the system. Early implementations of this idea were 

developed independently by several groups from 2010-2013 [41]–[44], with full development of 

the method for conjugate and non-conjugate inference appearing independently from several 

authors in 2014 [45]–[48]. These advances, coupled with the power of probabilistic programming 

languages like PyMC3 [49], STAN [50], Edward [51], and PyTorch [52] have allowed for the 

development of fast variational inference algorithms that are almost completely model independent. 

Automatic Differentiation Variational Inference (ADVI) [53],[54] represents the current state of 

the art of these methods and combines stochastic variational inference, black box variational 

inference, probabilistic programming tools, and distributional transformations to build a 

generalized variational inference interface that is accessible for wide variety of stochastic models. 

These advancements are particularly beneficial for predictive structural modeling as they make 

variational inference accessible for non-specialist users and give it the potential to expand to the 

massive data associated with structural health monitoring. 

Current research on variational inference tends to focus on increasing the flexibility and 

accuracy of the variational family with respect to the true posterior. The most common way this is 

done is through modifications to the loss function. Early work on the loss function by Minka [55] 

explored the effectiveness of a variety of divergence metrics such as inclusive KL divergence, 

KL(𝑝(𝐳|𝐲, 𝐮) ∥ 𝑔(𝐳)), and the 𝛼-divergence, concluding that the different metrics are suitable for 

different inference goals. Recent works have revisited this topic due to a dissatisfaction with the 

propensity of the exclusive KL divergence, KL(𝑔(𝐳) ∥ 𝑝(𝐳|𝐲, 𝐮)), to underestimate the variance 

of the true posterior [53],[56]. Naesseth et al. [57] developed a method for unbiased optimization 

toward KL(𝑝(𝐳|𝐲, 𝐮) ∥ 𝑔(𝐳))  called Markovian score climbing, which results in more mass 

covering approximate posteriors. Daudel et al. [58] and Bamler et al. [59] pursued similar 

capabilities by replacing the exclusive KL divergence with the 𝛼-divergence and a divergence 

approach based in variational perturbation theory, respectively. A recent study by Geffner and 

Domke [60] has expressed doubt as to the feasibility of practical 𝛼-divergence implementations 

however, due to the gross computational cost of these methods in scaling to high-dimensional 
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problems. Burda et al. [61] and Mnih and Rezende [62] achieved tighter lower bounds and more 

mass-covering posterior approximations by generating loss functions which derive from likelihood 

estimates averaged over independent samples, or Monte Carlo Objectives. Alternatively, Ji et al. 

[41],[63] and Bamler et al. [64] have pursued strategies to impose bounds on both sides the 

optimization process and in so doing have improved convergence speed, variance matching to the 

true posterior, and confidence in the resulting model approximation. The use of a trust-region 

update to reduce sensitivity to hyperparameters [65],[66] and the replacement of the lower bound 

optimization on the loss function with a more flexible operator-based optimization [67] have also 

increased the precision and versatility of the method.   

The other means by which increased flexibility and accuracy is accomplished is through 

direct modifications to the variational family. Several researchers have expanded on stochastic and 

black box techniques by exploring structured variational parameters which move beyond the 

mean-field (mutually independent) model. To broaden the impact of stochastic variational 

inference, which typically depends on the fully factorized variational distributions, Hoffman and 

Blei [68] proposed an update to the algorithm which explicitly allows for dependence between the 

local and global parameters. Ambrogioni et al. [69] made similar updates to the black box approach 

to variational inference by developing an automated method to construct the variational 

distribution by combining the inherent structure of the prior with evidence from the observed data. 

With regard to dynamical systems, Archer et al. [70] and Bamler and Mandt [71] have both 

proposed black box techniques which use a tri-diagonal dependence structure to indicate the 

Markovian relationship among the latent states. Liu et al. have taken an alternate approach to 

introducing structure into the variational family, through the development of Stein variational 

gradient descent (SVGD) [72]–[74]. The key idea of this approach is to separate variational 

inference from the specific distributional forms which govern its accuracy and computational cost. 

Instead, the posterior is approximated by a set of particles, which are driven toward the true 

posterior using a form of functional gradient descent to minimize the KL divergence. The method 

is easily able to approach multi-modal posterior distributions and works well with complex 

stochastic models. SVGD has been shown to perform at the level of accuracy of exact MC 

sampling and is extremely promising for the development of robust practical applications. This 

approach represents a huge step forward in variational inference as it removes from the user the 
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need to specify a variational family to fit an obscure posterior distribution. As such, this method 

becomes accessible and robust to a practical level of user knowledge.  

Variational inference is a promising area of research for predictive structural modeling as 

it offers increased model flexibility over analytical methods at a reduced computational cost as 

compared with sampling methods. Beyond these immediate benefits, methods like ADVI and 

SVGD offer relatively few barriers to non-expert users and suggest theoretical robustness to 

practical use cases. However, these theoretical suggestions are far different than a practical 

guarantee. Research is still required to adapt these methods to manage the practical uncertainties 

evident in structural monitoring settings, such as low signal-to-noise ratios in the data, poor 

specification of the priors, scalability of the parameter space, real-time operation, etc. In the 

remainder of this chapter I will explore the derivation of the batch variational inference approach 

for structural systems with particular attention to these practical uncertainties. Chpt. 7 will then 

analyze the performance of this algorithms in simulation through a comparison with the unscented 

Kalman filter, which is the current standard for predictive structural modeling.   

3.2 Batch Automatic Differentiation Variational Inference for Structural Systems 

The derivation of ADVI provided herein for dynamical system identification is adapted from the 

work of Kucukelbir et al. [53]. The interpretation of variational inference for this class of problems 

enforces the conditional independence of the data and the Markovian nature of the stochastic 

dynamical system. The base algorithm remains otherwise unchanged.  

The goal of ADVI is to transform the problem domain such that unconstrained optimization 

on the variational parameters can be performed in Euclidean space. As shown in Fig. 3.1, the 

algorithm begins with defining the problem domain. The model identification problem for a 

stochastic dynamical system can be expressed in terms of the prior distributions on the initial state 

𝑝(𝐱0)  and the physical parameters 𝑝(𝜽) , as well as through the transmission probabilities 

𝑝(𝐱𝑘|𝐱𝑘−1, 𝜽, 𝐮𝑘−1) and the emission probabilities 𝑝(𝐲𝑘|𝐱𝑘, 𝜽, 𝐮𝑘), where 𝐮𝑘 is the known input 

excitation. The joint probability of the hidden states, initial conditions, parameters, and 

observations can then be expressed as 

𝑝(𝐲1:K, 𝐱0:K, 𝜽|𝐮0:𝑘) =                                                                                                                          

∏ 𝑝(𝐲𝑘|𝐱𝑘, 𝜽, 𝐮𝑘)
K

𝑘=1
∏ 𝑝(𝐱𝑘|𝐱𝑘−1, 𝜽, 𝐮𝑘−1)

K

𝑘=1
∏ 𝑝(x0,𝑚|𝐮0)

M

𝑚=1
∏ 𝑝(𝜃𝑛)

N

𝑛=1
, (3. 2)
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where  K  is the number of observations, M  is the dimension of the state space, and N  is the 

dimension of the parameter space. The factorization of the prior distributions in Eq. (3.2) implies 

mutual independence of the parameters and the initial conditions on the states, which is commonly 

a valid assumption for the inference of dynamical systems. Note that the parameters are assumed 

constant in this derivation.  

To automate the solution approach, these distributions are transformed to have support on 

the Euclidean space ℝK+M+N. The joint density is therefore expressed in terms of transformed 

states �̂�0:𝐾 and parameters �̂� given by [�̂�0:K, �̂�] = Υ([𝐱0:K, 𝜽]), such that 

𝑝(𝐲1:K, �̂�0:K, �̂�|𝐮0:𝑘) = 𝑝(𝐲1:K, [𝐱0:K, 𝜽] = Υ−1([�̂�0:K, �̂�])|𝐮0:𝑘)|det 𝐽Υ−1([�̂�0:K, �̂�])|, (3. 3) 

where Υ(∙) is a one-to-one differentiable function which transforms [𝐳0:K, 𝜽] to have full support 

in ℝK+M+N and 𝐽Υ−1(∙) is the Jacobian of the inverse of Υ [53]. 

In the second step, proposing a variational family, the form of the approximate posterior 

model is specified such that it generates an adequate representation of the system. As the hidden 

states and parameters have been transformed to have support in ℝK+M+N, the Gaussian distribution 

is a simple and effective choice for the variational family. I represent the approximate posterior of 

the system state vectors (e.g. displacement and velocity) to be mutually independent and capture 

the Markovian transitions within the time history of each state through a tri-diagonal covariance 

matrix [70],[71]. Though some correlations exist between non-adjacent states, the tri-diagonal 

covariance matrix has been found to be sufficient in capturing the major correlations in the 

progression of the state histories such that an accurate posterior approximation can be formulated. 

The assumption of mutual independence between the state vectors is selected to reduce the 

dimensionality of the inference problem (i.e. reduce the number of covariance terms in the 

optimization) while asserting minimal influence on the accuracy of the result, and has been found 

to be effective for single degree of freedom structural systems. Such an assumption has the effect 

of generating some overconfidence in the posterior, while still retaining an accurate approximation 

of the mean given the data observed [53]. Relaxing this assumption has the potential to increase 

the effectiveness of the method for multi-degree of freedom problems and for the development of 

recursive identification approaches, and merits future study. However, these assumptions have 

been found to be sufficiently accurate for the cases described within this work, and yield the 

variational families 

𝑔(�̂�; 𝝓�̂�) = 𝑁(�̂�|𝝁�̂�, 𝐋�̂�𝐋�̂�
𝑻) (3. 4) 
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which are parameterized by the variational parameters 𝝓�̂� = (𝝁�̂�, 𝐋�̂�) , where 𝝁�̂�  and 𝐋�̂�  are 

respectively the mean and Cholesky factor of the covariance matrix, 𝚺 = 𝐋�̂�𝐋�̂�
𝑻 , of the variational 

parameters related to �̂�. These variational parameters are unconstrained in ℝM(3K−1).  

Likewise, we propose a Gaussian variational family on the hidden parameters which 

enforces their assumed mutual independence through a diagonal covariance matrix, yielding  

𝑔(�̂�; 𝝓�̂�) = 𝑁 (�̂�|𝝁�̂�, diag(exp(𝝆�̂�)
2)) (3. 5) 

which is parameterized by 𝝓�̂� = (𝝁�̂�, 𝝆�̂�), where 𝝁�̂� and 𝝆�̂� are respectively the mean and log 

standard deviation of the variational parameters related to �̂� and are unconstrained in ℝ2N. The 

full model then requires optimization on ℝM(3K−1)+2N.  

In the third step, specifying the loss function, we set up our optimization problem. To do 

this, we first define the evidence lower bound (ELBO) as 

ELBO(𝑔) =  −KL(𝑔(𝐳) ||𝑝(𝐳|𝐲, 𝐮)) + log 𝑝(𝐲, 𝐮)                                                                          

= 𝔼𝑔(𝐱,𝜽)[log 𝑝(𝐲1:K|𝐱0:K, 𝜽, 𝐮0:𝑘)] +  𝔼𝑔(𝐱,𝜽)[log 𝑝(𝐱0:K, 𝜽|𝐮0:𝑘)] 

−𝔼𝑔(𝐱,𝜽)[log𝑔(𝐱0:K, 𝜽)] 

                      = 𝔼𝑔(𝐱,𝜽)[log 𝑝(𝐲1:K|𝐱0:K, 𝜽, 𝐮0:𝑘)] − KL(𝑔(𝐱0:K, 𝜽) ||𝑝(𝐱0:K, 𝜽|𝐮0:𝑘)), (3. 6) 

and note that the ELBO is equivalent to the negative KL divergence save for the addition of the 

log of the model evidence, which is constant for this class of problems. Maximization of the ELBO 

is therefore equivalent to minimization of the KL divergence and eliminates the need to compute 

the model evidence, 𝑝(𝐲, 𝐮), which can be difficult to determine. We therefore select the optimal 

member of the variational family𝑮 by maximizing the ELBO. The ELBO can be intuitively 

understood from its two components to strike a balance between encouraging densities which fit 

the observed data, 𝔼𝑔(𝐳,𝜽)[log 𝑝(𝐲1:K|𝐱0:K, 𝜽, 𝐮0:𝑘)], and encouraging densities which stay close to 

the prior, KL(𝑔(𝐱0:K, 𝜽) ||𝑝(𝐱0:K, 𝜽|𝐮0:𝑘)) [1]. When this balance is achieved, the optimal density 

will express the behavior of the true system without overfitting to the limited data set used for 

optimization. The ELBO can be expressed in terms of the transformed states and parameters in Eq. 

(3.3) as 

ELBO(𝑔) = 𝔼𝑔(�̂�,�̂�;𝝓)[log 𝑝(𝐲1:K, Υ−1([�̂�0:K, �̂�])|𝐮0:𝑘) + log|det 𝐽Υ−1([�̂�0:K, �̂�])|]

−𝔼𝑔(�̂�,�̂�;𝝓)[log 𝑔(�̂�0:K, �̂�; 𝝓)]. (3. 7)
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In the final step, performing stochastic optimization, our goal is to use a noisy estimate of 

the gradient of the ELBO to walk toward locally optimal values of the hidden states. It is difficult 

to take the gradient of the ELBO directly, however, as the ELBO involves the computation of an 

intractable expectation. To resolve this issue and allow for the use of automatic differentiation to 

evaluate the gradient, an additional transformation, referred to as elliptical standardization, is used. 

This transformation can be expressed as 𝜂�̂� = 𝑆𝝓�̂�
(�̂�) = 𝐋�̂�

−1(�̂� − 𝝁�̂�)  for the states and 𝜂 �̂� =

𝑆𝝓 �̂�
( �̂�) = diag(exp(𝝆 �̂�))

−1( �̂� − 𝝁 �̂�) for the parameters, yielding the modified ELBO  

ELBO(𝑔) = 𝔼𝑁(𝜼;𝟎,𝑰) [log 𝑝 (𝐲, Υ−1 ([𝑆𝝓�̂�

−1(𝜂�̂�), 𝑆𝝓�̂�

−1(𝜂�̂�)]) |𝐮)]                                              

                      + 𝔼𝑁(𝜼;𝟎,𝑰) [log |det 𝐽Υ−1 ([𝑆𝝓�̂�

−1(𝜂�̂�), 𝑆𝝓�̂�

−1(𝜂�̂�)])|] − 𝔼𝑔(�̂�,�̂�;𝝓)[log𝑔(�̂�, �̂�; 𝝓)]. (3. 8)
 

Note that the expectation containing the joint probability on the observations, states, and 

parameters is now given in terms of a standard normal distribution, without any explicit 

dependence on the variables to be optimized. This modification allows for the use of Monte Carlo 

methods, typically with only 1 sample, to obtain a noisy approximation of the ELBO for the 

automatic evaluation of the gradient. Stochastic optimization can then be performed using a 

number of algorithms available with probabilistic programming libraries. In this study, I 

implement ADVI using the ADAM stochastic optimization algorithm [75] as part of the python 

library PyTorch [52].  

The formulation given by Eqs. (3.2-3.8) expresses a simple black box implementation for 

using variational inference to identify the time-varying states and constant parameters of a 

stochastic dynamical systems, as structured by the ADVI methodology. A more succinct version 

of the complete framework is given in Algorithm 3.1 to aid the reader in visualizing the 

computational process.  

A key feature of this process is the evaluation of the ELBO over the full data set during 

each optimization iteration. Due to the highly correlated nature of the time series data, the problem 

cannot readily be sub-sampled according to the standard stochastic variational inference paradigm. 

Adaptations to the algorithm which address this issue were recently proposed Johnson et al. [76] 

and Foti et al. [77]. Johnson et al. addressed the solution in a setting where each mini-batch could 

be considered an independent time series, and simply conducted the standard SVI approach using 

these independent batches of time series data [76]. This approach is obviously not applicable to 

the continuous vibrations observed in structural monitoring situations. In contrast, Foti et al. 
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present a method for subsampling the correlated time series in which cohesive sequences of data 

are selected from the full chain. The optimization is then broken down into an update on the local 

parameters, in which edge effects in the data subset are decreased by adding additional data points 

at the beginning and end of the sequence as a buffer, and the global update, in which the buffering 

points are eliminated and the optimized local parameters are used to take a gradient step on the 

global parameters [77]. This approach could be extremely helpful for structural identification in 

limited data scenarios, as it would allow for the use of data at a much faster rate. However, similar 

speed, as well as adaptivity to continuous monitoring, have the potential to be achieved with a 

variational filtering approach, which will be developed and examined in Chpt.  8.  

 

Initialize with:  

𝑝(𝐲1:K, 𝐱0:K, 𝜽|𝐮𝑘)

= ∏ 𝑝(𝐲𝑘|𝐱𝑘, 𝜽)
K

𝑘=1
∏ 𝑝(𝐱𝑘|𝐱𝑘−1, 𝜽)

K

k=1
∏ 𝑝(x0,𝑚)

M

𝑚=1
∏ 𝑝(𝜃𝑛)

N

n=1
 

𝑝(𝐲1:K, �̂�0:K, �̂�|𝐮𝑘) = 𝑝(𝐲1:K, [𝐱0:𝐾, 𝜽] = Υ−1([�̂�0:K, �̂�])|𝐮𝑘)|det 𝐽Υ−1([�̂�0:K, �̂�])| 

𝑔(�̂�;𝝓�̂�) = 𝑁(�̂�|𝝁�̂�, 𝐋�̂�𝐋�̂�
𝑻) 

𝑔(�̂�; 𝝓�̂�) = 𝑁 (�̂�|𝝁�̂�, diag(exp(𝝆�̂�)
2)) 

Optimize variational family 𝐺: 

𝑊ℎ𝑖𝑙𝑒 𝐸𝐿𝐵𝑂 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑  

     Sample from g(�̂�;𝝓�̂�) and g(�̂�; 𝝓�̂�) 

     Compute ELBO(𝑔) from samples 

Evaluate the gradient of ELBO(𝑔) over the variational parameters 𝝓�̂� and 𝝓�̂� 

Update variational parameters 𝝓�̂� and 𝝓�̂� with stochastic optimization 

 

Algorithm 3.1 Batch Variational Inference with ADVI 

 

Other innovations to this basic approach have been suggested to improve the scalability of 

these algorithms with the dimension of the problem space, i.e. the number of states and parameters 

considered. Gorbach et al. [78] address this problem by tackling high computational costs in 

numerical integration used for inference of dynamical systems. They defined variational inference 

over a Gaussian process gradient matching which takes advantage of local linearities in the 

nonlinear system dynamics. Loaiza-Maya et al. [79] suggest a different approach in which the 

variational family is adapted for sparsity and accuracy among the parameters and states of the 
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model. Specifically, they use a copula model adapted from Smith et al. [80] to generate a sparse 

approximation of the global parameters and define the exact conditional posterior model over the 

latent states. This variational family, coupled with a specialized approach for estimating the 

gradient of the ELBO, allows the authors to perform efficient batch variational inference on 

extremely high-dimensional systems.  

Batch variational inference on structural systems, as described herein, is shown in Chpt. 7 

to be effective for nonlinear structural identification in small-scale, small-data systems. For 

structures with higher dimensional problem spaces or continuous monitoring data, a filtering 

approach to inference may be preferable, as developed and explored in Chpt. 8.  

3.3 Conclusions 

In this chapter, I have explored the history of variational inference and its particular adaptation 

toward predictive modeling for structural systems, including a novel variational filtering technique. 

Variational inference stands distinct from other Bayesian inference methods due to its focus on the 

optimization of an approximate posterior. This approach allows for increased flexibility in the 

selection of the form of the approximate posterior, which can be both a blessing and a curse for 

the user. Sufficiently malleable posterior approximations can allow the user to reach a suitable 

understanding of the posterior at significantly less computational cost than sampling methods, and 

yet with more accuracy than analytical methods. However, incorrect assertions on the approximate 

posterior can easily lead to overconfident posteriors. Variational families that have been tailored 

to for robust performance in specific applications are key to delivering the method to general users.  

 In the case of predictive modeling, it is also vital that the method be compatible with near 

real-time implementation to manage the continuous data streams expected from structural health 

monitoring scenarios. Currently, this goal cannot be readily achieved through typical adaptations 

on batch inference methods. The exploration of filtering adaptations for this method provides an 

intuitive and practical step toward needs of real-time predictive modeling for structural systems, 

and will be explored in detail in Chpt. 8.  
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 EXPERIMENTAL CASE STUDY: NONLINEAR ENERGY SINK 

DEVICE 

A small-scale structural system expressing extreme nonlinear behaviors is used to evaluate the 

experimental performance of the various Bayesian filtering algorithms used in this study. Details 

regarding this experimental system, the nonlinear energy sink (NES), is given in the chapter. The 

content of this chapter has been adapted from the published work of the author [1],[2]. 

4.1 Theoretical Development 

Nonlinear energy sink (NES) devices have been of interest for applications in vibration reduction 

since they were first studied by Gendelmen et al. [3] and Vakakis et al. [4] in 2001. The ability of 

these devices to generate a one-way transfer of energy from the primary structure over a wide 

range of frequencies is particularly desirable for civil engineering applications [5],[6], where long 

life spans, exposure to hazards, and rehabilitation processes can change the dynamic characteristics 

of a structure. This effect, which is termed targeted energy transfer or nonlinear energy pumping 

[7], is realized through the essential stiffness nonlinearity of the non-conservative structural 

attachment [8]. Due to this nonlinearity, these devices have no preferential natural frequency and 

are therefore theoretically capable of extracting energy from any mode of the primary linear system 

[9],[10]. The attachment therefore extracts and dissipates the energy induced by transient 

vibrations experienced by the primary structure which occur above a certain input energy threshold 

[3]. In addition to their utility for damping vibrations in structural systems, these devices form an 

interesting and complex case study for predictive modeling due to the clear bifurcation in their 

behavior about the input energy threshold.  

The NES device explored in this study belongs to the class of Duffing-type devices 

experimentally investigated by McFarland et al. [11] and is similar in construction to the small-

scale Type 1 NES device developed by Wierschem [10] and later studied by Silva et al. [12] with 

respect to its ability to transfer and dissipate energy from the structural systems. The device 

consists of a mass that is constrained to unidirectional motion and a wire that is threaded through 

the mass perpendicular to its motion, as shown in Fig. 4.1.  
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Fig. 4.1 – Schematic diagram of the NES Device  

 

The essential nonlinearity in the system is generated by the geometric configuration of the 

fixed-end wire with respect to the moving mass. For any displacement of the mass eliciting a linear 

elastic response from the wire, the resulting force, 𝑓𝑠, can be expressed as 

𝑓𝑠 = 2𝑘𝑤𝑥 [1 − (𝐿 2⁄ )((𝐿 2⁄ )2 + 𝑥2)
−1 2⁄

]  + 𝑇𝑥[(𝐿 2⁄ )2 + 𝑥2]
−1 2⁄

, (4. 1) 

where 𝑘𝑤  is the elastic stiffness of the wire, 𝑇  is the initial tension in the wire, and 𝑥  is the 

displacement of the mass relative to the fixed ends of the wire. This model is typically simplified 

by assuming small displacements and replacing  [(𝐿 2⁄ )2 + 𝑥2]−1 2⁄  with its Taylor expansion 

about 𝑥 = 0. The force can then be expressed as  

𝑓𝑠 =
4𝑇

𝐿
𝑥 +

4(𝐿𝑘𝑤 − 2𝑇)

𝐿3
𝑥3 + 𝑂(𝑥5), (4. 2) 

where the higher order terms have been observed to not contribute significantly to the dynamics 

of the NES under normal operating conditions.  

The Duffing-type NES device is typically assumed to dissipate energy through viscous 

damping, a modeling choice which, coupled with the stiffness forces given in Eq. (4.2), has been 

shown to effectively represent the behavior of this class of device [11],[13]–[15]. Experimental 

observations of the NES used in this study, shown in Fig. 4.2, also suggest the action of a Coulomb 

damping force. Fig. 4.2(a) shows the free response behavior of the NES after being excited by a 

step signal (signal 6, Table 4.1), in which the linear decay in response amplitude evident through 

the majority of the response history clearly indicates the presence of a non-negligible Coulomb 

friction interaction in the dynamics of the system. Friction induced behavior can also be seen in 

the low amplitude restoring force versus the displacement response, given in Fig. 4.2(b), where 
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the restoring force is computed using the experimental response of the device to a low amplitude 

band-limited white noise signal (signal 15, Table 4.1) as  

𝑅(�̈�, �̈�𝑔) = −𝑚(�̈� + �̈�𝑔). (4. 3) 

Because the contributions of higher order terms on the stiffness force, 𝑓𝑠, are negligible at small 

amplitudes of vibration, the damping forces can be more easily observed. The measured response 

data does not exhibit the elliptical behavior expected from a purely viscous damped system, but 

rather exhibits the nearly vertical unloading branches typical of Coulomb damping, plus a small 

linear stiffness. I therefore chose to incorporate Coulomb damping in the dynamic model of the 

NES device. 

 

 

Fig. 4.2 - (a) Response history of signal 6 (Table 4.1) with imposed lines showing linear decay 

and (b) Restoring force versus displacement response to signal 15 (Table 4.1), where 

acceleration has been low-pass filtered to 50 Hz.  

 

Using this interpretation of the device behavior, the equation of motion for this system 

becomes 

𝑚�̈� + 𝑐𝑣�̇� + 𝑐𝑓sign(�̇�) + 𝑘𝑥 + 𝑧𝑥3 = 𝑃, (4. 4) 

where 𝑚  is the mass, 𝑐  is the viscous damping coefficient, 𝑘 = 4𝑇 𝐿⁄  from Eq. (4.2) , 𝑧 =

4(𝐿𝑘𝑤 − 2𝑇) 𝐿3⁄  from Eq. (4.2), and 𝑃 is a time-dependent external excitation force. To achieve 

the irreversible energy transfer noted in [3] and [4], the linear stiffness term (𝑘) must be set to 0, 

which is achieved by eliminating any wire pretension (𝑇). For more detailed information on the 
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vibration characteristics and energy dissipation properties of this class of devices, the reader is 

referred to [3],[4],[10],[11],[16],[17].  

In preliminary unscented Kalman filter (UKF) identification trials using Eq. (4.4) it was 

determined that the replacement of the discontinuous sign(�̇�)  term with the continuous 

approximation tanh(𝜐�̇�) results in a more accurate representation of the device behavior, where 𝜐 

is a pre-determined parameter which governs the accuracy with which sign(�̇�) is approximated. 

This enhanced identification accuracy is not a reflection of the capacity of the UKF to work with 

discontinuous systems; due to the identifiability of the parameters in all smooth branches of the 

response for the model expressed in Eq. (4.4), the discontinuous UKF [18] would have no benefit 

over the UKF in this case. Rather, these results suggest that the continuous approximation is a 

more representative model of the dynamics of the system.   

As 𝜐 increases the approximation becomes a better representation of the base function, but 

begins to exhibit discontinuous behavior at lower sampling frequencies. The identification process 

is sensitive to these constraints. At a sampling frequency of 4096 Hz, a 𝜐 of 200 was found to 

provide an appropriate balance between model accuracy and continuity, and therefore the greatest 

enhancement to the model. This adjustment yields the dynamic model 

𝑚�̈� + 𝑐𝑣�̇� + 𝑐𝑓tanh(200�̇�) + 𝑘𝑥 + 𝑧𝑥3 = 𝑃, (4. 5) 

from which the parameters 𝑐𝑣, 𝑐𝑓, 𝑘, and 𝑧 will be identified using different approximate Bayesian 

inference techniques in later chapters. 

4.1.1 Experimental Setup 

A photograph of the test configuration is shown in Fig. 4.3(a). The NES device used in this study 

is constructed with a 27.5-gauge steel wire and a central mass of 0.65kg with dimensions 4.5cm 

by 4.5cm by 7cm. The mass is constrained to move along a rail of length 23cm by the action of a 

ball-bearing slider attachment, which also reduces friction at the interface. The ends of the wire 

are pinned at support towers on either side of the mass, leaving a section of length 65.5cm between 

the supports. To reduce wire pre-tension (T in Eq. (4.2)), the wire is hand tightened to eliminate 

slack only. After tightening, the potential for slippage at the support towers during large excitations 

is reduced by the installation of a bead clamp, as shown in Fig. 4.3(b).  
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Base motion is used to excite the NES device. The excitation force P in Eq. (4.5) is 

therefore replaced with - 𝑚�̈�g for the purpose of representing these experiments, where �̈�g is the 

acceleration of the fixed ends of the wire. To achieve this experimentally, the device is mounted 

on a rigid steel plate driven by a Shore Western 1.1 kip 91-Series double-ended hydraulic actuator. 

The plate is supported vertically by flexible steel columns. Displacements are measured using 

Keyence LK-G157 laser displacement sensors [19], which have a range of +/- 4cm. Accelerations 

are measured using PCB model 3711d1fa20g accelerometers [20], which have a working range of 

+/- 20g at 0-1.5kHz and a mass of 0.0137kg. Data is collected at a 4096 Hz sampling frequency to 

capture the complex dynamic behavior of the NES device with sufficient accuracy for 

identification. A m+p Vibpilot station is used for data acquisition, which is equipped with 24-bit 

A/D converters and anti-aliasing filters.  

 

 

Fig. 4.3 – Experimental Setup (a) NES Device Configuration (b) Bead Clamp Configuration 

 

Four common classes of excitations signals are used to generate motion in the NES device. 

These include a sine sweep (to generate a clear variation in NES response over a frequency range 

of interest), a sine wave (to generate a clear variation in the NES behavior with amplitude at a 

single frequency near the range of resonance), a step signal (to generate free response behavior in 

the system), and a band-limited white noise signal (to simulate the identification process under 

realistic operating conditions). The analytical forms of these excitation signals are shown in Table 
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4.1 and were given as displacement commands to the actuators during experimental testing. Where 

possible, the amplitude of these excitation signals was varied using multiple independent tests.  

 

Table 4.1 – Base Excitation Signals for Identifiability Analysis 

# 
Input 

Type 
Use 

Mathematical Description  

of Input Displacement 
𝐴  

[mm] 

 𝐹 

[Hz] 

 𝑇 

[sec] 

1 

Sine 

Sweep 

C
h
p
t.

 5
 –

 S
o
b
o
l’

 A
n
al

y
si

s 

𝑥𝑔 = 𝐴sin(𝜋𝑡2 𝐹 𝑇⁄ )  𝑡 < 𝑇  
1.5 5 60 

2 2.7 5 60 

3 
𝑥𝑔 = {

𝐴sin(𝜋𝑡2 𝐹 𝑇⁄ )  

  𝐴sin(𝜋𝑡 𝐹[2𝑇 − 𝑡] 𝑇⁄ )
  

𝑡 < 𝑇 

𝑇 ≤ 𝑡 < 2𝑇  

1.5 5 40 

4 2.7 5 40 

5 
Sine 

Wave 
𝑥𝑔 = {

(𝐴𝑡 𝑇⁄ )sin(2𝜋𝐹𝑡)

  (𝐴[2𝑇 − 𝑡] 𝑇⁄ )sin(2𝜋𝐹𝑡)
  

𝑡 < 𝑇 

𝑇 ≤ 𝑡 < 2𝑇  
7.1 2.5 40 

6 Step 𝑥𝑔 = {(𝐴 𝑇⁄ )𝑡
  𝐴

  
𝑡 < 𝑇
𝑇 ≤ 𝑡

  26.6 -- 0.1 

7 
BLWN 𝑥𝑔 = lowPassFilter(𝑟, 𝐹)  𝒓1𝑥𝑇~𝑁(0, 𝐴2) 

0.8 6 60 

8 2.6 6 60 

9 
Sine 

Sweep 

C
h
p
t.

 6
 –

 

Id
en

ti
fy

 

𝑥𝑔 = {
𝐴sin(𝜋𝑡2 𝐹 𝑇⁄ )  

  𝐴sin(𝜋𝑡 𝐹[2𝑇 − 𝑡] 𝑇⁄ )
 

𝑡 < 𝑇 

𝑇 ≤ 𝑡 < 2𝑇 
2.7 5 40 

10 
Sine 

Wave 
𝑥𝑔 = {

(𝐴𝑡 𝑇⁄ )sin(2𝜋𝐹𝑡)

  (𝐴[2𝑇 − 𝑡] 𝑇⁄ )sin(2𝜋𝐹𝑡)
 

𝑡 < 𝑇 

𝑇 ≤ 𝑡 < 2𝑇 
7.1 2.5 40 

11 Sine 

Sweep 

C
h
p
t.

 6
 –

 E
v
al

u
at

e 𝑥𝑔 = {
𝐴sin(𝜋𝑡2 𝐹 𝑇⁄ )  

  𝐴sin(𝜋𝑡 𝐹[2𝑇 − 𝑡] 𝑇⁄ )
 

𝑡 < 𝑇 

𝑇 ≤ 𝑡 < 2𝑇 

1.1 4 40 

12 3.1 4 40 

13 
Sine 

Wave 
𝑥𝑔 = {

(𝐴𝑡 𝑇⁄ )sin(2𝜋𝐹𝑡)

  (𝐴[2𝑇 − 𝑡] 𝑇⁄ )sin(2𝜋𝐹𝑡)
 

𝑡 < 𝑇 

𝑇 ≤ 𝑡 < 2𝑇 
5.8 2.0 40 

14 Step 𝑥𝑔 = {
(𝐴 𝑇⁄ )𝑡, 𝑡 < 𝑇

  𝐴, 𝑇 ≤ 𝑡
 

𝑡 < 𝑇
𝑇 ≤ 𝑡

 26.6 -- 0.1 

15 
BLWN 𝑥𝑔 = lowPassFilter(𝑟, 𝐹) 𝑟1𝑥𝑇~𝑁(0, 𝐴2) 

2.1 6 60 

16 2.6 6 60 

 

The Duffing-Type NES device considered in this study is characterized by a bifurcation of 

its stable response behavior about its range of resonance, where two stable steady state responses 

exist and are accessible depending on input energy. For input excitations exceeding a certain 

threshold, the device will exhibit a high amplitude response behavior that is desirable for energy 

pumping [3]. Below this threshold, low amplitude behavior is observed that is dominated by the 

minimal but nonzero amount of friction in the device. Varying the amplitudes of the input 

excitation signals ensures that the input energy dependence of the device will be captured in the 

identified model, thereby providing a more complete characterization of the device behavior.  All 
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data from these tests, including measurements and recorded media, are published in Lund et al. 

[21]. 

The excitation signals in Table 4.1 are also partitioned according to their use in the 

subsequent identification and analysis. Excitation signals 1-8 are used in Chpt. 5 to assess the 

identifiability of the NES device with respect to various input excitations through an adapted 

global sensitivity analysis approach. Excitation signals 9-16 are used in Chpt. 6 to develop a robust 

method for UKF identification. Though there are similarities in the signals used for each analytical 

study, distinct amplitude and frequencies are typically used in the evaluation for Chpt. 6 to 

demonstrate the efficacy of the proposed predictive modeling technique.  

4.1.2 Device Behavior 

Signals 1 and 2 are used to observe the behavior of the NES device both below and above 

the input energy threshold, as shown in Fig. 4.4. The difference in input energy between the 

otherwise equivalent excitation signals allows for observation of the bifurcation in the response of 

the device.  

The displacement response relative to the moving base, given as x in Fig. 4.1, is observed 

from three perspectives for each base excitation. The responses are displayed in terms of the 

relative displacement history, the relative displacement spectrogram, and the restoring force vs. 

relative displacement, where the restoring force is computed using the experimental measurements 

as in Eq. (4.3). The device response under signal 1 is provided in Fig. 4.4(a-c) and its response 

under signal 2 is provided in Fig. 4.4(d-f). These responses demonstrate the change in behavior in 

the device when it is excited about the input energy threshold and the impact of that bifurcation on 

the energy available at different frequencies of the response. For example, the relative 

displacement history in Fig. 4.4(a) shows a consistent low amplitude response after an initial 

transient displacement increase, whereas Fig. 4.4(d) shows a consistent increase in displacement 

amplitude. These responses are characteristic of the low and high amplitude behaviors of the 

device, respectively. Further information can be observed from the spectrograms for each signal, 

provided in Fig. 4.4(b,e). Fig. 4.4(b) shows that the device vibrates primarily in the 1st and 2nd 

harmonic modes of the forcing frequency, with the majority of the energy present in the 1st mode. 

In contrast, Fig. 4.4(e) shows that the device vibrates primarily in the 1st and 3rd harmonic modes 

of the forcing frequency, with significant energy in the 3rd mode. The initiation of vibration in the 
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3rd mode occurs at ~25sec, in conjunction with a transition in the displacement behavior in Fig. 

4.4(a,d). These results confirm the expected bifurcation in the behavior of the device with respect 

to the amplitude of the excitation signal.  Examination of the restoring force curves in Fig. 4.4(c,f) 

give some final insight into the impact of the equation of motion at different response amplitudes. 

Whereas the linear stiffness force and Coulomb damping forces govern at low amplitudes of 

displacement, as shown in Fig. 4.4(c), the cubic stiffness force clearly governs the response 

behavior when the device is excited to higher amplitudes of displacement.  

 

 

Fig. 4.4 – NES responses including displacement history, spectrogram, and hysteretic responses 

under: (a-c) Signal 1; (d-f) Signal 2. Acceleration responses have been low-pass filtered to 50 Hz 

for (c,f).  
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 GLOBAL SENSITIVITY ANALYSIS FOR THE ASSESSMENT OF 

EXPERIMENTAL IDENTIFIABILITY FOR NONLINEAR SYSTEMS  

A significant component of the challenges of nonlinear identification is due to the variation in the 

identifiability of nonlinear systems with respect to different input excitations. Though many formal 

definitions of identifiability exist to suit different analysis methods [1], there is a general consensus 

that a system is globally identifiable when the evaluation of its inverse problem yields a unique 

solution in the parameter space, and is locally identifiable when it yields a finite number of 

solutions [2]. The a priori determination of system identifiability is vital to inform the design of a 

successful identification experiment [3],[4]. Generalized techniques exist for defining the 

identifiability of linear systems, but the extension of such techniques to nonlinear systems is only 

feasible for a few simple nonlinear systems [1]. As such, a number of methods have been 

developed for assessing the identifiability of nonlinear systems. A summary of some of the more 

common methods is presented in Fig. 5.1.  

 

 

Fig. 5.1 – Summary of identifiability methods for nonlinear systems 

 

The methods available for evaluating the identifiability of nonlinear systems can be 

grouped into three primary categories: structural methods, practical methods, and sensitivity-based 
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methods. Structural methods directly analyze the system under the assumption of a perfect model 

with no measurement noise in the response. These methods are typically analytically intensive, 

requiring advanced mathematical skill from the user [1]. In some cases, such as for the differential 

algebra [5],[6] and generating series approaches [7]–[9], the methods can be generalized to a broad 

range of models. As such, software tools have been developed to facilitate the application of these 

methods by general users [10]–[12]. The generating series and differential algebra methods, in 

particular, are used frequently in a variety of disciplines, such as biological sciences [13]–[15] and 

engineering [2],[3],[16]. 

 Experimental systems exhibit behaviors that often deviate significantly from the theoretical 

models due to noise and modeling errors. Such cases can lead to systems which are structurally 

identifiable, but practically unidentifiable [1],[2],[14]. Practical methods seek to overcome some 

of these limitations by assessing the identifiability of nonlinear system models in the presence of 

noise, though the absence of modeling errors is still assumed. Offline methods, such as Monte 

Carlo (MC) simulations [17] or correlation matrix analysis [18], can be used to determine 

identifiability in advance of any experimentation for the purpose of experimental design. However, 

these methods can be challenging to implement due to the computational cost of the MC method 

and the reliability with which the correlation matrix must be estimated [1]. An online method for 

analyzing the identifiability which works in parallel with identification techniques using Bayesian 

inference has recently been introduced by Muto and Beck [19] and Olivier and Smyth [2]. This 

method, referred to in Fig. 5.1 as covariance analysis, compares the a priori and a posteriori 

covariance on the parameters as an indicator of identifiability, allowing the user to determine the 

reliability of the identified parameters. Though this method is extremely useful for a post-

identification check on the identifiability of the parameters, it is less helpful in the design of 

experiments.  

 Sensitivity-based approaches offer a pragmatic perspective on the identifiability problem 

as they strike a balance between the methods previously discussed. Instead of directly determining 

identifiability from the model form, as structural methods do, sensitivity-based approaches 

interpret identifiable parameters as those which the model is most sensitive to, or which produce 

the most variation in its output. Though these approaches share the same assumptions as the 

structural methods regarding model form and measurement noise, they also require the user to 

identify nominal parameter values or ranges over which to evaluate the sensitivity, as with practical 
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methods [1]. Sensitivity analysis is in itself a rich field, and a range of methods exist that can be 

applied to models of varying complexity and computational demand [20]. Applications of this 

class of methods for the purpose of establishing identifiability almost exclusively use local analysis 

methods [18],[21], which are not computationally intensive, but are less effective for models with 

severe nonlinearities and parameters of varying levels of uncertainty [20]. In these cases, global 

sensitivity analysis methods present a promising alternative, despite their increased computational 

cost, as they present a greater depth of information that can be used to establish identifiability 

[22]–[27]. 

In this chapter the utility of one global sensitivity analysis method, the Sobol’ approach 

[23],[28], is investigated for the design of nonlinear system identification experiments. This 

approach is examined for nonlinear system identifiability within the context of identifying the 

prototype nonlinear energy sink (NES) device described in Chpt. 4, subject to the base excitation 

signals 1-8 detailed in Table 4.1. It is important to note that the complexity introduced by the 

Coulomb damping term in the NES model prevents analysis by many of the more common 

structural identifiability approaches, such as the differential algebra software DAISY [10]. For the 

purpose of experimental design, the available identifiability analysis approaches for this system 

are essentially reduced to practical and sensitivity-based methods. Sobol’ sensitivity analysis is 

therefore applied as a novel approach to indicate the success of the parameter identification with 

respect to a given excitation, prior to experimentation. To demonstrate the approach, the measured 

responses are used with the unscented Kalman filter (UKF) to identify the parameters of a 

representative device model. Through this analysis it is determined that Sobol’ sensitivity analysis 

is particularly beneficial for experimental design as it establishes a simple, heuristic measure of 

the practical identifiability of a general nonlinear system prior to experimentation.  

The chapter is organized as follows: Section 5.1 introduces the Sobol’ methodologies; 

Section 5.2 discusses the implementation of the UKF for this case study; and Section 5.3 provides 

the results of both the sensitivity study and the parameter identification. The main conclusions are 

summarized in Section 5.4. The content of this chapter has been adapted from the published work 

of the author [29].  
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5.1 Sobol’ Sensitivity Analysis 

Variance-based sensitivity analysis methods are widely used to provide a summary measure of the 

response uncertainty associated with various input parameters. These global methods have the 

benefits of being model-independent, estimating the interaction effects among parameters through 

higher order sensitivity indices, and capturing the full range of variation of each input parameter 

[26].  

Of the available variance-based methods, Saltelli’s extended version [28] of the Sobol’ 

approach [22],[23],[30] provides the most complete and accurate estimation of model sensitivity. 

The method generates MC sampling average estimates of the conditional variance of the model 

output, requiring 𝑃(𝐾 + 1) simulation runs to determine the first-order sensitivity, where 𝑃 is the 

number of MC samples and 𝐾 is the number of input parameters. Typically, 500 – 1000 MC 

samples are drawn to ensure sufficient accuracy in the estimation, where necessary increases in 

model evaluations due to the increased dimensionality of the system are handled through 𝐾. The 

computational cost accrued through these model evaluations is the key limitation in the practical 

application of this method, making it most applicable to low-dimensional models whose 

computation times are on the order of seconds [26].  

The method is developed around the generalized system model 

Y = f(Θ1, Θ2, … , Θ𝐾), (5. 1) 

where Θ𝑗 (𝑗 = 1, ⋯ ,𝐾) are the K independent random variables describing the parameters of the 

model. The sensitivity of the model output Y to each of the model inputs Θ𝑗 can then be expressed 

through the variance, denoted 𝕍[∙], of the conditional expectation, denoted 𝔼[∙], on the model 

output as, 

𝕍Θ𝑗
[𝔼𝚯~𝑗

[Y|Θ𝑗]] = 𝕍[Y] − 𝔼Θ𝑗
[𝕍𝚯~𝑗

[Y|Θ𝑗]] 

                                                          = ∫𝔼2[Y|Θ𝑗 = 𝜃𝑗] 𝑝Θ𝑗
(𝜃𝑗)𝑑𝜃𝑗 − 𝔼2[Y], (5. 2) 

where 𝚯~𝑗 refers to the set of all parameters except Θ𝑗. This measure of sensitivity examines the 

expected response of the model when all parameters are allowed to vary except for the parameter 

of interest (Θ𝑗). Tracking the variation of this expectation over all possible realizations of Θ𝑗 

captures the portion of the variance of the model which can be directly attributed to that particular 
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parameter. Division of this term by the unconditional variance yields the first-order sensitivity 

index  

𝑆𝑗 = 𝕍Θ𝑗
[𝔼𝚯~𝑗

[Y|Θ𝑗]] 𝕍[Y]⁄ , (5. 3) 

which has the convenient property that 𝑆𝑗 ∈ [0,1]. Sensitivity indices closer to 1 indicate that a 

larger portion of the total variance can be attributed to that parameter. The parameter is therefore 

more likely to be identifiable.  

The MC computation of the sensitivity at first appears impractical due to the 𝑃2 simulation 

runs implied by the computation of the integral in Eq. (5.2). However, Saltelli’s extension of the 

Sobol method produces a convenient algorithm to reduce this computational cost [26]. First, two 

matrices, 

𝐀 =

[
 
 
 
 𝜃1

(1)
𝜃2

(1)
… 𝜃𝑗

(1)
… 𝜃𝐾

(1)

𝜃1
(2)

𝜃2
(2)

… 𝜃𝑗
(2)

… 𝜃𝐾
(2)

⋮

𝜃1
(𝑃)

⋮

𝜃2
(𝑃)

⋱

… 𝜃𝑗
(𝑃)

… 𝜃𝐾
(𝑃)

]
 
 
 
 

, (5. 4) 

and 

𝐁 =

[
 
 
 
 𝜃1

(1)
𝜃2

(1)
… 𝜃𝑗

(1)
… 𝜃𝐾

(1)

𝜃1
(2)

𝜃2
(2)

… 𝜃𝑗
(2)

… 𝜃𝐾
(2)

⋮

𝜃1
(𝑃)

⋮

𝜃2
(𝑃)

⋱

… 𝜃𝑗
(𝑃)

… 𝜃𝐾
(𝑃)

]
 
 
 
 

, (5. 5) 

are generated, each containing 𝑃 quasi-random samples of the input parameters Θ1:𝐾 from known 

parameter ranges according to the LP method [31]. The notation 𝜃𝑗
(𝑖)

 and 𝜃𝑗
(𝑖)

 is used to emphasize 

the fact that the samples contained in each matrix will take different values. 𝐀 and 𝐁 are then used 

to construct  

𝐂𝑗 =

[
 
 
 
 𝜃1

(1)
𝜃2

(1)
… 𝜃𝑗

(1)
… 𝜃𝐾

(1)

𝜃1
(2)

𝜃2
(2)

… 𝜃𝑗
(2)

… 𝜃𝐾
(2)

⋮

𝜃1
(𝑃)

⋮

𝜃2
(𝑃)

⋱

… 𝜃𝑗
(𝑃)

… 𝜃𝐾
(𝑃)

]
 
 
 
 

, (5. 6) 
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in which the sample values for the parameter of interest Θ𝑗 are taken from 𝐀 and the remainder of 

the sample values are taken from 𝐁. Model responses are then generated using the parameters in 

each row of 𝐀 and 𝐂1:𝐾, yielding the response vectors (𝑃x1) 

𝐲𝐀 = 𝐟(𝐀), (5. 7) 

𝐲𝐂𝑗
= 𝐟(𝐂𝑗), (5. 8) 

These response vectors provide the MC samples necessary to compute the unconditional variance 

(𝐲𝐀) and the variance conditioned on a particular parameter (𝐲𝐂𝑗
). The first-order sensitivity index 

for the parameter of interest Θ𝑗can therefore be estimated by comparing the variance of 𝐲𝐂𝑗
 with 

𝐲𝐀, such that 

𝑆𝑗 =
𝕍Θ𝑗

[𝔼𝚯~𝑗
[Y|Θ𝑗]]

𝕍[Y]
≈

(1 𝑃)⁄ ∑ y𝐀
(𝑖)y𝐂𝑗

(𝑖)𝑃
𝑖=1 − 𝑓0

2

(1 𝑃)⁄ ∑ (y𝐀
(𝑖))2𝑃

𝑖=1 − 𝑓0
2

, (5. 9) 

where 

𝑓0 = (1 𝑃)⁄ ∑ y𝐀
(𝑖)

𝑃

𝑖=1
. (5. 10) 

The cost of this approach amounts to 𝑁  model evaluations to generate 𝐲𝐀  and 𝑃𝐾  model 

evaluations to generate 𝐲𝐂1:𝐾
, or a total of 𝑃(𝐾 + 1) model evaluations to estimate the first-order 

sensitivity index with respect to all system parameters. Additional details concerning the derivation 

of the method can be found in [28].  

The sensitivity analysis in this paper is performed using the open-source computational 

tool SaLib [32]. The parameters from the physical model given in Eq. (4.5) are uniformly sampled 

(𝑃=1000) over the ranges 𝑐𝑣 ∈ [0,1] Ns/m, 𝑐𝑓 ∈ [0,1] N, 𝑘 ∈ [0,100] N/m, and 𝑧 ∈ [5 × 105, 9 ×

105] N/m3, which describe the range of uncertainty of the device parameters. The sensitivity of the 

displacement and acceleration responses are analyzed with respect to simulated input signals 

corresponding to those given in Table 4.1.  

5.2 Unscented Kalman Filter Implementation 

The UKF is used in this study to assess the results of the Sobol’ analysis and their implications on 

the practical identifiability of the NES system. The UKF algorithm is largely set forth in the 

description of sigma point Kalman filters given in Algorithm 2.3 and is visualized in Fig. 5.2. For 
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this particular sigma point filter adaptation, the unscented transform [33] is used to estimate the 

necessary moments of the PDFs through a set of 𝑁𝑠𝑖𝑔 = 2𝑛 + 1 sigma points, where 𝑛 is the 

number of states. These sigma points are deterministically selected according to  

𝓧𝑘−1 = [�̃�𝑘−1, �̃�𝑘−1 ± √𝑛′ + 𝜆′ chol(�̃�𝑘−1)] (5. 11) 

𝓧𝑘
− = [�̃�𝑘

−, �̃�𝑘
− ± √𝑛′ + 𝜆′  ∙ chol(�̃�𝑘

−)] (5. 12) 

 and have the associated weights  

𝐖(𝑚) = [
𝜆

𝑁𝑠𝑖𝑔 + 𝜆
, {

1

2(𝑁𝑠𝑖𝑔 + 𝜆)
}

𝑖

] ,   𝑖 = 1,… ,2𝑛                               (5. 13) 

 𝐖(𝑐) = [
𝜆

𝑁𝑠𝑖𝑔 + 𝜆
+ (1 − 𝛼2 + 𝛽), {

1

2(𝑁𝑠𝑖𝑔 + 𝜆)
}

𝑖

] ,   𝑖 = 1, … ,2𝑛, (5. 14) 

where the tuning parameters 𝛼 = 1 , 𝛽 = 3 , and 𝜆 = 𝛼2 ∙ (𝑁𝑠𝑖𝑔 + 𝜅) − 𝑁𝑠𝑖𝑔  with 𝜅 = 0  were 

found to perform well with this data set. Though a standard set of tuning parameters is 

recommended [34], varying these parameters can accommodate experimental deviations from the 

Gaussian assumption. Note that the sigma point set used herein is constructed in relation to the 

state of the system which has been augmented by the noise parameters, as �̃�𝑘−1 = [𝐱𝑘−1 𝐰𝑘−1]𝑇 

and �̃�𝑘
− = [𝐱𝑘

− 𝐯𝑘]𝑇 , such that 𝓧𝑘−1 = [𝓧(𝐱𝑘−1) 𝓧(𝐰𝑘−1)]𝑇 and 𝓧𝑘
− = [𝓧(𝐱𝑘

−) 𝓧(𝐯𝑘)]𝑇 [35]. 

 

 

Fig. 5.2 - Overview of the UKF algorithm. The UKF approximates the filtering distributions of 

the Kalman filter through the selection and propagation of a weighted sigma point set.  
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Joint state and parameter identification is typically accomplished through state 

augmentation, which has been shown to work effectively with the UKF for a variety of nonlinear 

systems [2],[33]. The performance of the algorithm can be enhanced by exploiting prior 

information about the parameters to transform the augmented states [36]. For this system, both the 

relative magnitude of the parameters and their existence in the positive domain are known a priori. 

This information can be used to transform the problem into an unconstrained optimization of 

parameters which display similar magnitudes of variability and is therefore more suited to the 

construction of the UKF algorithm. The parameters are first scaled to similar orders of magnitude 

using the dimensionless scale factors shown in Eq. (5.15) and Table 5.1. The scaled parameters 

are then log-transformed to map their domain from the positive reals to the Euclidean space. These 

transformations are given in greater detail in Table 5.1.  

 

Table 5.1 – Scaled and Transformed UKF States 

NES Parameter UKF State 

𝑥3
′ = 𝑐𝑣 Ns/m 𝑥3 = log (𝑐𝑣/0.1) 

𝑥4
′ = 𝑐𝑓 N 𝑥4 = log (𝑐𝑓/0.1) 

𝑥5
′ = 𝑘 N/m 𝑥5 = log (𝑘/10) 

𝑥6
′ = 𝑧 N/m3 𝑥6 = log (𝑧/105) 

 

Using these transformed states, an augmented state vector is defined for the NES device 

model given in Eq. (4.5) such that 

                                            𝐱 = [𝑥, �̇�, log (
𝑐𝑣

0.1
) , log (

𝑐𝑓

0.1
) , log (

𝑘

10
) , log (

𝑧

105
)] 𝑇 

= [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6] 
𝑇 , (5. 15) 

with the experimental responses and model parameters recorded in SI units. The state transition 

function, f(∙), can be expressed as 
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f(𝐱, �̈�𝑔) =

[
 
 
 
 
 
�̇�1

�̇�2

�̇�3

�̇�4

�̇�5

�̇�6]
 
 
 
 
 

=

[
 
 
 
 
 

𝑥2

−�̈�𝑔 − (𝑥3
′𝑥2 + 𝑥4

′ tanh(𝜐𝑥2) + 𝑥5
′𝑥1 + 𝑥6

′𝑥1
3) 𝑚⁄

0
0
0
0 ]

 
 
 
 
 

, (5. 16) 

and the observation function, h(∙), as 

h(𝐱𝑘, �̈�𝑔) = [
𝑥1

−(𝑥3
′𝑥2 + 𝑥4

′ tanh(𝜐𝑥2) + 𝑥5
′  𝑥1 + 𝑥6

′𝑥1
3) 𝑚⁄ ] . (5. 17) 

Note that the measurement function is constructed to use simultaneous observations of the relative 

displacement (𝑥 in Fig. 4.1) and absolute acceleration of the mass of the NES device.  

The initial Gaussian distribution on the final augmented state vector can now be described 

by the mean and covariance  

𝛍0 = [𝛍0
(𝑥)

 𝛍0
(𝜃)

]
𝑇

(5. 18) 

𝐏0 = [
𝐏𝟎

(𝒙)
𝟎

𝟎 𝐏𝟎
(𝜃)

] , (5. 19) 

where 𝛍0
(𝑥)

 refers to the portion of the mean vector associated with the dynamic states and 𝛍0
(𝜃)

 

refers to that portion associated with the unknown parameters. 𝐏0 is likewise partitioned. Note that 

the uncertainty in the states 𝑥𝑛  (𝑛 = 1,2,… ,6) is assumed independent, which implies that 𝐏0 is a 

diagonal matrix with entries (𝐏0)𝑛𝑛 = 𝜎𝑛
2.  

The selection of the initial Gaussian distribution for the partitioned state vector is then 

determined by the judgement of the user and the known information on the system. For this system 

the initial distribution on the dynamic states is selected such that 𝛍0
(𝑥)

= 𝟎, 𝜎1 = 0.01m, and 𝜎2 =

0.01 m/s, as the observation of the system is initiated prior to device excitation. Uncertainty as to 

the true range of variability in the parameters complicates the selection of a prior distribution on 

their respective states, as variation in the prior over a likely parameter range can yield wide swings 

in the identification results. In this study, a sampling approach on the prior distributions of the 

parameters is used to analyze this variability as a tool to study the relation between the Sobol’ 

indices and the UKF identifiability. Details on this analysis process are given in Section 5.3. 

For this experimental application the process and measurement noise covariance matrices 

are assumed constant and are estimated prior to UKF implementation through the analysis of 
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sensor outputs in a baseline experiment. To estimate the baseline noise in the system, 

measurements are taken while a constant zero command signal is sent to the hydraulic actuator, 

i.e. the hydraulic pump and actuator are powered on, but the actuator command is a zero input. 

The process noise covariance matrix (𝐐) represents error in the assumed model form, and is 

estimated here as the variance of the base acceleration signal, which is 𝜎𝑏
2 = 1.03 × 10−2(m/s2)2. 

The measurement noise covariance matrix (𝐑) represents the noise in the device response due to 

the sensors. The variance of the displacement signal in the baseline experiment is found to be 𝜎𝑑
2 =

1.44 × 10−12m2 and the variance of the NES acceleration signal is 𝜎𝑎
2 = 5.32 × 10−3(m/s2)2. The 

noise in the various measurement signals are assumed to be independent of each other, and the 

accelerometer signals are left unfiltered for UKF implementation. 

The accuracy of each identified model is assessed in terms of a normalized mean square 

error [37], given as 

MSE =
100

𝑀
∑(

(𝑥𝑖 − �̂�𝑖)
2

𝜎𝑑
2 +

(�̈�𝑖 − �̂̈�𝑖)
2

𝜎𝑎
2

)

𝑀

𝑖=1

, (5. 20) 

where 𝑀 is the total number of observations of the system, 𝑥𝑖  is the ith observed displacement 

value, and �̂�𝑖 is the displacement simulated for the experimental excitation using the identified 

model. It is important to note that the term inside the summation is equivalent to the log-likelihood 

of the measurements given information about the states and the parameters (log (p(𝐲|𝐱,𝚯))). The 

minimization of the log-likelihood of the measurements implies the minimization of the mean 

square error on the hidden states, which is what the Kalman filter is designed to accomplish [38]. 

5.3 Results and Discussion 

Identification is performed with the NES device model in Eq. (4.5) using the UKF with the 

experimental system responses to the inputs listed in Table 4.1. To address the uncertainty in the 

selection of an initial distribution of the parameters for the UKF algorithm, the joint identification 

process is conducted multiple times for each signal, starting from a variety of initial distributions 

over the unknown parameters. Latin hypercube sampling is used to generate a set of 500 initial 

means over the parameter ranges used for sensitivity analysis. For each set of initial means, 10 

covariance matrices are generated such that 𝜎𝑛 = 𝛼(μ0)𝑛  (𝑛 = 3,4,5,6) , where 𝛼 ∈

{0.1, 1, 10, 25, 50, 75, 100, 200, 300, 600}% is the coefficient of variation. This results in 5,000 
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identification trials for each experimental response signal. The device model identified from each 

experimental signal is selected as the one which minimizes the MSE. 

 

 

Fig. 5.3 – Sample UKF Results for Sine Sweep Signals: (a-b) Signal 3, (c-d) Signal 4 

 

The parameters identified with signals 3 and 4 (Table 4.1) using the approach described 

herein provide an illustrative case study for an initial examination of system identifiability. These 

signals develop, over an extended time period, a clear variation in the device responses about the 

input energy threshold with otherwise equivalent signals. Simulated responses corresponding to 

these signals are generated from the identified device models and shown in Fig. 5.3. These 

simulated responses are compared with the observed experimental data, with low amplitude results 

given in Fig. 5.3(a) and high amplitude results given in Fig. 5.3(c). The parameter identification 
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histories for the respective signals are given in Fig. 5.3(b,d). The estimated responses demonstrate 

that a good fit to the experimental responses can be obtained through the UKF identification 

strategy. However, the identification process also yields multiple sets of parameters, which is more 

clearly evidenced by the numerical results in Table 5.2. 

 

Table 5.2 – Parameters obtained with the UKF Method using Sine Sweep Responses 

Parameter 

Identified Value Variance Ratio [%] 

Signal 3 

(Low) 

Signal 4 

(High) 

Signal 3 

(Low) 

Signal 4 

(High) 

𝑐𝑣 [Ns/m] 0.283  0.330 99.6 61.7 

𝑐𝑓 [N] 0.061 0.050 94.4 92.3 

𝑘 [N/m] 44.0 19.8 36.7 15.3 

𝑧 [N/m3] 8.52 × 105 7.12 × 105 97.7 0.9 

 

The occurrence of multiple parameter sets may generate some confusion over which model 

to select. Olivier and Smyth [2] suggest that the differences between the models may be interpreted 

as an identifiability issue. By their analysis approach, similarity between a priori, 𝐏0 , and a 

posteriori, 𝐏𝑀 , covariance levels indicates that little information concerning the parameter is 

available in the signal and that the parameter is therefore unidentifiable. This similarity measure 

is stated in Table 5.2 as the variance ratio, which is defined as (𝜎𝑀)𝑛 (𝜎0)𝑛⁄ . Values of the variance 

ratio that are close to 100% indicate high similarity between the a priori and a posteriori 

covariance and therefore suggest the parameter is not likely to be identifiable. Applying this 

measure to the identification histories for signals 3 and 4 suggests that the linear stiffness parameter 

is likely to be identifiable with either signal, and that the Coulomb damping coefficient will likely 

be identified with neither signal. However, this result does not appear to be in agreement with the 

identified values of the parameters. Comparing the UKF results, the Coulomb damping coefficient 

is identified with the greatest precision, whereas the linear stiffness term identified with signal 3 

is more than twice the value identified with signal 4. Though these differences may be able to be 

understood by further analyzing the prior parameter distributions with respect to the noise present 

in the experimental system, the initial results can be misleading and are somewhat time consuming 

to generate. A Sobol’ sensitivity analysis offers a different perspective on identifiability, in 
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advance of experimental implementation, that is helpful both in clarifying the identification results 

and in designing the experiment. 

A Sobol’ sensitivity analysis is conducted on the NES device model with respect to 

simulated low and high amplitude input signals modeled after experimental signals 3 and 4 (Table 

4.1). The amplitudes of these simulated excitation signals are selected such that all 𝑃(𝐾 + 2) 

sample responses fall either below the input energy threshold, in the case of the low amplitude 

excitation, or above it, in the case of the high amplitude excitation. The results of this analysis for 

the two signals are given in Fig. 5.4 and Fig. 5.5, respectively, and show a sample model response 

(a) and the time-varying first-order sensitivity of the displacement response to each parameter (b-

d). The plots include the 95% confidence interval of that sensitivity. First-order sensitivities are 

used for examination because they quantify the information available in the response that is related 

to the direct impact of a parameter, instead of its potential interactions with other parameters. The 

sensitivity of the acceleration responses with respect to the parameters yields results similar to 

those developed for the displacement responses, and are therefore not shown.  

 

 

Fig. 5.4 – Sensitivity Analysis Results for a Low Amplitude Sine Sweep (Signal 3) 
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 The sensitivity results given in Fig. 5.4 indicate that for a low amplitude sine sweep 

excitation, the NES model is not sensitive to the nonlinear stiffness parameter, 𝑧, and is minimally 

sensitive to the linear stiffness, 𝑘, and viscous damping, 𝑐𝑣, parameters. These results suggest that 

there is very little information available in this signal that can be used to reliably identify the 

nonlinear stiffness parameter. The only parameter for which a reliable estimate may be obtained 

appears to be the Coulomb damping coefficient, 𝑐𝑓. In contrast, Fig. 5.5 shows that for a high 

amplitude sine sweep excitation the NES model is quite sensitive to all parameters over the course 

of its response. The results of this sensitivity analysis agree with the observations from the 

identification results in Table 5.2. The responses of this nonlinear model to both signals are highly 

sensitive to the Coulomb damping coefficient, which appear to be identified with the great 

precision despite the low identifiability predicted by the variance ratio analysis. The response to 

the high amplitude signal is especially sensitive to the nonlinear stiffness, which does agree with 

the high likelihood of identifiability suggested by the variance ratio analysis.   

 

 

Fig. 5.5 – Sensitivity Analysis for a High Amplitude Sine Sweep (Signal 4) 

 

The sensitivity results also provide an indication of how each parameter affects the various 

response behaviors in the NES device. For example, Fig. 5.5(c,d) shows that the sensitivity of the 
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linear stiffness parameter and the Coulomb damping coefficient both peak at ~20 sec and ~60 sec. 

Comparing these points in time with the displacement response history in Fig. 5.5(a) leads to the 

conclusion that these parameters play a primary role in governing the sudden shift in NES device 

behavior, which for this sample response occurs at ~18 sec and ~65 sec. In this transition region, 

the device switches from its characteristic low amplitude behavior in which the frictional damping 

force controls, to its characteristic high amplitude behavior in which the nonlinear stiffness force 

governs. The temporal location of the transition region is governed by the linear stiffness and 

Coulomb damping parameters, leading to the increased sensitivity of the parameters within that 

transition region. 

 

 

Fig. 5.6 – Distribution of Identified Parameters using Signals 3 and 4 

 

The agreement between the first-order sensitivity results and the identifiability of the NES 

device is further supported through examination of the distribution of the models generated with 

experimental signals 3 and 4 in the 5,000 UKF identification trials, given in Fig. 5.6. The Sobol’ 

sensitivity results suggest that there is little information in the low amplitude frequency sweep 
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response which can be used to accurately identify the viscous damping and nonlinear stiffness 

parameters. This lack of information is likely to translate into a large spread in the UKF 

identification results, as the variation of those parameters is less influential in approximating the 

system response. The identification results in Fig. 5.6 show that, of the four parameters, the 

distributions for the viscous damping (Fig. 5.6(a)) and nonlinear stiffness (Fig. 5.6(d)) exhibit the 

greatest differences in parameter distributions. The distribution identified for both parameters with 

the low amplitude sine sweep response conveys that a wide range of parameters can be used to 

generate an acceptable model of that response, whereas the narrow distribution of identified 

parameters for the high amplitude sine sweep response suggests that a precise value of the 

respective parameters is required to construct an accurate model. In contrast, the distributions for 

the Coulomb damping coefficient and the linear stiffness show similar spread between the two 

signals, indicating that they are similarly identifiable with both signals. This result is interesting 

as it suggests that relatively low levels of sensitivity, such as those shown in Fig. 5.4(d), may be 

sufficient to generate a good quality identified model.  

Next the comparison between the sensitivity results and the distributions of identified 

parameters is extended to the other experimental response signals, as shown in Fig.5.7. Results are 

given with respect to the nonlinear stiffness parameter (𝑧) only, as this parameter shows the widest 

variation in identifiability. Each horizontal pair of subplots provides a comparison between the 

sensitivity results and identified parameter distribution for a particular signal type. Note that the 

amplitude scale of the histogram in Fig.5.7(b) is extended to accommodate the concentration of 

the distribution.  

For each of the signals, a significant portion of the identified nonlinear stiffness parameters 

appear at an unrealistically low number. This result occurs due to the method used to produce the 

5,000 identification trials. Poorly tuned values of 𝐏𝟎
(𝜃)

 (see (5.19)) have the potential to produce 

unrealistic identification results. Because the sampling method requires trials to be run for an 

especially wide range of 𝐏𝟎
(𝜃)

, this result is expected and this set of identified parameters is 

disregarded.  

All responses exhibit behaviors that are similar to those previously studied for signals 3 

and 4. Cases with uniformly low sensitivity, as shown in Fig.5.7(a,e), exhibit a wide distribution 

of identification results. Those exhibiting periods of high sensitivity correspond to tight 

distributions. It is interesting to note that some gradation exists in these results. The sensitivity 
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response for signal 2, shown in Fig.5.7(b), exhibits the highest value of sensitivity over the longest 

signal duration, and also corresponds to the tightest distribution of the identified nonlinear stiffness 

parameter. Signal 5, in Fig.5.7(c), exhibits the second most significant sensitivity response, and 

corresponds to the second tightest parameter distribution. The sensitivity responses to signals 6 

and 8 both exhibit a short duration of high sensitivity, with the majority of the response being 

minimally sensitive to the nonlinear stiffness parameter. The corresponding parameter 

distributions are more spread than those previously mentioned, indicating that the duration of the 

period of high sensitivity is also important in determining identifiability.  

 

 

Fig.5.7 – Comparison of sensitivity and identified parameter distribution for the nonlinear 

stiffness parameter, 𝑧  

 



 

 

99 

A summary of the sensitivity and identification results for all parameters and experimental 

signals is given in Table 5.3. The sensitivity results in this table, in combination with those in Fig. 

5.4-5.7, suggest that the selection of signals 2, 4, and 5 will lead to the most robust estimates of 

the NES device parameters. Among this set, signals 2 and 4 present similar information, though 

signal 4 includes the includes additional data concerning the decreasing amplitude behavior of the 

device over a longer time period. As such, the set of signals selected for the identification 

experiment is reduced to signals 4 and 5. A comparison of the displacement of the identified model 

and the experimental response signal used is shown for these signals in Fig.5.8 and Fig.5.9. It is 

interesting to note that even for those signals which have been determined to be identifiable, 

multiple high-quality models may be generated. This outcome does not mean that these signals are 

not identifiable, but instead indicates that the system response used for identification does not fully 

characterize the behavior of the device which the model was generated to capture. In essence, the 

identification with respect to a particular signal optimizes the model to replicate the behavior 

expressed in that signal, without regard to behavior that might be expressed in other signals. Thus, 

a model can be successfully identified, but that particular model may be insufficient to capture the 

behaviors of the experimental device that are exhibited in other untested signals. A method to 

complement this sensitivity analysis will be needed to distinguish between different models. 

 

Table 5.3 – Results of the Sensitivity Analysis and the Experimental Identification 

Signal Maximum Sensitivity Identified Value 

# Type 
Max Amp. 

[m/s2] 
Cv Cf K Z 

Cv 

[Ns/m] 

Cf 

[N] 

K 

[N/m] 

Z  

[N/m3] 

1 Sweep 0.1 0.01 1.00 0.09 0.00 0.115 0.055 44.4 0.00 × 105 

2 Sweep 9.4 0.27 1.00 0.42 0.89 0.330 0.074 53.6 7.12 × 105 

3 Sweep 0.1 0.02 1.00 0.24 0.00 0.283 0.061 44.0 8.52 × 105 

4 Sweep 9.4 0.27 1.00 0.43 0.89 0.330 0.050 19.8 7.12 × 105 

5 Sine 4.9 0.09 1.00 0.36 0.61 0.351 0.064 37.8 6.39 × 105 

6 Step 𝑥0= 5 cm 0.10 0.11 0.12 0.98 0.452 0.049 26.0 6.67 × 105 

7 BLWN 0.2 0.02 1.00 0.73 0.00 0.351 0.108 36.3 8.35 × 105 

8 BLWN 18.2 0.22 1.00 0.34 0.62 0.313 0.067 49.5 6.20 × 105 
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Fig.5.8 – Response comparison for model identified from Signal 4. The experimental response 

(observed) is plotted against the identified model response (identified) to the experimental 

excitation.  

 

 

Fig.5.9 – Response comparison for model identified from Signal 5. The experimental response 

(observed) is plotted against the identified model response (identified) to the experimental 

excitation. 

5.4 Conclusions 

Sobol’ sensitivity is examined as a practical indicator of identifiability and its effectiveness is 

demonstrated through the identification of an experimental NES device. The Sobol’ sensitivity 
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results are shown to correlate well with the identification of the NES device, both over a single 

identification trial and across a suite of trials for a single signal. The results also indicate that both 

the magnitude of the sensitivity and the duration of high sensitivity regions influence the degree 

of identifiability. The approach is shown to give a unique and informative perspective on 

identifiability analysis in comparison with existing methods. Overall, Sobol’ sensitivity analysis 

seems well-suited to informing the design of identification experiments for use with Bayesian 

inference techniques as it establishes a simple, heuristic measure of the practical identifiability of 

a general nonlinear system in advance of the experiment.  

It is important to recognize the advantages of an analysis method while also respecting its 

limits. Sobol’ sensitivity has the benefits of being model-independent, simple to execute, and 

useful for exploring the identifiability over the full range of variation of each model parameter. 

However, the computational requirements and error-free model assumption do suggest that 

practical implementation may be limited to systems for which the model form is reasonably 

predictable and the response of the model can be evaluated with moderate computational demands.  

Although experimental design in terms of identifiability is a significant step in the design 

of system identification experiments, consideration must also be given to whether the signal 

selected for identification induces in the device the full range of dynamic behavior that needs to 

be captured for the purpose of modeling the response of the device to as yet unknown events. 

Further analysis of this topic is the focus of the following chapter.   
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 DEVELOPMENT OF A ROBUST UNSCENTED KALMAN FILTER 

APROACH TO EXPERIMENTAL NONLINEAR IDENTIFICATION 

As shown in the previous chapter, it is possible to determine in advance of experimentation the 

practical identifiability of a nonlinear dynamical model with respect to the behavior used for 

identification. However, for the identified model to be broadly applicable to predictive modeling 

tasks, it must be both robust, meaning that the same model is generated given reasonable variations 

on the prior, and extensible, meaning that the identified model should accurately represent the 

behavior of the system beyond the response it was trained against. The accuracy and robustness of 

the UKF to Bouc-Wen type nonlinearities has been shown in several experimental studies [1]–[5]. 

However, the application of the unscented Kalman filter (UKF) to experimental systems with other 

types of nonlinearities, especially those such as Duffing systems which exhibit bifurcations in their 

behavior, requires experimental validation prior to practical application.  

In this study I develop and demonstrate a novel procedure for the experimental application 

of the UKF to a nonlinear energy sink (NES) device exhibiting a Duffing-type nonlinearity. Three 

identification approaches are proposed and analyzed with a focus on two typical concerns in 

experimental applications: the uncertainty in the selection of a prior distribution on the parameters, 

which is typically ill-defined in an experimental setting, and the assertion of a model form which 

is a useful, but imperfect, representation of the true device behavior. The robustness of the method 

to prior distribution selection is addressed in each case by evaluating the approach over a set of 

samples of the prior distribution. The issue of tuning an imperfect model to adequately represent 

the full range of device behavior is addressed by varying the manner by which each approach uses 

the experimental response signals during the identification process. By addressing these issues 

through the approaches developed herein, this study demonstrates a practical method for using 

limited response information to produce a device model which is well-suited to the responses of 

interest.  

The paper is organized as follows: Section 6.1 examines the experimental behavior of the 

NES response signals used for identification; Section 6.2 introduces the approaches explored for 

the UKF identification; and Section 6.3 discusses the results of the three model identification 

approaches. The main conclusions are summarized in Section 0. The content of this chapter has 

been adapted from the published work of the author [6].  
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6.1 NES Behavior in Response to Identification Signals 

Signals 9 and 10 from Table 4.1 are selected for model identification with the UKF as they provide 

a sufficient duration of excitation in the higher energy branch of the NES response such that all 

parameters of the NES model can be assumed to be fully engaged in the response. This selection 

is further supported by the Sobol’ sensitivity analysis [7]–[9] on the device model with respect to 

these excitation signals given in the previous chapter. Of the experimental signals given in Table 

4.1, signals 4 and 5, which are equivalent to signals 9 and 10, were found to be the most sensitive 

to variations in the NES model parameters and are therefore more likely to be identifiable. The 

remainder of the signals (Table 4.1, 11-16) are used to evaluate the accuracy of the identified 

model. The evaluation signals are selected to express the range of response likely to be seen by the 

device in both branches of its stable behavior. Where some of the evaluation signals are of the 

same type as those used for identification, their amplitude and frequency ranges are nominally 

modified to provide a more comprehensive basis for evaluation. All data from these tests, including 

measurements and recorded media, have been published by Lund et al. in [10]. 

The response of the NES device to the excitation signals used for identification is given in 

Fig. 6.1, with the response behavior to signal 9 given in Fig. 6.1(a-c) and the response behavior to 

signal 10 given in Fig. 6.1(d-f). The behavior of the device is shown from three perspectives: Fig. 

6.1(a,d) show the displacement response histories; Fig. 6.1(b,e) show the displacement 

spectrograms; and Fig. 6.1(c,f) show the restoring force vs. displacement curves. 

The device exhibits significant nonlinear behavior in each case, which is evident through 

different features in each perspective on the response. A shift in the stable response of the NES to 

a higher energy state is clearly evident in Fig. 6.1(c) at ~32 sec through the sudden variability in 

oscillation frequency and amplitude separating the two distinct regions of response. While not as 

obvious, a similar change in stable behavior is apparent in Fig. 6.1(a) at ~15 second by a shift in 

the slope of the response envelope.  

These shifts in the response of the device are more clearly understood through their 

respective spectrograms. In each case, a shift in the time-domain behavior is accompanied by a 

spreading of energy from the 1st to the 3rd harmonic of the forcing frequency, where prior to the 

shift only the 1st harmonic had been significantly excited. It is particularly interesting to note that 

despite the symmetric variation in either the excitation frequency (signal 9) or amplitude (signal 

10) about the ~40 sec mark, the device responses to these excitations are asymmetric. Once the 
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NES has achieved a stable high-energy response it is able to maintain that response despite a 

reduction in the input energy. This phenomenon is most clearly evident with respect to signal 9, 

but can be seen in signal 10 by comparing the responses at ~15 and ~70 sec.  

 

 

Fig. 6.1 – NES responses including displacement history, spectrogram, and restoring force vs. 

displacement respectively for signal 9 (a-c) and signal 10 (d-f). Acceleration has been low-pass 

filtered to 50 Hz for (c,f). 

 

The results in Fig. 6.1(c,f) show that in each case the device is excited sufficiently to exhibit 

nonlinear restoring force behavior. The results confirm the expected dual stability of the NES 

response and the form of the nonlinearity governing its behavior. As a result, they also provide 

evidence of the engagement of all parameters in Eq. (4.5) for the purpose of identification. 
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The practical identifiability of the NES model with respect to signals 9 and 10 has further 

been established using Sobol’ sensitivity analysis in the previous chapter, which demonstrated that 

the parameters of the model given by Eq. (4.5)  exhibit high sensitivity to the respective 

identification signals. In particular, the parameters 𝑐𝑣, 𝑐𝑓, 𝑘, and 𝑧 exhibited sensitivities of 0.27, 

1.00, 0.43, and 0.89 respectively in response to excitation by signal 9 and 0.09, 1.00, 0.36, and 

0.61 respectively in response to excitation by signal 10, where sensitivities closer to 1.00 indicate 

a higher likelihood of practical identifiability. The sensitivity results for these excitations were 

found to support the use of either signal for identification, though the parameters are more sensitive 

to, and therefore more likely to be consistently identified by, signal 9.  

6.2 Analysis Approach 

As in the previous chapter, the identification of the NES device is accomplished using the UKF. 

The approach to implement the UKF using the noise-augmented sigma points is equivalent to Chpt. 

5, including the tuning parameters used. For clarity, the specific stochastic model implementation 

is redefined in this chapter.  

6.2.1 UKF Implementation 

Identification of the NES device using the UKF is accomplished through a state augmentation 

approach, which is also commonly referred to as joint state and parameter estimation [11]. As was 

done in the previous chapter, prior information concerning the system characteristics can be 

leveraged to enhance the state model for UKF implementation [12]. In this case, the relative scale 

of the parameters and their existence in the positive domain is known a priori. This prior 

information is used to define the augmented state vector  

                                             𝐱 = [𝑥, �̇�, log (
𝑐𝑣

0.1
) , log (

𝑐𝑓

0.1
) , log (

𝑘

10
) , log (

𝑧

105
)] 𝑇, 

= [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6] 
𝑇 , (6. 1) 

with the experimental responses and model parameters recorded in SI units. The augmented state 

is designed for joint state and parameter estimation with the UKF such that the states are at similar 

orders of magnitude and their associated parameters are constrained to identification in the positive 

domain. Note that the scale factors are dimensionless values selected to bring the parameter values 
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to a similar order of magnitude. The introduction of such a transformation provides a means to 

perform an unconstrained optimization on the parameters in a way that aligns with the base 

assumptions of the UKF, and therefore introduces no additional instabilities into the identification 

process. Though the transformation may appear to mask the form of the prior distribution on the 

true parameters (𝑐𝑣 Ns/m, 𝑐𝑓 N, 𝑘 N/m, and 𝑧 N/m3), the assignment of these priors can easily be 

made in terms of a log-normal distribution, with the shape parameters then corresponding to the 

mean and variance of the log-transformed states. 

The state transition function, f(∙), can therefore be defined as  

f(𝐱𝑘−1, �̈�𝑔,𝑘−1) =  𝐱𝑘−1 + ∫ F(𝐱(𝑡), �̈�𝑔(𝑡)) 𝑑𝑡
𝑡𝑘

𝑡𝑘−1

+ 𝐰𝑘 , (6. 2) 

where 

F(𝐱(t), �̈�𝑔(𝑡)) =

[
 
 
 
 
 
�̇�1

�̇�2

�̇�3

�̇�4

�̇�5

�̇�6]
 
 
 
 
 

                                                                                                                            

                                =

[
 
 
 
 
 

𝑥2

−�̈�𝑔 − (0.1e𝑥3𝑥2 + 0.1e𝑥4 tanh(𝜐𝑥2) + 10e𝑥5𝑥1 + 105e𝑥6𝑥1
3) 𝑚⁄

0
0
0
0 ]

 
 
 
 
 

. (6. 3)

 

Similarly, the observation equation, h(∙), is defined as  

h(𝐱𝑘, �̈�𝑔) = [
𝑥1

−(0.1e𝑥3𝑥2 + 0.1e𝑥4 tanh(𝜐𝑥2) + 10e𝑥5𝑥1 + 105e𝑥6𝑥1
3) 𝑚⁄ ] + 𝐯𝑘 , (6. 4) 

which implies the simultaneous observation of the relative displacement, 𝑥 , and the absolute 

acceleration, (�̈� + �̈�𝑔), of the experimental responses of the NES device. Base acceleration, �̈�𝑔, is 

also observed from the experimental responses of the system.  

The corresponding process noise (𝐐) and measurement noise (𝐑) covariance matrices, 

which are taken as constant for this system, are obtained experimentally through a 60 sec 

observation of the NES system when a zero command voltage is sent to the hydraulic actuator. 

The process noise for this system is assumed to occur primarily due to noise in the base 

acceleration signal. Therefore, 𝐐 is a 6 × 6 sparse matrix in which the only non-zero entry is 
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Q22 = 𝜎𝑏
2 = 1.03 × 10−2(m/s2)2, corresponding to the variance of the acceleration sensor over the 

observation period previously described.  Likewise, 𝐑 is a 2 × 2  diagonal matrix described by the 

sensor noise in the displacement and acceleration responses of the NES device, which have 

variances 𝜎𝑑
2 = 1.44 × 10−12m2 and 𝜎𝑎

2 = 5.32 × 10−3(m/s2)2, respectively. The measurement 

noises in the various sensor measurements are assumed to be independent.  

6.2.2 Identification Methods 

Though the UKF is theoretically tractable for nonlinear systems, experimental deviations from the 

selected model form and the Gaussian noise assumption can make implementation of the algorithm 

quite challenging, leading to issues in the robust identification of a high-quality model. These 

issues commonly manifest in the identified model becoming overly tuned to the system response 

used for identification, without regard for other potential system behavior. This phenomenon is 

referred to as over-fitting.  

Many of the issues associated with over-fitting can be addressed with an appropriate model 

and a sufficiently exciting input. Such a model should be selected such that the key physics of the 

system are captured and any extraneous terms are eliminated, which can be done prior to 

identification through methods such as sensitivity analysis [7], or during identification through 

Bayesian model selection techniques [13],[14] or automatic relevance determination methods [15]. 

In order for the parameters to be accurately identified from the resulting model form, the response 

signal used for identification must be sufficiently exciting such that all terms are active in the 

response. It has been shown in Section 6.1 that the NES model proposed in Eq. (4.5) meets these 

qualifications.  

 Even when these key concerns have been addressed, models that appear overly tuned to 

the responses used for identification can still occur in the identification of experimental systems. 

Over-fitting occurs in this case due to the combination of a potentially simplified system model 

and inadequate or overconfident modeling of the noise present in the experimental response. Even 

a useful, high-quality model of the system will not perfectly represent its experimental behavior. 

These imperfections, coupled with any inaccuracies in the estimation of the form and magnitude 

of the noise present in the system, are evidenced in the tuning of the identified model slightly 

toward the response used for identification instead of the general system behavior. This problem 

is exacerbated in systems with a clear bifurcation in their response, such as the NES device, as 
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slight shifts in the identified model likewise shift the regions of dual stability in the model away 

from those evidenced in the experimental device behavior. A reliable method for the experimental 

identification of the NES device must therefore address this issue. 

 I approach this second over-fitting problem from the standpoint of algorithm deployment, 

reasoning that if the UKF is implemented strategically to take advantage of the information 

available in the various device responses, a model which observes the true range of device behavior 

can be reliably identified. As such, three approaches to identify the NES device with the UKF 

algorithm are proposed and analyzed, as shown in Fig. 6.2. Each of these approaches consists of 

two phases: training and validation. 

 

 

Fig. 6.2 – Training approaches for NES identification 

 

The training phase, labeled UKF Identification in Fig. 6.2, is initiated by the selection of a 

set of prior distributions on the parameters. Models generated using the UKF algorithm are 

sensitive to the selection of the prior distribution, which can be difficult to determine in an 

experimental setting for states related to the parameters. To compensate for this uncertainty and to 

analyze the impact of the prior distribution on the UKF, multiple identification trials are performed 

with each of the three approaches. The trials are structured around the prior distribution on the 

state vector, which is characterized by 
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𝛍0 = [𝛍0
(𝑥)

 𝛍0
(𝜃)

]
𝑇

, (6. 5) 

𝐏0 = [
𝐏𝟎

(𝒙)
𝟎

𝟎 𝐏𝟎
(𝜃)

] , (6. 6) 

where 𝛍0 is partitioned such that 𝛍0
(𝑥)

 is representative of the initial mean values belonging to the 

dynamic states of the system and 𝛍0
(𝜃)

 is representative of those belonging to the parameters. 𝐏0 is 

likewise partitioned. All states are assumed to be independent, which implies that 𝐏0 is a diagonal 

matrix with entries (𝐏0)𝑛𝑛 = 𝜎𝑛
2 for 𝑛 = 1,2,… ,6. Because all observations of the system begin 

with the NES at rest, it is assumed that 𝛍0
(𝑥)

= 𝟎, 𝜎1 = 0.01m, and 𝜎2 = 0.01 m/s. Variability in 

the prior distribution on the parameters is achieved through a Latin hypercube sample of 500 

vectors of initial means, 𝛍0
(𝜃)

, from the parameter space 𝑐𝑣 ∈ [0,1]  Ns/m, 𝑐𝑓 ∈ [0,1]  N, 𝑘 ∈

[0,100] N/m, and 𝑧 ∈ [5 × 105, 9 × 105] N/m3. A set of 10 initial covariance samples, 𝐏𝟎
(𝜃)

, is 

associated with each sample of 𝛍0
(𝜃)

. These covariance samples are defined such that 𝜎𝑛 = 𝛼(μ0)𝑛 

(𝑛 = 3,4,5,6) , where 𝛼 ∈ {0.1, 1, 10, 25, 50, 75, 100, 200, 300, 600}% . This yields a total of 

5,000 identification trials to examine each approach. The same trials are used for all three 

approaches.    

The validation phase, labeled Model Selection in Fig. 6.2, consists of selecting a 

representative model from the 5,000 candidate models generated through UKF identification. The 

relative quality of the candidate models is assessed using the normalized mean square error 

indicator [16] given by  

MSE =
100

𝑁
∑(

(𝑥𝑖 − �̂�𝑖)
2

𝜎𝑑
2 +

(�̈�𝑖 − �̂̈�𝑖)
2

𝜎𝑎
2

)

𝑁

𝑖=1

, (6. 7) 

where 𝑁 is the total number of experimental observations of the system, 𝑥𝑖  is the ith observed 

displacement in time for a particular experimental excitation, and �̂�𝑖  is the displacement value 

obtained by simulating the candidate model’s response to that same excitation. The final NES 

model for each approach is selected as the one which minimizes the MSE with respect to the 

experimental response of the NES.  

The identification approaches vary in how identification signals 9 and 10 (Table 4.1) are 

used in each of these phases, as shown in Fig. 6.2. In approach A, independent identification trials 
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are run with the UKF using the device responses to signals 9 and 10, respectively. The candidate 

models are then validated against the response that was used for training. In approach B, signals 9 

and 10 are used simultaneously with the UKF to train a model of the NES device. To accomplish 

this, the state vector for the UKF identification is modified such that  

𝐱 = [𝑥(1), 𝑥(2), �̇�(1), �̇�(2), log (
𝑐𝑣

0.1
) , log (

𝑐𝑓

0.1
) , log (

𝑘

10
) , log (

𝑧

105
)] 𝑇, (6. 8) 

where 𝑥(1) is the displacement of the NES in response to signal 9, and 𝑥(2) is the displacement of 

the NES in response to signal 10. The base function for the state transition, F(∙), is then redefined 

as  

F(𝐱(t), �̈�𝑔(𝑡)) =

[
 
 
 
 
 
 
 
�̇�1

�̇�2

�̇�3

�̇�4

�̇�5

�̇�6

�̇�7

�̇�8]
 
 
 
 
 
 
 

   

                 =

[
 
 
 
 
 
 
 
 
 𝑥2

(1)

𝑥2
(2)

−�̈�𝑔
(1)

− (0.1e𝑥3𝑥2
(1)

+ 0.1e𝑥4 tanh(𝜐𝑥2
(1)

) + 10e𝑥5𝑥1
(1)

+ 105e𝑥6𝑥1
(1)3

) 𝑚⁄

−�̈�𝑔
(2)

− (0.1e𝑥3𝑥2
(2)

+ 0.1e𝑥4 tanh(𝜐𝑥2
(2)

) + 10e𝑥5𝑥1
(2)

+ 105e𝑥6𝑥1
(2)3

) 𝑚⁄

0
0
0
0 ]

 
 
 
 
 
 
 
 
 

(6. 9) 

and the observation equation, h(∙), is defined as  

h(𝐱𝑘, �̈�𝑔) =                                                                                                                                            

[
 
 
 
 
 𝑥1

(1)

𝑥1
(2)

−(0.1e𝑥3𝑥2
(1)

+ 0.1e𝑥4 tanh(𝜐𝑥2
(1)

) + 10e𝑥5𝑥1
(1)

+ 105e𝑥6𝑥1
(1)3

) 𝑚⁄

−(0.1e𝑥3𝑥2
(2)

+ 0.1e𝑥4 tanh(𝜐𝑥2
(2)

) + 10e𝑥5𝑥1
(2)

+ 105e𝑥6𝑥1
(2)3

) 𝑚⁄ ]
 
 
 
 
 

+ 𝐯𝑘 , (6. 10)
 

implying that the experimental input and response records for both identification signals will be 

used simultaneously to identify a single set of parameters. The final model is likewise selected 
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through validation with respect to both signals. In approach C, the state vector is again defined as 

in Eq. (6.3) and the candidate models are generated by training with respect to signal 10. The 

candidate models are then validated, and a final model selected, with respect to signal 9. This 

method employs a cross-validation approach as opposed to the self-validation employed in the 

other methods.   

The accuracy of the results obtained with the three identification approaches are compared 

by analyzing the ability of each approach to generate a final model which minimizes the MSE for 

the evaluation signals (signals 11-16, Table 4.1). In interpreting these results, it is important to 

remember that the MSE is equivalent to the log-likelihood of the measurements, given information 

about the states and the parameters (log (p(𝐲|𝐱,𝚯))). The MSE provides a measure of the error 

with respect to the known sensor noise. It is therefore expected that the MSE evaluated for these 

models will be large due to the small values of 𝜎𝑑
2 and 𝜎𝑎

2. 

6.3 Results and Discussion 

The three identification approaches described in Fig. 6.2 are studied herein. The results of each 

approach are first presented in terms of the distribution of the candidate models, with the purpose 

of identifying how consistently the minimum MSE solution is identified. The selected NES models 

from each approach are further tested against the evaluation signals given in Table 4.1 to quantify 

their accuracy with respect to the MSE formulation given in Eq. (6.7).  

6.3.1 Models Generated Separately Using Different Training Signals (Approach A) 

The first stage of the analysis focuses on approach A, in which the training and validation phases 

are run separately for each identification signal. The distributions of the candidate models 

generated from the 5,000 identification trials using each of these response signals are provided in 

Fig. 6.3. It should be noted that some of these identification trials failed due to a numerical 

instability and are therefore not included in the analysis. Though instability in the UKF can be 

observed when only the dynamic states of the system are estimated, the potential for instability in 

its execution increases when the parameters are modeled as constant states, as is typically assumed 

in state augmentation for joint state and parameter identification [17]. This modeling assumption 

can generate numerical errors in the algorithm such that the covariance matrix 𝐏 becomes singular. 
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These unstable cases appear during the identification process and corresponded to 15-20% of the 

total identification trials, depending on the signal used for training. All other identification trials 

exhibited stable mean values in the parameters throughout the final 25 sec of the identification 

signal and reduced in variance from the assumed prior distribution, with the majority of 

identification trials exhibiting a significant reduction in variance suggestive of full convergence. 

The trials experiencing only moderate reductions in variance, suggestive of partial convergence, 

are also included in the following analysis. The stability of the parameter estimates in those trials 

suggests that, should the identification progress using experimental responses at a similar level of 

information, the fully converged result would be in the vicinity of the current mean. As the scope 

of this analysis encompasses identification using limited response data, these partially converged 

results are included as estimates of the final convergence. 

 

 

Fig. 6.3 – Distribution of models generated using identification approach A. 

 

The results in Fig. 6.3 clearly show that working with each identification signal separately 

produces different interpretations of the NES model. Training and validating with signal 9 results 

in tight distributions for the parameters, with the only significant variation in the models occurring 

in the interpretation of the linear stiffness parameter, 𝑘. In contrast, training and validating with 

signal 10 generates multi-modal distributions for the nonlinear stiffness parameter, 𝑧, and for the 

linear stiffness parameter, 𝑘. Though both signals generate tight unimodal distributions for the 
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damping parameters, each of those distributions are offset from each other such that there is little 

overlap between the two models around their respective modes. The differences between the 

models identified with these two signals is a direct result of the variation in the information 

available in the training signals. However, the fact that these differences extend even to parameters 

which are identified with tight distributions indicates that the models generated from this approach 

may not be reliable.  

At first glance, it appears that using signal 9 to generate the final NES model should 

produce a more accurate and robust result. To test this hypothesis, the final identified models with 

respect to each training signal are used to simulate the response of the NES to the experimental 

measurements of the evaluation signals given in Table 4.1. The comparison between the observed 

and simulated responses are shown in Fig. 6.4, where Fig. 6.4 (a-f) are generated with the model 

corresponding to signal 9, and Fig. 6.4 (g-l) are generated with the model corresponding to signal 

10. The results show that although both models are able to capture some aspects of the device’s 

behavior, particularly in the evaluation signals which are similar to identification signals, neither 

model is able to fit the entire range of NES responses. These observations, coupled with the 

goodness of fit of the identified models to the training signals (see Table 6.1), suggest that the 

UKF is over-fitting the models to the training signal. This behavior is especially evident for the 

model generated with signal 9. Despite the fact that this model is consistently identified with 

respect to signal 1, its ability to replicate the behavior expressed under other excitations is limited. 

This situation is also true for the model generated from signal 10. Though this model is able to 

more accurately replicate the behavior expressed in signals 11-15 than the model in Fig. 6.4(a-f), 

it fails to capture the behavior expressed in signal 16 (see Fig. 6.4(l)). 

Table 6.1 provides results for evaluating this identification approach quantitatively. For 

each signal, three models are studied. MSE model refers to final identified model for each signal, 

as described in Section 6.2.2 and shown in Fig. 6.4. Modal model refers to a representative model 

selected from the mode of the candidate models, where the mode is defined over the parameters 

such that the ranges of 𝑐𝑣, 𝑐𝑓, 𝑘, and 𝑧 in the candidate models are partitioned into increments of 

0.04 Ns/m, 0.02 N, 10 N/m, and 10,000 N/m3, respectively. This model is used give an indication 

of the most likely result of the identification approach should only a single prior distribution be 

selected at random from the set described in Section 6.2.2. Sub-modal model refers to a subset of 

the Modal models containing the minimum MSE model for each mean over the 10 initial variance  
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Fig. 6.4 – Response comparison for the models identified using approach A. Subplots (a-f) 

compare the simulated device responses from the model generated with signal 9 to the 

experimental device responses to signals 11-16. Subplots (g-l) compare the simulated device 

responses from the model generated with signal 10 to these same experimental device responses. 

 

 



 

 

118 

values, resulting in a set of 500 candidate models. The mode of these models is observed as it is 

representative of the MSE model that is most likely to be selected if the same identification process 

were to be performed on a smaller set of prior means, which would be desirable for a more rapid 

implementation of the method. 

 

Table 6.1 – Evaluation results for models identified using identification approach A. The MSE 

for the selected models are given with respect to the validation signal, as well as with respect to 

the evaluation signals.  

Identified Models MSE/108 for Evaluation Signals 

# 
Selected 

Model 

𝑐𝑣 𝑐𝑓 𝑘 
𝑧

105
 

MSE

108
 

11 12 13 14 15 16 

[
Ns

m
] [N] [

Ns

m
] [

N

m3
] [-] 

1 

MSE 0.330 0.050 19.8 7.12 1.3 1.8 1.3 15.7 45.0 4.4 33.8 

Modal 0.297 0.094 21.3 7.26 147.6 1.6 101.5 16.7 6.1 3.8 33.4 

Sub-Modal 0 0.650 484.2 0 132.9 1.2 75.6 42.2 52.3 13.9 54.6 

2 

MSE 0.351 0.064 37.8 6.39 1.6 1.2 0.6 4.6 12.4 18.7 28.0 

Modal 0.375 0.060 9.6 7.59 22.7 2.8 102.8 20.6 7.8 6.6 66.9 

Sub-Modal 0.290 0.104 32.6 6.55 9.4 1.3 102.3 12.4 8.6 1.8 57.4 

 

The results in Table 6.1 give us some insight into the robustness of the identification 

process with respect to the signals used. In each case, some differences exist in the selected models. 

The MSE and Modal models identified using signal 9 are fairly consistent, but in the Sub-modal 

model the viscous damping, 𝑐𝑣, and nonlinear stiffness, 𝑧, are entirely eliminated. It is interesting 

to note that despite the minor variations between the MSE and Modal models, the Modal model 

shows a large increase in the MSE value generated from the validation step, as well as in the case 

where the MSE is evaluated against signal 12, which is similar in form to signal 9. The particular 

form this error takes is a simulated low amplitude response similar to the experimental response 

to signal 11. This outcome indicates that small variations in model parameters can significantly 

shift the input energy threshold of the NES model. The MSE and Modal models identified with 

signal 10 differ primarily with respect to the nonlinear stiffness parameter, 𝑧. However, both the 

Modal and Sub-modal models produce very poor characterizations of the NES behavior in 

comparison with the MSE model, particularly with respect to signal 12. Again, this result indicates 

that the differences between these models and the MSE model increase the input energy threshold 
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of the device, yielding a low amplitude displacement for a case where high amplitude 

displacements were experimentally observed.  

The analysis of these models and their response to the evaluation signals demonstrates that 

the identified results are not as robust as they first appear. Not only do the models appear to over-

fit to the signal they are trained with, but variations between the MSE and mode-based models 

show stark differences in error when evaluated against the signals 11-16. Due to the uncertainties 

involved in experimental model identification, a more consistent and accurate identification 

approach is required to enable a reduced number of identification trials while still providing a 

reasonable guarantee on the accuracy of the results.  

6.3.2 Models Generated Using Training Signals in Parallel (Approach B) 

The second stage of the analysis focuses on identification approach B, in which the identified NES 

model is generated simultaneously using signals 9 and 10. This approach is facilitated by adopting 

the state vector given in Eq. (6.8) for use with the UKF. The models generated with this process 

are shown in Fig. 6.5 for all 5,000 identification trials. This identification approach generates a 

tight distribution of candidate models, with mean values similar to those generated in approach A 

with signal 9. These distributions do guarantee a certain level of similarity between the selected 

MSE model and the models generated from the modes of the identified parameter sets, which can 

be seen in Table 6.2. However, the data also show that there are large differences in the degree to 

which these seemingly similar models are able to represent the experimental NES responses, 

indicating a lack of robustness in the MSE model generated for this case. 

The results from identification approach A in Section 6.3.1 suggest that the identified 

model tends to over-fit to the behavior in the training signal, particularly when that training signal 

is highly sensitive to variations in the parameters, as is the case with signal 9 (see Section 5.3). It 

is therefore expected that training with two signals, both for which the parameters have exhibited 

moderate to high levels of sensitivity, will generate a model which accommodates the behavior 

present in both training signals. Such a model would then minimize the error for both evaluation 

signal 12, which has the same form as signal 9, and evaluation signal 13, which has the same form 

as signal 10. It is evident from Fig. 6.6(b,c) that this is not the case. Rather, the results in Fig. 6.6 

(b,c), and indeed the MSE model itself, appear very similar to the identification results using only 

signal 9, as given in Fig. 6.4(a-f) and Table 6.1. The Modal and Sub-modal models likewise obtain  
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Fig. 6.5 - Distribution of models generated using identification approach B. 

 

similar results as training with only signal 9, particularly in MSE values resulting from the 

validation step. These results imply that simultaneously performing the identification with respect 

to two training signals tunes the parameters toward the signal to which the parameters exhibit the 

highest sensitivity, which in this case is signal 9. 

 

Table 6.2 – Evaluation results for models identified using identification approach B. The MSE 

for the selected models are given with respect to the validation signal, as well as with respect to 

the evaluation signals.  

Identified Models MSE/108 for Evaluation Signals 

Selected 

Model 

𝑐𝑣 𝑐𝑓 𝑘 
𝑧

105
 

MSE

108
 

11 12 13 14 15 16 

[
Ns

m
] [N] [

Ns

m
] [

N

m3
] [-] 

MSE 0.337 0.053 20.7 7.09 14.0 1.7 1.1 14.5 36.1 3.9 64.3 

Modal 0.324 0.074 14.7 7.22 148.4 2.1 102.3 19.3 5.5 5.4 36.7 

Sub-Modal 0.283 0.102 18.1 7.13 168.2 1.7 100.6 20.4 10.5 4.6 35.4 

 

These observations can be understood by considering the square error loss function of the 

Kalman filter. At each time step, the Kalman gain is determined such that the square error between 

the predicted states and the true states will be minimized, where observations of the device serve 

as an indicator of the true state. Variations of the parameters in the augmented UKF state vector 
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generate model responses with a wider range of error values for device responses which are highly 

sensitive to parameter variations than for those which exhibit a lower sensitivity. The UKF can 

therefore most effectively minimize the mean square error by minimizing the error in response to 

those highly sensitive signals. In this analysis, this means that the information for training the NES 

model available in signal 10 is overshadowed by the information in signal 9, which is more 

sensitive to parameter variations. 

 

 

Fig. 6.6 – Response comparison for the models identified using approach B to the experimental 

device responses to signals 11-16, given in subplots (a)-(f) respectively. 

 

The results from identification approach B demonstrate that the tendency of the UKF to 

over-fit the NES model to the signal used for training cannot be solved by simultaneously using 

multiple signals exhibiting different device behaviors in the training and validation processes. A 

similar approach which would appear to have the potential to counteract these issues would be to 

train, and likewise validate, the model sequentially on both identification signals. To achieve this, 

5,000 candidate models and their covariance matrices are generated from the 5,000 prior 

distributions using a single identification signal. The candidate models and their respective 

covariance matrices then serve as the prior distributions for UKF identification with the other 
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training signal. The evaluation of this approach showed no particular advantage over approach B, 

regardless of the ordering of the signals used in the sequential identification process. The similarity 

of the results between this method and those of approach B, suggests that the sensitivity of the 

parameters to the information available in signal 9 is the governing factor in any dual identification 

approach using these signals. An approach is instead required which will take advantage of the 

information available in the training signals without over-fitting the identified model to suit those 

particular responses.  

6.3.3 Models Generated Using Sequential Training Signals (Approach C) 

 

 

Fig. 6.7 - Distribution of the minimum MSE models for each prior mean on the parameters, 

generated using identification approach C. 

 

In the final identification approach analyzed herein, approach C, the NES device model is 

identified by training on one signal and validating on another. This process is intended to take 

advantage of the varying levels of information in the identification signals to generate increasingly 

precise models of the NES device. The selection of which signal to use for training and which to 

use for validation is made through Sobol’ sensitivity analysis. The variability in the candidate 

models is initially preserved by selecting a signal with lower sensitivity values for training. In this 

case, signal 10 is selected. A higher sensitivity signal, in this case signal 9, is then used to refine 
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the candidate models during the validation phase. This process aims to generate a robust model 

which is representative of the global behavior of the system instead of being preemptively tuned 

to a single response to which the parameters are highly sensitive. 

Due to the nature of identification approach C, an analysis of the full distribution of models 

identified by the UKF yields no additional information as to the robustness of the method. More 

insight is found using the distribution of the 500 models identified as having the lowest MSE for 

each mean of the prior distribution on the parameters. These results, shown in Fig. 6.7, capture the 

effect of the two-stage process in concentrating the full distribution identified for signal 10 in Fig. 

6.3 to emphasize the solution which best fits both training responses.  

 

 

Fig. 6.8 - Response comparison for the models identified using approach C to the experimental 

device responses to signals 11-16, given in subplots (a)-(f) respectively. 

 

The MSE and Sub-modal models identified with this method are given in Table 6.3, with the 

evaluation of the MSE model against the testing signals graphically displayed in Fig. 6.8. Some 

variation does exist in the parameter values identified between the two models, the largest being a 

23% difference in the values identified for the linear stiffness parameter. Despite these differences, 

the models produce very similar, low-error results in both the validation phase and when compared 
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with the evaluation signals. This suggests that the range of variation expressed by these models is 

able to produce a stable identification of the NES device behavior, including the input energy 

threshold. In contrast with the results identified from the other identification approaches, which 

yield widely varied evaluation results with parameter variations on a similar level as this sequential 

identification method, the results of this method are remarkably robust. Although there are some 

responses for which the MSE is still fairly high, such as with signal 16, the responses collectively 

report much lower error values than those determined for the models generated by the other 

identification approaches. The MSE model response to signal 16 displays the limitations of the 

method. Though the cross-validation approach mitigates errors due to overfitting of the model, it 

cannot completely eliminate them, particularly for models such as the NES, where small 

adjustments in the parameters can shift the bifurcation in the response. The result of this inability 

to perfectly tune the model is particularly evident in the response of the high amplitude BLWN 

signal, as it randomly activates both facets of the NES response. The MSE value for this signal is 

notably quite high in all cases, though it happens to be particularly high for this case. However, 

despite having an elevated MSE value, the estimated response overestimates the displacements of 

the device, as shown in Fig. 6.8, thereby giving a conservative estimate of the response behavior. 

  

Table 6.3 – Evaluation results for models identified using identification approach C. The MSE 

for the selected models are given with respect to the validation signal, as well as with respect to 

the evaluation signals.  

Identified Models MSE/108 for Evaluation Signals 

Selected 

Model 

𝑐𝑣 𝑐𝑓 𝑘 
𝑧

105
 

MSE

108
 

11 12 13 14 15 16 

[
Ns

m
] [N] [

Ns

m
] [

N

m3
] [-] 

MSE 0.296 0.075 43.2 6.23 0.7 1.2 0.6 1.1 17.1 5.6 113.6 

Sub-Modal 0.344 0.064 33.1 6.54 0.9 1.3 0.7 6.9 10.5 2.0 68.6 

 

The assumption that sensitivity should drive the selection of signal order for identification 

approach C can be further validated by the substitution of signal 10 in the training phase with 

another signal identified as having mid-range sensitivity, such as a band-limited white noise 

(BLWN) signal generated at the same amplitude as signal 16 but from a different random noise 

sequence. The parameter sensitivities for 𝑐𝑣, 𝑐𝑓, 𝑘, and 𝑧 in response to this signal are 0.22, 1.00, 
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0.34, and 0.62, respectively.  The results of this analysis are given in Table 6.4 and Fig. 6.9. The 

models generated and the comparisons with the evaluation signals are similar to those obtained 

when signal 10 is used in the training phase. The only significant differences in the results are in 

the MSE determined by a comparison to signal 14 and 16. For signal 14, the MSE increased in 

comparison to that expressed in the models generated from signal 10, which is shown in Fig. 6.9(d) 

as by a phase shift in the latter half of the response. For signal 16, particularly when the Sub-modal 

model is used, the error of the selected model in response to these signals is much smaller than 

that expressed with the models generated using signal 10 in the training phase. This is likely due 

to the similarity of the training signal to the evaluation signal. In general, as shown in Fig. 6.9 for 

the MSE model, the generated models still consistently express the overall trends in NES behavior.  

 

 

Fig. 6.9 - Response comparison for the models identified using approach C to the experimental 

device responses to signals 11-16, given in subplots (a)-(f) respectively. Alternate BLWN signal 

is used to identify the final simulated model.  

 

It is important to note that although identification approach C is the most consistent and 

robust approach overall, it may not be as effective when the training phase incorporates signals 

with low sensitivity. Here, based on empirical evidence, I tentatively define low sensitivity to be 
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signals in which the majority of the parameters have a maximum sensitivity index of less than 20%.  

When that is the case, the candidate models generated by the training phase are not of high enough 

quality to be adequately representative of the signal for which they are trained. The validation 

phase is therefore equally ineffective at drawing together a large enough sample of high-quality 

models to guarantee a robust result. I likewise suggest that training signals be selected from those 

in which the maximum sensitivity of at least half of the parameters is between 20% and 80%. 

Validation signals, which should be of high sensitivity, are suggested to have a maximum 

sensitivity of above 80% in at least half of the parameters. 

Table 6.4 – Evaluation results for identification approach C when a BLWN signal is used for 

training. The MSE for the selected models are given with respect to the validation signal, as well 

as with respect to the evaluation signals.  

Identified Models MSE/108 for Evaluation Signals 

Selected 

Model 

𝑐𝑣 𝑐𝑓 𝑘 
𝑧

105
 

MSE

108
 

11 12 13 14 15 16 

[
Ns

m
] [N] [

Ns

m
] [

N

m3
] [-] 

MSE 0.316 0.066 46.1 6.29 0.7 1.1 0.5 4.0 35.6 10.3 39.0 

Sub-Modal 0.311 0.066 29.5 6.73 0.8 1.4 0.7 8.6 22.6 2.4 29.1 

 

To compare these identification approaches I have considered 5,000 prior distributions. 

However, in practical identification scenarios, I ideally would aim to apply this approach using a 

limited number of identification trials. To determine whether this approach would still be valid for 

that scenario, a new sample of just five means and their ten associated coefficients of variation is 

drawn from the prior distribution of the parameters independent of the original 5,000 samples, 

according to the same process described in Section 6.2.2. Identification approach C is implemented 

with these 50 samples using signal 10 in the training phase and signal 9 in the validation phase, 

resulting in an MSE model in SI units of  

0.664�̈� + 0.344�̇� + 0.065tanh(200�̇�) + 34𝑥 + 651,000𝑥3 = −0.664�̈�𝑔, (6. 11) 

which generates MSE values {1.3, 0.7, 6.5, 10.9, 2.1, 79.1}×108 in response to evaluation signals 

11-16, respectively. The model generated, and the comparison with the evaluation signals, are 

nearly identical to those of the Sub-modal model generated with all 5,000 identification trials, with 

the exception of the response to evaluation signal 16, which has a lower MSE result than is shown 

in Table 6.3, but is still elevated in comparison with the other evaluation signals. In this case, an 
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elevated MSE occurs due to an overestimation by the selected model of the response behavior in 

the final 10 sec of the BLWN response. However, the behavior during the majority of the response 

is well-represented. Overall, these results demonstrate that identification approach C can be used 

to generate robust models of the NES device which are representative of the device behavior.   

6.4 Conclusions 

Herein, I have developed and demonstrated a method for robustly identifying the model of a NES 

device using the UKF and experimental data. The NES has complex behavior, and exhibits dual 

stability about a particular input energy threshold. My approach leverages information available 

from a sensitivity analysis on the parameters, performed in advance of experimentation, to select 

device responses to be used in training and validating a model of the device. By comparing three 

approaches to identifying the model, a robust and consistent procedure is suggested and validated. 

This approach is shown to fit the response behavior of the identified model to the full range of 

responses expected from the experimental system, as opposed to tuning the model toward the 

training signal only. The method is also shown to provide a robust means to generate models for 

this class of devices with complex chaotic behavior, and enable the experimental identification of 

a model which can accurately estimate the desired range of NES behavior with just a few 

identification trials. 

 Through the evaluation of several options for identification approaches I have also 

demonstrated that, although the UKF is a powerful tool for identification, it must be used with care 

and judgement. In every identification approach, it is shown that small variations on the prior 

distributions on the parameters may produce significant variability in the identified models. These 

models may mischaracterize the behavior of the device completely, especially if training and 

validation steps are not properly implemented. It is only when appropriate consideration is given 

to the sensitivity of the training signals to the parameters that a robust method for model 

identification could be generated. This consideration is especially critical here due to the 

complexity of the dynamic behavior of the NES device. 

 The procedure developed herein provides an effective solution to the problem of over-

fitting during UKF identification in experimental dynamic systems. Other potential methods to 

combat this effect exist and have been evaluated numerically, such as the introduction of a 

regularization term into the algorithm [15]. As these identification algorithms progress beyond 
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experiments to implementations, such methods must be further explored to enhance the robustness 

and accuracy of the results. Further exploration on this topic, through variations on the Bayesian 

approximation algorithm, is the topic of the next chapter. 
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 COMPARISON OF VARIATIONAL INFERENCE AND UNSCENTED 

KALMAN FILTER FOR NONLINEAR STRUCTURAL SYSTEMS 

Although several approaches exist to implement Bayesian inference on practical identification and 

monitoring problems, research in the predictive modeling of civil engineering structures has 

typically focused on methods which operate from either an analytical or a sampling perspective. 

As discussed in Chpts. 2 and 3, analytical inference techniques refer to those linear and nonlinear 

identification methods inspired by the Kalman filter [1], which was developed in the 1960s as the 

optimal filter for linear systems whose model and observation uncertainties can be described as 

Gaussian. Kalman filter methods have the common benefit of computational speed, allowing for 

near real-time structural identification, but are limited by the assumptions used to generate their 

analytical framework. Sampling techniques, such as particle filters [2] or sequential Monte Carlo 

algorithms [3], were developed to remove the barriers imposed by this analytical framework by 

drawing the necessary statistical information from a set of weighted sample points, or particles, to 

enable the use of any stochastic model of the system. However, this enhanced representation of 

the system comes at the cost of increased computational time and limited scalability to larger 

problems, which create additional barriers to the application of these methods with practical 

structural systems [4]–[7].  

Optimization-based techniques to Bayesian predictive modeling have recently been 

developed which show great potential for balancing the computational speed, accuracy, and 

scalability necessary for practical implementation to civil engineering structures. These 

approaches, collectively referred to as variational inference, are well-recognized in the statistics 

community as a computationally efficient alternative to Monte Carlo (MC) methods for the 

inference of the hidden states, initial conditions, and physical parameters of a system, 𝐳, from 

observations of its behavior, 𝐲 [8]. The base variational inference algorithm, as well as the state-

of-the-art automatic differentiation variational inference (ADVI), have been defined in Chpt. 3.   

In this chapter, I apply ADVI to the identification of a simulated, single-degree-of-freedom 

Bouc-Wen system subject to base vibration. This system was selected as an introductory study of 

the algorithm in comparison with techniques more common to Bayesian structural identification, 

and is a common case study in developing similar comparisons between analytical and sampling 

methods [9],[10]. In particular, I draw a comparative analysis between the ADVI and the UKF 
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algorithms to address the relative accuracy of the identification methods, repeatability of the results 

given variations on the prior information, robustness to varying levels of measurement noise, and 

resilience to incorrect assumptions on the process noise between the two approaches. By so doing, 

I simulate many of the issues faced by experimentalists in applying these inference approaches 

and demonstrate the relative performance and flexibility of the two algorithms.  

The chapter is organized as follows: Section 7.1 defines the simulated case study used to 

characterize the accuracy and reliability of the two inference approaches; and Section 7.2 discusses 

the influence of process noise assumptions and measurement noise intensities on the reliability of 

the results from each approach. The main conclusions are summarized in Section 7.3. The content 

of this chapter has been adapted from the published work of the author [11].  

7.1 Case Study: Single-Degree-of-Freedom Bouc-Wen System 

The relative performance of the ADVI and UKF algorithms is herein evaluated through the 

identification of the states 𝐳 = [𝐱, �̇�, 𝐫] and the parameters, 𝜽 = [𝑐, 𝑘, 𝛽, 𝑛, 𝛾], from the Bouc-Wen 

system 

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑟(𝑡) = −𝑚�̈�𝑔(𝑡), (7. 1) 

where the term �̈�𝑔 is representative of an arbitrary base acceleration input and the states 𝐱 and �̇� 

describe the physical displacement and velocity of the system, respectively. The state 𝐫 describes 

the non-physical Bouc-Wen hysteretic component of the motion, the dynamics of which are 

expressed by 

�̇�(𝑡) = �̇�(𝑡) − 𝛽|�̇�(𝑡)||𝑟(𝑡)|𝑛−1𝑟(𝑡) − 𝛾�̇�(𝑡)|𝑟(𝑡)|𝑛. (7. 2) 

A schematic diagram of this system is shown in Fig. 7.1. For this simulated case study, the 

true parameters of the system are set in accordance with those used in [9], such that the physical 

parameters of mass, stiffness, and damping are given values of 𝑚 = 1 kg, 𝑐 = 0.3 Ns/m, and 𝑘 =

9 N/m, respectively. The non-physical Bouc-Wen shape parameters are assigned the values of  

𝛽 = 2 m-2, 𝑛 = 2, and 𝛾 = 1 m-2. I choose to observe only the absolute acceleration of the system, 

which is shown in Fig. 7.2(c) and given as 

𝑦(𝑡) = −1
𝑚⁄ (𝑐�̇�(𝑡) + 𝑘𝑟(𝑡)). (7. 3) 
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Fig. 7.1. Schematic Diagram of the SDOF Bouc-Wen System 

 

Nondimensionalizing the equations of motion can ease the computation of the approximate 

posterior for many inference approaches, as it often puts the states and parameters on a similar 

scale and allows the inference algorithm to operate in a reduced space of potential solutions (see 

Chpt. 5) . I therefore nondimensionalize Eq. (7.1) – Eq. (7.3) using the time scale 𝑡𝑐 = √𝑘 𝑚⁄ =

𝜔𝑛 = 3 and the length scale 𝑥𝑐 = 0.05 m, yielding transition and observation equations 

�̈̅�(𝜏) + 2𝜉�̇̅�(𝜏) + �̅�(𝜏) = −
�̈�𝑔(𝜏 𝜔𝑛⁄ )

𝑥𝑐𝜔𝑛
2

, (7. 4) 

�̇̅�(𝜏) = �̇̅�(𝜏) − 𝛽𝑥𝑐
𝑛|�̇̅�(𝜏)||�̅�(𝜏)|𝑛−1�̅�(𝜏) − 𝛾𝑥𝑐

𝑛�̇̅�(𝜏)|�̅�(𝜏)|𝑛, (7. 5) 

�̅�(𝜏) = −2𝜉�̇̅�(𝜏) − �̅�(𝜏), (7. 6) 

where 𝜉 = 𝑐 2𝑚𝜔𝑛⁄ = 0.05 is the damping ratio. The length scale is selected as representative of 

the expected maximum amplitude of response for the Bouc-Wen system, exemplifying a value an 

experimentalist may select for nondimensionalization when no other obvious relationships are 

present to leverage in the nondimensionalization process. The problem is now transformed such 

that the states and parameters we wish to infer are �̅� = [�̅�, �̇̅�, �̅�] = [𝐱1, 𝐱2, 𝐱3]  and �̅� =

[𝜉, 𝜔𝑛, 𝛽, 𝑛, 𝛾] = [𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5]. The transition dynamics can therefore be expressed in state-

space form as  

[
�̇�1

�̇�2

�̇�3

] =

[
 
 
 

𝐱2

−2𝜃1𝐱2 − 𝐱3 −
�̈�𝑔(𝜏 𝜃2⁄ )

𝑥𝑐𝜃2
2

𝐱2 − 𝜃3𝑥𝑐
𝑛|𝐱2||𝐱3|

𝜃4−1𝐱3 − 𝜃5𝑥𝑐
𝑛𝐱2|𝐱3|

𝜃4]
 
 
 

. (7. 7) 

Inference on this continuous system is performed using an Euler discretization scheme at a 

sampling frequency of 𝑓𝑠 = 128  Hz. Although some methods are available for inference on 
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continuous systems, this strategy was selected to preserve a practical comparison of common 

applications of the UKF and variational inference methods.  

 

 

Fig. 7.2. Base acceleration and structural responses used in this case study. (a) base acceleration 

(b) Bouc-Wen hysteresis (c) noise-contaminated response acceleration 

 

For the purpose of identification, a base excitation should be selected such that the resulting 

system response contains sufficient information to identify all parameters of the system. This 

condition is a particularly important consideration for nonlinear systems, as variations in the input 

signal may allow the system to express different aspects of its nonlinear behavior, as discussed in 

detail in Chpt. 5. In accordance with these considerations, I select a band-limited white noise 

(BLWN) base excitation signal with a maximum amplitude of ~10 m/s2 and a frequency cut-off 

of 10 Hz, as shown in Fig. 7.2(a). The selection of the BLWN excitation is primarily made based 

on the indications of parameter identifiability from a Sobol’ sensitivity analysis, see Chpt. 5, 

conducted using the python library SALib [12]. Of the variety of signals tested, the BLWN 

excitation produced a response with the highest level of sensitivity to all parameters, and 

particularly to the nonlinear shape parameters. The results of the Sobol’ analysis for the BLWN 

signal are given in Fig. 7.3, which shows that the response of the Bouc-Wen system to this input 

signal is sensitive to variations in all parameters, though it is significantly more sensitive to the 

parameters 𝜉 and 𝜔𝑛. These results indicate that both algorithms should be able to identify all 

parameters of the system, though the identification will be less reliable, or more likely to result in 

different identified parameters given variations on the prior, for the nonlinear parameters. Further 

indications of system identifiability are given in Fig. 7.2(b). The response in this figure shows that 
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the BLWN input excites the system into its nonlinear range of response, and should therefore 

contain information concerning all parameters of interest.  

 

 

Fig. 7.3. First order sensitivity of the BLWN response to the system parameters  

7.1.1 Parametric Studies 

Understanding the performance of an inference algorithm in the face of model uncertainty and 

measurement error allows an experimentalist to determine where various algorithms can be applied 

for greatest effect. These practical issues pervade experiments at all scales and are therefore 

specifically evaluated in this comparative study of the UKF and variational inference techniques.  

Model uncertainty describes the difference between the computational model used for inference 

and the true experimental system from which data is being collected. It is often difficult to 

characterize this uncertainty robustly in an experimental setting and as such, the model uncertainty 

is often over- or under-estimated, which can have a large impact on the accurate inference of the 

system model.  

To study this effect in simulation, the ‘true’ system model is developed such that it includes 

an additive, zero-mean Gaussian model uncertainty term on the states, given as 𝐰𝑡~𝑁(0,𝐐), 

where 𝐐 is the process noise covariance matrix. The standard deviation of this term with respect 

to each of the states is selected such that the imposed noise represents a 1%, 2%, and 2% root-
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mean-square noise-to-signal ratio (RMS-NSR) on the displacement, velocity, and Bouc-Wen 

displacement, respectively. This scaling factor on the imposed RMS noise is expressed by the 

vector 𝐰RMS−NSR = [0.01, 0.02, 0.02]. The additive model uncertainty term is then given by 

𝐰𝑡~𝑁 (0, diag (√Δ𝜏 ∙ 𝐰RMS−NSR ∙ RMS(�̅�))
2
) , (7. 8) 

where the √Δ𝜏 scaling factor is included to represent the uncertainty associated with discretizing 

the continuous ODE [13]. This noise is then propagated through the equation of motion for the 

computational model to generate the ‘true’ system response. The difference between the true 

response and the response of the computational model can be seen in Fig. 7.2(b). To study the 

impact of over- and under-estimating the true process uncertainty, the modeling assumption on the 

process noise covariance is varied according to  

𝐐 = diag(√Δ𝜏 ∙ 𝐰RMS−NSR ∙ RMS(�̅�) ∙ 𝜆𝑤)
2
, (7. 9) 

where 𝜆𝑤 ∈ [80, 90, 100, 110, 120]% expresses the degree to which the true process noise in Eq. 

( 7.9 ) is over- or under-estimated. This process noise covariance matrix, modified by the 

appropriate 𝜆𝑤, is assumed known for all parameter studies and is taken as constant throughout 

the inference process. 

Measurement uncertainty describes the variations in our observations of the system which 

are not representative of its true behavior and is commonly attributed to noise in the sensors or 

testing environment. Although this uncertainty is simpler to estimate experimentally, it can be 

difficult to control, leading to observation signals with very high NSRs. To study the impact of 

measurement uncertainty on the selected inference algorithms, the measurement noise covariance 

of the true response data used for inference is varied according to  

𝐑 = (vRMS−NSR ∙ RMS(�̅�))
2
, (7. 10) 

where vRMS−NSR ∈ [0.1, 5, 10, 20, 30, 40, 50]% . This measurement noise covariance matrix is 

assumed known for all parameter studies conducted herein and is taken as constant throughout the 

inference process.  

For each parameter study, one uncertainty measure is held constant while the other is varied. 

The base example to connect these two parameter studies is selected as the case in which 𝜆𝑤 =

100% and vRMS−NSR = 20%, representing the case in which the model uncertainty is correctly 
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characterized and the measurement uncertainty is moderately high. The results from these 

parameter studies are explored in detail in Section 7.2.  

7.1.2 Implementation of the Selected Inference Methods 

Knowing the two approaches to have distinct differences in their means of approximating the 

inference process, I seek to make an equitable comparison between them to assess their relative 

proficiency in predictive modeling for structural systems. Understanding the reliability of these 

algorithms with respect to reasonable variations on the selected prior is a key aspect of this 

assessment, as the choice of prior distributions on the states and parameters can have a large impact 

on the results obtained from the UKF and variational inference methods (see Chpts. 5 and 6). In 

practice, low variance prior distributions can often be determined for the states, but prior 

knowledge of the parameters is usually far less explicit. The robustness of these methods to 

variations in the priors on the parameters is therefore evaluated by selecting 50 distributions for 

the parameter priors which are representative of likely assumptions that an experimentalist might 

make in defining this problem. These 50 prior distributions are used with each case in the 

parameter studies. In all cases, prior distributions on the dynamic states are uniformly set as 

𝑥𝑖(0)~𝑁(0, 0.252), as the system is known to be at rest prior to excitation.  

The prior distributions on the parameters are selected such that the representation of the 

priors is equivalent between the two algorithms. The 50 preliminary mean values are first selected 

using a Latin hypercube (LH) sample on 𝜉 𝜖[0.1,1], 𝜔𝑛 𝜖[0,10], 𝛽 ∈ [0,25], 𝑛 𝜖[2,6] and 𝛾 ∈

[0,25] . Different distributional representations are then selected for each algorithm to 

accommodate their implementation. In the case of the UKF, all prior distributions must be 

Gaussian. To accommodate this constraint while also reflecting the existence of the parameters in 

the positive domain, inference is performed on the logarithm of the parameters, resulting in the 

prior distributions ln(𝜉) ~ 𝑁(ln (𝜇𝜉), 𝜎𝜉
2) , ln(𝜔𝑛)~ 𝑁(ln (𝜇𝜔𝑛

), 𝜎𝜔𝑛
2 ),  ln(𝛽)~ 𝑁(ln (𝜇𝛽), 𝜎𝛽

2), 

ln(𝑛)~ 𝑁(ln (𝜇𝑛), 𝜎𝑛
2), and ln(𝛾)~ N(ln (𝜇𝛾), 𝜎𝛾

2), where the means 𝜇𝑘 are members of the LH 

sample and the variance terms 𝜎𝑘
2 are hand-selected to represent the uncertainty level a typical 

experimentalist might assign to the parameter. Due to the flexibility of variational inference, the 

priors on the parameters can be expressed directly with a lognormal distribution as 

𝜉~ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(ln (𝜇𝜉), 𝜎𝜉
2) , 𝜔𝑛~ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(ln (𝜇𝜔𝑛

), 𝜎𝜔𝑛
2 ),  𝛽~ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(ln (𝜇𝛽), 𝜎𝛽

2), 
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𝑛~ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(ln (𝜇𝑛), 𝜎𝑛
2), and 𝛾~ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(ln (𝜇𝛾), 𝜎𝛾

2). Inference then proceeds on the 

parameters directly instead of on their natural logarithm. It should be noted that the support of the 

prior distributions selected for VI are constrained to a subset of ℝK. To allow for full support in 

ℝK when implementing the ADVI algorithm (see Section 3.2), the parameters are transformed 

within the algorithm according to 

�̂� =  𝑻𝑳𝑵(𝜽) = 𝐥𝐧(𝜽) . (7. 11) 

The emission and transmission probability models are represented slightly differently between the 

two inference algorithms. For the UKF these densities are described primarily by their means, 

which are given by the deterministic functions  

𝐟(�̅�𝑘, ln(�̅�) , �̈�𝑔,𝑘) = [

𝑥1

𝑥2

𝑥3

]

𝑘−1

+ ∆𝜏

[
 
 
 
 

𝑥2

−2�̅�1𝑥2 − 𝑥3 −
�̈�𝑔((τ − 1) �̅�2⁄ )

𝑥𝑐�̅�2

𝑥2 − �̅�3𝑥𝑐
�̅�4|𝑥2||𝑥3|

�̅�4−1𝑥3 − �̅�5𝑥𝑐
�̅�4𝑥2|𝑥3|

�̅�4]
 
 
 
 

𝑘−1

, (7. 12) 

𝐡(�̅�𝑘, ln(�̅�)) = −2�̅�1,𝑘𝑥2,𝑘 − 𝑥3,𝑘. (7. 13) 

The covariance associated with these mean terms is given by the process noise and measurement 

noise distributions, as defined in Eq. (7.9) and Eq. (7.10). Note that the structure of the UKF 

algorithm phrases the augmented state as a multivariate Gaussian, where dependence is implied 

across the states and parameters. Using variational inference, the emission and transmission 

probabilities for this system can be understood by 

𝑝(𝑥1,𝑘|�̅�𝑘−1, �̂�) = 𝑁(𝑥1,𝑘| 𝑥1,𝑘−1 + Δ𝜏(𝑥2,𝑘−1), 𝑤1
2),                                                             (7. 14) 

𝑝(𝑥2,𝑘|�̅�𝑘−1, �̂�) =                                                                                                                             

𝑁 (𝑥2,𝑘 | 𝑥2,𝑘−1 + Δ𝜏 ( −2𝑒�̂�1𝑥2,𝑘−1 − 𝑥3,𝑘−1 −
�̈�𝑔(τk−1 𝑒�̂�2⁄ )

𝑥𝑐𝑒�̂�2
) ,𝑤2

2) , (7. 15)
 

𝑝(𝑥3,𝑘|�̅�𝑘−1, �̂�) = 𝑁(𝑥3,𝑘 |𝑥3,𝑘−1                                                                                                             

+Δ𝜏 (𝑥2,𝑘−1 − 𝑒�̂�3𝑥𝑐
𝑒�̂�4|𝑥2,𝑘−1||𝑥3,𝑘−1 |

𝑒�̂�4−1
𝑥τ−1,3 − 𝑒�̂�5𝑥𝑐

𝑒�̂�4𝑥2,𝑘−1|𝑥3,𝑘−1 |
𝑒�̂�4

) ,𝑤3
2) , (7. 16) 

𝑝(𝑦𝑘|�̅�𝑘, �̂�) = 𝑁(𝑦𝑘 |  − 2𝑒�̂�1𝑥2,𝑘 − 𝑥3,𝑘, 𝑣
2), (7. 17) 

where the assumption of independence across the states and parameters is enforced by the 

separation of the distributions expressed in Eq. (7.14)-Eq. (7.17). 
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7.2 Results and Discussion 

As discussed in Section 7.1.1, the goal of this case study is to ascertain the relative effectiveness 

of the UKF and variational inference methods in identifying the hidden states �̅� and parameters �̅� 

from the responses of the nondimensionalized Bouc-Wen system when measurement noise levels 

and process noise assumptions are varied. To gain a preliminary understanding of the results, I 

first examine the case in which the measurement uncertainty factor is set to vRMS−NSR = 0.1% and 

the process uncertainty factor is set to 𝜆𝑤 = 100%. This scenario represents the most ideal case 

of those studied herein, as the selected uncertainty factors reflect a situation in which the difference 

between the model and the true system can be defined with certainty and the measurements can be 

trusted explicitly.  

For each inference method, 50 identification trials are conducted corresponding to the 50 

prior distributions on the parameters defined in Section 7.1.2. For each identification trial, the 

identified model is selected as the one which maximizes the posterior probability on the parameters, 

or in other words, the model which minimizes the 0-1 loss [14]. The resulting 50 candidate models 

are then used to re-simulate the response of the inferred system to the given BLWN base excitation. 

The system models inferred by each algorithm which respectively result in the minimum RMS 

error on the states are shown in Fig. 7.4 in terms of the prior and posterior distributions on the 

parameters. It should be noted that the modeling approach for the parameters in the UKF allows 

for correlations between them which are not expressed in the variational inference method, where 

the parameters are explicitly assumed independent through the definition of their variational family. 

Fig. 7.4 therefore shows the marginal posteriors of the respective parameters for the UKF to allow 

for a general comparison with the variational inference approach. The results suggest that both 

models express similar levels of certainty and accuracy in their posterior approximations of the 

linear parameters 𝜉 and 𝜔𝑛. The two algorithms also appear to produce similar results in their 

expression of the nonlinear parameters 𝛽, 𝑛, and 𝛾, though the results from variational inference 

express greater certainty. Although slight differences exist between the identified models, they 

result in nearly identical approximations of the system response, as shown in Fig. 7.5. Here, the 

true response of the Bouc-Wen system is compared with model responses which are re-simulated 

from the posterior modes given in Fig. 7.4. These re-simulated responses show minimal variation 

from the true response of the system, suggesting that both of the inferred models are adequate 

solutions. 
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Fig. 7.4. Priors and posteriors of the minimum RMS error identification trials. (a-e) UKF 

identification trials (f-j) variational inference identification trials. 

 

 

Fig. 7.5. Comparison of the true system response with model responses re-simulated from the 

minimum RMS error identification trials. (a) displacement response (b) velocity response (c) 

Bouc-Wen displacement response 
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However, the effectiveness of an inference approach lies not only in its best performance, 

but in the repeatability of that performance given realistic variations on the assumptions used in 

the model. I therefore analyze the relative accuracy of the UKF and variational inference methods 

over all 50 identification trials, as shown in Fig. 7.6 and Fig. 7.7. Fig. 7.6 gives the distribution of 

the posterior modes for all identification trials. In large part, these data show what we might expect 

from such an ideal case in which our measurement error is low and our modeling error is known. 

The distributions of the modes around all parameters are fairly well concentrated, particularly for 

the linear parameters 𝜉 and 𝜔𝑛 to which the sensitivity of the response of the system is known to 

be high. There are no significant outliers, which indicates that both the UKF and variational 

inference trials did not begin to diverge in their search for the true system model. It is interesting 

to note, however, that the relative spread of posterior modes in the nonlinear parameters resulting 

from the UKF is wider than those identified with variational inference. These results suggest that 

the variational inference method is better able to consistently identify parameters with relatively 

low levels of practical identifiability than the UKF.  

 

 

Fig. 7.6. Distribution of the posterior modes on the parameters for all 50 identification trials 
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A final comparison of the two inference methods in this ideal case is given in Fig. 7.7. Here, 

the RMS error in the states for each inference trial is plotted in a case-by-case comparison between 

the UKF or variational inference methods. The data clearly show that, regardless of the variations 

in the parameters, variational inference consistently provides a low-error response with respect to 

the true states. The UKF is able to match this performance for the majority of the identification 

trials, but experiences larger variations in error due to the variations in the parameter posteriors 

shown in Fig. 7.6. These results suggest that even though the posteriors may not precisely match 

the true parameters, the variational inference approach is more adept at consistently finding 

parameter combinations which locally minimize the error between the true response and the re-

simulated model.  

 

 

Fig. 7.7. Comparison of the RMS error on the states for the 50 identification trials. (a) 

displacement comparison (b) velocity Comparison (c) Bouc-Wen displacement comparison 

 

The results from this preliminary study focusing on a particular case of model and 

measurement uncertainty allow us to approach the results from the parameter studies on these noise 

terms from a more informed perspective.  

7.2.1 Influence of Process Noise Assumptions 

In this study, I evaluate the effect of process noise assumptions during inference on the resulting 

identified models. To accomplish this, I take the measurement uncertainty factor as constant at 

vRMS−NSR = 20%, representing a moderately high level of measurement noise, and allow the 

process uncertainty factor to vary according to 𝜆𝑤 ∈ [80, 90, 100, 110, 120]%. The results of this 

study are given in Fig. 7.8 and Fig. 7.9.  
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Fig. 7.8 shows the accuracy of the posterior models identified for each inference method 

at each level of variation in the assumptions on process noise. The information in this graph can 

be viewed as a consolidated form of the information presented in the histograms of Fig. 7.6. For 

each value of 𝜆𝑤, the percentage of models for which all parameters exhibit less than a 10% error 

from their true values are recorded by the black line. The percentage of models for which the 

parameters exhibit other levels of error are recorded similarly, in varying shades of grey. The 

results show a similar level of accuracy and consistency between the two inference methods, 

though the increase in suitable models with error tolerance for the variational inference approach 

suggests a larger concentration of models close to, if not exactly meeting, the correct solution. One 

can additionally observe from these plots that the UKF is relatively indifferent to process noise in 

terms of the accuracy of the models produced, and settles at around 5% of models having an 

accuracy of 50% or better regardless of the assumption on the process noise covariance. The 

variational inference method, in contrast, appears to benefit from an underestimation of the process 

noise covariance, yielding 10% of models having an accuracy of 50% or better when the process 

noise covariance is assumed at 80% of its true value, as opposed to the 6% of models with accuracy 

50% or better achieved when the process noise is assumed to be 120% of its true value.  

 

 

Fig. 7.8. Percentage of inference trials yielding models whose parameters are all less than a 

certain percentage error, shown as the process noise uncertainty factor (𝝀𝒘) is varied. (a) UKF 

Models (b) VI Models. 

 

Further insight into the robustness of these methods with respect to incorrect process noise 

assumptions is given in Fig. 7.9. Similar to a box-and-whisker plot, this figure shows the minimum 

value, first quartile, median, third quartile, and maximum value of the RMS error in the states at 

each level of 𝜆𝑤 . The results show that, in addition to the nominally higher degree of model 

accuracy suggested by Fig. 7.8, variational inference also produces models which more 
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consistently achieve low errors in comparison with the true response of the system. This behavior 

is particularly evident through a comparison with the UKF results, as the third quartile of the 

variational inference model responses lie consistently below the median of the UKF model 

responses for all system states. It is also significant to note the large number of outliers produced 

by the UKF in comparison with variational inference. In combination with the results from Fig. 

7.8, this result suggests that the UKF experiences a greater number of outliers during model 

generation which do not generate locally optimal solutions in relation to the true system response. 

Variational inference, in contrast, seems to generate models which are more representative of the 

true behavior of the system, despite having a similar rate of parameter error to the UKF models. 

Even when an accurate model is not produced, this method finds locally optimal models which 

reduce the error of the inferred model relative to the true response. Overall, variational inference 

appears to produce superior results when assumptions on the process noise are varied.  

 

 

Fig. 7.9. Statistics of the RMS error in the states given the identified models for each inference 

method when the process noise uncertainty factor (𝝀𝒘) is varied. 

7.2.2 Influence of Measurement Noise Level 

For the second parameter study, I evaluate the impact of measurement noise in the response data 

on the resulting identified models. To study this effect, I take the process uncertainty factor as 

constant at 𝜆𝑤 = 100%, representing a correct assumption on the process noise covariance, and 

allow the measurement noise to vary according to vRMS−NSR ∈ [0.1, 5, 10, 20, 30, 40, 50]%. The 

results of this study are given in Fig. 7.10 and Fig. 7.11.  
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Fig. 7.10. Percentage of inference trials yielding models whose parameters are all less than a 

certain percentage error, shown as the measurement noise uncertainty factor (𝐯𝐑𝐌𝐒−𝐍𝐒𝐑) is 

varied. (a) UKF Models (b) VI Models. 

 

Fig. 7.10 shows the accuracy of the posterior models identified for each inference method 

at each level of variation in the measurement noise. The results express the relative levels of 

accuracy and rates of degradation in accuracy exhibited by each approach. The UKF achieves a 

peak level of accuracy and consistency at 5% measurement noise with only around 15% of models 

having an accuracy of 50% or better, while variational inference peaks at 0.1% measurement noise 

with around 45% of models having an accuracy of 50% or better. This lack of performance in the 

UKF is compensated by a slower rate of degradation in performance. For measurement noise levels 

with vRMS−NSR = 30% or greater, variational inference does not produce any models with at least 

50% accuracy, whereas approximately 5% of UKF models can still claim to be within 50% of the 

true parameters. These results suggest that variational inference is a very effective tool in cases of 

moderate measurement uncertainty, but that the UKF is much more reliable for cases where 

measurement uncertainty is extremely high.  

These results are in agreement with those given in Fig. 7.11. This plot shows that the error 

in the states as a result of the inferred models increases significantly for the variational inference 

cases when measurement noise levels are greater than or equal to 30%. The error resulting from 

the UKF inference cases, in contrast, increases slowly and consistently across all measurement 

noise levels tested. It is only for cases of low to moderate measurement noise, where vRMS−NSR ∈

[0.1, 5, 10, 20]%, that the performance of the variational inference method exceeds that of the 

UKF. However, as was mentioned in the previous parameter study, the inferred UKF responses 

show a greater number of outliers than those of the variational inference method. The consistency 

of this result between the case studies suggests that the variational inference method is more adept 

at consistently finding parameter combinations which locally minimize the error between the true 
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response and the re-simulated model, even though the local minima may shift away from the true 

solution in the presence of excessive measurement noise. 

 

 

Fig. 7.11. Statistics of the RMS error in the states given the identified models for each inference 

method when the measurement noise uncertainty factor (𝐯𝐑𝐌𝐒−𝐍𝐒𝐑) is varied. 

7.2.3 Comparison of Variational Inference Results with Those Using More Informative 

Priors 

The results expressed in previous sections give a one-to-one comparison of the UKF and 

variational inference algorithms, expressing the problem formulation for both algorithms in terms 

compatible with the more constrained UKF representation. However, part of the value of the 

variational inference approach is its ability to offer a more precise expression of both the prior and 

posterior uncertainty on the states and parameters. In this section, I demonstrate the impact of this 

flexibility by reimplementing the variational inference approach with prior distributions on the 

parameters which take full advantage of the level of knowledge that would be available to an 

experimentalist faced with this identification problem. Particularly, the parameters 𝜉  and 𝑛 

parameters have clear domains of 𝜉𝜖[0,1]  and 𝑛𝜖[1,6]  for this case study. With variational 

inference, preliminary knowledge concerning these parameters can be described by the prior 

distributions by 𝜉~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝜇𝜉) and 𝑛~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝜇𝑛), where 𝜇𝜉  and 𝜇𝑛 are as described 

in Section 7.1.2. This expression of the prior probability requires the definition of the 

transformation  

�̂�𝑈 =  𝑇𝑈(𝜽𝑈) = ln (
𝜽𝑈 − 𝑎

𝑏 − 𝜽𝑈
) , (7. 18) 
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to allow for full support in ℝK when implementing ADVI, where 𝜽𝑈 refers to the parameters with 

uniform prior distributions and 𝑎 and 𝑏 refer to the respective lower and upper bounds on the 

uniform prior. All other parameters are given the same prior distributions as expressed in Section 

7.1.2. Inference using these prior distributions is then repeated on the same parameter studies 

examined in previous sections.  

 

 

Fig. 7.12 Percentage of inference trials yielding models whose parameters are all less than a 

certain percentage error. (a) 𝝀𝒘 is varied for VI models with lognormal priors, (b) 𝝀𝒘 is varied 

for VI models with lognormal priors incorporating uniform priors, (c) 𝐯𝐑𝐌𝐒−𝐍𝐒𝐑 is varied for VI 

models with lognormal priors, (d) 𝐯𝐑𝐌𝐒−𝐍𝐒𝐑 is varied for VI models incorporating uniform 

priors. 

 

The results of these inference trials are reported in Fig. 7.12 and Fig. 7.13 in comparison 

with the variational inference results obtained using solely lognormal priors on the parameters. It 

is significant to note the key differences in the two sets of variational inference results. Overall, 

the variational inference case with more informed parameter priors performed better than the case 

with solely lognormal priors, which indicates the value of the flexibility of variational inference to 

clearly specify the prior information known to the problem. One key exception to this trend is 

shown in Fig. 7.12(c,d), which shows the results of the measurement noise study. Here, the 

informed variational inference trial expresses no accurate models at vRMS−NSR = 0.1%, whereas 

the variational inference trial with less informative priors yields the largest number of accurate 
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models at this same measurement noise level. The precise reason for this behavior is unclear, but 

it is likely associated with a distortion of the local optimum of the ELBO due to the low level of 

noise and the particular expression of the prior on the parameters. Indeed, all parameters of the 

model for this case are identified with high levels of accuracy, except for 𝜉 which is consistently 

identified at ~0.02. This result validates research avenues in the field of alternative loss functions 

for variational inference as it demonstrates that though the ELBO is an extremely useful loss 

function, it is not infallible.  

 

 

Fig. 7.13. Statistics of the RMS error in the states given the identified VI models when the (a-c) 

process noise uncertainty factor (𝝀𝒘) is varied, (d-f) measurement noise uncertainty factor 

(𝐯𝐑𝐌𝐒−𝐍𝐒𝐑) is varied. 

 

Perhaps the most critical feature of these results, however, is their consistency. Though 

some specific features of the results change, and often improve, when a more informed prior is 

used, the underlying trends in the data remain the same. Fig. 7.12(c,d) shows this effect clearly 

with respect to the trends in model accuracy as measurement noise is increased. Regardless of the 

prior distribution on the parameters, the variational inference does not produce any models with 
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an accuracy of at least 50% for measurement noise levels with vRMS−NSR = 30% or greater. These 

same trends are expressed in Fig. 7.13(d-f), where the RMS error on the states increases 

significantly, and nearly equivalently, between the two variational inference trials when 

vRMS−NSR = 30%  or greater. The response of the variational inference trials with respect to 

variations in the process noise is also similar, with both exhibiting consistently high levels of 

model accuracy and corresponding low levels of RMS error in the states. These results suggest 

that the variational inference method is fairly robust to even significantly different interpretations 

on the prior uncertainty in the parameters, which make it ideal for experimental settings where the 

limited knowledge is available concerning the parameters in advance of experimentation. In 

contrast, the UKF results in the previous sections express the dependence of this algorithm on the 

selection of the parameter priors, without any clear indication of which priors will be well-

performing prior to inference. 

7.3 Conclusions 

In this chapter I have compared the ability of the UKF and variational inference methods to identify 

the hidden states and parameters of a simulated single degree-of-freedom Bouc-Wen system 

excited by a BLWN base motion. These inference approaches were used to conduct two parameter 

studies which assessed their accuracy and reliability with respect to variations on the assumptions 

of modeling error in the inference model and the level of measurement noise present in system 

response. An equivalent comparison of the algorithms in these parameter studies revealed that the 

UKF generates models with a greater number of outliers than the variational inference approach. 

Results from the modeling error study indicate that both algorithms result in similar rates of model 

accuracy when assumptions on the process noise are varied. When measurement noise levels are 

varied, variational inference only produces superior models to the UKF for moderate levels of 

measurement noise. Models produced using the UKF are more likely to give accurate results when 

measurement noise levels are extremely high. When the variational inference approach was 

reimplemented with more informative and flexible expressions of the prior distributions on the 

parameters, its overall performance was shown to increase, though the trends in its behavior 

remained consistent. Overall, the variational inference method was shown to be robust to the 

typical experimental conditions of moderate levels of measurement noise and general uncertainty 

in the level of model error. 
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The accuracy and robustness of the variational inference method does come at the cost of 

some increased computational time. Whereas the UKF executes on the order of seconds, 

variational inference requires execution times on the order of hours. One way in which this issue 

could be addressed is through the development of a filtering approach to variational inference, 

which would act on much smaller segments of data at a given time and therefore increase the 

optimization speed overall. This concept is explored in the following chapter.  
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 AUTOMATIC DIFFERENTIATION VARIATIONAL FILTERING FOR 

NONLINEAR STRUCTURAL SYSTEM IDENTIFICATION 

Though variational inference is a promising option for predictive structural modeling, its full 

potential in this application area cannot be realized until a variational filtering approach is 

developed for real-time inference on continuous data streams. Several theoretical approaches have 

been proposed to further the application of variational inference for online learning, but specific 

adaptations must be considered to suit the practical needs of the structural health monitoring 

community.  

8.1 Review of Current Variational Filtering Approaches 

The primary focus of variational inference for online learning of dynamical systems has been with 

respect to the Kalman filter and smoother. Ghahramani and Beal [1],[2] introduced an initial 

approach to variational Kalman smoothing on linear dynamical systems in 2001. In their approach, 

which they showed is analogous to the expectation-maximization algorithm, they identify the 

hidden states, parameters, and measurement noise by developing conjugate-exponential priors on 

the system terms and iteratively executing the variational optimization algorithm to develop the 

approximate posterior. Sarrka and Nummenmaa expanded on these ideas to extend the standard 

Kalman filtering approach to be noise adaptive [3]. In their method the predictive step of the filter 

remains analytical, and the corrector step is replaced with a variational inference update to allow 

for the inference of time-varying noise terms. Auvinen et al. [4] approached the generation of a 

variational Kalman filtering scheme by replacing the analytical expression for the posterior with 

the optimization of a maximum a posteriori (MAP) estimate. This approach has some similarity to 

that of Sarrka and Nummenmaa, but with the replacement of the standard variational objective, 

the ELBO, with the MAP estimate. Ait-El-Fquih and Hoteit [5] integrated variational inference 

directly with the prediction step of the Kalman filter, using it to accommodate diagonal and tri-

diagonal covariance approximations for high-dimensional state-space models. Friston et al., in 

recognition of the constraints on the variational filtering approaches for complex dynamical 

systems, proposed a generalized theoretical framework called dynamic expectation maximization, 

which operates online on generalized system models to approximate the optimal posterior [6]. 
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Though the method does have the advantage of being generalized, it was developed prior to the 

advent of black-box inference, and therefore requires significant skill from the user for 

implementation.  

Other approaches to variational filtering have been proposed and shown to operate 

successfully on a number of theoretical examples. Most notably, Smidl and Quinn [7] introduced 

a generalized theoretical framework for variational Bayesian filtering in 2005, which applied 

variational inference in the Bayesian update step to infer the hidden states of generalized dynamical 

systems. Later work from these authors [8] introduced a variety of methods, with varying levels 

of computational speed and accuracy, to couple the variational Bayesian filter with the particle 

filter. Friston [9] approached variational filtering for dynamical systems from an energy 

perspective, by expressing the system dynamics in terms of the flow on a variational energy 

manifold. Most recently, Ait-El-Fquih and Hoteit [10] have adapted variational Bayesian filtering 

to couple with the multiple particle filtering approach, thereby increasing the accessibility of these 

methods to high-dimensional state-space systems. Though these methods have had some success, 

they do not take advantage of recent advances in black box and stochastic variational inference 

and have not been applied in experimental systems with high levels of uncertainty. In Section 8.2, 

I will adapt and expand upon these methods to generate an efficient, adaptable, and robust 

algorithm for real-time variational filtering on structural systems. 

 Outside of the specific focus on filtering methods for dynamical systems, several 

researchers have been addressing the challenges of incorporating continuous data streams into 

variational inference. This topic was introduced by Broderick et al. [11] who asserted that SVI 

could be adapted to a continuous data setting by returning to the classical view of Bayesian 

updating to produce a sequence of posteriors instead of determining a sequence of approximations 

to a fixed posterior on a fixed data set. Later works highlighted an issue with this approach, in that 

it fails to compensate for the tendency of variational inference to deliver overconfident posteriors. 

One of the strengths of variational inference is that it allows for the optimization of a simplified 

assertion of the posterior instead of calculating the true posterior exactly. This simplification can 

lead to artificially small variance estimates in the approximate posterior [12]. In a continuous data 

setting, this overconfidence can inhibit the adaptability of the inference to data which indicates 

changes to the condition of the system. McInerny et al. [13] and Jihan et al. [14] proposed some 

ideas to combat this issue. McInerny et al. approached the problem by refining the variational 



 

 

153 

objective to avoid overconfident posteriors. This ‘population’ posterior represents a reformulation 

of SVI to be scaled over the overall number of data points in the population of data instead of over 

the data in a fixed segment [13]. Jihan et al. approached the problem by propagating only the 

information concerning the expectation to future inference steps. The variance is kept constant at 

a predetermined value to allow for the posterior to adapt to drift in the system over time. 

Additionally, the authors scaled the batch based on the total number of samples seen at that time, 

thereby reducing the influence of future data and avoiding large swings in the posterior due to 

noise, instead of system drift [14]. These approaches have shown some success, particularly in 

operating with independent, identically distributed data sets. Further consideration is required for 

conditionally dependent data that would be likely in structural monitoring scenarios.  

I use key ideas generated in these works to propose a simple variational filtering approach 

for the online identification of lumped-parameter structural systems. My approach is similar to 

current methods in that it clearly distinguishes between the predictor phase, which I achieve 

through Monte Carlo (MC) sampling for uncertainty propagation, and the corrector phase, which 

is I achieve through variational inference. In contrast with current approaches, my filter relaxes 

any constraints on the stochastic model of the system through the adoption of the distributional 

transformations used in automatic differentiation variational inference. Additionally, my approach 

introduces flexible filtering parameters such as the inference batch size, batch overlap length, and 

data downsampling ratio (𝑑), to allow the user to efficiently adapt the filter to the particular 

structural health monitoring application. Though overconfident posteriors are not directly 

addressed by my approach, the flexible filtering parameters allow the user to mitigate some of the 

issues associated with them. The filter is explained in greater detail in Section 8.2 and applied to a 

simple numerical case study in Section 8.3 to develop a practical understanding of its efficacy for 

predictive structural modeling.  

8.2 Novel Variational Filtering Approach for Structural Systems  

I frame the problem of variational filtering from the perspective of inferring from small batches of 

data in a continuous stream. The size of the batch, 𝑆 ≥ 1, is a variable in the construction of the 

filter, but is assumed constant throughout its implementation. It is likewise assumed that the filter 

progresses to accommodate new data by moving from batch to batch with an overlap of 𝑊 ≥ 0 

elements with the previously encountered data. Given data progressing at a fixed rate of 𝑡𝑘 = 𝑘Δ𝑡 



 

 

154 

where 𝑘 = 1, 2, 3,… , K , the inference batch 𝓑𝑖  represents the ordered list of time indices 

(𝑖 ∙ (𝑆 − 𝑊), 𝑖 ∙ (𝑆 − 𝑊) + 1,… , (  𝑖 ∙ (𝑆 − 𝑊) + 𝑆)) , where 𝑖 = 0, 1,2, … ,𝑁  and 𝑁 =

𝑓𝑙𝑜𝑜𝑟(𝐾 − 𝑆
𝑆 − 𝑊⁄ ) + 1 is the total number of batches required to pass through the data set.  

We begin the derivation by recalling the Bayesian filtering equations. As discussed in Chpt. 

2, the purpose of Bayesian filtering is to compute the marginal posterior of the states 𝐱𝑘  and 

parameters 𝛉 at each time step given all the data available up to that point, 𝑝(𝐱𝑘, 𝛉|𝐲1:𝑘, 𝐮1:𝑘). In 

each step, the marginal prior satisfies: 

𝑝(𝐱𝑘, 𝛉|𝐲1:𝑘−1, 𝐮1:𝑘−1) = ∫ 𝑝(𝐱𝑘|𝐱𝑘−1, 𝛉, 𝐮𝑘−1)𝑝(𝐱𝑘−1, 𝛉|𝐲1:𝑘−1, 𝐮𝑘−1)𝑑𝐱𝑘−1, (8. 1) 

where time-invariance is enforced on the parameters. The marginal posterior can then be stated 

as 

𝑝(𝐱𝑘, 𝛉|𝐲1:𝑘 , 𝐮1:𝑘) =
𝑝(𝐲𝑘|𝐱𝑘, 𝛉, 𝐮𝑘)𝑝(𝐱𝑘, 𝛉|𝐲1:𝑘−1, 𝐮1:𝑘−1)

𝑝(𝐲𝑘|𝐲1:𝑘−1, 𝐮1:𝑘)
. (8. 2) 

An equivalent logical structure must be present in a variational filtering approximation. To 

accomplish this succinctly, I first develop a MC approximation of the marginal prior (predictor 

phase) and use the resulting distributional parameters to inform the starting point for the variational 

inference of the posterior (corrector phase). This general structure for the filtering approximation 

is shown in Fig. 8.1.   

 

 

Fig. 8.1 – The predictive phase in variational filtering is accomplished through an MC sampling 

approximation. The corrector phase is achieved through variational inference, with the predicted 

marginal prior as a starting point.  

 

Adopting an overlapping batch framework for progressing through the filter allows the user 

some flexibility in manipulating the respective inference accuracy and optimization speed. For 

example, larger batch sizes typically yield greater accuracy in per-batch inference operations, due 
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to greater access to data. However, they can require longer optimization times due to the increased 

number of states being inferred simultaneously. Likewise, larger overlaps between batches may 

allow for greater predictive accuracy among the overlapped states, which are partially optimized 

in the previous corrector phase, and the new states, which are projected forward in time from the 

results of the previous corrector phase. Projecting fewer new states forward in time reduces the 

potential for large deviations from the true state in the predictor phase, thereby speeding the 

optimization process in the corrector phase. This flexibility in filter construction allows the user to 

tune the operation of the filter to problem-specific needs, while still maintaining the speed and 

accuracy required by the application.  

With these preliminaries in place, I define the variational filtering algorithm. The algorithm 

is initialized by asserting priors on the initial condition of the system states 𝑝(𝐱0), the values of 

the global system parameters 𝑝(𝛉), the transition model 𝑝(𝐱𝑘|𝐱𝑘−1, 𝛉, 𝐮𝑘−1), and the emission 

model 𝑝(𝐲𝑘|𝐱𝑘, 𝛉, 𝐮𝑘) . The transition and emission models are assumed to remain constant 

throughout the inference process. Though these models can take any form, it is convenient and 

descriptive to represent them as normally distributed, according to 

𝑝(𝐱𝑘|𝐱𝑘−1, 𝛉, 𝐮𝑘−1) = 𝑁 (𝐱𝑘|𝐱𝑘−1 + ∫ F(𝐱(𝑡), 𝛉, 𝐮(𝑡)) d𝑡
𝑡𝑘

𝑡𝑘−1

, 𝐐𝑘−1) (8. 3) 

           = 𝑁(𝐱𝑘|𝑓(𝐱𝑘−1, 𝛉, 𝐮𝑘−1), 𝐐𝑘−1)     (8. 4) 

𝑝(𝐲𝑘|𝐱𝑘, 𝛉, 𝐮𝑘) = 𝑁(𝐲𝑘|ℎ(𝐱𝑘, 𝛉, 𝐮𝑘), 𝐑𝑘),                                   (8. 5) 

where F(∙) is the deterministic ODE describing the transition dynamics on the states, 𝑓(∙) is the 

deterministic model for the assumed progression of the states in continuous time, ℎ(∙) is the 

deterministic observation model, 𝐐𝑘 is the covariance on the transition probability, and 𝐑𝑘 is the 

covariance on the emission probability. It is common to use 𝑓(∙) to approximates the integral in 

Eq. (8.3) numerically, through approaches such as Euler or Runge Kutta integration. Herein, the 

numerical integration approach is deliberately left unspecified, as different accuracies may be 

required for different applications. It is important to note however, that the discretization step, Δ𝑡, 

of the integration approach will have a significant impact on the speed of the resulting filter. In 

some instances, it may be beneficial to subsample the data for use with the corrector phase, which 

is the variational inference portion of the analysis. Further details on this filter adaptation are given 

in Section 8.2.2. 
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Given the prior information, the marginal priors over all states in the filtering batch, 𝐱𝓑𝑖
, 

and the parameters, 𝛉, can be defined as 

𝑝(𝐱𝑩𝑖
, 𝛉|𝐮1:ℬ𝑖−1(𝑆), 𝐲1:ℬ𝑖−1(𝑆) ) = 𝑝(𝐱𝑩𝑖

|𝛉, 𝐮1:ℬ𝑖−1(𝑆), 𝐲1:ℬ𝑖−1(𝑆))𝑝(𝛉|𝐮1:ℬ𝑖−1(𝑆), 𝐲1:ℬ𝑖−1(𝑆)) (8. 6) 

where ℬ𝑖−1 (𝑆) refers to the final element in the ordered list represented by 𝓑𝑖−1. The vectors 

𝐮1:ℬ𝑖−1(𝑆) and 𝐲1:ℬ𝑖−1(𝑆) therefore respectively represent all control inputs and all observation data 

from the beginning of the observation history up through the end of batch 𝓑𝑖−1. The marginal prior 

on the states can be further specified as 

𝑝(𝐱𝓑𝑖
|𝛉, 𝐮1:ℬ𝑖−1(𝑆), 𝐲1:ℬ𝑖−1(𝑆)) =      

                     ∫ ∏ 𝑝(𝐱𝑘|𝐱𝑘−1, 𝛉, 𝐮𝑘−1)
ℬ𝑖(𝑆)

𝑘=ℬ𝑖(1)
𝑝(𝐱ℬ𝑖−1(𝑆−𝑊)|𝐲1:ℬ𝑖−1(𝑆)) 𝑑𝐱ℬ𝑖−1(𝑆−𝑊) . (8. 7) 

The marginal posterior is then given by 

𝑝(𝐱𝓑𝒊
, 𝛉|𝐮1:ℬ𝑖−1(𝑆), 𝐲1:ℬ𝑖−1(𝑆)) =  

𝑝(𝐲𝓑𝑖
|𝐱𝓑𝑖

, 𝛉, 𝐮𝓑𝑖
)𝑝(𝐱𝑩𝑖

|𝛉, 𝐮1:ℬ𝑖−1(𝑆), 𝐲1:ℬ𝑖−1(𝑆))𝑝(𝛉|𝐮1:ℬ𝑖−1(𝑆), 𝐲1:ℬ𝑖−1(𝑆))

∬  𝑝(𝐲𝓑𝑖
|𝐱𝓑𝑖

, 𝛉, 𝐮𝓑𝑖
)𝑝(𝐱𝑩𝑖

|𝛉, 𝐮1:ℬ𝑖−1(𝑆), 𝐲1:ℬ𝑖−1(𝑆))𝑝(𝛉|𝐮1:ℬ𝑖−1(𝑆), 𝐲1:ℬ𝑖−1(𝑆))𝑑𝐱𝓑𝑖
𝑑𝛉

. (8. 8) 

Equations (8.6) and (8.8) respectively form the predictor and corrector equations for the batch 

filter. As noted in Chpt. 2, the computational difficulties that arise in the integration promote the 

use of approximate techniques to develop the marginal prior and posterior. In this case, the 

approximate marginal posterior is developed through variational inference. I therefore assert a 

generalized variational family, or guide, over the batch of  

𝑔𝓑𝑖
(𝐱𝓑𝒊

, 𝛉; 𝛟) = 𝑔𝓑𝑖
(𝐱𝓑𝒊

; 𝛟𝑥)𝑔𝓑𝑖
(𝛉;𝛟𝜃), (8. 9) 

such that the states and parameters are assumed independent. The guide is then optimized using 

automatic differentiation variational inference (ADVI) as described in Section 3.2, such that 

approximate marginal posterior is 

�̂�𝓑𝑖
(𝐱𝓑𝒊

, 𝛉; 𝛟) =  arg min
g ∈ G

KL (𝑔𝓑𝑖
(𝐱𝓑𝒊

, 𝛉;𝛟) ∥ 𝑝(𝐱𝓑𝒊
, 𝛉|𝐮1:ℬ𝑖−1(𝑆), 𝐲1:ℬ𝑖−1(𝑆))) . (8. 10) 

where the variational parameters 𝛟  are initialized according to distributional parameters 

determined from the approximate marginal priors on the states and parameters. The selection of a 

guide, 𝑔𝐵𝑖
(𝐱𝓑𝒊

, 𝛉; 𝛟) , that is sufficiently flexible to capture the true posterior is a critical 

component of this optimization. For structural predictive modeling, a normal distribution has been 
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found to be a suitable selection when coupled with the distributional transformations on the 

parameters afforded by ADVI, which can constrain the optimization on the parameter space to 

physical values. Other distributional forms may allow even greater flexibility, such as the ability 

to capture multi-modal posteriors, and are a promising topic for further study. The number of 

optimization steps, 𝑂, is the other key variable in this process. As 𝑂 increases, the approximate 

posterior, �̂�𝓑𝑖
(𝐱𝓑𝒊

, 𝛉;𝛟), will converge to a local optimum of the solution space. If 𝑂 is too small, 

�̂�𝓑𝑖
(𝐱𝓑𝒊

, 𝛉;𝛟) will project a sub-optimal approximation of the marginal posterior, which will then 

be propagated to subsequent filtering steps and could quickly lead to divergence in the filter. Large 

values of 𝑂 can also be problematic, sometimes leading to computational inefficiency. However, 

some strategies, including variance reduction techniques, exist which can reduce the need for large 

values of 𝑂 and therefore increase the efficiency of the algorithm. The user should select an 𝑂 that 

is sufficiently small for accurate, online variational filtering in the chosen application.  

The marginal prior for each batch is developed by extracting and extending the information 

available in the marginal posterior through sampling. Due to the assumed independence of the 

states and parameters, and the nature of the parameters in this problem as constants, I define the 

terms 𝑝(𝐱𝑩𝑖
|𝛉, 𝐮1:ℬ𝑖−1(𝑆), 𝐲1:ℬ𝑖−1(𝑆))  and 𝑝(𝛉|𝐮1:ℬ𝑖−1(𝑆), 𝐲1:ℬ𝑖−1(𝑆))  separately. The approximate 

marginal prior over the parameters for the batch, 𝓑𝑖, can be expressed simply as 

�̂�(𝛉|𝐮1:ℬ𝑖−1(𝑆), 𝐲1:ℬ𝑖−1(𝑆)) = �̂̂�𝓑𝑖−1
(𝛉;𝛟𝜃). (8. 11) 

To develop the marginal prior over the states, I construct a multivariate normal approximation of 

the distribution of the states over the batch which I fit by sampling and propagating uncertainty 

from the posterior of the previous batch. The approximate marginal prior over the states can then 

be given the representative form 

�̂�(𝐱𝑩𝑖
|𝛉, 𝐮1:ℬ𝑖−1(𝑆), 𝐲1:ℬ𝑖−1(𝑆)) = 𝑁(𝐱𝑩𝑖

|�̂�𝓑𝑖
, �̂�ℬ𝑖

). (8. 12) 

As discussed earlier in this section, an overlap of 𝑊 ≥ 0 is included between batches to allow for 

the potential of increased inference accuracy and speed as the filter progresses. Batch 𝓑𝑖 therefore 

includes 𝑊 states from the previous batch, 𝓑𝑖−1, which have already been corrected with refence 

to their corresponding observations, and (𝑆 − 𝑊) states that have as yet only been seen in the 

current batch and have not undergone the corrector phase of inference. The mean of the 

approximate marginal prior, �̂�𝓑𝑖
, can therefore most effectively take advantage of the available 
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information through a partition of the mean between the overlapped states, �̂�𝐵𝑖
(1:𝑊) , which can 

be translated directly from the marginal posterior as  

�̂�𝓑𝑖
(𝑗) = 𝔼 [�̂�𝓑𝑖−1

(𝐱ℬ𝒊(𝑆−𝑊+(𝑗−1)); 𝛟)] , (8. 13) 

with 𝑗 = 1,… ,𝑊 and the new states, �̂�𝓑𝑖
(𝑊 + 1: 𝑆), which are developed by propagating MC 

samples from �̂�ℬ𝑖−1
(𝐱ℬ𝑖(𝑆−1);𝛟) to form a prediction on the remaining states in the current batch, 

𝐱𝓑𝒊(𝑊+1:𝑆). The mean on the new states in the current batch can therefore be expressed as  

�̂�𝓑𝑖
(𝑗) =

1

𝑃
∑ 𝑓 (�̂�ℬ𝑖(𝑗−1)

(𝑝)
, �̂�(𝑝), 𝐮ℬ𝑖(𝑗−1))

𝑃

𝑝=1
 , (8. 14) 

with 𝑗 = 𝑊 + 1, … , 𝑆 , where 𝑃  samples from �̂�ℬ𝑖−1
(𝐱ℬ𝑖(𝑆−1); 𝛟)  and �̂̂�𝓑𝑖−1

(𝛉;𝛟𝜃)  are 

propagated through the state transition equations to develop the mean of the approximate marginal 

prior. Note that in the case of the first batch, ℬ0, no data from a previous corrector phase is 

available and the marginal prior on the states will be approximated solely from the forward 

propagation of MC samples on the priors 𝑝(𝐱0) and 𝑝(𝛉).  

The statement of the covariance approximation is directly related to the choice of structure 

of the assumed variational family, 𝑔𝓑𝑖
(𝐱𝓑𝒊

, 𝛉;𝛟). Though mean-field variational families, which 

use a diagonal covariance structure, are common to many variational inference applications, tri-

diagonal covariance structures have been found to better represent the Markovian assumptions in 

dynamical systems [15],[16], and therefore lead to more accurate inference. Each of these 

structures scale well with time, as shown in Fig. 8.2(a-b), leading to equivalent representations of 

the posterior uncertainty regardless of batch size, window overlap, or data length. Approximations 

to the full covariance matrix are also possible with variational filtering, though they do not 

necessarily scale well in time. For instance, a sparse approximation of the full covariance can be 

made over each batch by enforcing a decomposition, 𝐋, of the covariance matrix which contains 

only the first column and main diagonal. The resulting approximation scales linearly with batch 

size, similar to the tri-diagonal approximation, but its density in specifying the full covariance of 

the states over time is dependent on batch size and window overlap, as shown in Fig. 8.2(c).  

For the purpose of predictive structural modeling, I have found that a tridiagonal structure 

provides a sufficiently accurate representation of the uncertainty. As with the mean of the marginal 

prior, �̂�𝓑𝑖
, the covariance of the marginal prior, �̂�𝓑𝑖

, can be partitioned to reflect the 𝑊 states 
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inferred in the previous batch, �̂�𝓑𝑖
(1:𝑊, 1:𝑊), and the (𝑆 − 𝑊) remaining states that have not 

yet been corrected against observed data,  �̂�𝓑𝑖
(𝑊 + 1: 𝑆, 𝑊 + 1: 𝑆) . The covariance of the 

marginal prior over the initial subset can therefore be expressed as 

�̂�𝓑𝑖
(1:𝑊, 1:𝑊) = 𝕍[�̂�𝓑𝑖−1

(𝐱ℬ𝒊(𝑆−𝑊:𝑆−1); 𝛟)], (8. 15) 

where 𝕍[∙]  denotes the variance operator. The covariance of the second subset of data is 

determined through sequential sampling approximations of the covariance, as 

�̂�𝓑𝑖
(𝑗 − 1: 𝑗, 𝑗 − 1: 𝑗) =  

1

𝑃
∑ ⨂([

𝐹 (�̂�ℬ𝑖(𝑗−1)
(𝑝)

, �̂�(𝑝), 𝐮ℬ𝑖(𝑗−1)) − �̂�ℬ𝑖
(𝑗 − 1)

𝐹 (�̂�ℬ𝑖(𝑗)
(𝑝)

, �̂�(𝑝), 𝐮ℬ𝑖(𝑗)) − �̂�ℬ𝑖
(𝑗)

])
𝑃

𝑝=1
,     𝑗 = 𝑊 + 1,… , 𝑆 (8. 16) 

where the operator ⨂(∙) denotes the outer product of the vector with itself. It is important to note 

that the defined covariance structure on the uncorrected states in the current batch, 𝓑𝑖(𝑊 + 1: 𝑆), 

ensures a coherent, positive-definite structure as well as a tri-diagonal covariance approximation. 

Other options exist by which one could obtain a tridiagonal covariance structure from a batch of 

samples, but I have found these alternative truncation techniques to be either more computationally 

intensive or less representative to the true uncertainty. As with the mean of the marginal prior for 

the first batch, �̂�𝓑0
, the covariance of the marginal prior over the first batch, �̂�𝓑0

, is of necessity 

entirely developed through forward propagation of MC samples on the priors 𝑝(𝐱0) and 𝑝(𝛉). 

 

 

Fig. 8.2 – Development of the covariance structure of a single state across filtering steps. (a) 

Diagonal covariance (b) Tridiagonal covariance (c) Full batch covariance  
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8.2.1  Distributional Transformation in the Filtering Context 

For the majority of initial prior distributions on the states and the parameters, the progression of 

the filter is fairly straightforward. However, the introduction of distributional transformations, as 

discussed in Section 3.2, can add some additional complexity to the marginal priors across filtering 

steps. Take, for example, the assumption of a uniform prior over a particular parameter 𝜉, which 

is asserted as independent from the remaining states and parameters. This parameter would have 

the initial prior distribution 

𝑝𝓑0
(𝜉) =

1

𝑏 − 𝑎
1[𝑎,𝑏](𝜉), (8. 17) 

where 1[𝑎,𝑏](𝜉) is a function that outputs a value of 1 when 𝜉 ∈ [𝑎, 𝑏] and 0 otherwise, thereby 

representing the support of the distribution. The constants 𝑎 and 𝑏 are the left and right bounds on 

the uniform distribution, respectively. The parameter is then transformed according to 

𝜉 = Υ(ξ) = ln (
𝜉 − 𝑎

𝑏 − 𝜉
) (8. 18) 

to have full support on the real numbers, such that the transformed parameter 𝜙𝜉 can be easily 

optimized. This results in a prior distribution on 𝜙𝜉 of 

𝑝𝓑0
(𝜉) =

e𝜙𝜉

(1 + 𝑒𝜙𝜉 )
2 . (8. 19) 

Following the procedure in Section 3.2, a normal distribution is used to represent 𝑔𝓑0
(𝜉;𝜙�̂�) for 

optimization, with the variational parameters 𝜙𝜉  describing the mean 𝜇𝜉  and the standard 

deviation 𝜎𝜉 . The optimal distribution �̂�ℬ0
(𝜉; 𝜙𝜉)  can then be described by an inverse 

transformation Υ−1(𝜙𝜉) into the support of the prior 

�̂�𝐵0
(𝜉; 𝜙𝜉) =

1

√2𝜋𝜎𝜉

exp

(

 −
(ln (

𝜉 − 𝑎
𝑏 − 𝜉) − 𝜇𝜉)

2

2𝜎𝜉
2

)

 
𝑏 − 𝑎

(𝜉 − 𝑎)(𝑏 − 𝜉)
1[𝑎,𝑏](𝜉). (8. 20) 

Note that this approximate posterior is characterized by four parameters, 𝑎, 𝑏, 𝜇𝜉, and 𝜎𝜉, but only 

𝜇𝜉 and 𝜎𝜉 are optimized as 𝑎 and 𝑏 are facets of the prior, 𝑝𝓑0
(𝜉). In subsequent filtering steps, 

this posterior will become the new prior on the parameter 𝜉 , �̂�𝓑𝑖
(𝜉) = �̂�𝐵𝑖−1

(𝜉;𝜙𝜉) , be 

transformed to have full support on the states, �̂�ℬ𝑖
(𝜆𝜉) =  𝑁(𝜙𝜉|𝜇𝜉 , 𝜎𝜉), be optimized to update 
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the distributional parameters 𝜇𝜉, and 𝜎𝜉, and finally be transformed back to the support of the 

original prior, 𝜉 ∈ [𝑎, 𝑏] , with an equivalent distributional form to Eq. (8.20). Through this 

example, we can see that though the distributional transformations suggested by the ADVI 

implementation [12] do initially increase the complexity of the filter execution, the approximate 

posterior both retains the support of the prior throughout the filter implementation and stabilizes 

in complexity after the second filtering step.  

8.2.2 Downsampling to Increase Filter Speed 

The inference rate implied by the filtering algorithm given in Section 8.2 is sufficient for systems 

requiring a relatively low sampling rate. In this case, the speed of the optimization is fairly well 

balanced by the flow of incoming data. When higher sampling rates are required, the filtering 

method can be adapted to maintain a throughput balanced with incoming data rates. One option 

that has the potential to address this issue is the reduction in inference parameters at each filtering 

batch through multi-step integration in the calculation of the ELBO. 

 Following the assumptions which led to the decomposition of the probability model in Eq. 

(3.2), the components of the ELBO from Eq. ((8.21)3.8), can be more explicitly expressed as  

ELBO(𝑔) = ∑ 𝔼𝑁(𝜼;𝟎,𝑰) [log 𝑝 (𝐲𝑘|Υ
−1 ([𝑆𝝓�̂�𝑘

−1 (𝜂�̂�𝑘
), 𝑆𝝓�̂�

−1(𝜂�̂�)]) , 𝐮𝑘)]
K
𝑘=1   

+∑ (𝔼𝑁(𝜼;𝟎,𝑰) [log 𝑝 (Υ𝝓�̂�𝑘

−1 ([𝑆𝝓�̂�𝑘

−1 (𝜂�̂�𝑘
)]) |Υ𝝓�̂�𝑘−1

−1 ([𝑆𝝓�̂�𝑘−1

−1 (𝜂�̂�𝑘−1
)]) , Υ𝝓�̂�

−1 ([𝑆𝝓�̂�𝑛

−1 (𝜂�̂�𝑛
)]) , 𝐮𝑘)] 

K
𝑘=1   

+𝔼𝑁(𝜼;𝟎,𝑰) [log |det 𝐽Υ𝝓�̂�𝑘

−1 ([𝑆𝝓�̂�𝑘

−1 (𝜂�̂�𝑘
)])|])  

+∑ (𝔼𝑁(𝜼;𝟎,𝑰) [log 𝑝 (Υ𝝓�̂�𝟎,𝒎

−1 ([𝑆𝝓�̂�0,𝑚

−1 (𝜂�̂�0,𝑚
)]) |𝐮0)] +M

𝑚=1

𝔼𝑁(𝜼;𝟎,𝑰) [log |det 𝐽Υ𝝓�̂�𝟎,𝒎

−1 ([𝑆𝝓�̂�0,𝑚

−1 (𝜂�̂�0,𝑚
)])|])  

+∑ (𝔼𝑁(𝜼;𝟎,𝑰) [log 𝑝 (Υ𝝓�̂�𝑛

−1 ([(𝜂�̂�𝑛
)]))] + 𝔼𝑁(𝜼;𝟎,𝑰) [log |det 𝐽Υ𝝓

�̂�𝑛

−1 ([𝑆𝝓�̂�𝑛

−1 (𝜂�̂�𝑛
)])|])N

𝑛=1   

−𝔼𝑔(�̂�,�̂�;𝝓)[log 𝑔(�̂�, �̂�; 𝝓)]. (8. 21) 

Looking at the components of Eq. (8.21), it can be seen that the expectation of the log likelihood, 

ℒ(𝐲𝑘), is given by the first summation, the expectation of the log transition probability, 𝒯(𝐱𝑘, 𝐮𝑘), 

is given by the second summation and subsequent expectation, the expectation on the log priors, 
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𝒫(𝛉), is given by the third summation and fourth summations and subsequent expectations, and 

the entropy, ℍ(𝐱, 𝛉) is given by −𝔼𝑔(�̂�,�̂�;𝝓)[log 𝑔(�̂�, �̂�; 𝝓)]. To increase the efficiency of the 

optimization process while still retaining the same data availability in each batch, the number of 

dynamic states in the batch can be reduced through downsampling. This process only affects the 

computation of the expectations of the log likelihood,  ℒ(𝐲𝑘),  and log transition probability, 

𝒯(𝐱𝑘, 𝐮𝑘). In their reduced state form, these terms can be expressed as 

ℒ (𝑑)(𝐲𝑘) = ∑ 𝔼𝑁(𝜼;𝟎,𝑰) [log 𝑝 (𝐲𝑑𝑘|Υ
−1 ([𝑆𝝓�̂�𝑑𝑘

−1 (𝜂�̂�𝑑𝑘
), 𝑆𝝓�̂�

−1(𝜂�̂�)]))]
K/𝑑

𝑘=1
(8. 22) 

and  

𝒯(𝑑)(𝐱𝑘, 𝐮𝑘) =  

∑ 𝔼𝑁(𝜼;𝟎,𝑰) [log 𝑝 (Υ𝝓�̂�𝑑𝑘

−1 ([𝑆𝝓�̂�𝑑𝑘

−1 (𝜂�̂�𝑑𝑘
)]) |Υ𝝓�̂�𝑑(𝑘−1)

−1 ([𝑆𝝓�̂�𝑑(𝑘−1)

−1 (𝜂�̂�𝑑(𝑘−1)
)]) , Υ𝝓�̂�

−1([(𝜂�̂�)]))]
K/𝑑

𝑘=1
 

+ 𝔼𝑁(𝜼;𝟎,𝑰) [log |det 𝐽Υ𝝓�̂�𝑑𝑘

−1 ([𝑆𝝓�̂�𝑑𝑘

−1 (𝜂�̂�𝑑𝑘
)])|] , (8. 23) 

where 𝑑 is an integer representing the down-sampling ratio on the states. To preserve the accuracy 

of the computation of expectation of the log-transition probability with respect to the known data 

and process noise covariance, which is a function of several factors including the sampling rate, I 

perform multi-step integration over the states, taking advantage of the excitation data available at 

a higher sampling, 𝐮𝑘, rate while only generating states for inference every 𝑑 time steps.  

Recall that  𝐱𝑑𝑘 = Υ𝝓�̂�𝑑𝑘

−1 ([𝑆𝝓�̂�𝑑𝑘

−1 (𝜂�̂�𝑑𝑘
)]) and 𝜽. My approach is to redefine the transition 

probability from Eq. (8.3) as 

𝑝(𝐱𝑑𝑘|𝐱𝑑(𝑘−1), 𝜽, 𝐮𝑑(𝑘−1):𝑑𝑘−1) =  𝑁(𝐱𝑑𝑘|𝐹(𝐱𝑑(𝑘−1), 𝛉, 𝐮𝑑(𝑘−1):𝑑𝑘−1), 𝐐𝑑(𝑘−1)) (8. 24) 

where 

𝐹(𝐱𝑑(𝑘−1), 𝛉, 𝐮𝑑(𝑘−1):𝑑𝑘−1) = ∫ 𝑓(𝐱(𝑡), 𝛉, 𝐮(𝑡)) d𝑡
𝑑∙𝑡𝑘

𝑑∙𝑡𝑘−1

 + 𝐹(𝐱𝑑(𝑘−1), 𝛉, 𝐮𝑑(𝑘−1):𝑑𝑘−2); 

𝐹(𝐱𝑑(𝑘−1), 𝛉, 𝐮𝑑(𝑘−1)) = ∫ 𝑓(𝐱(𝑡), 𝛉, 𝐮(𝑡)) d𝑡
𝑑∙𝑡(𝑘−1)+Δ𝑡

𝑑∙𝑡(𝑘−1)

+ 𝐱𝑑(𝑘−1). (8. 25) 

This recursive function can be integrated with any sufficiently accurate numerical scheme. For the 

examples examined in this study a fixed-step Runge-Kutta method is used, operating at the same 

sampling rate as the data collection. Note that the transition covariance, 𝐐𝑑(𝑘−1), is not augmented 
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in this computation, as the accuracy of the integration is retained. The emission probability 

calculation exists solely at the lower sampling rate, with respect to the transition samples 𝐱𝑑𝑘, as  

𝑝(𝐲𝑑𝑘|𝐱𝑑𝑘, 𝛉, 𝐮𝑑𝑘) = 𝑁(𝐲𝑑𝑘|ℎ(𝐱𝑑𝑘, 𝛉, 𝐮𝑑𝑘), 𝐑𝑑𝑘). (8. 26) 

The measurement noise covariance, 𝐑𝑑𝑘, is likewise left equivalent to 𝐑𝑘, as the measurement 

noise is assumed to be unaffected by down-sampling during post-processing. 

To support these inference operations, the computation of the marginal prior must develop 

the uncertainty over the states at the same reduced sampling rate. This can be achieved while 

ensuring the computational accuracy afforded by evaluating the data at the sampling rate used for 

monitoring. The computation of the mean of the marginal prior �̂�𝓑𝑖
 is initially performed 

equivalently as in Eq. (8.13) and Eq. (8.14). The down-sampled mean, �̂�𝓑𝑖/𝑑, is then generated by 

selecting sample means at the instances 𝑘 imposed by the lower sampling rate, such that 

�̂�𝓑𝑖/𝑑 = [�̂�ℬ𝑖(0), �̂�ℬ𝑖(𝑑), … , �̂�ℬ𝑖(𝑆)], (8. 27) 

resulting in a batch size of length 𝑆/𝑑. The covariance over these states is then computed according 

to Eq. (8.16), such that �̂�𝓑𝑖/𝑑 is generated as 

�̂�𝓑𝑖/𝑑
(𝑗 − 1: 𝑗, 𝑗 − 1: 𝑗) =                                                                                                                      

1

𝑃
∑ ⨂ ([

𝐹 (�̂�ℬ𝑖(𝑑𝑗−𝑑)
(𝑝)

, �̂�(𝑝), 𝐮ℬ𝑖(𝑑𝑗−𝑑)) − �̂�ℬ𝑖
(𝑑𝑗 − 𝑑)

𝐹 (�̂�ℬ𝑖(𝑑𝑗)
(𝑝)

, �̂�(𝑝), 𝐮ℬ𝑖(𝑗)/𝑑) − �̂�ℬ𝑖
(𝑑𝑗)

])
𝑃

𝑝=1
, (8. 28) 

with 𝑗 = 𝑊 + 1, … , 𝑆/𝑑. An analysis and discussion of this approach to increasing inference speed 

is included in Section 8.3.4.  

8.3 Numerical Study: Linear Single-Degree-of-Freedom System 

A simple numerical case study serves well to illustrate the properties of the variational filtering 

approach. Here, I use a simulated single-degree-of-freedom (SDOF) shear frame structure subject 

to base excitation to demonstrate the method and investigate the impact of batch size, batch overlap 

length, and down-sampling ratio.  The selected system, excitation, and response are described in 

Section 8.3.1. Section 8.3.2 describes a base comparison between variational filtering and 

variational inference with respect to this system. The remainder Section 8.3 is used to evaluate the 

impact of the various filtering parameters.  
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8.3.1 System Definition 

The SDOF oscillator used for this illustrative example can be described by the equation of motion 

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑥(𝑡) = −𝑚�̈�𝑔(𝑡), (8. 29) 

where 𝑚 = 25  kg, 𝑐 = 50  Ns/m, and 𝑘 = 1 × 104  N/m. As in Chpt. 7, the system is excited 

through ground motion, represented by the acceleration �̈�𝑔(𝑡), and its response is described by its 

displacement, 𝑥(𝑡), and velocity, �̇�(𝑡). For the purposes of this example, I assume that only the 

absolute acceleration is observed, such that  

𝑦(𝑡) = −1
𝑚⁄ (𝑐�̇�(𝑡) + 𝑘𝑟(𝑡)). (8. 30) 

To aid in algorithm convergence, the system is nondimensionalized using the time and 

length scales 𝑡𝑐 = 3 Hz and 𝑥𝑐 = 0.05 m, respectively. These scales are chosen as fixed constants 

within feasible realm of system properties which are assumed unknown to the user, where 𝑡𝑐 is a 

reflection of a possible natural frequency and 𝑥𝑐 is a reflection of the maximum displacement. The 

nondimensionalized transition and observation equations can therefore be given as  

�̈̅�(𝜏) +
2𝜔𝑛𝜉

𝜔𝑐
�̇̅�(𝜏) +

𝜔𝑛
2

𝜔𝑐
2
�̅�(𝜏) = −

�̈�𝑔(𝜏 𝜔𝑐⁄ )

𝑥𝑐𝜔𝑐
2

, (8. 31) 

�̅�(𝑡) = −
2𝜔𝑛𝜉

𝜔𝑐
�̇̅�(𝜏) −

𝜔𝑛
2

𝜔𝑐
2
�̅�(𝜏), (8. 32) 

where 𝜔𝑛 = 20 rad/sec (3.18 Hz) and 𝜉 = 0.05 are the ‘unknown’ parameters that we wish to 

infer. The inference problem then becomes one of inferring the states 𝐳 = [�̅�, �̇̅�] = [𝐱1, 𝐱2] and the 

parameters 𝛉 = [𝜔𝑛, 𝜉] = [𝜃1, 𝜃2]. The transition and emission probabilities on this system are set 

as fixed for this example, resulting in the stochastic dynamical equations 

𝑝(𝑥1(𝜏)|𝐳(τ − 1), 𝛉) = 𝑁(𝑥1(𝜏)| RK4(𝑥2(𝜏 − 1)), 𝐐1),                                       (8. 33) 

𝑝(𝑥2(𝜏)|𝐳(τ − 1), 𝛉) =                                                                                                                 

                 𝑁 (𝑥2(𝜏) |RK4( −
2𝜃1𝜃2

𝜔𝑐
𝑥2(𝜏 − 1) −

𝜃1
2

𝜔𝑐
2
𝑥1(𝜏 − 1) −

�̈�𝑔(𝜏 𝜔𝑐⁄ )

𝑥𝑐𝜔𝑐
2

) ,𝐐2) . (8. 34) 

𝑝(𝑦(𝜏)|𝐳(τ), 𝛉) = 𝑁 (y(𝜏)| −
2𝜃1𝜃2

𝜔𝑐
𝑥2(𝜏) −

𝜃1
2

𝜔𝑐
2
𝑥1(𝜏), 𝐑),              (8. 35) 

where 

𝐐𝑖 = (√Δ𝜏 ∙ 0.01 ∙ RMS(𝐳𝑖))
2

, (8. 36) 
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representing a 1% root-mean-square (RMS) uncertainty in the transition dynamics coupled with 

the uncertainty associated with discretizing the continuous ODE [17],  

𝐑 = (0.05 ∙ RMS(�̅�))
2
, (8. 37) 

representing a 5% RMS uncertainty in the observation signal, and RK4(∙) represents the numerical 

integration of the transition dynamics from (𝜏 − 1) to 𝜏 using the fixed-step, fourth order Runge 

Kutta method at a time step of Δ𝜏. 

 Given the stochastic dynamical equations, the prior distributions on the inferred states are 

set to 

𝑥𝑖(0)~𝑁(0, 0.252), (8. 38) 

reflecting the knowledge that the system is at rest prior to excitation. The priors on the parameters 

are set as  

𝜉~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1), (8. 39) 

𝜔𝑛~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(3.6, 0.52), (8. 40) 

 

Fig. 8.3 – Ground motion acceleration input to SDOF structure. (a) Physical acceleration (b) 

Nondimensionalization of the input.  



 

 

166 

to assert a level of uncertainty commensurate with a typical experimental setting. As the priors on 

the parameters suggest a constrained optimization on 𝜉  an 𝜔𝑛 , automatic differentiation 

variational inference (ADVI) is used to transform the distributions of these priors for unconstrained 

optimization in the variational filtering algorithm. This process is described in detail in Section 3.2 

with respect to batch systems, and can be applied equivalently, save for the modifications 

discussed in Section 8.2.1, in a filtering context.  

 

 

Fig. 8.4 – Response of the linear SDOF oscillator to a sine sweep excitation. (a) Physical 

response (b) Nondimensionalization of the response.  
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A sine sweep base excitation near the natural frequency of the system was selected for this 

example to generate a high amplitude dynamic response with a clear correspondence to the 

variations on the input, and therefore give the greatest opportunity for parameter identification. 

The excitation signal, shown in Fig. 8.3, is varied linearly in frequency from 3.33 to 3.67 Hz and 

is observed at a sampling frequency of 1024 Hz (physical time). The physical signal is given in 

Fig. 8.3(a) and the nondimensional form of the input is given in Fig. 8.3(b). This short, but 

information dense, input to the system has the advantage of requiring relatively few states for 

identification, which allows for a direct comparison between the established batch method for 

ADVI and the filtering method developed in this chapter (See Section 8.3.2).  

The response of the system to the excitation is given in Fig. 8.4 for the physical system (a) 

and transformed to the nondimensional space for identification (b). The figures display the both 

the computational model (no uncertainty) and the true response of the system (process and 

measurement uncertainty), to give a qualitative description to the uncertainty given in Eqs. (8.36)-

(8.37) A helpful feature of the nondimensional response is its ability to consolidate the magnitudes 

of the parameters and system responses, as shown in Fig. 8.4(b), to create a more concise feature 

space for optimization.  

8.3.2 Batch Variational Inference vs. Base Filtering Case 

To generate an equitable comparison case between the batch ADVI and the filtering ADVI 

approach described in Section 8.2, equivalent stochastic models are used between the two cases. 

Algorithmic parameters, in particular the batch length, batch overlap, downsampling ratio, and 

optimization iteration count are tuned specifically to each approach to generate a reasonable result. 

Whereas batch ADVI is set to examine the full signal in one batch at 5 × 105  optimization 

iterations, the variational filtering approach is tuned to use a total of 28 × 105  optimization 

iterations with a batch length of 10𝜏-sec at 90% batch overlap and a downsampling ratio of 1. As 

expected, the two approaches have very similar levels of performance, as shown in Fig. 8.5 and 

Fig. 8.6. Table 8.1 provides further confirmation of these results, showing the error in the mode of 

the marginal posterior on the parameters with respect to the true parameters, and the root-mean-

square error (RMSE) on the states remodeled in accordance with the inferred parameters with 

respect to the true states.  
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The marginal posterior distribution on the system states given in Fig. 8.5 shows little 

difference between the states inferred by either method, save in the first ~10 sec of the signal, in 

which the divergence of the inferred state from the true solution is greater for the variational 

filtering approach than it is for batch ADVI. This result is expected due to the difference in 

posterior approximations between the two methods. Whereas batch ADVI generates an 

approximation to the full posterior on the states given all the data, 𝐲1:𝐾, variational filtering will 

only generate a marginal posterior on the current states given data up to the point of evaluation, 

𝐲1:𝑘. As the filter is exposed to more and more of the data, the difference in approximation between 

the batch and filtering approach will decrease. However, as shown in Fig. 8.5, it is expected that 

the variational filter will diverge from the true state, and therefore from the batch approximation, 

to a greater degree at the beginning of the signal when fewer data points are available.  

 

 

Fig. 8.5 – Posterior distribution on the inferred states as compared to the true states 

 

 The marginal posteriors on the parameters are displayed in Fig. 8.6, as well as a 

consolidated view of their optimization history. Though both parameters are estimated with 

reasonable accuracy in both cases, it should be noted that 𝜔𝑛 is inferred more quickly and with 

greater accuracy in both cases than is 𝜉. This result is fairly common in inverse problems, as 𝜔𝑛 

is more easily tied to artifacts in the response data in comparison with 𝜉. Indeed, for both the batch 
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and filtering approaches, 𝜔𝑛 is accurately identified within 10% of the optimizations required for 

the filtering case. In contrast, 𝜉 is identified quite differently between the batch ADVI case and the 

filtering approach. Though both of these cases require their respective full number of optimization 

iterations to achieve a relatively accurate result, that iteration count is much higher for the filtering 

case. However, the beginning of the inference history is relatively similar for the two approaches. 

Both get into the general neighborhood of the true solution, and then the speed of the inference for 

the filtering case drops off drastically, indicating a smaller gradient with respect to this parameter 

for the filtering solution as opposed to the batch solution. It is possible that this difference in the 

gradient occurs due to the relative availability of the data between the cases, which can increase 

the peakedness of the likelihood surface for optimization.  

 

 Table 8.1 – Summary of inference results for batch and filtering ADVI cross-comparison 

Type 

Total Opt. 

Iterations 

[x10^5] 

State RMSE Parameter Posteriors 
Relative 

Run 

Time 
Disp.  

[--]  

Vel.  

[--] 
𝜉  

[--] 

Error 

[%] 
𝜔𝑛  

[--] 

Error 

[%] 
 

Batch 5 0.086 0.096 0.0503 0.60 20.02 0.08 1.00 
 

Filter 28 0.994 1.084 0.0610 22.00 20.08 0.40 3.96 
 

 

The relative run time in Table 8.1, which gives the computational time of each algorithm 

with respect to the computational time of the batch ADVI method, sheds additional light on the 

respective utility of the two inference approaches. Though each method ultimately yields similar 

inference results, the filtering approach takes approximately four times as long to achieve the same 

quality of results as the batch case, largely due to the smaller gradients in both the states and the 

damping ratio (𝜉) as discussed previously. Though the filtering approach is still quite useful for 

extremely large data, as the batch case is limited in the number of states it can ultimately infer, and 

has been shown in this example to achieve similar accuracy to the batch case, additional 

consideration needs to be given to the computational efficiency of the filtering algorithm. In the 

following sections, I discuss some variables in the filter code which could alleviate this issue, 

including the batch size, the batch overlap length, and the downsampling ratio.   
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Fig. 8.6 – Inference results on the parameters for the cross-comparison case (a) 𝜉 optimization 

history (b) Parameter posterior on 𝜉 (c) 𝜔𝑛 optimization history (d) Parameter posterior on 𝜔𝑛 

8.3.3 Batch Size 

In this parameter study, batch size is varied from 1 𝜏-sec to 14 𝜏-sec, encompassing response data 

representing a quarter period of the response up to 2 periods of the response. For each selected 

batch size, the number of optimization iterations per batch is varied from 1000 to 500,000, as 

shown in Table 8.2. The results from this study are reported similarly to Table 8.1, in terms of the 

RMSE on the remodeled states and the mode of the marginal posterior on the parameters.  

The results in Table 8.2 indicates that inference accuracy increases with batch size, at least 

up through the size of the two response cycles studied herein. For extremely small batch size s 

(less than half of a cycle of the response data), the optimization problem will fail to converge to 

an accurate result, regardless of the number of optimization iterations used. There is simply not 

enough data in the batch that can be leveraged by the loss function to provide actionable 

information for inference. As the batch size gets larger, reaching up to two response cycles, the 

optimization problem retains greater and greater accuracy without getting too bogged down with 

the additional inference terms. Indeed, the run-times of the larger batch sizes are actually decreased 

with respect to those of the smaller batch sizes as few total batches are needed to be able to walk 

through the data. It can also be seen from the Batch Size – 14 cases in Table 8.2 that the relative 
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run time is actually slightly decreased in comparison to the filtering case in Section 8.3.2 for cases 

with error levels similar to that base filtering case (results in Table 8.1). This result demonstrates 

the flexibility of the filtering method, though the resultant run times are still much larger than 

would be practical for a real world filtering scenario.  

 

Table 8.2 – Summary of inference results examining the cross-section of batch size and number 

of optimization iterations per batch 

Batch 

Size  

[𝜏-sec] 

Opt. Iter. 

per 

Batch 

State RMSE Parameter Posteriors 
Relative 

Run 

Time 
Disp.  

[--]  

Vel.  

[--] 

𝜉  

[--] 

Error  

[%] 

𝜔𝑛  

[--] 

Error  

[%] 
 

1 1000 7.34 8.21 0.60 1099.00 22.20 11.01 0.41 
 

1 5000 6.99 7.80 0.70 1294.54 16.09 -19.53 2.04 
 

1 10000 6.99 7.80 0.62 1137.01 17.94 -10.28 4.05 
 

1 50000 7.24 8.10 0.79 1476.36 18.31 -8.47 20.94 
 

1 100000 8.28 9.33 0.21 324.87 28.66 43.31 39.86 
 

2 1000 7.41 8.29 0.33 554.83 24.21 21.03 0.23 
 

2 5000 6.97 7.78 0.31 521.70 22.47 12.37 1.16 
 

2 10000 6.72 7.48 0.31 526.18 21.55 7.77 2.27 
 

2 50000 6.32 7.01 0.33 550.99 19.67 -1.65 11.12 
 

2 100000 5.95 6.59 0.28 454.74 19.32 -3.38 22.24 
 

2 500000 6.21 6.89 0.31 520.41 19.56 -2.21 108.32 
 

6 1000 7.85 8.80 0.25 402.87 25.74 28.70 0.08 
 

6 5000 7.06 7.86 0.22 338.90 22.96 14.82 0.38 
 

6 10000 5.67 6.27 0.16 222.65 21.28 6.38 0.78 
 

6 50000 6.47 7.30 0.05 5.93 21.57 7.85 3.62 
 

6 100000 6.33 7.27 0.04 -22.37 21.33 6.67 7.50 
 

6 500000 0.86 0.98 0.05 -0.17 20.21 1.03 36.96 
 

10 1000 7.94 8.92 0.25 395.20 26.25 31.27 0.05 
 

10 5000 6.64 7.39 0.21 317.18 22.22 11.10 0.23 
 

10 10000 5.66 6.25 0.18 252.58 21.08 5.40 0.48 
 

10 50000 2.65 2.90 0.09 72.65 20.25 1.23 2.19 
 

10 100000 0.94 1.03 0.06 20.55 20.08 0.42 4.25 
 

10 500000 0.15 0.16 0.05 -0.27 19.97 -0.15 22.21 
 

14 1000 8.19 9.22 0.24 373.24 28.54 42.69 0.03 
 

14 5000 7.09 7.90 0.19 284.25 22.97 14.86 0.14 
 

14 10000 5.49 6.06 0.14 171.24 21.34 6.72 0.30 
 

14 50000 2.58 2.83 0.08 60.59 20.37 1.83 1.51 
 

14 100000 1.42 1.57 0.06 26.98 20.22 1.08 2.89 
 

14 500000 0.15 0.16 0.05 1.99 19.98 -0.08 13.91 
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Further clarity is given to these results through the visualization in Fig. 8.7, which shows 

the displacement RMSE as a function of the batch size and optimization iterations. The results 

show a definitive preference for larger batch sizes, with consistently high errors in the smaller 

batch sizes despite increased optimization iterations. It is assumed that this trend will degrade as 

the batch size becomes too large for efficient optimization. Prior experience from the author on 

this particular case study suggests that this degradation would occur after the number of inferred 

states per batch exceeds ~5,000. However, the number of inferred states required to make large 

batch optimization inefficient is problem dependent. Rather it seems prudent to limit the inference 

states to a sufficient large batch to incorporate at least one full cycle of response data, without 

committing extremely large numbers of states for inference at once.  

 

 

Fig. 8.7 – Displacement RMSE surface dependent on the cross section of batch size and number 

of optimization iterations per batch  

8.3.4 Batch Overlap Length 

In this parameter study, the amount of overlap between batches is varied from 0.2% (only one 

sample in common) to 99.9% (all but one sample in common) to study the effect of inferring some 

states across multiple batches on the accuracy of the inference. This technique essentially lends 

greater confidence to the prior on the states for the portion where the marginal posterior is known 
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from the previous inference step. These states then have the opportunity to be further corrected 

based on data from the following step, rather than being left with only the data in the current batch. 

For each selected batch overlap length, the number of optimization iterations per batch is varied 

from 1000 to 500,000, as shown in  

Table 8.3.  

  

Table 8.3 – Summary of inference results examining the cross-section of batch overlap length 

and number of optimization iterations per batch 

Batch 

Overlap 

[%] 

Opt. Iter. 

per 

Batch 

State RMSE Parameter Posteriors 
Relative 

Run 

Time 
Disp.  

[--]  

Vel.  

[--] 
𝜉  

[--] 

Error  

[%] 
𝜔𝑛  

[--] 

Error  

[%] 
 

0.2 1000 8.64 9.75 0.13 165.27 28.78 43.90 0.00 
 

0.2 5000 8.82 9.97 0.11 119.83 27.90 39.48 0.02 
 

0.2 10000 8.69 9.77 0.12 139.87 25.04 25.19 0.05  

0.2 50000 3.60 3.96 0.09 82.27 20.67 3.37 0.24 
 

0.2 100000 1.20 1.34 0.06 18.47 20.22 1.09 0.49 
 

0.2 500000 0.06 0.06 0.05 -0.18 20.00 -0.02 2.41 
 

10.0 1000 10.42 11.83 0.02 -55.74 25.62 28.08 0.01 
 

10.0 5000 8.44 9.49 0.15 204.24 25.86 29.31 0.03 
 

10.0 10000 7.85 8.76 0.14 178.08 23.61 18.03 0.07 
 

10.0 50000 3.08 3.38 0.09 75.49 20.47 2.36 0.33 
 

10.0 100000 1.01 1.13 0.06 16.17 20.17 0.87 0.66 
 

10.0 500000 0.07 0.07 0.05 0.46 20.00 -0.01 3.22 
 

50.0 1000 9.15 10.37 0.06 11.49 28.31 41.56 0.01 
 

50.0 5000 8.55 9.61 0.14 179.39 25.75 28.76 0.05 
 

50.0 10000 7.73 8.61 0.13 152.74 23.22 16.09 0.10 
 

50.0 50000 3.22 3.53 0.09 84.63 20.45 2.27 0.52 
 

50.0 100000 1.18 1.31 0.06 19.18 20.20 1.02 0.96 
 

50.0 500000 0.08 0.09 0.05 0.28 19.99 -0.05 4.85 
 

90.0 1000 7.94 8.92 0.25 395.20 26.25 31.27 0.05 
 

90.0 5000 6.64 7.39 0.21 317.18 22.22 11.10 0.22 
 

90.0 10000 5.66 6.25 0.18 252.58 21.08 5.40 0.44 
 

90.0 50000 2.65 2.90 0.09 72.65 20.25 1.23 2.18 
 

90.0 100000 0.94 1.03 0.06 20.55 20.08 0.42 4.32 
 

90.0 500000 0.15 0.16 0.05 -0.27 19.97 -0.15 22.27 
 

99.9 1000 6.41 7.12 0.26 421.34 21.29 6.47 2.32 
 

99.9 5000 5.17 5.70 0.18 251.59 20.38 1.88 12.73 
 

99.9 10000 11.82 13.86 0.00 -99.80 21.29 6.43 24.38 
 

99.9 50000 1.97 2.15 0.07 48.89 20.18 0.91 113.83 
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The results demonstrate that the accuracy of the identification is fairly constant for different 

levels of batch overlap, with the number of optimization iterations playing a much more significant 

role in the identification accuracy than the overlap length. When the number of optimization 

iterations is small, it can be seen that the influence of the batch overlap tends to reduce the error 

in the estimation as overlap length increases. However, when the optimization iterations are 

sufficiently large (50,000 optimization iterations or greater), the identification accuracy is 

essentially equivalent between cases, which can also be seen very clearly in Fig. 8.8. Indeed, near 

equivalent identification accuracy to the base filtering case in Section 8.3.2 can be achieved using 

a 0.2% batch overlap at 100,000 optimization iterations per batch, resulting in a computation time 

that is half that of the batch case. These trends can be leveraged to the distinct advantage of the 

user to reduce computation time. Overall, the results indicate that the advantage of overlapping 

identification windows is not nearly as distinct as simply increasing the optimization iterations for 

the current window, and therefore generating a more accurate posterior approximation.  

 

 

Fig. 8.8 – Displacement RMSE surface dependent on the cross section of batch overlap length 

and number of optimization iterations per batch 
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 One feature of the data, shown as the peak in the error surface at 99.9% overlap and 10,000 

optimization iterations in Fig. 8.8, merits further discussion. This peak is a direct result of the 

difficulty in obtaining the mode of the posterior distribution on 𝜉, which is calculated numerically 

instead of analytically due to the multiple transformations on the posterior distribution. The 

inferred states for this case present very low error, following the trends shown for the remodeled 

states in previous cases of this parameter study. However, the inference on the 𝜉 parameter yielded 

a posterior distribution with such a small variance that it is incredibly difficult to numerically 

pinpoint the mode of the posterior, as the posterior has essentially become a dirac delta function. 

This overconfidence in the posterior occurs as a specific result of the high batch overlap and large 

number of optimization iterations used in this parameter study. When overlap occurs between the 

batches, the marginal prior asserted on the parameters per Section 8.2 incorporates not only 

information gleaned from previous observations, but also from observations which are used for 

the current batch. By ‘double counting’ the data, particularly for a large number of optimization 

iterations in the batch, the successive iterations of marginal posteriors become increasingly 

overconfident, eventually resulting in the case seen in Table 8.3, where the mode cannot feasibly 

be numerically extracted from the data. ‘Double counting’ the data appears to exacerbate the 

already existing issue of overconfidence in the approximate posterior, which has been noted in the 

variational inference literature [12]. This difficulty has been a particular focus on variational 

inference approaches for data streams, as noted in Section 8.1, with no definitive strategies yet 

proposed to effectively mitigate the issue for generalized filtering problems. For this particular 

filter, an adapted prior artificially increases the variance of the marginal filtering priors to account 

for the batch overlap size may be sufficient to combat the overconfident posteriors. More adaptive 

guide distributions may also serve to alleviate this issue, and represent a promising topic for future 

study. Given the results of this parameter study, it is currently recommended to avoid overlapping 

inference batches, particularly in excess of 50%.  

8.3.5 Down-sampling Ratio 

In this parameter study, the sampling rate, and therefore the number of data points and inferred 

states, is modified according to a factor termed the downsampling ratio (𝑑). For a 𝑑 of 1, all states 

are inferred and all data is used in the inference. For a 𝑑 of 𝑋 ≠ 1, every 𝑋𝑡ℎ state and data point 

is used in the inference problem, though all excitation measurements are used to facilitate a multi-
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step, or in this case 𝑋 -step, integration between inferred states. For this parameter study, I 

investigate 𝑑 values ranging from 1, representing a sampling frequency of 𝑓𝑠 = 1024 Hz, to 16, 

representing a sampling frequency on the inferred states of 64 Hz. In theory, this approach would 

increase computational speed of the filter by greatly reducing the number of states required to be 

inferred for each case. In practice, this is not necessarily the case, as shown in Table 8.4.  

 

Table 8.4 - Summary of inference results examining the cross-section of downsampling ratio and 

number of optimization iterations per batch 

𝑑 

Opt. Iter. 

per 

Batch 

State RMSE Parameter Posteriors 
Relative 

Run 

Time 
Disp.  

[--]  

Vel.  

[--] 
𝜉  

[--] 

Error  

[%] 
𝜔𝑛  

[--] 

Error  

[%] 
 

1 1000 7.94 8.92 0.25 395.20 26.25 31.27 0.05 
 

1 5000 6.64 7.39 0.21 317.18 22.22 11.10 0.23 
 

1 10000 5.66 6.25 0.18 252.58 21.08 5.40 0.45 
 

1 50000 2.65 2.90 0.09 72.65 20.25 1.23 2.22 
 

1 100000 0.94 1.03 0.06 20.55 20.08 0.42 4.38 
 

1 500000 0.15 0.16 0.05 -0.27 19.97 -0.15 21.92 
 

2 1000 7.22 8.07 0.53 969.45 21.72 8.61 0.05 
 

2 5000 6.85 7.64 0.47 842.09 19.67 -1.63 0.25 
 

2 10000 6.37 7.08 0.36 622.81 18.87 -5.67 0.51 
 

2 50000 4.29 4.70 0.14 186.75 19.75 -1.23 2.42 
 

2 100000 1.91 2.07 0.08 52.76 20.01 0.04 4.78 
 

2 500000 0.25 0.27 0.05 4.40 19.97 -0.13 25.16 
 

4 1000 7.43 8.32 0.81 1520.25 21.12 5.59 0.07  

4 5000 7.28 8.14 0.73 1364.10 19.72 -1.42 0.36 
 

4 10000 6.89 7.68 0.57 1042.18 17.73 -11.33 0.74 
 

4 50000 5.11 5.62 0.19 286.63 19.33 -3.37 3.48 
 

4 100000 2.69 2.93 0.09 84.69 19.95 -0.24 6.83 
 

4 500000 0.54 0.57 0.06 11.06 19.94 -0.28 32.76 
 

8 1000 7.43 8.32 0.87 1644.63 20.31 1.56 0.12 
 

8 5000 7.33 8.21 0.79 1488.85 19.66 -1.69 0.59 
 

8 10000 7.01 7.82 0.65 1209.76 17.33 -13.35 1.15 
 

8 50000 5.47 6.03 0.23 352.03 19.00 -4.98 5.61 
 

8 100000 2.89 3.14 0.10 94.49 19.78 -1.10 11.23 
 

8 500000 0.57 0.61 0.06 12.78 19.98 -0.10 54.90 
 

16 1000 7.61 8.53 0.92 1740.06 23.70 18.48 0.20 
 

16 5000 7.50 8.40 0.88 1659.50 21.54 7.71 0.98 
 

16 10000 7.45 8.35 0.91 1719.03 20.30 1.52 2.00  

16 50000 5.93 6.57 0.28 464.41 18.94 -5.29 9.37 
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16 100000 3.40 3.71 0.11 121.53 19.89 -0.57 19.21 
 

16 500000 0.76 0.82 0.06 13.30 19.87 -0.66 92.59 
 

 

The results from this case study show that as the 𝑑  increases, the inference accuracy 

decreases. Fig. 8.9 displays this effect most clearly, showing the largest drop-off in inference 

accuracy as 𝑑 is changed from 1 to 2, with decreasing steps of accuracy drop-off in subsequent 𝑑. 

These results demonstrate that representing the true observations with an artificially sparse set of 

data points can cause computational issues in the inference. As the data sparsity increases, the log-

likelihood surface becomes more varied, resulting in pockets of local maxima throughout the 

solution space which are not representative of the true system parameters. 

 

 

Fig. 8.9 – Displacement RMSE surface dependent on the cross section of batch overlap length 

and number of optimization iterations per batch 

 

An example of this phenomenon is shown in Fig. 8.10 with respect to the inference of the 

natural frequency and damping ratio from a single degree-of-freedom oscillator. As 𝑑 increases 

from 1 to 64, the likelihood surface develops several highly peaked local maxima. Optimization 

over this solution space, whether through variational inference or through other Bayesian filter 

techniques operating on similar likelihood maximization principals, can result in false solutions 
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which express high confidence in their identification, therefore masking their error from the user. 

As the tendency of the solution to fall into these false maxima is dependent on the initialization 

and prior distributions of the filter, there is no way to universally guarantee that the global 

maximum will be found. Instead, the user must determine the appropriate down-sampling ratio to 

achieve a relatively uniform likelihood surface, a task which is highly problem dependent and 

worthy of further study in the future work of the author. The current work will instead focus on 

defining these techniques and validating their effectiveness on a number of simulated and 

experimental case studies, as will be shown in the following chapters. 

In addition to the issues caused in the likelihood surface by downsampling the data, Table 

8.4 shows that the expected gains in computation time have also not been realized. This slowdown 

in computation with higher 𝑑  occurs due to the necessity of multi-step integration in the 

computation of the ELBO. Multi-step integration is used to preserve near equivalent integration 

accuracy in the computation of the transition probability, and therefore preserve the known model 

error covariance for the system. Despite optimization of this computation for speed, multi-step 

integration still requires more computation time than a single-step integration approach, resulting 

in a buildup of computation time that exceeds the gains afforded by limiting the number of states 

inferred. Overall, the results of this parameter study recommend against the use of downsampling 

in the inference problem. 
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Fig. 8.10 – Comparison of log-likelihood surface at a down-sampling ratios                                

(a) 𝑑 = 1 (b) 𝑑 = 64 

8.4 Conclusions 

In this chapter, I have introduced and explored a novel variational filtering technique for 

the predictive modeling of structural systems. Variational inference stands distinct from other 

Bayesian inference methods due to its focus on the optimization of an approximate posterior. This 

approach allows for increased flexibility in the selection of the form of the approximate posterior, 

and has been shown in the literature to allow the user to reach a suitable understanding of the 

posterior at significantly less computational cost than sampling methods, and yet with more 

accuracy than analytical methods. 

 The developed approach to variational filtering was shown to produce near equivalent 

results to the batch optimization case, with a computational cost dependent on the tuning 

parameters used. Variations on these parameters were explored to determine how this cost could 

best be mitigated. These parameter studies resulted in the understanding that filtering cases 

incorporating larger batch sizes (between 1 and 2 system response cycles) and low batch overlaps 

(as low as only 1 sample overlapping) have the potential to produce accurate inference on the 

system at a low computational cost relative to the batch case. Investigation of the downsampling 
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approach introduced in Section 8.2.2 recommended against this strategy for use with variational 

filtering.  

The purpose of developing a filtering approach for variational inference was to tap into the 

benefits of variational inference to tackle the issue of scalable predictive modeling for large-scale 

civil engineering structures. The work herein represents a starting point, which necessarily uses 

small scale, low dimensional systems to determine the effectiveness of the developed approach. 

Lessons learned from this illustrative example can then be extended for adaptation of the method 

to high dimensional systems. Primary among the lessons learned from this example is that the 

computational efficiency of the filtering case can be tuned to exceed that of the standard batch 

approach to variational inference. Though the efficiency of the method is not yet feasible for real 

time implementation, this tunability, coupled with the incorporation of further strategies to 

increase the computational efficiency (e.g. amortization, variance reduction, normalizing flows, 

etc. See Section 9.1) suggests that fruitful implementations of a large-scale filter can be developed. 

As the dimensionality of the problem increases, two main computational limitations are projected 

which could hinder the application of the filter: the numerical integration of the transition model 

and the increasing number of states to be optimized. The first of these issues can be addressed in 

a number of ways, such as by increasing the efficiency of the computational algorithm with respect 

to the particular implementation, by introducing parallel computing, or through dimensionality 

reduction in the states. The challenge of the increased dimensionality of the problem can be 

addressed through model order reduction techniques or through amortization (see Chpt. 9). It 

should be noted however that the batch and filtering cases for variational inference demonstrate a 

high tolerance to the dimensionality of the inferred state in time. By reducing the batch size and 

increasing the dimensionality of the problem, these concerns can be balanced. The final important 

lesson learned from this example is that though the stochastic model selected herein is simple, the 

method can easily be used to accommodate more complex systems, with accuracy dependent 

primarily on the specification of uncertainty by the user (see Chpt. 6). The variational inference 

family of approaches is therefore flexible enough to approach the practical uncertainties involved 

in modeling civil engineering infrastructure. Overall, this illustrative example serves as an 

effective starting point for the development of a practical variational filtering approach for 

application in large-scale civil engineering systems.  
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 CONCLUSIONS AND OPPORTUNITIES FOR FUTURE STUDY 

Through this dissertation, I have explored the practical application of Bayesian inference methods 

for predictive modeling to structural systems. My work has resulted in several contributions to the 

field, including a novel global sensitivity analysis approach to the determination of practical 

identifiability in structural system models, the development of a robust method for unscented 

Kalman filter identification of systems exhibiting high levels of nonlinearity, and the development 

and application of variational filtering to structural systems.  

The key thread in my contributions, which I have continuously emphasized through my work, 

is that the accuracy of stochastic methods for predictive modeling are highly dependent on the 

users accounting for the practical uncertainties inherent in both the structural system as well as the 

algorithmic approximation to the Bayesian inference solution. My work has generated several 

novel approaches to combat these issues, beginning with the adoption of Sobol’ sensitivity analysis 

for practical identifiability and its adoption, coupled with a train-validate scheme, to ensure the 

reliability of the UKF algorithm. This investigation culminated in the exploration of variational 

inference as a solution approach to predictive modeling for structural systems, which has 

heretofore remained unknown to the structural engineering community. From this investigation, a 

novel variational filter has been generated and applied to a simple structural identification problem, 

showing accurate and robust identification of the system, as well as great flexibility in model 

development. Overall, my contributions have both highlighted these key concerns with applying 

Bayesian inference solutions to practical predictive modeling problems, as well as providing 

practical solutions to ensure that non-expert users can confidently and successfully employ 

Bayesian approaches for system identification to drive the real, critical decisions that are required 

in a structural health monitoring context.  

9.1 Topics for Future Study 

There exist several opportunities to extend the impact of this work through further study. Primary 

among these opportunities is the potential to increase the efficacy of the variational filter through 

advances in stochastic modeling and variational inference. Current issues with the variational 

filtering approach can be summarized in two main topics: (1) too large of a set of inferred states 
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for efficient inference; and (2) inflexible statements of the variational family leading to 

overconfident posteriors. Several ideas in the literature may be of help in alleviating these issues.  

The number of states to infer can be reduced by the adaptation of amortization to the 

sequential state modeling case [1]. This approach reduces the number of inference parameters by 

generating a function that parameterizes the states in terms of the system observations, thereby 

eliminating the large number of local variables (system states) in the inference problem. Adapting 

this approach to the case of structural identification has the potential to greatly increase the 

inference speed.  

To address the inflexible statement of the variational family, Liu et al. have developed 

Stein variational gradient descent, which postulates the variational family as a set of particles 

driven toward the true posterior, rather than setting a distinct computational form for the guide 

[2]–[4]. In addition to capturing the true variance of the posterior with greater accuracy, this 

approach has the distinct benefit of allowing for multi-modal posteriors, which is allows for a 

much more realistic view of the real-world system. Alternatively, normalizing flows can be used 

to increase the accuracy of the posterior [5]–[7]. This approach allows the user to parameterize the 

variational family to be flexible enough to capture any distribution, by using neural networks to 

define an invertible transformation on the guide to allow it to fit to any posterior. I anticipate that 

by exploring these and other promising methods and adapting them to the practical concerns faced 

in structural health monitoring and predictive structural modeling, variational will become a 

prominent and practical tool in the field of damage detection and structural health monitoring.  
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