Project title Reinforcement Learning - Algorithm and Convergence Guarantees Project description Reinforcement learning (RL) has become increasingly impactful in solving sequential decision-making problems, from AlphaGo to recent large language models. However, its reliance on heuristics, the computational challenges posed by the curse of dimensionality, and the complexities arising from multi-agent interactions underscore the need for rigorous theoretical foundations, which lie at the core of my research. One of the most practical RL algorithms is the actor-critic framework, where the actor is responsible for policy improvement and the critic for policy evaluation. However, unlike typical value-based algorithms such as variance-reduced Q-learning (which has been shown to achieve minimax optimal sample complexity), policy-space algorithms such as natural actor-critic are far from theoretically optimal—particularly when implemented in a two-timescale manner rather than a two-loop manner. The goal of this project is to achieve minimax optimal sample complexity with (natural) actor-critic algorithms, possibly through improved algorithm design or advanced analysis techniques. Host professor name Zaiwei Chen Professor/lab https://sites.google.com/view/zaiweichen/home websites Contact information For students interested in the opportunity, feel free to email to whom applicants chen5252@purdue.edu with any questions. can direct questions Potential applicants should possess a solid mathematical background Other comments in analysis and probability. Prior experience with Markov decision processes and reinforcement learning is preferred but not required.

2025 IE Summer Internship Project

Edwardson School of Industrial Engineering