PepsiCo Biodiesel Feasibility Analysis
By Stephen Pangas, Manan Agarwal, Nubia Tomita, Jeff Santoso, William Carroll and Jolee Hedman

Problem Statement
Our goal is to design a model that PepsiCo can use to analyze the economic, environmental and supply chain impacts of using B100 instead of regular diesel in its Fleet Operations.

Methodology
Network Model
We built a model network map that superimposes the PepsiCo route beginnings and endings, as well as the biodiesel grid.

Economic Models
1) The General Economic Model estimates B100 retrofitting costs over time with minimal user input and calculates its current value.

2) The Multi-Investment Economic Model is specific to PepsiCo, showing costs, returns, and breakeven points for different retrofitting investments.

Discussion
● Recommendation:
PepsiCo should implement B100 in their fleet because of the long term environmental impacts. The network model revealed that the switch would be possible, especially once fueling stations started to offer B100 as well as B20.

● Future steps:
Gather specific data on engine and transmission performance is instrumental to improve this model's performance and predictions towards costs and emissions.

Compare B100 emissions and costs with those of the current B5 and B20 fleet, and also take into account possible variations in biodiesel sourcing and pricing in cost and emissions analyses.

Results
While initial costs of acquiring a B100 fleet or retrofitting current vehicles to be B100 compliant are high, the net economic impact of a shift over a longer period of time is viable. Retrofitting even 50 vehicles a year (estimated at $500,000 per year) with an estimated initial purchase of 80 vehicles (estimated at $9,500,000) has the potential to have a net present value of around $1,500,000 over 15 years at a 3.8% annual interest rate. Also, there is a significant reduction in Carbon emissions as a result of using B100 (~141 metric tons / vehicle)

PepsiCo could theoretically convert half of its middle-mile routes to Biodiesel using just commercial sources, but is constrained by a lack of availability and infrastructure. Obtaining B100 commercially would require a modest investment from retailers, but the fuel is available onsite.