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Can	quantum	computing	enhance/
speed-up	machine	learning	

algorithms?

Machine	learning	meets	
quantum	compuMng	

What if ML ran on quantum hardware?

With the advent of quantum computing, 
one may naturally ask



Neural	Networks

• Neuromorphic	compuMng	
Brain-like	architecture	for	computaMonal	network

• Recurrent	neural	networks	(RNNs)	
can	have	cyclic	connecMons	between	nodes	(as	opposed	to	feed-
forward	NNs)
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• Neuromorphic	compuMng	
Brain-like	architecture	for	computaMonal	network

• Recurrent	neural	networks	(RNNs)	
can	have	cyclic	connecMons	between	nodes	(as	opposed	to	feed-
forward	NNs)

• Reservoir	compuMng	
special	case	of	RNN	with	fixed	connecMons
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Example:	Reservoir	compuMng	(RC)

Inputs Output• Neural	networks	have	
trainable	connections	

	and	output	filters	
.		

• However,	training	 	is	
resource	intensive.	

!"#
$%&'

!"#

• Reservoir	computers	assume	fixed	connections	 	or	 ,	
randomly

!"# = ! !"# = (

)" ∈ [−,, ,]

!"#

6

soluMon



Training	an	RC:	Update	rule

Inputs Output

Evolve

Synaptic	
weights:	
Brain’s	

structure

Biases:	
External	
stimuli

We	think	of	neurons	as	discrete	and	
interacting	classical	spins,	subject	
to	effective	field

8

)" ∈ [−,, ,]

!"#

-"(') = ∑#
!"#)#(') − Δ"(')

1.	If	 	keep	 	
2.	If	 	flip	

-"(') > ( )"(')
-"(') < ( )"(')



Training	cycle

9

Update:	
Let	system	evolve	
under	given	set	of	
parameters,	then	
measure

OpMmize:	
Calculate	“loss	
funcMon”	and	find	
new	set	of	

parameters	

Goal:	OpMmize	set	of	parameters	(e.g.,	all	 	and	
)	to	give	desired	output

!"#
$%&'
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Update:	
Let	system	evolve	
under	given	set	of	
parameters,	then	
measure

OpMmize:	
Calculate	“loss	
funcMon”	and	find	
new	set	of	

parameters	

Goal:	OpMmize	set	of	parameters	(e.g.,	all	 	and	
)	to	give	desired	output

!"#
$%&'

e.g.,	overlap	with	
desired	outcome	with	
all	training	data	sets

e.g.,	via	gradient	
descent



QuanMzing	a	reservoir	computer	(RNN)

facilitates	
flips

Update	rule:	
	evolve	for	 	

If		 	:	 	doesn’t	change	

If		 	:		 	flips

Ωτ = π
-̂"(') ≫ Ω σ2

"
-̂"(') ≪ Ω σ2

"

10Araiza Bravo, Gao, Najafi, Yelin, PRXQ 3, 030325 (22)

-̂"(') = ∑#
!"#)#(') − Δ"(')

Each	qubit	evolves	under	the	Hamiltonian

4 = ∑" (-̂"(') σ2
" + Ω(')

5 σ6
")

Inputs
Output

!"#

σ

σ

σ

σ

σ

σ
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1Ghosh,	S.,	et.	al.,	
Scientific	Reports	(2019),		
2Suzuki,	Y.,	et.	al.,	
Scientific	Reports	(2022),	
3Martínez-Peña,	et.	al.,	
PRL	(2021)	

Applications:	
• Entanglement	detection1	
• Time-series	prediction2	
• Long-term	memory3	
and	many	more…

Quantum reservoir computing
Earlier	work

Requires	large-scale	universal	
quantum	computaMon	
Our	goal:	analog	or	analog/
digital	hybrid	near-term	devices



Training	cycle	of	quantum	RC

13

Update:	
Let	system	evolve	
under	given	set	of	
parameters,	then	
measure

OpMmize:	
Calculate	“loss	
funcMon”	and	find	
new	set	of	

parameters	

Goal:	OpMmize	set	of	parameters	(e.g.,	all	 	and	
)	to	give	desired	output

!"#
$%&'

typically	
classical



We regain the update rule 

New	“quantum	features”	can	be	used	for	novel	
computation:	
1. Interference/freedom	of	measurement	basis	

can	be	used	for	error	detection	/	correction
2. Arbitrary	(measurement)	basis	can	produce	

training	speedups	relative	to	classical	RNNs
3. Efficient	stochastic	processes	

14

…	the	Hamiltonian	evoluMon	is	far	more	general!

Araiza Bravo, Gao, Najafi, Yelin, PRXQ 3, 030325 (22)

-̂"(') σ2
" + Ω(')

5 σ6
"

QuanMzing	a	reservoir	computer	(RNN)

Inputs
Output

!"#
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QuanMzing	an	RNN

Update	rule:	

	evolve	for	 	

If		 	keep	 	

If		 			flip		

Ωτ = π
-̂"(') ≫ Ω σ2

"
-̂"(') ≪ Ω σ2

"
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Each	qubit	evolves	under	the	Hamiltonian

Araiza Bravo, Gao, Najafi, Yelin, PRXQ 3, 030325 (22)

Facilitates	
flips

-̂"(') = ∑#
!"#)#(') − Δ"(')

-̂"(') σ2
" + Ω(')

5 σ6
"

Inputs
Output

!"#

σ

σ

σ

σ

σ

σ

σ
Can	be	different	
rotaMon	angle!



Feature	#1:	interference

Parity	
Computer	

16Araiza Bravo, Gao, Najafi, Yelin, PRXQ 3, 030325 (22)
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Parity	
Computer	
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Feature	#1:	interference



181Ebadi, S., et al., Nature (2020)

Programmable	arrays	of	Rydberg	
atoms	using	optical	tweezers1	can	

implement	qRCs

Van	der	Waals	
interaction

Rydberg	blockade

789

| :⟩ = |<(=,
5
⟩

|>⟩ = |?=,
5
⟩

Arrays	of	Rydberg	atoms	behave	like	
qRCs:	

4 = − ∑"
Δ"σ2

" + ∑"<#

@A
7A"#

σ2
#σ2

" + Ω
5 ∑"

σ6
"

Example	ImplementaMon:	Rydberg	Arrays
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Examples:	ApplicaMons	for	a	qRC

Quantum	error	
detection

Multitasking

Araiza Bravo, Gao, Najafi, Yelin, PRXQ 3, 030325 (22)

Inputs Output

Short-	and	long-
term	memory



Example:	Quantum	reservoir	compuMng	
for	paqern	recogniMon

Train:	10K	samples		
Test:	1K	samples	
Accuracy:	92%	

20

Classical	methods:	>	200	neurons,		
																		~104	tuning	parameters	
Our	method:	Rydberg	array	
(simulated)	with	15	atoms		
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Quantum	informaMon	with	qRNNs

• qRNNs	work,	but	when	and	why?

• Can	one	have	provable	quantum	advantage?

• Can	one	build	quantum	algorithms	systema<cally?

• What	is	the	smallest	building	block?

21



The	building	blocks	of	neural	networks

Artificial	neural	network

221Hornik,	K.,	et.	al.,	ScienceDirect	(1991)

s



The	building	blocks	of	neural	networks

Artificial	neural	network
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• Perceptrons	are	an	oversimplistic	
model	of	neuronal	computation.

• A	perceptron	cannot	approximate	
all	functions	but	many	perceptrons	
together	can1.	

• Their	architecture	makes	them	
resilient	to	noise	in	the	input.

1Hornik,	K.,	et.	al.,	ScienceDirect	(1991)

s

Perceptron		

B%&' = C (−Δ + ∑8
!8)8)
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The	building	blocks	of	neural	networks

Artificial	neural	network
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• Perceptrons	are	an	oversimplistic	
model	of	neuronal	computation.	

• A	perceptron	cannot	approximate	
all	functions	but	many	perceptrons	
together	can1.		

• Their	architecture	makes	them	
resilient	to	noise	in	the	input.	

1Hornik,	K.,	et.	al.,	ScienceDirect	(1991)

s

Perceptron		

B%&' = C (−Δ + ∑8
!8)8)

IDEA:	
Quantum	perceptron	as	a	simple	building	block	of	

scalable	algorithms



Quantum	Perceptrons	(QP)
Perceptron Quantum	Perceptron

• Inputs	are	summed	to	calculate	 	
• 	is	passed	through	a	nonlinear	

function		
• An	output	is	produced

-
-

• Input	qubits	create	an	effective	field		
	for	output	qubit		

• An	extra	driving	field	 	tries	to	
rotate	the	output	qubit	

• The	output	qubit	evolves	under	
competing	forces	

• The	final	configuration	is	the	output

-
Ω



A	QP	is	a	Universal	Quantum	Computer

A	QP	is	a	universal	quantum	computer	if	complemented	by	single-qubit	rotations

Entangling	gate
Large	 	freezes	red	qubit	
and	the	blue	qubits	can	
now	interact

Ω
Single-qubit	gates	
Generated	by	small	
pulses	on	each	qubit

Identity	gates
Pulses	on	qubits	decouple	
them	from	participating	in	
the	computation

The	upshot:	A	QP	is	as	powerful	as	a	universal	
quantum	computer	

The	drawback:	Single-qubit	pulse	control	is	
resource	intensive

Araiza Bravo, Najafi, Patti, Gao, Yelin, arXiv:2211.07075; early work: Raussendorf, R., et. al., PRA (2003)
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Simplest	case:	single	QPs

28

Energy	measurement	and	
entanglement	detection

Quantum	metrology:	
measuring	fundamental	
constants	in	the	lab

Amplified signal

Training	compares	
favorably	to	other	
quantum	algorithms

Araiza Bravo, Najafi, Patti, Gao, Yelin, arXiv:2211.07075



Analog	quantum-classical	learning

• Goal:	Make	the	most	of	a	quantum	computer	

(Here:	analog	quantum	machine)

• How?	
–	Classically	simulable	 	classical	

–	ExponenMally	expensive	 	quantum

⟶
⟶

Gu,	Hu,	Luo,	Pav,	Rubin,	Yelin,	arXiv:2308.11616	(2023).



• Limited	tunability		
• Highly	expressible	(quantum	
correlations)	

• Evolution	time	limited	by	
decoherence

• Tunable	
• Not	expressible	
(classically	simulable)	

• Long	time	evolution	(no	
errors)

Analog	machine

Example:	
Clifford	
circuits

30

Analog	Quantum-Classical	Hybrid	Machine	Learning	
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Analog	Quantum-Classical	Hybrid	
Analog	machine

Example:	
Clifford	
circuits

31

Classical	
simulation
Quantum	
simulations

Combining	these	two	approaches	promises	enhanced	
expressivity	and	trainability	all	while	on	a	near-term	device!	!
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Clifford	+	T	circuit	acts	as	basis	transformation:	(Entanglement	reduction)

Analog	Quantum-Classical	Hybrid	Machine	Learning	
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Clifford	+	T	circuit	acts	as	basis	transformation:	(Entanglement	reduction)

Analog	Quantum-Classical	Hybrid	Machine	Learning	

classically 
simulable (in 

polynomial time)
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Clifford	+	T	circuit	acts	as	basis	transformation:	(Entanglement	reduction)

Programmable	
Quantum	Simulator

Virtual	
Quantum	
Circuit

Re
ma
ini
ng
	

en
tan
gle
me
nt

Analog	Quantum-Classical	Hybrid	Machine	Learning	



Outlook

• Scale	up	systems		
• ApplicaMons	to	quantum	
chemistry

33



34• $$$:	NSF-CUA,	DOE,	HQI,	NSF-QSEnSE,	NSF-HDR

Collaborators
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Araiza	Bravo

Xun	Gao
Yidan	Wang

Oriol	Rubies	
BigordaSona	Najafi

Hong-Ye	Hu

Andi	Gu

Di	Luo



Quantum Chemistry and Material Science

=	solving	an	electronic	structure	problem	for	a		
			configuration	of	electrons	and	nuclei

Quantum	Chemistry

Major	thrust	of	quantum	chemistry:	quantitative	prediction	of	material	or	molecular	
properties	
Full	Hamiltonian:	

																									4 = − ∑
8

ℏ5 ∇5

5#8
− ∑

G≠8

IGJ5

|RG − r8 |
+ ∑

8≠9

J5

|r8 − r9 |

Challenge:	Simulating	systems	with	strong	correlations	
	 								➤		Unfavorable	Hilbert	space	scaling	motivates	use	of	quantum	computers



Quantum Chemistry on Quantum Computers

arXiv:2211.07629 
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Quantum Chemistry on Quantum Computers

arXiv:2211.07629 

Run Time (seconds)
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10 million

Minute

Our goal: simulate relevant quantum 

dynamics on near-term hardware



Advancing	ComputaMonal	Quantum	Chemistry

Our	approach:
• Leverage	insights	obtained	from	state-of-the	art	classical	
computa<onal	algorithms.

• Use	state-of-the	art	programmable	quantum	simulators	(e.g.,	
Rydberg	atom	arrays)

• Focus	on	hardware-efficient	implementaMons	on	near	term	
devices.

What	problems	do	need	a	quantum	computer?

39

problems	with	strong	correlations



Model	Hamiltonians

III

IV

IV

IV

7	valence	electrons

Mn

 Mn2 has 3 active electrons

spin-3/2

Example:	Biochemical	catalyst	involved	in	the	oxygen	evolving	complex	(OEC)

• Coulomb interaction - localizes electrons 
• Exchange interaction -  ferromagnetic 
• Super-exchange interaction - anti-ferromagnetic



Model	Hamiltonians

III

IV

IV

IV

 Mn2 has 3 active electrons

Computational Chemistry

V.	Krewald,	M.	Retegan,	F.	Neese,	W.	Lubitz,	
D.	A.	Pantazis,	N.	Cox,	Inorg.	Chem.	55,	488−501	(2016)	

Hilbert	space	scaling:	
∝ (5= + ,)L

Example:	Biochemical	catalyst	involved	in	the	oxygen	evolving	complex	(OEC)



Approach

• Represent	high	spins	…	
➡ How	to	implement	high	spins?	

• …	and	let	them	interact	
➡	How	to	implement	non-local	connecMvity?	

• Read	out	chemically	relevant	quanMMes	
➡	Quantum-classical	co-processing

48



Necessary Ingredients
Non-local connectivity

Atom moving

D. Bluvstein et al., Nature 604, 451–456 (2022)

Solution read-out

Co-processing

H.-Y. Huang et al., Nat. Phys. 16, 1050–1057 (2020)

Control high spin (S>1/2)

Native multi-qubit gates 
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Atom	Array	Pla|orm	in	Analog-Digital	Mode

Bluvstein et al. Nature 604, 451 (2022). 

High-fidelity gatesReconfigurable 
architecture Hybrid analog-digital control

High	degree	of	programmability

Interactions	manipulated	via	
geometric	configuration	
																											+	
Global	control	pulses

Evered, et al. Nature 622, 268n (2023)
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Engineering	Large	Spins	on	Rydberg	Pla|orm
Hardware	Efficient	Multi-Qubit	Operations	with	a	global	drive

Realize	multi-qubit	gates	via	time-dependent	global	control:		
													use	GrAPE	(Gradient	Ascent	Pulse	Engineering)								

Encode	spin-S	variables	into	2S	(spin-1/2)	qubits	(“clusters”):	
	valid	spin-S	states:	⇒ ⟨Ŝ5

8 ⟩ = =8(=8 + ,)

Engineer	two-field	pulses	(using	
Rydberg	blockade)	to	implement	any	

2S-qubit	gate!
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Realize	multi-qubit	gates	via	time-dependent	global	control:		
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Encode	spin-S	variables	into	2S	(spin-1/2)	qubits	(“clusters”):	
	valid	spin-S	states:	⇒ ⟨Ŝ5

8 ⟩ = =8(=8 + ,)

Khaneja,	et	al.,	J.	Magn.	Reson.	172,	296	(2005)	
Jandura	et	al.,	Quantum	6,	712	(2022)	
Evered	et	al.,	Nature	622,	268	(2023)	
Katz,	et	al.,	Nat.	Phys.	19,	1452	(2023)

Engineer	two-field	pulses	(using	
Rydberg	blockade)	to	implement	any	

2S-qubit	gate!



Important	Metric:	Gate	Times
The	shorter	the	gates,	the	more	sequences	one	can	run	(until	system	decoheres)

	Almost	no	scaling	with	cluster	size⇒ Number of Qubits

Comparison:	two-qubit	operations	
(for	error	 )ϵ = ,(−O

Multi-Qubit	Gates	via	Global	Drive	
(for	error	 )ϵ = ,(−O

Number of Qubits
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Engineering Interactions
				Target	Hamiltonian:	

				4'P:>J' = ∑
8,9

!αβ
89 =̂α

8 =̂β
9

			Highly	programmable!	

			Example:	

					 	

(e.g.,	Malrieu	et	al,	Chem.	Rev	114,	429	(2014))

!αβ
89 = !89δαβ

⏟
4J8)J"QJ:>

+ Rγ
89 ϵ

γ
αβ

RS
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2. Inter-cluster gate:

• Mediates generic, long-range connectivity

1. Reconfigure

• Spin-1/2 gates and local rotations

• Violates large-spin encoding

				Target	Hamiltonian:	
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2. Inter-cluster gate:

• Mediates generic, long-range connectivity

1. Reconfigure

• Spin-1/2 gates and local rotations

4. Intra-cluster gate:

• Encoding space is gapped ground state

3. Reconfigure

• Violates large-spin encoding

• Applies phase to encoding violating terms

Engineering Interactions
				Target	Hamiltonian:	

				4'P:>J' = ∑
8,9

!αβ
89 =̂α

8 =̂β
9
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Floquet Sequence to Implement Model Hamiltonian 

Higher-order	errors	can	be	cancelled	out,	or	controlled	via	Floquet	
engineering.

	Realizes	target	Hamiltonian	on	average	⇒

Effective evolution operator:  

 TU = ∏
G

J−8θG4@ J−8τ4V
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Efficient	readout:	Quantum	Circuit	+	Spectrum

Example:	two	interacting	spin-3/2s
4 = ! S, ⋅ S5

20,000	samples
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Parallel	measurement	of		 	observables	
(any	operator	diagonal	in	measurement	basis)

5"

Efficient	readout:	Quantum	Circuit	+	Spectrum

Access	to	full	spectral	information	
	finite	temperature	properties!⇒
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AddiMonal	ApplicaMons	and	Outlook

Application	to	2D	magnetic	materials	
Single-particle	Green’s	function	of	FM	Heisenberg:	

Dispersion

Quasi-particle	properties	encoded	in	spectral	function

Next	steps:

• include	error	correcMon	

• dynamics	of	chemical	
reacMons

• simulate	fermions	(e.g.,	
Coulomb	Hamiltonian)



Non-local connectivity

Atom moving

D. Bluvstein et al., Nature 604, 451–456 (2022)

Solution read-out

Co-processing

H.-Y. Huang et al., Nat. Phys. 16, 1050–1057 (2020)

Control high spin (S>1/2)

Native multi-qubit gates 
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