Quantum Leap: When the atom Outsmarts AI in Deciphering the Cosmos' Secrets

Susanne Yelin

Harvard University

Post-quantum Al workshop, April 1, 2024

Analog quantum machine learning

Susanne Yelin

Harvard University

Post-quantum Al workshop, April 1, 2024

Analog quantum machine learning using present-day hardware Susa Harvard University

Post-quantum Al workshop, April 1, 2024

Machine learning meets quantum computing

What if ML ran on quantum hardware?

With the advent of quantum computing, one may naturally ask

Can quantum computing enhance/ **speed-up** machine learning algorithms?

- Neuromorphic computing Brain-like architecture for computational network
- Recurrent neural networks (RNNs) forward NNs)

Neural Networks

can have cyclic connections between nodes (as opposed to feed-

- Neuromorphic computing
- Brain-like architecture for computational network Recurrent neural networks (RNNs) can have cyclic connections between nodes (as opposed to feedforward NNs)
- Reservoir computing special case of RNN with fixed connections

Neural Networks

Example: Reservoir computing (RC)

 Neural networks have trainable connections J_{nm} and output filters Wout

- However, training J_{nm} is resource intensive.
- randomly

• Reservoir computers assume fixed connections $J_{nm} = J$ or $J_{nm} = 0$,

Training an RC: Update rule

2. If $h_n(t) < 0$ flip $s_n(t)$

Training cycle

W^{out}) to give desired output

Update: Let system evolve under given set of parameters, then measure

Goal: Optimize set of parameters (e.g., all J_{nm} and

Optimize: Calculate "loss function" and find new set of

parameters

Training cycle

W^{out}) to give desired output

e.g., overlap with desired outcome with all training data sets

Update: Let system evolve under given set of parameters, then measure e.g., via gradient descent

- **Goal**: Optimize set of parameters (e.g., all J_{nm} and

timize: Calculate "loss function" and find new set of

parameters

If $\hat{h}_n(t) \ll \Omega$: σ_n^z flips

Quantum reservoir computing

Earlier work

Applications:

- Entanglement detection¹
- Time-series prediction²
- Long-term memory³ and many more...

Requires large-scale universal quantum computation **Our goal: analog or analog/ digital hybrid near-term devices**

¹Ghosh, S., et. al.,
Scientific Reports (2019),
²Suzuki, Y., et. al.,
Scientific Reports (2022),
³Martínez-Peña, et. al.,
PRL (2021) 12

Training cycle of quantum RC

W^{out}) to give desired output

Update: Let system evolve under given set of parameters, then typically measure

Goal: Optimize set of parameters (e.g., all J_{nm} and

Optimize: Calculate "loss function" and find new set of

parameters

classical

Quantizing a reservoir computer (RNN)

We regain the update rule ... the Hamiltonian evolution is far more general!

$$\hat{h}_n(t) \sigma_n^z + \frac{\Omega(t)}{2} \sigma_n^x$$

New "quantum features" can be used for novel computation:

- 1. Interference/freedom of measurement basis can be used for error detection / correction
- 2. Arbitrary (measurement) basis can produce training speedups relative to classical RNNs
- 3. Efficient stochastic processes

Quantizing an RNN

 σ_2

Parity Computer $\sigma_1 \sigma_2$

Parity Computer $\sigma_1 \sigma_2$

Parity Computer $\sigma_1 \sigma_2$

$$h_{\text{output}} = J(\sigma_1 + \sigma_2)$$

 $\sigma_1 = \sigma_2 \longrightarrow h_{\text{output}} \gg \Omega$

Parity Computer $\sigma_1 \sigma_2$

$$h_{\text{output}} = J(\sigma_1 + \sigma_2)$$

 $\sigma_1 = \sigma_2 \longrightarrow h_{\text{output}} \gg \Omega$

Parity Computer $\sigma_1 \sigma_2$

$h_{\text{output}} = J(\sigma_1 + \sigma_2)$

$\sigma_1 \neq \sigma_2 \longrightarrow h_{\text{output}} \ll \Omega$

Parity Computer $\sigma_1 \sigma_2$

$h_{\text{output}} = J(\sigma_1 + \sigma_2)$

$\sigma_1 \neq \sigma_2 \longrightarrow h_{\text{output}} \ll \Omega$

Parity Computer $\sigma_1 \sigma_2$

$h_{\text{output}} = J(\sigma_1 + \sigma_2)$

$\sigma_1 \neq \sigma_2 \longrightarrow h_{\text{output}} \ll \Omega$

Example Implementation: Rydberg Arrays

Programmable arrays of Rydberg atoms using optical tweezers¹ can implement qRCs

Arrays of Rydberg atoms behave like qRCs:

 $C_6 \sigma_m^z \sigma_n^z +$ $H = -\sum_{n} \Delta_{n} \sigma_{n}^{z} + \sum_{n} \Delta_{n} \sigma_{n}^{z} +$ └ n<m R_{nm}

¹Ebadi, S., et al., Nature₈(2020)

Examples: Applications for a qRC

Example: Quantum reservoir computing for pattern recognition

Train: 10K samples Test: 1K samples Accuracy: 92%

Classical methods: > 200 neurons, ~10⁴ tuning parameters Our method: Rydberg array (simulated) with 15 atoms

Test error rate(%) on MNIST

Example: Quantum reservoir computing for pattern recognition

Train: 10K samples Test: 1K samples Accuracy: 92%

Classical methods: > 200 neurons, ~10⁴ tuning parameters Our method: Rydberg array ated) with 15 atoms

Test error rate(%) on MNIST

Quantum information with qRNNs

- qRNNs work, but when and why?
 Can one have provable quantum advantage?
- Can one build quantum algorithms systematically?
- What is the smallest building block?

Artificial neural network

Artificial neural network

- Perceptrons are an oversimplistic model of neuronal computation.
- A perceptron cannot approximate all functions but many perceptrons together can¹.
- Their architecture makes them resilient to noise in the input.

Artificial neural network

- Perceptrons are an oversimplistic model of neuronal computation.
- A perceptron cannot approximate all functions but many perceptrons together can¹.
- Their architecture makes them resilient to noise in the input.

Artificial neural network

- Perceptrons are an oversimplistic model of neuronal computation.
- A perceptron cannot approximate all functions but many perceptrons together can¹.
- Their architecture makes them resilient to noise in the input.

Quantum Perceptrons (QP)

Perceptron

- Inputs are summed to calculate h
- h is passed through a nonlinear function
- An output is produced

- Input qubits create an effective field h for output qubit
- An extra driving field Ω tries to rotate the output qubit
- The output qubit evolves under competing forces
- The final configuration is the output

A QP is a Universal Quantum Computer

Entangling gate Large Ω freezes red qubit

and the blue qubits can now interact

Araiza Bravo, Najafi, Patti, Gao, Yelin, arXiv:2211.07075; early work: Raussendorf, R., et. al., PRA (2003)

- A QP is a **universal quantum** computer if complemented by single-qubit rotations
 - Single-qubit gates
 - **Generated by small** pulses on each qubit
 - $\pi/8|_z$ $\pi/8|_x$

Identity gates Pulses on qubits decouple them from participating in the computation

The upshot: A QP is as powerful as a universal quantum computer The drawback: Single-qubit pulse control is resource intensive

A QP is a Universal Quantum Computer

A QP is a universal quantum computer if complete

Entangling gate Large Ω freezes red σ and the blue qub now intera

con

Sip

Araiza Bravo, Najafi, Patti, Gao, Yelin, arXiv:2211.07075; early work: Raussendorf, R., et. al., PRA (2003)

Simplest case: single QPs

Training compares favorably to other quantum algorithms

Energy measurement and entanglement detection

Quantum metrology: measuring fundamental constants in the lab

Araiza Bravo, Najafi, Patti, Gao, Yelin, arXiv:2211.07075 28

Analog quantum-classical learning

- (Here: analog quantum machine) • How?
 - Classically simulable —> classical
 - Exponentially expensive —> quantum

Goal: Make the most of a quantum computer

Gu, Hu, Luo, Patti, Rubin, Yelin, arXiv:2308.11616 (2023).

Analog Quantum-Classical Hybrid Machine Learning

- Limited tunability
- Highly expressible (quantum correlations)
- Evolution time limited by decoherence

Example: Clifford circuits

- Tunable
- Not expressible (classically simulable)
- Long time evolution (no errors)

Analog Quantum-Classical Hybrid Machine Learning

- Limited tunability
- Highly expressible (quantum correlations)
- Evolution time limited by decoherence

Example: Clifford circuits

- Tunable
- Not expressible (classically simulable)
- Long time evolution (no errors)

Analog Quantum-Classical Hybrid

Combining these two approaches promises enhanced expressivity and trainability all while on a near-term device!

31

Analog Quantum-Classical Hybrid Machine Learning

Clifford + T circuit acts as **basis transformation**: (Entanglement reduction)

Analog Quantum-Classica

classically simulable (in earning polynomial time)

Clifford + T circuit acts as **basis transformation**: (Entanglement reduction)

Analog Quantum-Classical Hybrid Machine Learning

Clifford + T circuit acts as **basis transformation**: (Entanglement reduction)

 Scale up systems Applications to quantum chemistry

Outlook

Collaborators

Yidan Wang

Oriol Rubies Bigorda

\$\$\$: NSF-CUA, DOE, HQI, NSF-QSEnSE, NSF-HDR 34

Quantum Chemistry and Material Science

Quantum Chemistry

= solving an electronic structure problem for a configuration of electrons and nuclei

Major thrust of quantum chemistry: quantitative prediction of material or molecular properties **Full Hamiltonian:**

$$H = -\sum_{i} \frac{\hbar^2 \nabla^2}{2m_i} - \sum_{k \neq i} \frac{Z_k e^2}{|R_k - r_i|} + \sum_{i \neq j} \frac{e^2}{|r_i - r_j|}$$

Challenge: Simulating systems with strong correlations Unfavorable Hilbert space scaling motivates use of quantum computers

Quantum Chemistry on Quantum Computers

Assessing requirements to scale to practical quantum advantage

M. E. Beverland,¹ P. Murali,¹ M. Troyer,¹ K. M. Svore,¹ T. Hoefler,² V. Kliuchnikov,¹ G. H. Low,¹ M. Soeken,³ A. Sundaram,¹ and A. Vaschillo¹

¹Microsoft Quantum, Redmond, WA 98052, USA

²ETH Zurich, Department of Computer Science, Zürich, 8006, Switzerland ³Microsoft Quantum, Zurich, Switzerland arXiv:2211 07629

(Dated: November 19, 2

100.00 10 million 10.00 **Qubits (millions)** quantum dynamics 1.00 -0 Δ 100k 0.10 0.01 1E-01 1E+00 1E+01

Quantum Chemistry on Quantum Computers

Advancing Computational Quantum Chemistry

Our approach:

- Leverage insights obtained from state-of-the art classical computational algorithms.
- Rydberg atom arrays)
- devices.

What problems do need a quantum computer?

problems with strong correlations

• Use state-of-the art programmable quantum simulators (e.g.,

Focus on hardware-efficient implementations on near term

Model Hamiltonians

- **Coulomb interaction localizes electrons**

Model Hamiltonians

D. A. Pantazis, N. Cox, Inorg. Chem. 55, 488–501 (2016)

- Represent high spins ...
 - How to implement high spins?
- ... and let them interact
 - How to implement non-local connectivity?

 Read out chemically relevant quantities Quantum-classical co-processing

48

Necessary Ingredients

Necessary Ingredients

Atom Array Platform in Analog-Digital Mode

Bluvstein *et al. Nature* **604**, 451 (2022). Evered, *et al. Nature* **622**, 268n (2023) High degree of programmability Interactions manipulated via geometric configuration + Global control pulses

Necessary Ingredients

Necessary Ingredients

Engineering Large Spins on Rydberg Platform

Hardware Efficient Multi-Qubit Operations with a global drive

 \Rightarrow valid spin-S states: $\langle \hat{\mathbf{S}}_i^2 \rangle = \mathbf{S}_i(\mathbf{S}_i + 1)$ Engineer two-field pulses (using Rydberg blockade) to implement any 2S-qubit gate! κ_{B}

Realize multi-qubit gates via time-dependent global control: use GrAPE (Gradient Ascent Pulse Engineering)

- Encode spin-S variables into 2S (spin-1/2) qubits ("clusters"):

Engineering Large Spins on Rydberg Platform

Hardware Efficient Multi-Qubit Operations with a global drive

 \Rightarrow valid spin-S states: $\langle \hat{\mathbf{S}}_i^2 \rangle = \mathbf{S}_i(\mathbf{S}_i + 1)$ Engineer two-field pulses (using Rydberg blockade) to implement any 2S-qubit gate! κ_B

Realize multi-qubit gates via time-depende Evered et al., Nature 622, 268 (2023) use GrAPE (Gradient Ascent Pulse E

- Encode spin-S variables into 2S (spin-1/2) qubits ("clusters"):

Khaneja, et al., J. Magn. Reson. **172**, 296 (2005) Jandura et al., Quantum 6, 712 (2022) Katz, et al., Nat. Phys. 19, 1452 (2023)

Important Metric: Gate Times

The shorter the gates, the more sequences one can run (until system decoheres)

Multi-Qubit Gates via Global Drive (for error $\epsilon = 10^{-3}$)

Almost no scaling with cluster size

Comparison: two-qubit operations (for error $\epsilon = 10^{-3}$)

Ś

Important Metric: Gate Times

(for error $\epsilon = 10^{-3}$)

Target Hamiltonian:

$$H_{target} = \sum_{i,j} J_{ij}^{\alpha\beta} \hat{S}_{i}^{\alpha} \hat{S}_{j}^{\beta}$$

Target Hamiltonian:

$$\mathsf{H}_{\mathsf{target}} = \sum_{\mathsf{i},\mathsf{j}} \mathsf{J}_{\mathsf{ij}}^{\alpha\beta} \, \hat{\mathsf{S}}_{\mathsf{i}}^{\alpha} \, \hat{\mathsf{S}}_{\mathsf{j}}^{\beta}$$

1. Reconfigure

- $H_I = \sum J_{ij}^{\alpha\beta} \hat{s}_{i,a_{ij}}^{\alpha} \hat{s}_{j,b_{ij}}^{\beta}$ 2. Inter-cluster gate:
 - Spin-1/2 gates and local rotations
 - Mediates generic, long-range connectivity
 - Violates large-spin encoding

3. Reconfigure

Target Hamiltonian:

$$\mathsf{H}_{\mathsf{target}} = \sum_{\mathsf{i},\mathsf{j}} \mathsf{J}_{\mathsf{ij}}^{\alpha\beta} \, \hat{\mathsf{S}}_{\mathsf{i}}^{\alpha} \, \hat{\mathsf{S}}_{\mathsf{j}}^{\beta}$$

1. Reconfigure

- 2. Inter-cluster gate: $H_I = \sum_{ij} J_{ij}^{\alpha\beta} \hat{s}_{i,a_{ij}}^{\alpha} \hat{s}_{j,b_{ij}}^{\beta}$
 - Spin-1/2 gates and local rotations
 - Mediates generic, long-range connectivity
 - Violates large-spin encoding

3. Reconfigure

Target Hamiltonian:

$$H_{\text{target}} = \sum_{i,j} J_{ij}^{\alpha\beta} \hat{S}_{i}^{\alpha} \hat{S}_{j}^{\beta}$$

1. Reconfigure

- 2. Inter-cluster gate: $H_I = \sum_{ij} J_{ij}^{\alpha\beta} \hat{s}_{i,a_{ij}}^{\alpha} \hat{s}_{j,b_{ij}}^{\beta}$
 - Spin-1/2 gates and local rotations
 - Mediates generic, long-range connectivity
 - Violates large-spin encoding

3. Reconfigure

- 4. Intra-cluster gate: $H_C = -\sum P_{sym}[(\vec{S}_i)^2]$
 - Encoding space is gapped ground state
 - Applies phase to encoding violating terms

Floquet Sequence to Implement Model Hamiltonian

Effective evolution operator: $\mathbf{U}_{\mathbf{F}} = \left[\mathbf{e}^{-\mathbf{i}\theta_{\mathbf{k}}\mathbf{H}_{\mathbf{C}}} \mathbf{e}^{-\mathbf{i}\tau\mathbf{H}_{\mathbf{I}}} \right]$ k

Floquet Sequence to Implement Model Hamiltonian

- Effective evolution operator: $U_{F} = \prod_{k} e^{-i\theta_{k}H_{C}} e^{-i\tau H_{I}}$
 - can be large-angle rotations

Floquet Sequence to Implement Model Hamiltonian

⇒ Realizes target Hamiltonian on average

Effective evolution operator: $\mathbf{U}_{\mathbf{F}} = \left[\mathbf{e}^{-\mathbf{i}\theta_{\mathbf{k}}\mathbf{H}_{\mathbf{C}}} \mathbf{e}^{-\mathbf{i}\tau\mathbf{H}_{\mathbf{I}}} \right]$ k

Higher-order errors can be cancelled out, or controlled via Floquet engineering.

Efficient Read-Out Based on Snapshots

Leverage ability for efficient time evolution of Rydberg simulator ability to perform snapshot measurements

Such measurements are very information dense!

61

Efficient Read-Out Based on Snapshots

61

Efficient Read-Out Based on Snapshots

61

Hardware-efficient toolbox to compute spectral functions $D_A(\omega) = \sum \langle n \rangle$ Corr_{classical} Corr_{quantum} evolution times

state samples observables

$$|A|n\rangle \delta(\omega - \epsilon_n) =$$

Hardware-efficient toolbox to compute spectral functions

- $\mathsf{D}_{\mathsf{A}}(\omega) = \sum \langle \mathsf{n} | \mathsf{A} | \mathsf{n} \rangle \, \delta(\omega \epsilon_{\mathsf{n}}) =$

Corr_{classical} Corr_{quantum}

Hardware-efficient toolbox to compute spectral functions

Parallel measurement of 2ⁿ observables (any operator diagonal in measurement basis)

Parallel measurement of 2ⁿ observables (any operator diagonal in measurement basis)

Parallel measurement of 2ⁿ observables (any operator diagonal in measurement basis)

Parallel measurement of 2ⁿ observables (any operator diagonal in measurement basis) ⇒ finite temperature properties!

Additional Applications and Outlook

Application to 2D magnetic materials

Single-particle Green's function of FM Heisenber

Quasi-particle properties encoded in spectral function

$$S(k,\omega) = |G(k,\omega)|^2$$

Dispersion $\epsilon(k)$

C	•
ĸ	•

Next steps:

- include error correction
- dynamics of chemical reactions
- simulate fermions (e.g., **Coulomb Hamiltonian**)

Maskara, Ostermann, Shee, Kalinowski, McClain Gomez, Araiza Bravo, Wang, Krylov, Yao, Head-Gordon, Lukin, Yelin, arXiv:2312.02265

Nishad Maskara (Harvard)

Stefan Ostermann (Harvard)

James Shee (UC Berkeley \rightarrow Rice)

Marcin Kalinowski (Harvard)

Anna Krylov (USC, Los Angeles)

Norman Yao (Harvard)

And many thanks to: Dolev Bluvstein, Madelyn Cain, Joonho Lee, Nathan Leitao,, Kushal Seethram, and many more.

Collaborators

Abigail McClain Gomez (Harvard)

Rodrigo Araiza Bravo (Harvard)

Derek Wang (Harvard IBM Quantum)

 \rightarrow

Martin Head-Gordon (UC Berkeley)

Mikhail Lukin (Harvard)

Energy measurement and entanglement detection

