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Quantum machine learning: scaling up 
and accelerating the quantum circuit 
simulation with Nvidia CUDA-Q
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 Introduction: quantum machine learning

 CUDA-Q platform

 Accelerating and scaling up the Q-RBM circuit
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Quantum machine learning: Quantum Restricted Boltzmann Machine (Q-RBM)
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Nvidia CUDA-Q: a platform for quantum-classical computing

Nvidia CUDA-Q Features

 Single resource Python and C++ programming model

 High performance compiler for hybrid GPU/CPU/QPU systems

 QPU agnostic - works with any type of QPU, emulated or physical

 Supports both state-vector and tensor network backend

 Interoperable with leading scientific computing and AI tools

Quantum Computing Partners

https://developer.nvidia.com/cuda-q
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Building hybrid applications with CUDA-Q on HPC

Python

C++ CUDA quantum requires the 
__qpu__ function attribute 
for quantum kernel 
declaration.

Add a decorator to the 
function.

To learn more about the quantum 
kernel in CUDA-Q visit:

https://nvidia.github.io/cuda-
quantum/0.7.0/index.html
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Nvidia quantum cloud

 Access to the most powerful quantum resource

 Develop locally, run any CUDA-Q app seamlessly in the cloud

 Run workloads on GPU supercomputers

 Apply for access at https://www.nvidia.com/en-eu/solutions/quantum-computing/cloud/
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Accelerating the Q-RBM circuit simulations with CUDA-Q
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Sampling the Gibbs distribution using the Q-
RBM (#shots=10000)

GPU: Nvidia A100
CPU: AMD EPYC 7742 64-Core Processor

~14000x speedup 



8

Accelerating Q-RBM circuit simulations with CUDA-Q using multi-GPUs 

GPU: Nvidia A100

~100x speedup

Sampling the Gibbs distribution: single 
GPU vs multi-GPUs 

Single GPU:

Multi-GPUs:

29 qubits
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Scaling up Q-RBM circuit simulations with CUDA-Q using multi-GPUs

 n qubits has 2n complex amplitudes 
 Each requires 8 bytes of memory to store.

For 30 qubits: 8 bytes x 230 = 8.6 GB

For 34 qubits ~137 GB

 Number of visible nodes:10
 Number of hidden nodes: 23
 Number of ancilla qubits (reuse ancilla): 1
 #qubits: 34 qubits

Elapsed time for sampling each circuit with 34 
qubits: 4.73 sec. (#shots: 10000)
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Other applications: using PyTorch with CUDA-Q

To learn more about this application visit:
https://nvidia.github.io/cuda-quantum/0.7.0/examples/python/tutorials/hybrid_qnns.html

Zohim Chandani
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Conclusion

CUDA-Q:

 A platform for quantum classical computing.
 Supports both state-vector and tensor network.
 GPUs help accelerating simulation compared to CPUs.
 Mutli-GPUs will help scaling up the problem.
 QPU agnostic: it works on any QPUs emulated or physical.

Nvidia Quantum Cloud
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