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Quantum meets AI

AI for Quantum
• End-to-end Quantum Neural 

Networks for representation 
learning

• Generalization analysis of 
characterization of variational 
quantum circuit based 
functional regression 

Quantum for AI
• Noise can be a friend in 

trustworthy AI

• Use of quantum modules to 
improve privacy in deep learning

• (Free) certified robustness to 
input perturbations in quantum 
systems



What are Foundation Model and GenAI?

FM GenAI



Prompt/Sample GenAI
Generated 

Content
GenAI

Image

Video

Text

Structured Data

Code

“One for All!”

“All for More!”



Neural Scaling Laws

Kaplan et al. Scaling Laws for Neural Language Models. Arxiv 2020

Robustness at scale: data and compute 
hungry

https://arxiv.org/abs/2001.08361


GenAI: the Beauty and the Ugly of AI-generated Content



QTN-VQC
An end-to-end learning framework for quantum neural networks

Jun Qi, Chao-Han Huck Yang, and Pin-Yu Chen, “QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks,” Physica Scripta, 2023

Jun Qi, Chao-Han Huck Yang, Pin-Yu Chen, and Min-Hsiu Hsieh, “Theoretical Error Performance Analysis for Variational Quantum Circuit Based 
Functional Regression,” npj Quantum Information, 2023



QTN-VQC Framework

• QTN: Quantum Tensor Network

• VQC: Variational Quantum Circuit

Classical data 
(high-dim) 

Quantum-
friendly data



TTN: Tensor-Train Network
• Encoding input N-dim data into tensor product of a unit-norm local 

feature map 𝜙 ∈ 𝑅𝑑

• Example: 𝑥𝑗 is a pixel value ranging from [0,1]

-> Normalized wavefunction of a single qubit

• Goal of TTN: Compute 𝑦 = 𝑊 ⋅ Φ(𝑥) in a quantum-favored manner

Edwin Stoudenmire and David J. Schwab. "Supervised learning with tensor 
networks." Advances in neural information processing systems 29 (2016).



TTN-VQC: Hybrid Quantum Neural Nets 
[npj Quantum Information]

• Tensor Product 
Encoding (TPE): 
converting a 
classical data 
sample 𝑥 into a 
quantum state ۧ|𝑥

• The blocks can be 
repeated to build 
deeper networks



TTN Model in Parallel

Element of 
𝐾-order tensor

Factorization into 𝐾

2-dim matrices {X𝑑𝑘
[𝑘]
}

by Tensor-Train 
Decomposition

Sigmoid 
activation 
function

Trainable 
parameters 
of TTN

𝐾-order tensor

Convert a 
classical data 

sample of dim 
𝑑 into a 𝐾-

order tensor 𝑋

2-dim 
matrices



VQC Circuit



QTN-VQC: Fully Quantum Neural Networks 
[Physica Scripta]

• Two quantum 
circuit-implemented 
QTN architectures:

1. ConvMPS : 
convolutional 
matrix product state

2. ConvTTN: 
convolutional tree 
tensor network



Performance Evaluation

• MNIST: Handwritten digit classification dataset
• Each sample is a 28 x 28 grayscale image 

• 10000 samples for training and 2000 samples for testing

• Methods
• PCA-VQC (naïve dimension reduction)

• TTN-VQC (hybrid; 8 qubits)

• ConvMPS-VQC (quautum; 4+8 qubits)

• ConvTTN-VQC (quantum; 4+8 qubits)

• Please refer to papers for detailed implementations



Binary Classification on MNIST

Training loss Testing loss

Test Accuracy



Representation Learning and Generalization 
of TTN-VQC and QTN-VQC (1)
• Functional Regression: Given a 𝑄-dimensional input vector space 𝑅𝑄 and a

measurable 𝑈-dimensional output vector space 𝑅𝑈, the TTN-VQC based
vector-to-vector regression aims to find a TTN-VQC operator 𝑓: 𝑅𝑄 →
𝑅𝑈 such that the output vectors of 𝑓 can approximate those of a desirable 
target function ℎ∗.

• 𝐷: data distribution; Draw 𝑁 i.i.d. samples from 𝐷

• 𝐹𝑇𝑉: TTN-VQC hypothesis space consisting of a collection of TTN-VQC operators

• Population loss: 

• Empirical loss: 

• 𝑓𝐷
∗: best hypothesis in 𝐹𝑇𝑉



Representation Learning and Generalization 
of TTN-VQC and QTN-VQC (2)
• 𝑓𝑆

∗: best hypothesis based on empirical loss minimization 

• ҧ𝑓𝑆: returned hypothesis by gradient-based minimization

• Error decomposition: 

• We derive theoretical upper bounds for each error term under proper conditions 
(e.g., smooth target function ℎ𝐷

∗ )



Representation Learning and Generalization 
of TTN-VQC and QTN-VQC (3)
• 𝐑𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐚𝐭𝐢𝐨𝐧 𝐏𝐨𝐰𝐞𝐫: 

upper bound on approximation 
error

• Generalization power: upper 
bound on the estimation error 
concerning the empirical 
Rademacher complexity

• Optimization bias: training 
error can be exponentially 
converged to a small loss value

• Similar analysis holds for 
QTN-VQC

# qubits

# measurements

# training 
samples



Foundation 
Models

Data

Encoder/Representation 
network from pretraining

𝜙 𝗪

Linear head / PEFT 
for downstream task

QTN-VQC

Quantum Foundation Models?

Quantum FMs Quantum Heads



Exploring “Quantum Foundation Models” and 
“Quantum Transfer Learning” with TTN-VQC



Key Results

# source 
samples

# target 
samples

Binary MNIST 
classification



co-TenQu: A quantum-classical collaborative 
training architecture [IEEE TQE 2024]

• co-TenQu trains the model directly on quantum states aiming at accelerating the training 
process and improving performance

• co-TenQu with Qiskit and PennyLane:
• Enhances a classical deep neural network by up to 41.72% in a fair setting. 
• Outperforms other quantum-based methods by up to 1.9X and achieves similar accuracy while 

utilizing 70.59% fewer qubits. 



Data Privacy and Robustness



Data Privacy Breach in AI/ML

USENIX 2021

NeurIPS 2021

• Clients submit gradients of private data for federated learning
• An honest but curious server (aggregator) in vertical federated 

learning can recover private client data without violating the 
protocol (without privacy protection mechanisms)



Quantum Layers for Data Protection

• Vertical federated learning

• Speech input is first processed into 
Mel spectrogram and then sent into 
a quantum layer for encoding (on 
the cloud) 

• The encoded features are used to 
train the acoustic model (on user 
devices) 

• Retain competitive accuracy and 
reduce model parameter leakage

Chao-Han Huck Yang, Jun Qi, Samuel Yen-Chi Chen, Pin-Yu Chen, Sabato Marco Siniscalchi, Xiaoli Ma, and Chin-Hui Lee. 
"Decentralizing feature extraction with quantum convolutional neural network for automatic speech recognition.“ ICASSP 2021

Randomly 
initialized; 
non-trained



BERT (transformer models) with Quantum 
Temporal Convolution Layers

• 𝑛: # of filters

• 𝑘: kernel size

• TCN: random temporal 
convolutional network 

Chao-Han Huck Yang, Jun Qi, Samuel Yen-Chi Chen, Yu Tsao, and Pin-Yu Chen. "When BERT meets quantum 
temporal convolution learning for text classification in heterogeneous computing." ICASSP 2022



Robustness Challenges in AI/ML
(𝑥, 𝑦) ∼ 𝐷
𝑥: data sample   
𝑦: groundtruth
𝐷: in-domain data distribution 
(in-distribution)

𝜃: model parameters
𝐟𝛉(𝑥): model prediction on 𝑥

(I) Adversarial robustness:
x’ similar to x. Ideally, 𝐟𝛉(x’) = 𝐟𝛉(x)

Robustness Categories
● Adversarial robustness (worst-

case performance)
● Out-of-distribution (OOD) 

generalization (domain shifts)
● Out-of-distribution detection 

(unknowns)

𝐟𝛉(x)=bagel 𝐟𝛉(x+𝝳)=piano
𝝳: adversarial 
perturbation

(II) OOD generalization:
x’ ~ D’, a shifted version of 
D Ideally, 𝐟𝛉(x’) = 𝐟𝛉(x)

(III) OOD detection:
x’ ~ D’, a dissimilar or new 
domain w.r.t. D 
Ideally, 𝐟𝛉(x’) = “Unknown”

𝐟𝛉(.) ∈ {cat,dog}

𝐟𝛉(    ) = “Unknown/OOD”



Randomized Smoothing for Certified Robustness

• Rough idea: “Majority vote” with Gaussian perturbed input 
for classification gives guaranteed robustness

• 𝑓: a base (deterministic) classifier 

Cohen, Jeremy, Elan Rosenfeld, and Zico Kolter. "Certified adversarial robustness via randomized smoothing.“ ICML 2019



Randomized Smoothing for Quantum Circuits

• Theoretical proof that the addition of quantum random rotation noise 
can improve the robustness of quantum classifiers against adversarial 
perturbations

• Noise addition -> Quantum Differential Privacy -> Certified 
Robustness

Jhih-Cing Huang, Yu-Lin Tsai, Chao-Han Huck Yang, Cheng-Fang Su, Chia-Mu Yu, Pin-Yu Chen, and Sy-Yen Kuo. 
"Certified robustness of quantum classifiers against adversarial examples through quantum noise." ICASSP 2023

Fruits for thoughts:
• Can Quantum-inspired noise processing improve 

certified robustness of classical ML classifiers?
• Large Language Models and GenAI technology are 

stochastic by design -> Quantum modeling?



Concluding Remarks

• AI for Quantum: Tensor-Train Networks as 
powerful representation learning tools for 
quantum neural networks

• Quantum for AI: Quantum circuits and noises 
as privacy-enhanced and robustness-improved
modules for classical and quantum ML

• Post Quantum AI: What can we do with 
Quantum Foundation Models and Quantum 
GenAI? (no, they are not buzz words)

• Quantum-inspired trust and safety for AI
• AI-inspired risks for Quantum AI
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