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Quantum meets Al

Al for Quantum Quantum for Al
* End-to-end Quantum Neural * Noise can be a friend in
Networks for representation trustworthy Al
learning e Use of quantum modules to
* Generalization analysis of improve privacy in deep learning
characterization of variational « (Free) certified robustness to
quantum circuit based input perturbations in quantum

functional regression systems



What are Foundation Model and GenAl?
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On the Opportunities and Risks of . .
Foundation Models One for Alll Tasks
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Neural Scaling Laws

Loss vs Model and Dataset Size

Params
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Kaplan et al.

Transformers asymptotically outperform LSTMs
due to improved use of long contexts
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https://arxiv.org/abs/2001.08361

GenAl: the Beauty and the Ugly of Al-generated Content

Administration Priorities The Record

Headlines v Pressroom »~ Agenda ¥ FAQ Election Press Kit ULy 21, 2023

FACT SHEET: Biden-Harris

_ Administration Secures Voluntary
MEPs ready to negotiate ! Commitments from Leading Artificial

first-ever rules for safe and "t Intelligence Companies to Manage the
transparent Al " Risks Posed by Al
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Press room / MEPs ready to negotiate first-ever rules for safe and transparent Al

- Full ban on Artificial Intelligence (Al) for biometric surveillance, emotion
recognition, predictive policing

Responsible Artificial
. Generative Al systems like ChatGPT must disclose that content was Al- Intelllgence TeSt & Evaluatlon

generated ) CDAO Transforming the Department of Defense Through

. . . . . Chief Digital and
. Al systems used to influence voters in elections considered to be high- Al Tntetgeni s Assured Al

risk

JATIC is developing an interoperable set of state-of-the-art software for rigorous Al model T&E




QTN-VQC

An end-to-end learning framework for quantum neural networks

Jun Qi, Chao-Han Huck Yang, Pin-Yu Chen, and Min-Hsiu Hsieh, “Theoretical Error Performance Analysis for Variational Quantum Circuit Based
Functional Regression,” npj Quantum Information, 2023

Jun Qi, Chao-Han Huck Yang, and Pin-Yu Chen, “QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks,” Physica Scripta, 2023



QTN-VQC Framework

e QTN: Quantum Tensor Network
e VQC: Variational Quantum Circuit

Evaluate Gradients & Fine-Tuning

Quantum Tensor X)) Variational

Network & Quantum Circuit

Xewyos




TTN: Tensor-Train Network

* Encoding input N- d|m data into tensor product of a unit-norm local
feature map ¢ € R¢

-> Normalized wavefunction of a single qubit
* Goal of TTN: Compute y = W - ®(x) in a quantum-favored manner

Edwin Stoudenmire and David J. Schwab. "Supervised learning with tensor
networks." Advances in neural information processing systems 29 (2016).



TTN-VQC: Hybrid Quantum Neural Nets

[npj Quantum Information]

e Tensor Product
Encoding (TPE):
converting a
classical data
sample x into a
quantum state |x)

* The blocks can be
repeated to build
deeper networks

Tensor-Train Network

Et.t.ﬂ

Tensor Product Encoding

Evaluate Gradients & Update Parameters

Variational Quantum

L. Regression 7/,
Circuit Tquc 9 T

12) = Toyq (1¥))

Parametric Quantum Circuit Measurement



Evaluate Gradients & Update Parameters

TTN Model in Parallel
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Evaluate Gradients & Update Parameters
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Evaluate Gradients &
Update Parameters
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(a) Tensor Product Encoding (TPE) (b) Parametric Quantum Circuit (PQC) (c) Measurement

Fig. 2 An illustration of three components in the VQC model. The TPE employs a series of Ry(%x;) to transform classical data into quantum
states. The PQC is composed of CNOT gates and single-qubit rotation gates Ry, Ry, Rz with free model parameters a, 3, and y. The CNOT gates
impose the operation of quantum entanglement among qubits, and the gates Ry, Ry, and Rz can be adjustable during the training stage. The

PQC model in the green dash square is repeatably copied to build a deeper model. The measurement converts the quantum states

() 7 (2 ; (U) (1 (2),  _(U)
z1),|2z2), ..., |zy) into the corresponding expectation values (0, '), (0, "), ..., (0> ). The outputs (o, }, (0;), .. (07 ) are connected to a loss

function and the gradient descent algorithms can be used to update VQC parameters.



QTN-VQC: Fully Quantum Neural Networks

[Physica Scripta]

* Two quantum
circuit-implemented
QTN architectures: QTN feature

1. ConvMPS:
convolutional
matrix product state

2. ConvTTN:
convolutional tree
tensor network

Figure 3. An demonstration of two QTN architectures for the end-to-end quantum learning paradigm. (a) A convolutional matrix
product state architecture. (b) A convolutional tree tensor network architecture. Similar to the VQC model, a TPE model is used to
encode non-trainable Ry(x;) gates with the classical input x;, and several trainable Ry(;) and R(6;) gates in the red dash square is
associated with parameters 6;. The observables of the last quantum channel correspond to the expected values based on Pauli-Z
operators and they are taken as QTN features for further processing. Ifa2 x 2 convolutional kernel is used, the inputs corresponding
to4 x 4 matrices are associated with the outputs of the4 x 2 x 2 matrices.




Performance Evaluation

 MINIST: Handwritten digit classification dataset
 Each sample is a 28 x 28 grayscale image
* 10000 samples for training and 2000 samples for testing

* Methods
* PCA-VQC (naive dimension reduction)
 TTN-VQC (hybrid; 8 qubits)
* ConvMPS-VQC (quautum; 448 qubits)
e ConvITN-VQC (quantum; 4+8 qubits)

* Please refer to papers for detailed implementations
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Cross-Entropy Loss

Binary Classification on MNIST

Training loss

o
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-== PCA-VQC

w— TTN-VQC
ConvMPS-VQC

w+= ConvTTN-VQC

Cross-Entropy Loss

Test Accuracy

Models CE Accuracy (%)

PCA-VQC 0.3301 87.7
TTN-VQC 0.0634 98.6
ConvITN-VQC 0.0805 98.5
ConvMPS-VQC 0.0917 98.3
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Representation Learning and Generalization
of TTN-VQC and QTN-VQC (1)

e Functional Regression: Given a Q-dimensional input vector space R? and a
measurable U-dimensional output vector space RY, the TTN-VQC based
vector-to-vector regression aims to find a TTN-VQC operator f: R¢ —

RY such that the output vectors of f can approximate those of a desirable
target function h*.

* D: data distribution; Draw N i.i.d. samples from D

* Fry: TTN-VQC hyj Lp(f) :=Ex~p [l(hp(X), f(X))]

* Population loss:

bf TTN-VQC operators

Ls(f) 1= 1 D Uhp(xn), f(xn))

* Empirical loss:

* fp: best hypothesis in Fry,



Representation Learning and Generalization
of TTN-VQC and QTN-VQC (2)

* f<: best hypothesis based on empirical loss minimization
. fg: returned hypothesis by gradient-based minimization

* Error decomposition:

Lp(fs) = Lp(fp) + Lp(fe) — Lp(fy) + Lp(fs) — Lp(Fe)
N’ —— e N

Approximation Error  Estimation Error Training Error

* We derive theoretical upper bounds for each error term under proper conditions
(e.g., smooth target function hjp)



Representation Learning and Generalization
of TTN-VQC and QTN-VQC (3)

- Representation Power: Lp(fs) = Lp(fr) + Lp(fs) — Lp(fp) + Lo(fs) — Lp(Fy)
. . ~— —_—
upper bound on approximation Approximation Error  Estimation Error Training Error
error
* Generalization power: upper This work

bound on the estimation error
concerning the empirical

Rademacher complexity Learning problem Regression

* Optimization bias: training Dimensionality reduction

error can be exponentially Representation power
converged to a small loss value

* Similar analysis holds for Generalization power
QTN-vVQC

Conditions for u-PL + 1-Lipschitz
optimization bias




Quantum Foundation Models? Linear head / PEFT

for downstream task

Foundation
Models

Encoder/Representation
network from pretraining

QT N 'VQC .j Quantum Tensor h(x;) Variational

Network c R2" || Quantum Circuit



Exploring “Quantum Foundation Models” and
“Quantum Transfer Learning™ with TTN-VQC

Pre-training Tensor-Train Networks Facilitates
Machine Learning with Variational Quantum
Circuits

Jun Qi Chao-Han Huck Yang Pin-Yu Chen
Georgia Institute of Technology ~ Georgia Institute of Technology IBM Research
jqi41 @ gatech.edu huckiyang @ gatech.edu pin-yu.chen@ibm.com

Min-Hsiu Hsieh
Hon Hai Quantum Computing Research Center
minhsiuh @ gmail.coms

Source dataset Source task

TN

F——

Pre+TTN

l Fine-tuning
N

Target dataset Pre+TTN-VQC Target task




Key Results

Category Pre+TTN-VQC TTN-VQC
. K o(1

Representation error \/2%' \/Zk:l A7+ O( ﬁ) % + O( ﬁ)

. : 2PA 2P K 2

Estimation error N I~ (\/ > o1 A+ A)
Conditions for Optimization bias without PL assumption PL assumption
Optimization bias BR? + R\/ L°+5 21R2 sufficient small
~>gc

Models Params (Mb) Accuracy (%)
Binary MNIST PCA-VQC_8Qubit 0.080 : 75.8

classification TTN-VQC_8Qubit 0.452 ; 08.7

Pre+TTN-VQC_8Qubit 0.452 ; 99.0




co-TenQu: A guantum-classical collaborative
training architecture [iece Tae 2024]

@IEEE Transactions on,
Quantum Software uantum Englneermg

Classical Computing Quantum Computing

Receiv red 9 November 2023; revised 18 January 2024; accepted 12 February 2024; date of publication 19 February 2024;
date of current version 3 April 2024.

A Quantum-Classical Collaborative

Quantum Data Quantum SWAP

Training Architecture Based on Quantum 4 Eesoricsionc (g (Duts liucoding Loader Test
State Fidelity

Input Data Quantum State Logical Circuit Quantum Circuit Quantum

Analyst Generator Executor Measurement Oniput Dhita
RYAN LABBATE' ', ANTHONY D'ONOFRIO JR.'"”, SAMUEL STEIN2"",

SAMUEL YEN-CHI CHEN3", ANG LI2®,

PIN-YU CHEN*®™ (Senior Member, IEEE), JUNTAO CHEN'" (Member, IEEE),

YING MAO' o - :
c and Information Science Dep State Fidelity based Cost Function

* co-TenQu trains the model directly on quantum states aiming at accelerating the training
process and improving performance

e co-TenQu with Qiskit and PennyLane:
* Enhances a classical deep neural network by up to 41.72% in a fair setting.

* QOutperforms other quantum-based methods by up to 1.9X and achieves similar accuracy while
utilizing 70.59% fewer qubits.



Data Privacy and Robustness



Data Privacy Breach in Al/ML

Extracting Training Data from Large Language Models
USENIX 2021

Nicholas Carlini’ Florian Tramer? Eric Wallace? Matthew Jagielski*
Ariel Herbert-Voss® Katherine Lee' Adam Roberts! Tom Brown’

Dawn Song? Ulfar Erlingsson’ Alina Oprea* Colin Raffel!

'Google ’Stanford 3UC Berkeley *Northeastern University °OpenAl SHarvard "Apple

Prefix
East Stroudsburg Stroudsburg...

Figure 1: Our extraction attack. Given query a
neural network language model, we e
’s name, email a , phone number,
physical addr The mple in this figure
tion that is all accurate so we redact it to protect privacy.

Corporation Seabank Centre
Marine Parade Southport

Positive?

CAFE: Catastrophic Data Leakage in
Vertical Federated Learning

NeurlPS 2021

Pin-Yu Chen
chnic Institute IBM Research National Y > ung University ~ " '

2
jinx2@rpi.e pin-yu.chen@ibm.com *hiay 315@g ; n

ia-Mu Yu Tianyi Chen
chiamuyu @ gmail.com chent18@rpi.edu Pharmacy Hospital Medicine Center

fing Chiao Tung University Rensselaer Polytechnic Institute
Data id Feature space

e Clients submit gradients of private data for federated learning

* An honest but curious server (aggregator) in vertical federated
learning can recover private client data without violating the
protocol (without privacy protection mechanisms)

AT I YR YaU WIS ST

Real data image 6-25

S A YR Y e e dEE=
o4 b - . 2

Recovered data image 6-25



Quantum Layers for Data Protection

—— <

/ (2) Extra Mel Features
/‘( (b) NISQ Server 5 =

( or Cloud API =

\\:’_‘_

(

* Vertical federated learning

* Speech input is first processed into
Mel spectrogram and then sent into L GTNIS0 ot Fatrs:
a quantum layer for encoding (on 5 _Ascp @) [ aw I
the cloud)

* The encoded features are used to
train the acoustic model (on user : \
devices) It

* Retain competitive accuracy and
reduce model parameter leakage

(a) QCNN Computing Process. (b) Deployed Quantum Circuit.

Chao-Han Huck Yang, Jun Qi, Samuel Yen-Chi Chen, Pin-Yu Chen, Sabato Marco Siniscalchi, Xiaoli Ma, and Chin-Hui Lee.
"Decentralizing feature extraction with quantum convolutional neural network for automatic speech recognition.” ICASSP 2021



BERT (transformer models) with Quantum
Temporal Convolution Layers

Input: Text (e.g., Sentence) Data Pipeline
G —> (a) pre-trained model b) quantum temporal convolution (QTC)

' Gradient 0. .
) radien .
| lobal
‘ | Max Pooling Dense Output

n filter(s
Output: Prediction Category

° . 1
Embedding word2vec BERT n. # Of f||ter5

(n.k) (14) (22 @3 @24 04 22 23 @4 * k: kernel size

| iy i | iy i |

TCN 80.09 80.22 80.91 82.34 9518 95.03 94.95
QTC 8142 8249 8382 8395 96.69 9692 96.32

* TCN: random temporal
convolutional network

Chao-Han Huck Yang, Jun Qi, Samuel Yen-Chi Chen, Yu Tsao, and Pin-Yu Chen. "When BERT meets quantum
temporal convolution learning for text classification in heterogeneous computing." ICASSP 2022




Robustness Challenges in Al/ML

(x,y) ~D Robustness Categories
x: data sample e Adversarial robustness (worst-
y: groundtruth case performance)
D: in-domain data distribution e Out-of-distribution (OOD)
(in-distribution) generalization (domain shifts)
0: model parameters e Out-of-distribution detection
fe(x): model prediction on X (unknowns)
(1) Adversarial robustness: (1) OOD generalization: (111) OOD detection:
x" similar to x. Ideally, fg(x’) = fg(x)  x’ ~ D’, a shifted version of x"~ D’, a dissimilar or new

6: adversarial
perturbation

D Ideally, fg(x’) = fg(x) domain w.r.t. D

fg(x)=bagel f o(x+8)=piano Ideally, fg(x’) = “Unknown”

e

fo(.) € {cat,dog}
fo(®) = “Unknown/00D”




Randomized Smoothing for Certified Robustness

* Rough idea: “Majority vote” with Gaussian perturbed input
for classification gives guaranteed robustness

* f:abase (deterministic) classifier

g(x) =argmax P(f(zx+¢) = c) (1)

where € ~ N(0,0°1)

Theorem 1. Let f : R? — Y be any deterministic or
random function, and let € ~ N'(0,0°I). Let g be defined
as in (1). Suppose cx € Y and pa,pp € [0, 1] satisfy:

Figure 1. Evaluating the smoothed classifier at an input x. Left:

the decision regions of the base classifier f are drawn in differ-

P(f(z +€) = ca) > pa > P5 > maxP(f(z +¢) = c)

cFCA

ent colors. The dotted lines are the level sets of the distribution
N (z,0?I). Right: the distribution f(N (z,0%1)). As discussed
below, pa is a lower bound on the probability of the top class and
pB is an upper bound on the probability of each other class. Here,
g(x) is “blue.”

Then g(x + ) = ca forall ||§||2 < R, where

R:

o
2

(@ '(pa) — @ ' (PB))

—

Cohen, Jeremy, Elan Rosenfeld, and Zico Kolter. "Certified adversarial robustness via randomized smoothing.“ ICML 2019



Randomized Smoothing for Quantum Circuits

* Theoretical proof that the addition of quantum random rotation noise
can improve the robustness of quantum classifiers against adversarial

perturbations

* Noise addition -> Quantum Differential Privacy -> Certified

Robustness

Algorithm 1 Quantum model under quantum noise rotation

Input o: where o is density matrix of n-dim data.
Output (0%, 0)

1. For a chosen quantum classifier, add Pauli-X operators
before each input qubit.

2. Generate n random variables 01, 6, ..., 0,, subject to
0< hy <tan6; < hpforalli € {1,2,...,n}.

3. Set up rotation angles of additional Pauli-X operators
with 01.,60-, ..., 0,

4. Execute the quantum classifier NV times to get the score
vector f(0*, o).

Fruits for thoughts:

Can Quantum-inspired noise processing improve
certified robustness of classical ML classifiers?
Large Language Models and GenAl technology are
stochastic by design -> Quantum modeling?

Jhih-Cing Huang, Yu-Lin Tsai, Chao-Han Huck Yang, Cheng-Fang Su, Chia-Mu Yu, Pin-Yu Chen, and Sy-Yen Kuo.
"Certified robustness of quantum classifiers against adversarial examples through quantum noise." ICASSP 2023



Concluding Remarks

* Al for Quantum: Tensor-Train Networks as
powerful representation learning tools for
guantum neural networks

* Quantum for Al: Quantum circuits and noises
as privacy-enhanced and robustness-improved
modules for classical and quantum ML

* Post Quantum Al: What can we do with
Quantum Foundation Models and Quantum
GenAl? (no, they are not buzz words)

* Quantume-inspired trust and safety for Al
* Al-inspired risks for Quantum Al



< You

what can quantum computing help with generative Al?

5 Copilot

Quantum computing has the potential to significantly impact generative Al in several ways:

1. Speeding up computations: Quantum computers can perform certain calculations much faster than
classical computers, which could accelerate the training of generative models.

2. Handling complex problems: Quantum computing can process and analyze large datasets more efficiently,
which is beneficial for training generative models on complex tasks.

3. Improving optimization: Quantum algorithms can potentially find better solutions to optimization problems,
which are central to training generative Al models.

4. Enhancing creativity: With its ability to explore a vast search space, quantum computing could help
generative Al produce more diverse and innovative outputs.

5. Energy efficiency: Quantum computers could use less energy for certain computations, making the process
of training generative Al models more sustainable.

While quantum computing is still in its early stages, its integration with generative Al could lead to
breakthroughs in the field, enabling the creation of more advanced and efficient Al systems.
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