Oscillator Array Based Sensing
Allison K. Murray, Joseph R. Meseke, Nikhil Bajaj, Jeffrey F. Rhoads
PI: Jeffrey F. Rhoads
murray57@purdue.edu

Project Description

- This work sought to develop an array of mass sensors functionalized with reactive chemistries for the detection of trace volatile organic compounds.
- This approach addressed concerns regarding the sampling time of uncoupled, resonant mass sensors and provided low-cost, high-throughput sensing arrays.

Approach

- Sensing elements, 16 MHz quartz crystal oscillators, were functionalized with inkjet printing.
- A frequency counting algorithm was implemented to track the oscillation frequency of the sensors.
- The shifts in frequency due to mass adsorption were mapped to analyte exposure to create sensitivity models.

Discussion

- Preliminary results showed promise in developing sensing arrays responsive to methanol and toluene.
- Future work to implement redundancies in the array and characterize the response to confounding species is ongoing.

Results

- Representative frequency data of an oscillator functionalized with poly(4-vinylpyridine) and exposed to methanol is shown.
- As expected, the device exhibited a reversible shift in oscillation frequency when exposed to methanol.

Oscillators were implemented as sensing elements and their oscillation frequency was tracked in a low-cost manner through frequency counting algorithms.