RAY W. HERRICK LABORATORIES

Multiscale Modelling of Triboelectric Energy Harvesters

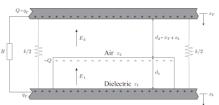
Hongcheng Tao, PhD Student

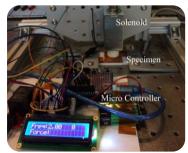
Principal Investigator: Dr. James Gibert

taoh@purdue.edu

Sponsor: NSF

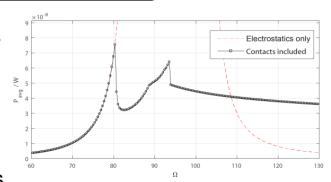
Project Description


The dynamics of triboelectric energy harvesters is modelled integrating elastic and electrostatic elements as well as charge transfers by contact electrification, which is studied in detail through experiments.


Discussion

- Methods to measure charge transfer
 - Directly by electrometer or AFM
 - · Indirectly by output voltage
- Various electrification mechanisms
 - Electron transfer for metals
 - Ion and material transfers for polymers

Approach


- Macroscopic modelling
 - · Elastic elements as an impact oscillator
 - · Electrostatic elements by Gauss's Law
- Experiments on contact electrification
 - Tests on variable combinations of materials conducted on a solenoid-driven presser
 - Designed surface topography of specimens
 - Controlled force magnitude and duty cycle

Results

- Device performance by analysis
 - Analytical solution for non-impacting electrostatic system
 - Broadband performance achieved including nonlinearities by impacts
- Experimental results in progress

Power output of a vertical-contact triboelectric energy harvester by simulation

Triboelectricity is modelled via experiments to determine electrification mechanism.

