INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Summary of Compressor Related Research Theses</td>
<td>4</td>
</tr>
<tr>
<td>Listing of Compressor Related Theses</td>
<td>5</td>
</tr>
<tr>
<td>Compressor Research Not Reflected in Theses Titles</td>
<td>14</td>
</tr>
<tr>
<td>Past and Present Sponsors</td>
<td>15</td>
</tr>
<tr>
<td>How to Initiate Sponsored Research</td>
<td>16</td>
</tr>
<tr>
<td>A Note to Our Foreign Friends</td>
<td>16</td>
</tr>
<tr>
<td>A Note to Prospective Graduate Students</td>
<td>17</td>
</tr>
<tr>
<td>Journal and Conference Publications by Herrick Faculty and Students</td>
<td>18</td>
</tr>
</tbody>
</table>
INTRODUCTION

The Ray W. Herrick Laboratories developed as a cooperative enterprise between Purdue University and primarily American industry, and to a lesser extent the federal government. It grew out of the need of the air conditioning and refrigeration industry for university contact: first, to educate industry-oriented engineers with advanced degrees for their research and development laboratories, and second, to utilize the pool of talent that is available at a university of the professional stature of Purdue for research on industry-related questions.

Gifts from industry and grants from the government joined the investment of Purdue University in establishing the facility as part of the School of Mechanical Engineering. The faculty and the academic program provided the students with the proper education. Industry provided research projects of relevance. This cooperative venture nurtured the growth of the Laboratories to a community of approximately 90 people of faculty, staff, and students.

The Laboratories now provide an atmosphere of cooperation within the University itself. Faculty and students from all Schools of Engineering and the Sciences are willing to participate in research programs, if called upon. There are active research programs funded by a wide spectrum of industries: for example, the tire industry and the watch industry, in addition to programs funded by government agencies. However, a large portion of the research effort is concerned with compressors, which justifies and necessitates this special report on the compressor research activities to date.

This report attempts to summarize the research effort in compressors so far, give a listing of the many theses that were generated in this area, and provide information on the faculty who are most active in this area. For the prospective graduate student who would like to work in this challenging applied research area, this report outlines questions of application, support, etc. For the prospective industrial research sponsor, this report outlines the steps needed to get a research program started in this area.

Finally, this report outlines the activities of the Ray W. Herrick Laboratories in Compressor Research Conferences and Compressor Analysis and Design Workshops. This effort is considered to be important, both from the viewpoint of an international information exchange in this area, and from the viewpoint of the continuing education mission of Purdue University.
SUMMARY OF COMPRESSOR RELATED RESEARCH THESIS

The compressor research activity of the Ray W. Herrick Laboratories is summarized in the theses generated by its graduate students. The complete listing is given by the author, degree, title, and major professor.

In general, copies of theses may be obtained from several sources, such as ProQuest (http://www.proquest.com/products_pq/descriptions/pqdt.shtml). (However, some of the recent theses may still be confidential and will not be available until declassified. Another source would be the Interlibrary Loan Office, Purdue University Libraries, West Lafayette, Indiana, 47907. Their website is: http://www.lib.purdue.edu/access/ill/td/.

Early research focused on experimental procedures. For instance, the first strain gage measurements on a vibrating reed valve in an operating refrigerating compressor were conducted here. Since the early sixties, research has expanded into the area of mathematical simulation of total compressors, predicting valve reed vibrations and stresses, gas oscillations, acoustic radiation, etc. The advent of high speed compressors has made dynamic considerations mandatory, and research is therefore quite challenging to students in this area. Research has been done on air as well as refrigerating compressors. In general, the research can be thought of as serving three goals: Noise and Vibration Control, Thermodynamic Performance Improvement, and Increased Reliability.

The Ray W. Herrick Laboratories are internationally recognized as a research center in the compressor area.
<table>
<thead>
<tr>
<th>Name</th>
<th>Degree</th>
<th>Thesis Title</th>
<th>Major Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. R. G. McCullum</td>
<td>MSME</td>
<td>High Temperature Viscosity Measurements of Fluorinated Hydrocarbon Compounds in the Vapor Phase</td>
<td>O. W. Witzell</td>
</tr>
<tr>
<td>2. R. J. Wensley</td>
<td>MSME</td>
<td>Apparatus for the Determination of the Viscosity of Refrigerants in the Liquid Phase</td>
<td>O. W. Witzell</td>
</tr>
<tr>
<td>3. S. Vigander</td>
<td>MSME</td>
<td>On the Use of Resonators as an Acoustic Muffler in Fluid Flow Machinery</td>
<td>R. C. Binder</td>
</tr>
<tr>
<td>4. R. W. Cassady</td>
<td>MSME</td>
<td>The Techniques of Obtaining Internal Temperatures and a Temperature Profile of a Hermetic Compressor</td>
<td>W. E. Fontaine</td>
</tr>
<tr>
<td>5. C. Y. Tsui</td>
<td>MSME</td>
<td>Viscosity Measurements for Several Fluorinated Hydrocarbon Vapors at Elevated Temperatures and Pressures</td>
<td>E. J. Wellman</td>
</tr>
<tr>
<td>7. O. J. Wilbers</td>
<td>MSME</td>
<td>Viscosity Measurements for Several Fluorinated Hydrocarbon Vapors</td>
<td>O. W. Witzell</td>
</tr>
<tr>
<td>8. R. L. Lowery</td>
<td>Ph.D.</td>
<td>High Speed Compressor Valve Noise and Vibration Study</td>
<td>R. Cohen</td>
</tr>
<tr>
<td>9. P. R. Ukrainetz</td>
<td>Ph.D.</td>
<td>Compressor Valve Stress Studies in Conjunction with Accelerated Life Tests</td>
<td>R. Cohen</td>
</tr>
<tr>
<td>10. R. Gluck</td>
<td>Ph.D.</td>
<td>Development of Fatigue Life Index as a Criterion for Evaluating Compressor Leaf Valve Design</td>
<td>R. Cohen</td>
</tr>
<tr>
<td>12. M. G. Pottinger</td>
<td>MSME</td>
<td>Pressure Oscillations in the Exhaust Chamber of a Refrigeration Compressor</td>
<td>R. Cohen</td>
</tr>
<tr>
<td>13. V. J. Riley</td>
<td>MSME</td>
<td>The Viscosity of Liquid "Freon-11" and</td>
<td>O. W. Witzell</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Degree</td>
<td>Title</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>14</td>
<td>H. L. Oh</td>
<td>MSME</td>
<td>Effect of Certain Discharge Configurations on Valve Stress and Valve Noise</td>
</tr>
<tr>
<td>15</td>
<td>R. V. Cadman</td>
<td>MSME</td>
<td>Measurement of Valve Displacement as a Function of Time</td>
</tr>
<tr>
<td>16</td>
<td>A. G. Doige</td>
<td>Ph.D.</td>
<td>A Stress and Vibration Analysis of a Leaf-Type Compressor Valve</td>
</tr>
<tr>
<td>18</td>
<td>D. A. Coates</td>
<td>MSME</td>
<td>Design and Digital Computer Simulation of a Reciprocating Free Piston Electrodynamic Gas Compressor</td>
</tr>
<tr>
<td>19</td>
<td>L. L. Faulkner</td>
<td>MSME</td>
<td>Stress Concentrations in Refrigeration Compressor Crankshafts</td>
</tr>
<tr>
<td>21</td>
<td>C. Y. Tsui</td>
<td>Ph.D.</td>
<td>Discharge Phenomena of a Vibrating Poppet Type Valve</td>
</tr>
<tr>
<td>22</td>
<td>J. G. Payne</td>
<td>Ph.D.</td>
<td>Photoelastic Stress Analysis and Dynamic Simulation of Compressor Ring Valves</td>
</tr>
<tr>
<td>23</td>
<td>R. V. Cadman</td>
<td>Ph.D.</td>
<td>A Technique for the Design of Electrodynamic Oscillating Compressors</td>
</tr>
<tr>
<td>24</td>
<td>G. T. Kinney</td>
<td>MSME</td>
<td>Mathematical Simulation of the Vibration of a Refrigeration Compressor</td>
</tr>
<tr>
<td>25</td>
<td>E. M. White</td>
<td>MSME</td>
<td>Application of Mathematical Model to High Speed Reciprocating Compressors</td>
</tr>
<tr>
<td>26</td>
<td>B. D. Kotalik</td>
<td>MSME</td>
<td>Computer Simulation of a Five Horsepower High Speed Reciprocating Compressor</td>
</tr>
<tr>
<td>27</td>
<td>M. J. Stevenson</td>
<td>MSME</td>
<td>A Computer Simulation of a Rotary Vane Compressor</td>
</tr>
<tr>
<td>28</td>
<td>C. N. Johnson</td>
<td>Ph.D.</td>
<td>Fractional Horsepower, Rotary Vane</td>
</tr>
<tr>
<td>Title</td>
<td>Author</td>
<td>Date</td>
<td>Summary</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>Refrigerant Compressor Sound Source Investigation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration Analysis of Shell Structures Using Receptances</td>
<td>L. L. Faulkner Ph.D.</td>
<td>8/69</td>
<td></td>
</tr>
<tr>
<td>Part-Load Performance of Reciprocating Compressors</td>
<td>J. D. Haseltine MSME</td>
<td>1/70</td>
<td></td>
</tr>
<tr>
<td>Prediction and Measurement of Instantaneous Compressor Crankshaft Speed</td>
<td>R. R. McConnell MSME</td>
<td>1/70</td>
<td></td>
</tr>
<tr>
<td>Design Technique for Performance Optimization of a Small Rotary Vane Compressor</td>
<td>D. A. Coates Ph.D.</td>
<td>1/70</td>
<td></td>
</tr>
<tr>
<td>Mathematical and Experimental Analysis of the Vibration of a Refrigerating Compressor</td>
<td>R. H. Harrison MSME</td>
<td>6/70</td>
<td></td>
</tr>
<tr>
<td>Performance Optimization of 1/3 Horsepower Rotary Vane Compressor Using a Computer Simulation</td>
<td>R. F. Schult MSME</td>
<td>8/70</td>
<td></td>
</tr>
<tr>
<td>Computer Simulation of a Two-Cylinder Refrigeration Compressor with Special Attention to the Cylinder and Cavity Interactions</td>
<td>E. Padilla MSME</td>
<td>8/70</td>
<td></td>
</tr>
<tr>
<td>Mathematical Modeling of a Multiple Cylinder Refrigeration Compressor</td>
<td>D. D. Schwerzler Ph.D.</td>
<td>6/71</td>
<td></td>
</tr>
<tr>
<td>The Prediction of Dynamic Strain in Ring Type Compressor Valves</td>
<td>J. A. Adams Ph.D.</td>
<td>6/71</td>
<td></td>
</tr>
<tr>
<td>Computer Simulation of the Vibrating and Acoustic Behavior of a Reciprocating Compressor Discharge Valve</td>
<td>T. J. Trella Ph.D.</td>
<td>1/72</td>
<td></td>
</tr>
<tr>
<td>Experimental Verification of Digital Computer Rotary Compressor Simulation</td>
<td>R. P. Beldam MSME</td>
<td>1/72</td>
<td></td>
</tr>
<tr>
<td>Mathematical Model of a Single-Cylinder Compressor</td>
<td>C. H. Gerhold MSME</td>
<td>1/72</td>
<td></td>
</tr>
<tr>
<td>The Prediction of Dynamic Strain in Leaf-Type Compressor Valves with Variable Mass and Stiffness</td>
<td>M. Moaveni Ph.D.</td>
<td>1/72</td>
<td></td>
</tr>
<tr>
<td>Gas Pressure Oscillations and Ring Valve</td>
<td>J. P. Elson Ph.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Title</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>6/72</td>
<td>Simulation Techniques for the Discharge Process of a Reciprocating Compressor</td>
<td>J. M. Hughes</td>
<td></td>
</tr>
<tr>
<td>6/72</td>
<td>A Study of Heat Transfer and Valve Phenomena in a Reciprocating Compressor</td>
<td>B. Qvale/J. Pearson</td>
<td></td>
</tr>
<tr>
<td>6/72</td>
<td>Instantaneous Heat Flow Through the Cylinder Walls of Reciprocating Compressors</td>
<td>R. P. Adair/J. Pearson</td>
<td></td>
</tr>
<tr>
<td>8/72</td>
<td>Noise Identification and Reduction for a Rotary Vane Compressor</td>
<td>W. R. Thornton/J. F. Hamilton</td>
<td></td>
</tr>
<tr>
<td>8/73</td>
<td>The Feasibility of Rotating Hermetic Compressors</td>
<td>D. E. Mosiman/W. Soedel/ W. Leidenfrost</td>
<td></td>
</tr>
<tr>
<td>8/73</td>
<td>Acoustic Investigation of a Small Rotary Vane Compressor</td>
<td>R. A. Shryock/D. R. Tree</td>
<td></td>
</tr>
<tr>
<td>8/74</td>
<td>The Development of a Nonlinear Constrained Optimization Algorithm for Application to Simulated Systems</td>
<td>L. F. LaFrance/J. F. Hamilton</td>
<td></td>
</tr>
<tr>
<td>8/74</td>
<td>Application of Experimental Methods to Compressor Design</td>
<td>S. Wolverton/W. Soedel</td>
<td></td>
</tr>
<tr>
<td>8/74</td>
<td>Computer Simulation of a Reciprocating Compressor with Special Emphasis on the Prediction of Dynamic Strains in Ring Type Valves</td>
<td>K. H. Reddy/J. F. Hamilton/ W. Soedel</td>
<td></td>
</tr>
<tr>
<td>8/74</td>
<td>Calculation of the Natural Frequencies and Mode Shapes of a Compressor Discharge Line by Using Finite Elements</td>
<td>R. V. Firth/J. F. Hamilton</td>
<td></td>
</tr>
<tr>
<td>5/75</td>
<td>Computer Simulation of a Two-Cylinder Reciprocating Compressor and Associated Discharge System Using Acoustical Impedances</td>
<td>E. Sandgren/K. M. Ragsdell/ W. Soedel</td>
<td></td>
</tr>
<tr>
<td>5/75</td>
<td>Computer Simulation of a Four-Cylinder Air Conditioning Compressor with Special Attention to Discharge Cavity Interactions</td>
<td>J. M. Baum/W. Soedel</td>
<td></td>
</tr>
<tr>
<td>12/75</td>
<td>Modeling of Multicylinder Compressor Discharge System</td>
<td>R. Singh/W. Soedel</td>
<td></td>
</tr>
<tr>
<td>5/75</td>
<td>Noise Identification of a Rotary Vane</td>
<td>D. A. Feldmaier/D. R. Tree</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Author</td>
<td>Degree</td>
<td>Title</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>56</td>
<td>D. L. Strader</td>
<td>MSME</td>
<td>12/76 Compressor with Special Emphasis on the Cylinder Pressure</td>
</tr>
<tr>
<td>57</td>
<td>W. A. Reed</td>
<td>MSME</td>
<td>12/76 Computer Simulation of Dynamics of Refrigeration Cycle</td>
</tr>
<tr>
<td>58</td>
<td>S. Steinke</td>
<td>MSME</td>
<td>12/77 Internal Leakage Effects in Sliding Vane, Rotary Compressors</td>
</tr>
<tr>
<td>59</td>
<td>M. Dhar</td>
<td>Ph.D.</td>
<td>5/78 Transient Analysis of Refrigeration System</td>
</tr>
<tr>
<td>60</td>
<td>J. Koster</td>
<td>MSME</td>
<td>5/78 Part Load Performance Analysis of Centrifugal Chillers</td>
</tr>
<tr>
<td>61</td>
<td>D. Rauen</td>
<td>MSME</td>
<td>8/78 Simulation of Underwater Breathing System (non-thesis)</td>
</tr>
<tr>
<td>62</td>
<td>E. Pollak</td>
<td>Ph.D.</td>
<td>12/78 Performance Study of Oscillating Electrodynamic Compressors</td>
</tr>
<tr>
<td>63</td>
<td>P. Pandeya</td>
<td>Ph.D.</td>
<td>12/78 Performance Analysis of a Positive Displacement Refrigerating Compressor</td>
</tr>
<tr>
<td>64</td>
<td>D. Powder</td>
<td>MSME</td>
<td>5/79 Measurements and Interpretation of the Vibrations of a Spring Supported Compressor</td>
</tr>
<tr>
<td>65</td>
<td>M. Franzen</td>
<td>MSME</td>
<td>5/79 Mathematical Simulation of Refrigeration Compressor Vibrations</td>
</tr>
<tr>
<td>67</td>
<td>S. Jenkins</td>
<td>MSME</td>
<td>5/80 Reduction of Transmitted Vibration Forces Through the Support Springs of a Compressor</td>
</tr>
<tr>
<td>68</td>
<td>S. Thomas</td>
<td>MS</td>
<td>5/80 A Study of the Test Method for Prediction of Air Conditioning Equipment Seasonal Performance</td>
</tr>
<tr>
<td>69</td>
<td>T. Hirahara</td>
<td>MSE</td>
<td>5/80 Crank Shaft Deflection in Multicylinder Refrigerant Compressors (non-thesis)</td>
</tr>
</tbody>
</table>

Compressor Research Group, Ray W. Herrick Laboratories, Purdue University, Fall 2012
<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Degree</th>
<th>Title</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>T. W. Bein</td>
<td>MSME</td>
<td>A Computer Model of a Single Screw Air Compressor</td>
<td>J. F. Hamilton</td>
</tr>
<tr>
<td>71</td>
<td>V. Yee</td>
<td>Ph.D.</td>
<td>Analytical and Experimental Study of High Speed Rotary Sliding Vane</td>
<td>W. Soedel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compressor Dynamics with Application to Transfer Slot Design</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>J. C. H. Yang</td>
<td>Ph.D.</td>
<td>Computer Aided Design of Multicylinder Compressor</td>
<td>J. F. Hamilton</td>
</tr>
<tr>
<td>73</td>
<td>M. Waser</td>
<td>MSME</td>
<td>Noise Transmission Characteristics of the Hermetic Shells of Fractional Horse Power Refrigerant Compressors</td>
<td>J. F. Hamilton</td>
</tr>
<tr>
<td>74</td>
<td>N. Gupta</td>
<td>MSME</td>
<td>Analysis of the Transient Motion of a Compressor</td>
<td>R. J. Bernhard</td>
</tr>
<tr>
<td>75</td>
<td>M. Seidel</td>
<td>MSME</td>
<td>Transient Vibrations of Compressor Discharge Tubes</td>
<td>R. J. Bernhard</td>
</tr>
<tr>
<td>76</td>
<td>S. M. Price</td>
<td>MSME</td>
<td>Identification of High Frequency Noise Paths and Noise Mechanisms in Reciprocating Hermetic Compressors</td>
<td>R. J. Bernhard</td>
</tr>
<tr>
<td>77</td>
<td>D. Jankov</td>
<td>MSME</td>
<td>Valve Failure Detection in Refrigeration Compressors</td>
<td>W. Soedel</td>
</tr>
<tr>
<td>78</td>
<td>J. S. Kim</td>
<td>Ph.D.</td>
<td>Three Dimensional Transient Stress Wave Propagation in a Plate with Application to Compressor Valve Failure Analysis</td>
<td>W. Soedel</td>
</tr>
<tr>
<td>79</td>
<td>B. Roys</td>
<td>MSME</td>
<td>On the Acoustics of Shell Enclosed Compressors with Special Attention to Gas Pulsations on the Suction Side</td>
<td>W. Soedel</td>
</tr>
<tr>
<td>80</td>
<td>R. Srikanth</td>
<td>MSME</td>
<td>How the Design of the Suction Return Affects Compressor Efficiency</td>
<td>H. D. Thompson</td>
</tr>
<tr>
<td>81</td>
<td>M. A. Beaty</td>
<td>MSME</td>
<td>Energy Losses to Friction in a Reciprocating Refrigerator Compressor</td>
<td>C. Krousgrill</td>
</tr>
<tr>
<td>82</td>
<td>W. A. Meyer</td>
<td>MSME</td>
<td>An Investigation into Heat Transfer Processes in a Small Hermetic Refrigeration Compressor</td>
<td>H. D. Thompson</td>
</tr>
<tr>
<td>83</td>
<td>H. A. Chung</td>
<td>MSME</td>
<td>Linear and Nonlinear Mathematical Modeling of the Steady State Vibration of Sealed</td>
<td>J. F. Hamilton</td>
</tr>
<tr>
<td>#</td>
<td>Name</td>
<td>Degree</td>
<td>Title</td>
<td>Advisor</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>84</td>
<td>J. Kim</td>
<td>Ph.D.</td>
<td>Simulation of a High Speed Hermetic Compressor with Special Attention to Gas Pulsations in Three Dimensional Continuous Cavities</td>
<td>W. Soedel</td>
</tr>
<tr>
<td>85</td>
<td>M. Krueger</td>
<td>MSME</td>
<td>Theoretical Simulation and Experimental Evaluation of an Hermetic Rolling Piston Rotary Compressor</td>
<td>J. F. Hamilton</td>
</tr>
<tr>
<td>86</td>
<td>M. P. Hsu</td>
<td>Ph.D.</td>
<td>Investigation of Natural Mode Measurement on Shells Using Hand Held Transducers with Special Attention to Compressor Shells</td>
<td>W. Soedel</td>
</tr>
<tr>
<td>87</td>
<td>T. Berther</td>
<td>MSME</td>
<td>Condition Monitoring of Check Valves in Reciprocating Pumps</td>
<td>P. Davies</td>
</tr>
<tr>
<td>88</td>
<td>R. Andrews</td>
<td>MSME</td>
<td>Noise Source Identification in Twin-Screw Compressors</td>
<td>J. D. Jones</td>
</tr>
<tr>
<td>89</td>
<td>D. Brown</td>
<td>MSME</td>
<td>Noise Source Identification of a Multi-Cylinder Reciprocating Automotive Air Conditioning Compressor</td>
<td>P. Sherman</td>
</tr>
<tr>
<td>90</td>
<td>K. L. Koai</td>
<td>Ph.D.</td>
<td>Mathematical Modeling of Twin Screw Compressors with Special Attention to Gas Pulsations in Three-Dimensional Gas Paths</td>
<td>W. Soedel</td>
</tr>
<tr>
<td>91</td>
<td>J. Frabotta</td>
<td>MSME</td>
<td>Investigation of Noise Generation Mechanisms and Transmission Paths of Fractional Horsepower Reciprocation Piston and Rolling Piston Compressors</td>
<td>J. D. Jones</td>
</tr>
<tr>
<td>92</td>
<td>D. T. Huang</td>
<td>Ph.D.</td>
<td>On the Free and Forced Vibration of Plate-Shell Combinations Using the Receptance Methods</td>
<td>W. Soedel</td>
</tr>
<tr>
<td>93</td>
<td>H. J. Kim</td>
<td>Ph.D.</td>
<td>Computer Simulation of Gas Pulsation Generated Sound in Compressors</td>
<td>W. Soedel</td>
</tr>
<tr>
<td>94</td>
<td>J. E. Huff, Jr.</td>
<td>MSE</td>
<td>Development of a Measurement Technique to Evaluate Rotor Chatter in Twin Screw Compressors</td>
<td>J. D. Jones</td>
</tr>
<tr>
<td>95</td>
<td>Z. Liu</td>
<td>Ph.D.</td>
<td>Simulation of a Variable Speed Compressor with Special Attention to Supercharging Effects</td>
<td>W. Soedel</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Degree</td>
<td>Title</td>
<td>Advisor(s)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>96</td>
<td>G. P. Adams</td>
<td>Ph.D.</td>
<td>Modelling and Computer Simulation of Rotor Chatter and Oscillating Bearing Forces in Twin Screw Compressors</td>
<td>W. Soedel</td>
</tr>
<tr>
<td>97</td>
<td>T. M. Rossi</td>
<td>Ph.D.</td>
<td>Detection, Diagnosis, and Evaluation of Faults in Vapor Compression Cycle Equipment</td>
<td>J. E. Braun</td>
</tr>
<tr>
<td>98</td>
<td>F. Pan</td>
<td>Ph.D.</td>
<td>A Study of Piezoelectric Transducers in Application to Active Control of Reciprocating Compressor Noise</td>
<td>J. D. Jones</td>
</tr>
<tr>
<td>100</td>
<td>J. E. Navarro de Andrade</td>
<td>MS</td>
<td>Investigation of Rotary Compressor Oil Carry-Over</td>
<td>V. Goldschmidt</td>
</tr>
<tr>
<td>101</td>
<td>B. L. Minner</td>
<td>MSME</td>
<td>Design Optimization for Thermoacoustic Cooling Systems</td>
<td>J. Braun</td>
</tr>
<tr>
<td>102</td>
<td>P. C. C. Lai</td>
<td>Ph.D.</td>
<td>A General Procedure for the Analysis of Gas Pulsations in Thin Compressor or Engine Manifolds and Thin Shell Type Mufflers</td>
<td>W. Soedel</td>
</tr>
<tr>
<td>103</td>
<td>N. P. Halm</td>
<td>MSME</td>
<td>Mathematical Modeling of Scroll Compressors</td>
<td>E.A. Groll/ J.E. Braun D.R. Tree</td>
</tr>
<tr>
<td>104</td>
<td>A. Causey</td>
<td>MSME</td>
<td>Non-thesis. Compressor Load Stand; Commissioning and Control Strategies</td>
<td>J.E. Braun/ E.A. Groll</td>
</tr>
<tr>
<td>105</td>
<td>Y. Chen</td>
<td>Ph.D.</td>
<td>Mathematical Modeling of Scroll Compressors</td>
<td>E.A. Groll/ J.E. Braun</td>
</tr>
<tr>
<td>106</td>
<td>J. S. Baek</td>
<td>Ph.D.</td>
<td>Development of a Work Producing Expansion Device for a Transcritical Carbon Dioxide Cycle</td>
<td>E.A. Groll/ P.B. Lawless</td>
</tr>
<tr>
<td>107</td>
<td>B. Hubacher</td>
<td>MSME</td>
<td>Experimental and Theoretical Performance Analysis of Carbon Dioxide Compressors</td>
<td>E.A. Groll</td>
</tr>
<tr>
<td>108</td>
<td>C. Buhr</td>
<td>Ph.D.</td>
<td>Active Control of Rotating Stall in Compressors</td>
<td>S. Fleeter/ M. Franchek</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Degree</td>
<td>Thesis Title</td>
<td>Advisors</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>--------</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>109</td>
<td>J. Park</td>
<td>Ph.D.</td>
<td>Modeling and Simulation of a Multi-Cylinder Automotive Compressor</td>
<td>D.E. Adams</td>
</tr>
<tr>
<td>110</td>
<td>J.-H. Kim</td>
<td>Ph.D.</td>
<td>Analysis of a Bowtie Compressor with Novel Capacity Modulation</td>
<td>E.A. Groll</td>
</tr>
<tr>
<td>111</td>
<td>J. Hugenroth</td>
<td>Ph.D.</td>
<td>Liquid Flooded Ericsson Cycle Cooler</td>
<td>E.A. Groll/ J.E. Braun/ G.B. King</td>
</tr>
<tr>
<td>112</td>
<td>J. Lim</td>
<td>Ph.D.</td>
<td>Statistical Energy Analysis for a Compact Refrigeration Compressor and Model Improvement</td>
<td>J.S. Bolton/ R.J. Bernhard/ C.M, Krousgrill</td>
</tr>
<tr>
<td>113</td>
<td>M. Jovane</td>
<td>Ph.D.</td>
<td>Modeling and Analysis for a Novel Rotary Compressor</td>
<td>J.E. Braun/ E.A. Groll</td>
</tr>
<tr>
<td>114</td>
<td>A. Sathe</td>
<td>Ph.D.</td>
<td>Miniature-Scale Diaphragm Compressor for Electronics Cooling</td>
<td>E.A. Groll</td>
</tr>
<tr>
<td>115</td>
<td>W. Kim</td>
<td>MSME</td>
<td>Evaluation of a Virtual Refrigerant Charge Sensor</td>
<td>J.E. Braun</td>
</tr>
<tr>
<td>116</td>
<td>I. Bell</td>
<td>Ph.D.</td>
<td>Theoretical and Experimental Analysis of Liquid Flooded Compression in Scroll Compressors</td>
<td>J.E. Braun/ E. Groll</td>
</tr>
<tr>
<td>117</td>
<td>M. Vargo</td>
<td>MSME</td>
<td>Non-Thesis: Compressor Performance Testing</td>
<td>J. Braun</td>
</tr>
<tr>
<td>118</td>
<td>M. Mathison</td>
<td>Ph.D.</td>
<td>Modeling and Evaluation of Advanced Compression Techniques for Vapor Compression Equipment</td>
<td>J.E. Braun/ E. Groll</td>
</tr>
<tr>
<td>119</td>
<td>B. Shaffer</td>
<td>Ph.D.</td>
<td>Performance Analysis of Non-Metallic Dry Running Scroll Compressors</td>
<td>E. Groll</td>
</tr>
<tr>
<td>120</td>
<td>C. Bradshaw</td>
<td>Ph.D.</td>
<td>A Miniature-Scale Linear Compressor for Electronics Cooling</td>
<td>E. Groll</td>
</tr>
<tr>
<td>121</td>
<td>S. Ramaraj</td>
<td>MSME</td>
<td>Vapor Compression Cycle Enhancements for Cold Climate Heat Pumps</td>
<td>E. Groll</td>
</tr>
<tr>
<td>122</td>
<td>Y. Song</td>
<td>MSME</td>
<td>Modeling and Experimental Validation of a Multi-Port Vapor Injected Scroll Compressor</td>
<td>J. Braun/E. Groll</td>
</tr>
</tbody>
</table>
123. S. Ebling
MSME
Carbon Dioxide Compressor Load Stand
8/2013
E. Groll

124. S. Caskey
MSME
Cold Climate Field Test Analysis of an Air-Source Heat Pump with Two-Stage Compression and Economizing
12/2013
E. Groll
COMPRESSOR RESEARCH NOT REFLECTED IN THESES TITLES

In addition to the theses listed in the previous chapter, many more research reports on various aspects of compressors have been written, usually for research sponsors. As a rule, these reports are kept confidential, and are therefore not listed. Topics are often different from the theses topics, mainly since not everything found on a sponsored research program is eventually incorporated in a thesis. In some cases, although the student's support came from a sponsored research program, his thesis was written around a detailed question which was part of the research program and caught his fancy. For instance, the Laboratories have done extensive work on the noise control of large centrifugal compressors, but the graduate student on the project and his major professor decided that the student should write his thesis on the stiffening of shells.

Then there are theses in other areas whose findings have influence on compressor design. In addition to the ones that are listed here, there are many more in the areas of vibrations, acoustics, thermodynamics, fluid mechanics, heat transfer, control, etc. Also, considerable work that was or can be applied to compressors has been published by the Herrick faculty and students in journals and conference proceedings. Areas are, for instance, flow area modeling, impact stress analysis, valve reed similitude, instrumentation design, acoustics, etc., and some listings may be found in the Publications listing.
PAST AND PRESENT SPONSORS

Among past and present industrial sponsors of research related to compressors are:

- American Standard
- Aspera SpA, Italy
- Bell and Gossett ITT
- Bendix-Westinghouse
- Robert Bosch GmbH (West Germany)
- Carlyle Compressor Company
- Carrier Corporation
- Chrysler Corporation, Airtemp Division
- Copeland Corporation
- Cummins Engine Company
- Danfoss A/S, Denmark
- Mario Dorin SpA, Italy
- Dunham-Bush, Inc.
- E. I. duPont de Nemours and Company
- S.A. Embraco, Brazil
- Frick Company
- General Electric Company
- General Motors Corporation, Frigidaire Division
- Gibson Products Corporation
- GoldStar Company, Korea
- Joy Manufacturing Company
- L.G. Electronics
- Mitsubishi Electric Corporation, Japan
- Mitsubishi Heavy Industries, Ltd., Japan
- Nanjing Aotecar Refrigerating Co., Ltd.
- Necchi, S.p.A., Italy
- Panasonic (Matsushita), Japan
- Sanden Corporation, Japan
- Shanghai Hitachi Electrical Appliances Co., LTD
- Tecumseh Products Company
- Toshiba Corporation, Japan
- The Trane Company
- United States Army
- United States Air Force
- United Technologies Carrier Corporation
- Vilter Manufacturing Corporation
- Westinghouse Electric Corporation
- Whirlpool Corporation
- York Division, Borg-Warner Corporation
- Zanussi Eletromeccanica S.p.A., Italy

Many sponsors have had or have research programs with the Ray W. Herrick Laboratories that stretch over many years, involving as many as four students at a time.
HOW TO INITIATE SPONSORED RESEARCH

The prospective sponsor should contact the Director of the Herrick Laboratories or one of the members of the faculty and ask for a preliminary meeting. At this meeting, the sponsor can state his interests, and the degree of his desired involvement can be discussed. After this meeting, the Herrick Laboratories faculty will write an informal technical research proposal, which will be discussed with the sponsor at one or more subsequent meetings. An informal budget will be presented at that time. After an informal agreement on the proposal and budget has been reached, the proposal will be formally processed through Purdue University offices for administrative approvals. The approved technical proposal and budget will then be forwarded to the sponsor by the Purdue Research Foundation, along with an agreement form for execution by the sponsor.

To accommodate needs for confidentiality, it is possible to withhold publication of a thesis for up to two years after contract termination.

While continuing sponsorship of research stretching over several years is desirable, both from the viewpoint of the Herrick operation and the maximum benefit to the sponsors, budget commitments do not have to exceed one year. Contracts are usually fixed price contracts.

Often the prospective sponsor is unsure what would constitute an acceptable research project. It is suggested that he contact the Ray W. Herrick Laboratories anyway, as there are few worthwhile projects that cannot at least generate a master's thesis. The faculty will take the responsibility to add to the project any necessary additional academic requirements. In these cases, this means that the sponsor received information above and beyond what he has contracted for.

A NOTE TO OUR FOREIGN FRIENDS

A foreign visitor is usually surprised that the compressor research operation of the Herrick Laboratories is completely different from what he is accustomed to. He will be dismayed because the faculty may be unable to answer a question on some specific design detail of some specific brand of compressor, but will be agreeably surprised about the depth of knowledge in particular scientific areas applying to compressor design; for example, heat transfer or vibrations. He will also be surprised to find faculty members involved not only in compressor research but, for instance, also in combustion oscillation. The reason is simply the different characters of the higher education systems in the United States. Chairs for piston machinery, or even fluid machinery, in general do not exist. No single professor has the mission to be the expert in a given applied area such as compressors. Rather, there are professors specializing in the engineering science disciplines. They will, if needed, apply this specialized knowledge to industrial design. These disciplines are
thermodynamics, fluid mechanics, heat transfer, vibrations, stress analysis, automatic control, acoustics, etc. This applies in general also to the course content of the academic curriculum.

It is felt that the advantages of this system outweigh the disadvantages. The Ray W. Herrick Laboratories program in compressor research is an attempt to preserve the advantages and eliminate the disadvantages by a cooperative approach to applied research. Thus, the specialists in acoustics, vibration, thermodynamics, etc., bring their full knowledge to bear on every research project, even if it is only in an informal consultation capacity.

A NOTE TO PROSPECTIVE GRADUATE STUDENTS

In general, the graduate student who works on a sponsored project can expect an appointment as a half-time Graduate Research Assistant. Master's degree candidates are expected to write a thesis related to their project research. This thesis can also be the final report to the project sponsor. In addition, the student is expected to write progress reports to the sponsor during the course of his research. Material in the progress reports can be incorporated in the thesis. The Ph.D. candidate is, of course, required to write a dissertation.

Students often ask what constitutes an acceptable thesis. A suggested minimum requirement for a Master's thesis is that the student utilize graduate-type coursework and produce results that are of a certain importance to the compressor industry. Publishability in refereed professional journals is not required, but many of our Master's degree graduates have published their work subsequently. However, a Ph.D. thesis has to contain material that is publishable in professional journals, be of a sufficient degree of difficulty to prove the candidate's qualification, and has to be in its subject matter of high interest either to the compressor industry or to one of the engineering science disciplines. Publications of former Herrick Laboratories Ph.D. candidates can be found in almost all major journals. This testifies to the quality of the Herrick Laboratories programs.

In all fairness, it has to be pointed out that applied research, in this case on compressors, is in some cases more difficult than what is often called basic research; since sooner or later the applied question leads to a basic investigation also. It is certainly more time-consuming, since the student is expected to become both broad and deep in outlook. He will also enter into a relationship of responsibility with the sponsoring company, and has to handle most communication with the sponsor himself. The rewards are a good and tough engineering education, no matter if on the Master's level or on the doctoral level. Graduates of the Ray W. Herrick Laboratories do, as a rule, very well for themselves in industry or government positions. A large percentage of the Ph.D. candidates have entered successful academic careers in major universities.
Students who are interested in joining the Ray W. Herrick Laboratories should formally apply to the Graduate School of Purdue University by writing to the Graduate Office of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, U.S.A., and indicate their interest in the Laboratories on the application form.

JOURNAL AND CONFERENCE PUBLICATIONS
BY HERRICK FACULTY AND STUDENTS

Purdue Compressor Technology Conference, pp. 69-73, Purdue University, West Lafayette, IN, July 1980.

279. C.R. Bradshaw, S.V. Garimella and E.A. Groll, “A Comprehensive Model of a Miniature-Scale

Faculty of Compressor Research Group:
Dr. Eckhard Groll
Dr. James E. Braun
Dr. W. Travis Horton