The Thermal Systems Laboratories

These areas are where the HVAC and Refrigeration component level and system level technology research is conducted as well as research on Air Quality. In the original building there are two psychrometric rooms (1 pair) and in the new building there are four psychrometric rooms (2 pairs) with a temperature range of –10° to 130°F. Each psychrometric room is 7000 cu ft. The psychrometric rooms are designed to accommodate ASHRAE/ARI standard test procedures used in rating unitary air-conditioners and heat pumps up to a capacity of 5 tons of refrigeration (18 kW). There are two indoor air quality (IAQ) laboratories that can simulate indoor and outdoor conditions. Instrumentation includes ultrasonic anemometers, omni-directional anemometers, tracer-gas sampler and analyzer, and particle generators and analyzers. Other facilities include a psychometric wind tunnel with dust injection system; a large HVAC equipment lab with 90 ton centrifugal chiller, various computer controlled compressor load stands for small compressors.

The Living Laboratory

The whole of the new building is a living laboratory where the building environment is being studied. It includes a 16 bore geothermal field and plug-and-play heat rejection for experiments in the engines and thermal sciences laboratories, and four nearly identical office spaces with each unit housing 20 graduate students. Each 34ft by 37ft office is reconfigurable in different ways and have separate support systems. This enables direct comparisons of alternative technologies for windows, lighting, comfort delivery, controls, and acoustic treatments. The normal temperature range is 65°F to 75°F but this can be extended to 55°F to 85°F. Relative humidity can be varied from 20% to 80%. Comfort delivery options include air supply from the ceiling, floor, or side wall along with radiant floor heating and radiant chilled beam cooling. Three of the units have double skin facades with different options for ventilation and energy recovery. All of the offices spaces have separate equipment for providing space conditioning that are well instrumented to allow direct energy comparisons.

Engines Research Laboratory

The two engine test stands in the original building and the four test cells in the new building are home to engine and hybrid systems controls research that is focused on improving efficiency, reducing engine emissions and developing efficient and environmentally friendly systems for using alternative fuels. Currently the four new test cells and associated systems will support 670, 350, 150 and 150 HP engine testing, respectively, but space and utilities are planned so that upgrading to higher horsepower and higher levels of emissions testing are possible as research progresses. Other instrumentation includes a hydraulic variable valve actuation system capable of controlling 12 valves, a single cylinder rig for testing piezoelectric valve actuation, an AC dynamometer and several eddy-current engine dynamometers, as well as emissions sensing systems.

Perception-Based Engineering Laboratory

Perception Based Engineering (PBE) researchers study people’s perceptions of stimuli, their influence on satisfaction, comfort, annoyance and performance and the relationship between those outcomes and the system, design and operational parameters. PBE faculty at Purdue work on projects related to touch interfaces, sound and vibration quality, image quality and depth perception, display design and graphics optimization, effects of noise on performance, and human-computer interaction. This 43ft by 28ft laboratory houses a TEAM 6 degree-of-freedom shaker, which can be covered when not in use. Lighting, temperature (55°F-85°F), humidity (20% to 80%) and sound can be finely controlled, and the room can be re-configured as several small isolated rooms or one larger room, thus simulated various types of environments.
High-Bay Flexible Laboratory & Small-Scale Vibrations Laboratory

These house Electro-Mechanical and Vibrations research. This is comprised of two parts: an open 36 ft by 87 ft high-bay area with segmented floors for vibration isolation between experiments, and a smaller laboratory for smaller scale experiments. The high-bay area has high ceilings to accommodate large systems for testing. It can house large shakers, such as a 35 kN TIRA electrodynamic shaker that can be used to reproduce vibration profiles and has in-built hydraulic power supplies for hydraulic shakers. In this area the vibration and dynamics of larger structures can be examined such as building components, vehicle suspension systems, wind turbine blades, road vehicle and aircraft and space structures. The small-scale laboratory includes apparatus for dynamic testing of materials and small structures to investigate nonlinear dynamic behavior and to identify structural and material parameters.

Acoustics, Noise and Vibration Research Area

In addition to the facilities in the High-Bay Flexible Laboratory and Perception-based Engineering areas in the new building, these facilities, currently housed in the original building, include a 25 by 20 by 18 ft reverberation room, an anechoic room with useful volume of 12 by 12 by 12 ft, a hemi anechoic room with useful volume of 41 by 27 by 18 ft and an 8 by 8 ft audiometric room for sound quality testing. There is also an acoustical materials laboratory with several types of impedance tubes for standardized acoustic material testing. The reverberation room is configured for sound transmission testing of acoustical systems. Additional facilities include a tire pavement test apparatus (TPTA) for testing tires on realistic pavements at speeds up to 50 km/hr, a two wheel chassis dynamometer with 67 inch rollers, an anechoic wind tunnel with 18 by 24 inch test section and flow velocity up 120 mph, Instrumentation includes a 64 microphone acoustical holography array and 90 channel data acquisition system, various microphones, accelerometers, shakers, a laser vibrometer, and a high speed camera.