SMART AIRFLOW™ A ventilation airflow virtual sensor

Jon Douglas Applied Research

Outline

- Background
 - Ventilation rules as applied to RTUs
 - Setting ventilation rates with economizers
- Describe the Smart Airflow concept
- Engineering behind it
- Summarize benefits of virtual sensors

Factors Impacting Ventilation Rate

OUTDOOR AIR PERCENTAGE VS. FRESH AIR DAMPER ANGLE - Less ERW

Fresh Air Damper Opening Angle	Percentage of Outdoor Air Available at Various Return Duct Static Pressures - In. w.g.			
	0.2	0.4	0.6	0.8
10"	5%	11%	16%	21%
20"	19%	25%	30%	36%
30"	34%	39%	44%	50%
40°	48%	53%	59%	64%
50*	62%	68%	73%	79%
60"	77%	82%	87%	93%
70°	91%	96%	100%	100%
80"	100%	100%	100%	100%

NOTE - Outdoor air percentage will vary when a variable frequency drive (VFD) drive is used on the supply air blower.

- Damper position
- Return duct design
- Supply airflow rate

Ventilation Background

- Building codes require ventilation in commercial buildings.
 - Amount required based on:
 - Floor Area
 - Number of occupants
 - Typically 10 30% of supply airflow
- Two common implementations
 - Fixed ventilation
 - Demand control ventilation

Controls Configuration for Ventilation

- Single speed fan
 - Min damper position
- Variable speed fan
 - Min damper position at low airflow
 - Min damper position at high airflow
- Demand control ventilation
 - Min damper position min CO2 & low airflow
 - Min damper position at max CO2 & high airflow

Setting Minimum Damper Positions

- Test and Balance Contractor
 - Iterative
 - Low velocity potentially inaccurate15% OD air = 61 fpm = 0.7mph

- Guess
 - 15% open = 15% outdoor
 - Function of damper design
 - Very inaccurate
 - Average error 46%
 - Max error 127%

Smart Airflow Concept

Ventilation

- Develop a low cost virtual ventilation airflow sensor
- Installer to configure system based on ventilation airflow
- Add economizer diagnostics

Supply Airflow

Same features, but out of scope

Lab Setup

Development Methodology

Supply Airflow

Poutdoor Damper DP

Damper Position

Wind

Inlet filter DP

Barometric Relief

Ventilation Airflow Rate

Damper Calibration Curve

Feedback Control Loop

- Control design challenges
 - Slow actuator: 30-90 seconds between closed to open
 - Actuator resolution: Typically 1-2%
 - Actuator life: Move actuator every 10 minutes

Solid Control Design = Good Fault Detection

- Properly handle "Edge Conditions"
 - Bad inputs
 - Out of range DP = Bad pressure sensor
 - No feedback signal = Bad cable or failed actuator
 - Controller output at limit
 - 100% open = Over ventilation
 - 0% open = Under ventilation
- FMEA on system
 - Pressure sensor tube falls off.
 - Actuator disconnects from damper

Damper Diagnostic Using Differential Pressure

Benefits of Control with Virtual Sensors

Customer

- Interact with systems in engineering units.
- Better performance
- Natural diagnostics

Company

- Better understanding of products
- Improved consistency of products

Questions?

Jon Douglas
Applied Research

Lennox Industries

jon.douglas@lennoxind.com

