Workshop on AFDD for RTUs Moving from R&D to Commercialization July 13, 2014

Introduction

Jim Braun Ray W. Herrick Laboratories Purdue University West Lafayette, IN 47907

Slide 1

Acknowledgement

This workshop was made possible by the Consortium for Building Energy Innovation (CBEI) sponsored by the Department of Energy.

Slide 2

Workshop Goals and Organization

- Moving RTU AFDD (<u>automated fault detection and</u> <u>diagnostics</u>) from R&D to Commercialization
 - □ Where are we?
 - □ How do we get there?
 - Workshop Organization
 - Diagnostic Technology Developments
 - Policy
 - Business Opportunities

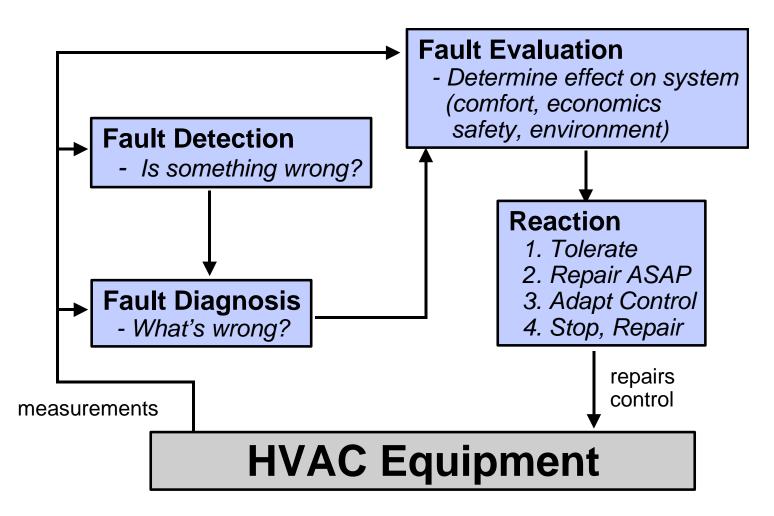
Workshop Participants

Participant Type	Number			
University/Government Researchers	13			
Industry Developers	9			
Utility & Policy	5			
Customers	4			

Introduction to FDD for RTUs

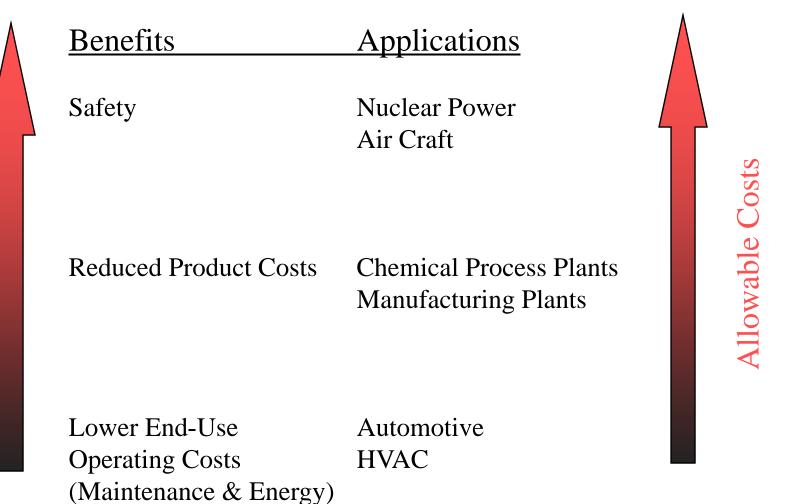
- □ What is AFDD?
- Importance of low cost implementations
- Why RTUs?
- Types of implementations
- Important faults
- Some R&D history
- AFDD Methods
- What R&D is still needed?
- How to accelerate commercialization?

AFDD

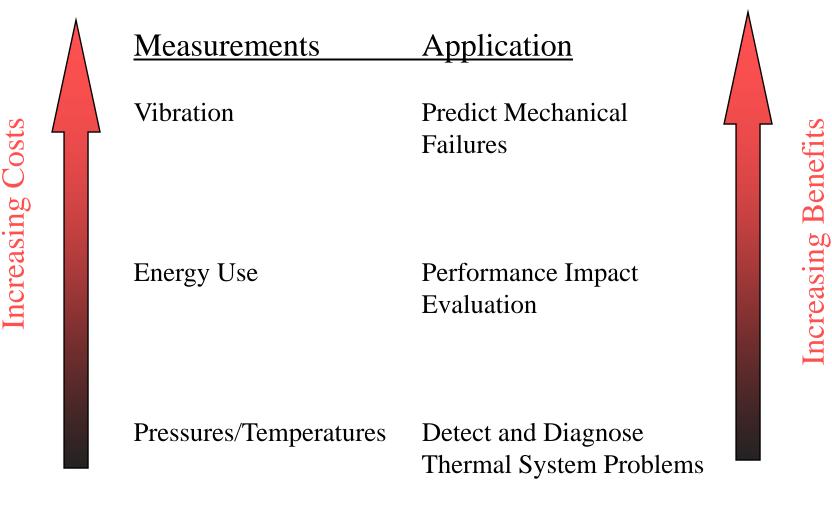

Definition

Identification of maintenance or repair needs using measurements and software intelligence

Potential Benefits


- Improved comfort and indoor air quality
- Reduced maintenance costs
- Reduced energy costs
- Longer equipment life

AFDD Process


The Need for Low Cost Solutions

Slide 8

Measurement Costs vs. Benefits

Decreasing Cost-to-Benefit Ratio

Lower hardware costs (sensors & micro-processors)


- Development of analytical approaches that utilize "virtual" sensors
- Emergence of "Information Technology" in the service business (scheduling, parts tracking, etc.)
- Consolidation of service and facility management companies

Why RTUs?

Significant part of the commercial building market

- Space conditioning for over 60% of the commercial floor space
- > over 50% of commercial cooling requirements
- Tend not be well maintained
 - highly distributed nature of installations
 - Not typically part of building control system

Types of AFDD Implementations

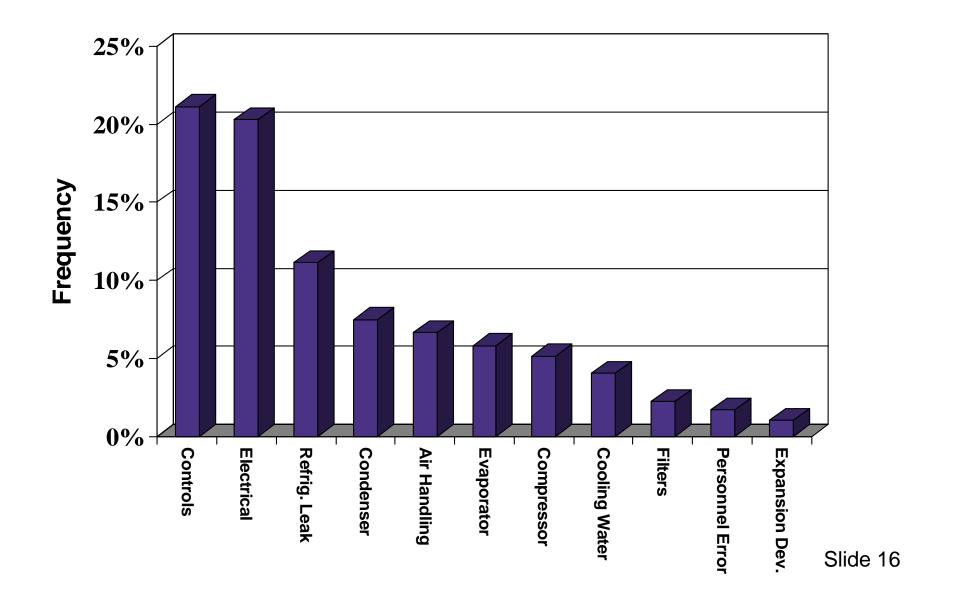
Hand Tools

- » used by service technicians during maintenance checks
- » costs spread over many systems
 - allows more expensive measurements
- » generic (e.g., rule-based) approaches
 - reduced diagnostic sensitivity

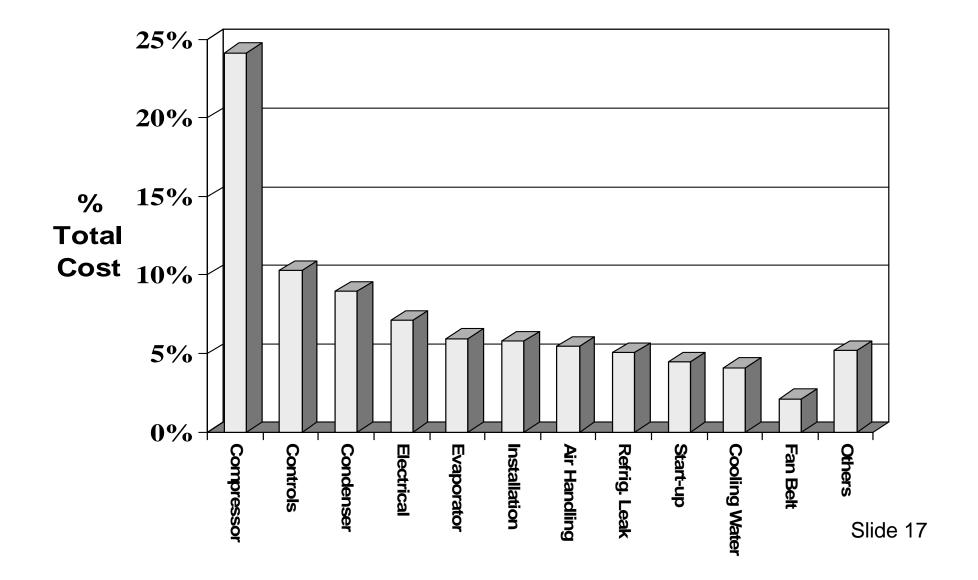
Integrated Diagnostics

- » additional sensors permanently mounted on unit
 - requires low-cost sensors
- » integrate diagnostics within unit controller or on a remote server (e.g., cloud-based solution)
- » enables equipment specific diagnostics
 - improved diagnostic sensitivity

Integrated Diagnostics


Important Faults

- Component failures
 - » controls
 - » economizer
 - »
- Degradation faults that lead to premature failures, loss of comfort, or excessive energy consumption
 - » refrigerant leakage
 - » evaporator air flow (e.g., fouled filter)
 - » condenser fouling
 - » liquid-line restriction
 - » compressor valve leakage
 - » non-condensable gas in refrigerant


Jacobs (2003) – Commercial AC

- □ 63% of economizers were malfunctioning.
- □ 46% had incorrect refrigerant charge.
- □ 39% had low airflow.
- There were numerous control related problems causing fans, heating and cooling to operate incorrectly.

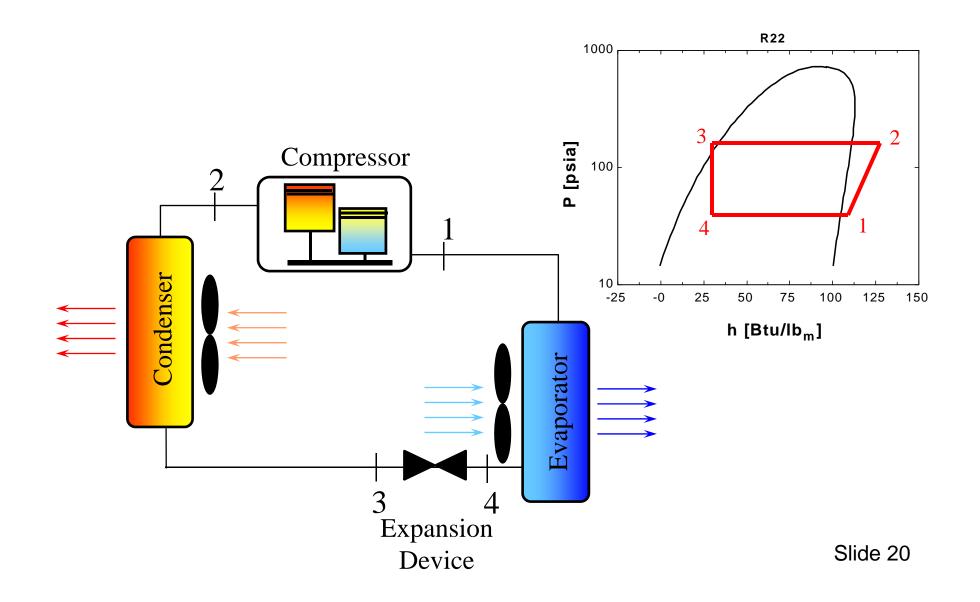
Breuker (1997) – Rooftop Unit Loss of AC

Breuker (1997) - Service Costs for Rooftops

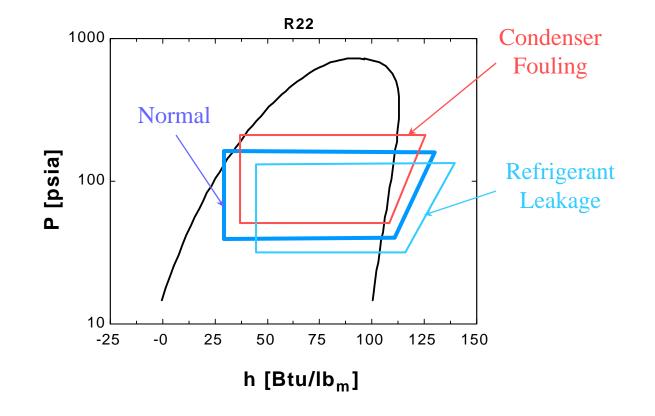
Causes of Early Compressor Failure

- 70% due to motor failures
- Motor failures often caused by thermal system faults
 - » Liquid floodback
 - loss of evaporator load
 - fouled evaporator or condenser coils
 - refrigerant overcharge
 - faulty thermal expansion valve (TXV)
 - » High compressor temperatures
 - low refrigerant charge (leakage)
 - liquid line restriction

Overview of Diagnostic Approaches


□ Thermodynamic Impact

- associate specific faults with changes in thermodynamic (e.g., temperature) measurements
- requires models for "expectations" under normal conditions
- does not handle multiple-simultaneous faults


Decoupling Features

- identify quantities that uniquely depend on individual faults (e.g., air flow)
- can handle multiple-simultaneous faults
- utilize "virtual sensors" to eliminate expensive measurement requirements (e.g., flow rates)

Thermodynamic Cycle

Themodynamic Impact

Example Diagnostic Rules

Fault	T _{evap}	T _{sh}	T _{cond}	T _{sc}	T _{hg}	ΔT_{ca}	ΔT_{ea}
Refrigerant Leak	\downarrow	\uparrow	\downarrow	\downarrow	\uparrow	\downarrow	\downarrow
Comp. Valve Leak	\uparrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Liquid Restriction	\downarrow	\uparrow	\downarrow	\uparrow	\uparrow	\downarrow	\downarrow
Condenser Fouling	\uparrow	\downarrow	\uparrow	\downarrow	\uparrow	\uparrow	\downarrow
Evaporator Fouling	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\uparrow

- T_{evap} evaporation temperature
- T_{sh} suction superheat

T_{sc}

 T_{hg}

 ΔT_{ca}

- T_{cond} condensing temperature
 - liquid line subcooling
 - hot gas temperature leaving compressor
 - condenser air temperature difference
- ΔT_{ea} evaporator air temperature difference

Refrigerant Cycle AFDD Research History

- □ McKellar (1987), Stallard (1989), Grimmelius et al. (1995)
 - Demonstrated the concept of using thermodynamic impact for fault detection
- Rossi (1995)
 - Presented overall AFDD process for HVAC applications: detection, diagnosis, impact, decision
 - Statistical, rule-based fault detection and diagnostic methods based on thermodynamic impact
 - Simple algorithm for optimal heat exchanger cleaning
- Breuker (1997)
 - Survey of common faults
 - Extensive evaluation of Rossi AFDD method

Refrigerant Cycle AFDD Research History

- Li (2004)
 - Decoupling AFDD method to enable robust handling of multiple-simultaneous faults
 - Development and validation of virtual sensors, including refrigerant charge
 - Development of simple metric for capturing economic penalty associated with faults
- □ Kim (2013)
 - Extension and validation of virtual sensors
 - Demonstration and evaluation of integrated AFDD based on virtual sensors

Economizer AFDD Research History

- Brambley et al. (1998), Katipamula et al. (1999), House (2001), Schein et al. (2003, 2005, 2006), Seem et al. (2009)
 - Rule-based AFDD approaches that primarily utilize thermodynamic fault impacts
 - > Use passive observations
- □ Fernandez et al. (2009)
 - Employs combination of passive & active testing approaches
- □ Wichman et al. (2007)
 - > Self-calibrating, virtual mixed-air temperature sensor
- □ Hjortland et al. (2013, 2014)
 - Statistical rule-based approach using passive/active testing
 - Simple metric for capturing energy impacts of faults

AFDD Performance Evaluation

- Economizer Diagnostic Performance Evaluation
 - Wichman (2007): approach based on combination of testing and modeling
- Refrigerant Cycle Diagnostics
 - Breuker (1997): Data-driven approach for evaluating and improving AFDD methods
 - Cheung (2014): Mechanistic models for simulating the effect of faults on thermodynamic states and overall performance; parameters trained using data from a number of systems
 - Yuill (2014): developing AFDD tool evaluator that employs database of normal and faulty performance generated using Cheung's models

What R&D is still needed?

- Evaluate/reduce implementation costs
 - Minimize any training requirements associated with engineering AFDD approaches for individual equipment models
 - Simplify algorithm implementations
- Application to new equipment
 - Micro-channel heat exchangers
 - Tandem compressors
 - Variable-speed equipment
- Decision support that considers tradeoffs between operating and service costs
- Overall performance metrics for evaluating AFDD performance

Where are we?

- Diagnostic "hand tools" have been available for several years
 - still need to understand how well they work
 - still not part of the main stream
- Some integrated diagnostic features are available as add-ons to existing equipment
- Some factory integrated diagnostics are appearing for high-end equipment and in response to CA Title 24 for economizers
 - factory integration can reduce costs and takes advantage of manufacturer specific information

What's holding back commercialization?

- Industry Perspective:
 - Making a business case?
 - Risk of exposing product deficiencies?
 - ▶
- Customer Perspective:
 - Does it work?
 - What are the benefits?
 - ▶

What's needed to accelerate commercialization?

- Incentives?
- Government requirements/mandates?
- Large customer requirements?
- □ AFDD performance standards?
- More tools for developers?