

RTU FDD System

York Predator 3 to 12.5 ton

Todd M. Rossi, Ph.D. rossi@fielddiagnostics.com 609/240-3656 (mobile)

Heating and Air Conditioning
TECHNICAL GUIDE
R-410A
ZH/ZJ/ZR SERIES
3 - 12-1/2 TON
60 Hertz

ZH/ZJ/ZR 3 THROUGH 10 TON

Objective and Scope

- Refrigeration cycle diagnostics
- Equipment Scope
 - Unitary package units
 - Simple small to medium size
 - York Predator line, 3 to 12.5 tons
 - Multistage, no circuit unloading
- Other diagnostics (e.g. economizer) are included, but supported by a separate imitative

Diagnostic Outcomes

- Numerous communication error scenarios
- Numerous sensor error scenarios
- Unit is off
- Detection of numerous non-physical sensor value combinations (e.g. LT<OAT)
- Extreme conditions beyond valid range for diagnostics
- Refrigeration cycle diagnostics

Refrigeration Cycle Faults

- High and low side heat transfer
 - High-side heat transfer problem
 - Low-side heat transfer problem
 - Reduce evaporator airflow
- Compressor efficiency and flow restrictions
 - Inefficient compressor
 - Insufficient refrigerant flow through the metering device
 - Excessive refrigerant flow through the metering device
- Refrigerant charge
 - Add charge
 - Recover charge
- Efficiency and capacity assessments
 - Low capacity
 - Low efficiency
- Safe and reasonable performance

Sensor data + Performance Metrics

- Driving conditions
 - Outdoor dry bulb temperature (OAT)
 - Return wet bulb or dry bulb/relative humidity (RWB, RAT/RRH)
- Performance dependent values
 - Suction pressure (SP)
 - Liquid or discharge pressure (LP, DP)
 - Suction temperature (ST)
 - Liquid temperature (LT)
- Calculated performance metrics
 - Superheat (SH)
 - Subcooling (SC)
 - Evaporating temperature (ET)
 - Condensing temperature over outdoor ambient temperature (COA)

UI and FDD Experience

- User interfaces
 - Networked BACnet interface
 - Standalone (non-networked) solution
- Testing included an automated test rig install in a typical unit and deployed in psychometric chambers. Testing included:
 - Different indoor and outdoor driving conditions
 - All single fault scenarios at multiple levels
 - Multiple simultaneous fault scenarios
- Initial release field scenarios
 - Example: Overcharge fault preceded by ultimate high pressure cut-off
- Product release expected before end of 2014

Next steps - Future

- Field Diagnostics is working with national accounts and utilities to integrate embedded FDD solutions into maintenance and service workflows
 - Figure out how the technology fits into a complete customer solution
 - Building closer to condition-based maintenance
 - Tackle workflow and business process changes
 - Prove the benefits / business case
 - Help structure applicable utility incentives to help drive adoption
- PG&E has an Emerging Technology (ET) program (via Field Diagnostics) to demonstrate the performance and benefits of integrated FDD in 15 units at 5 sites (nominal)

Field Diagnostics Perspective

- OEM based FDD solutions are driven by:
 - Competitive pressures
 - Regulation (e.g. Title 24)
 - Business opportunities
- Reasons #1 and #2 are the strongest drivers in the current early stage market
- The real money is in putting the systems in place to drive significant business opportunities and develop the market for this type of technology
- Field Diagnostics is integrating these types of OEM embedded diagnostic systems into its solution to help make a stronger connection to revenue sources:
 - End user facility customers
 - Electric utilities incentives for adoption and use