Abstract—For safety and security, surveillance cameras are widely deployed. A high percentage of the visual data, however, is never watched by humans or analyzed by computer programs. Moreover, it is common practice to erase the data after a short duration (say, two weeks) and reuse the storage space. As a result, the data are non-persistent. Non-persistent data presents serious security risks: the unwatched and unanalyzed data may include evidence of security breaches. After the data is erased, it is no longer possible to detect the breaches nor prosecute the suspects. This paper proposes a potential solution to remedy this situation by adding automatic data sampling to a programming language. If a piece of data is marked as non-persistent, the compiler and the run-time system automatically sample and store the data, hence making a small fraction of the data persistent. The samples would allow post-event analysis to detect security breaches that are not detected earlier. The samples, due to the much smaller sizes compared with the original non-persistent data, may be analyzed using more sophisticated computer programs that are unable to keep up with the speeds of data generation.

I. INTRODUCTION

Surveillance cameras (commonly called CCTV or close-circuit television) are widely deployed for safety and security. The visual data may be managed in one of the following ways: (1) For areas of high levels of security, dedicated personnel watch the visual data attentively in real-time. (2) The data is checked occasionally by people that have other job functions (such as receptionists). (3) The data is saved and watched by humans only if incidents (through other channels) are reported. (4) The data is not watched and not saved.

In many cases, the data is recorded and kept for short durations (such as two weeks) and the storage media are reused if no event is reported within this duration. The data is considered non-persistent data (NPD) because it is available for only short durations. Many other reasons can also make data non-persistent [1]; for example, analyzing the data may take too long and timely decisions must be made. Streaming data is more likely non-persistent if the data is not analyzed immediately while it is generated. Non-persistent data can have profound implications for security. If the data is not watched by humans or analyzed by computer programs, security breaches are not detected. If the data is erased, detecting security breaches and prosecuting suspects would be impossible. As the amounts of data (especially visual data) grow rapidly, it is expected that non-persistent data will be an increasingly serious problem. One report estimates that only 0.5% of data is ever analyzed [2].

Various solutions can remedy this situation. Some obvious solutions are (i) keeping the data and never erasing it; (ii) hiring enough staff to watch the data; (iii) adopting sophisticated computer programs to analyze the data in real-time. These solutions are too costly and impractical. Another solution relies on additional channels to report security breaches and then retrieves the recorded data to confirm the breaches and to serve as evidence. This is the commonly adopted solution. This solution has a major drawback: however, it assumes the existence and validity of the additional channels.

<table>
<thead>
<tr>
<th>Intruder</th>
<th>Detection</th>
<th>True Positive</th>
<th>False Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>True Positive</td>
<td>False Negative</td>
</tr>
<tr>
<td>No</td>
<td>False Positive</td>
<td>True Negative</td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 1. Four possible scenarios of intruder and detection.](image)

Consider a surveillance camera monitoring a restricted area and detecting unauthorized passage (i.e., an intruder). The data is analyzed by a computer program. There are four possible scenarios as shown in Figure 1.1.

1. **True Positive**: there is an intruder and the computer program detects the intruder.
2. **False Positive**: There is no intruder and the computer program detects an intruder.
3. **False Negative**: There is an intruder but the computer program fails to detect the intruder.
4. **True Negative**: there is no intruder and the computer program does not detect any intruder.

When the computer program detects an intruder, the program can store the data and make the data persistent. The main problem is that it is impossible to discover false negatives. There is no second chance to correct the mistake. This paper proposes a new option: creating a programming language and the accompanying run-time system that automatically sample a small portion of the non-persistent data and store the samples in non-volatile media. As a result, the samples become persistent and can be used to (probabilistically) discover...
false negatives. This paper extends our previous work [1] by providing a conceptual design and use cases.

II. RELATED WORK

The prior work can be divided into several categories: data processing languages, languages that operate over sampled data, languages that operate over uncertain or approximate data, and compressive sensing.

MapReduce [3] and Dryad [4] allow programmers to develop analysis pipelines consisting of multiple stages, each of which applies a different type of processing to data. MapReduce focuses on applications with two stages of processing: a map stage that applies a function to each element of an input data source, and a reduce stage that aggregates the results of the map stage. Dryad allows programmers to build more complex operator pipelines, in a dataflow-like manner. Both require programmers to write operations for each stage using low-level languages such as Java. To ease the challenge of writing programs in systems like MapReduce and Dryad, higher level programming languages are introduced to allow applications to express using high level, often SQL-like constructs which are ultimately compiled down into MapReduce or Dryad pipelines, or similar systems. Examples of such languages include Pig Latin [5], DryadLINQ [6], Sawzall [7] and GLADE [8]. Most of them focused on batch processing programs and not designed to process data streams (such as surveillance video). Languages like Hadoop-on-line [9], SPC [10] and Apache Storm [11] used MapReduce-like strategies to tackle streaming data. Even though these languages raised the level of abstraction, making it easier for domain experts to write analysis programs, none of them is designed to handle NPD.

Aqua [12], STRAT [13], and BlinkDB [14] support approximate queries, where an SQL-like query can be answered approximately, with some confidence. These languages target a restricted class of problems (database queries), and are not suited for more complex data analysis tasks. Moreover, they often rely on preprocessing a large, existing database; they are not designed to handle NPD or provide support for streaming or validation.

Hazy [15–17] is a data processing system, integrated with statistical processing methods. Many database systems have also developed approaches to handling uncertain data [18–20]. Even though these systems consider uncertainty in data, they do not report confidence level about false negative.

Compressive sensing [21, 22] is a data summarization technique, assuming that the data stream has a sparse representation under some basis. Compressive sensing takes random measurements, in the form of a sensing matrix. Compressive sensing is not designed to handle NPD because a random measurement has to be artificially applied to the data stream. Moreover, compressive sensing must find a basis in which the data stream has a sparse representation; this is generally difficult.

III. SAMPLING STRATEGIES

A desirable sampling strategy should have the following properties: (1) Sampling should be lightweight, adding only negligible load to the entire system. This is essential because a restricted area may have many surveillance cameras and heavy computation would be undesirable. (2) It should save only a small amount of data. (3) It should have a high chance of detecting false negative.

An obvious sampling strategy is regular downsampling. If the sampling period is n, this method saves one sample after skipping $n-1$ pieces of data. This method can be easily tuned by adjusting the value of n. Regular downsampling has the advantage of simplicity but suffers from the aliasing problem: If an event occurs periodically and the period happens to be n, there is a large $\frac{n-1}{n}$ probability that this event is never detected. Aliasing also occurs when the event’s period is a multiple of n.

One improvement over regular downsampling is uniform sampling. Instead of skipping exactly $n-1$ pieces of data, uniform sampling chooses an integer number x between 0 and $2(n-1)$ uniformly in every period. The method skips x pieces of data and saves the next item. By varying x, this method is able to avoid the aliasing problem mentioned earlier.

![Fig. 2. (a)-(c) Detect a red truck at three different intersections. (d) No red object is detected. (e)-(g) Recognize the bus numbers. (h) No bus is detected. Source: http://nyctmc.org/.](image-url)

The two methods mentioned above assume that every piece of data has the same importance. This is usually false, in particular in surveillance video. Surveillance video can usually be filtered by simple preprocessing to determine the likelihood of importance. Consider the two sets of examples in Figure 2. In the first set shown in Figure 2 (a)-(d), the goal is to detect the movement of a red truck and a simple program can first determine whether any red object appears in the video streams. If no red object appears, such as Figure 2 (d), this frame can be sampled with very low probability (discarded with high confidence). Conversely, after detecting a red object the frame will be sampled with a higher probability. For Figure 2 (e)-(g), the goal is to determine the numbers on the bus roofs. If no black numbers on a white vehicle top is detected, such as Figure 2 (h), this frame can similarly be sampled with very low probability.

The concept of importance sampling is illustrated in Figure 3. The data streams from many video cameras are analyzed on-site (at the cameras) using image processing programs. These computer programs can be fairly simple but may substantially reduce the data rates. In this figure, the importance of each stream is encoded by the darkness of the arrows: a more important stream is expressed as a darker arrow. After marked
by the importance, the data streams are sent to a sampling program that determines which parts of the data are to be saved in persistent storage.

This system architecture can be integrated with sampling: taking a sample of input data is merely another computational action that an agent can perform. Because computational configurations can change, this design allows sampling frequencies and types to change in response to events, and even for agents to direct other agents to change their sampling behaviors. Hence, for example, once an intruder is detected, the camera that detected the intruder can direct nearby agents to sample more frequently, to ensure that the moment that the intruder crosses into another camera’s field of view is saved.

V. Conclusion

The problem of non-persistent data plagues security settings, where the data that provide evidence of security concerns may be discarded, either because automatic systems do not identify the importance, or because of the costs of storing data. Mitigating this problem requires carefully saving small portions non-persistent data, choosing the data to be preserved for longer periods of time. Doing so requires consideration of many issues regarding importance, rates of preservation, etc. Other surveillance systems could have different factors deciding importance, make any manual process undesirable and error-prone. The proposed solution is well-designed programming language supports that can aid in this process: programmers can express applications that analyze incoming data, and a combination of compilers and runtime systems can automatically determine which portions of the data to preserve, both to retain signatures of events and to provide some confidence that false negatives are avoided.

Acknowledgment

The authors would like to thank Professor Tiark Rompf at Purdue University for the valuable suggestions.

References

[5] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins. Pig latin: A not-so-foreign language for data processing. In ACM SIGMOD

