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Abstract— Mobile robots usually carry limited energy
and have to accomplish their tasks before deadlines. Ex-
amples of these tasks include search and rescue, landmine
detection, and carpet cleaning. Many researchers have been
studying control, sensing, and coordination for these tasks.
However, one major problem has not been fully addressed:
the initial deployment of mobile robots. The deployment
problem considers the number of robots needed and their
initial locations. In this paper, we present a solution for the
deployment problem when robots have limited energy and
time to collectively accomplish coverage tasks. Simulation
results show that our method uses 26% fewer robots
comparing with two heuristics for covering the same size
of area.

I. INTRODUCTION

Mobile robots can be used in many applications, and
usually carry limited energy, such as batteries. Thus,
energy constraints limit the operational time of mobile
robots. Meanwhile, many tasks have timing constraints.
For example, search and rescue usually has to find sur-
vivors within 24 hours; otherwise, the chance of survival
diminishes quickly. Another example is to detect and
destroy landmines before troops arrive. Energy and time
can be conflicting constraints. For example, a vehicle
can travel at a high speed and reach the destination
earlier (meeting the timing constraint). However, fuel
efficiency (miles per gallon) can drop dramatically at
a high speed and the vehicle may run out of fuel
(failing the energy constraint). It is crucial to consider
both constraints together. Existing studies about mobile
robots focus mostly on enhancing individual robots’
capability, such as sensing, obstacle detection and avoid-
ance, localization, motion planning, or interactions with
human controllers. Few studies have been conducted for
deploying mobile robots to address two issues: (a) the
number of robots needed (i.e. “fleet size™) to search an
area and (b) the initial locations of these robots.

We can use survivor detection after an earthquake
to explain the deployment problem. Small robots can
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move under the rubble and find survivors. Each robot
is equipped with sensors to detect survivors. When
a survivor is found, the robot sends wireless signals
to inform rescuers. Before an earthquake, these robots
are stored in an emergency response center. After an
earthquake, the robots are transported by a carrier to
the earthquake site to help rescuers find survivors. The
deployment problem is affected by each robot’s energy
capacity, the deadline, and the moving speed. A desirable
deployment strategy should meet the following goals: (a)
It uses the minimum number of robots to cover a given
area; namely, it can cover the maximum area with the
same number of robots. (b) It can cover the area within
the energy and the timing constraints.

Our deployment approach considers the time spent in
unloading the robots from the carrier. This unloading
time accounts for the time to remove the robots from
the carrier, put them on the ground, and instruct the
robots to start moving. Because all robots have the same
deadline to finish the task, a robot that is unloaded latter
has shorter time before the deadline. After the robots
are unloaded, they disperse from the unloading location
and reach the individual regions where the robots are
responsible for searching. If more robots are unloaded
at the same location, some robots will waste much time
and energy to move from the unloading location to the
starting locations of their regions. We consider three
types of overhead during the deployment: unloading
time, dispersing time, and partially overlapped regions
(explained later in the paper). Our method is called
Space Partition Area Coverage Algorithm (SPACA).
Simulation results show that our method uses 26% fewer
of the robots to cover the same areas when it is compared
with two kinds of heuristics.

II. PREVIOUS WORK

Energy conservation is an important issue for mobile
robots. Meanwhile, many tasks have timing constraints.
Aylett [1] points out that energy constraints are the
most important challenge for mobile robots. Barili et al.



[3] control the velocities to save energy for a mobile
robot. Mei et al. [9] present an energy model for mobile
robots and discuss the energy properties of three motion
patterns: scanline, spiral and square spiral. Multiple
robots can cooperate to accomplish tasks, such as search
and rescue, carpet cleaning, and landmine detection.
Baltes et al. [2] show a flexible space partition method
for robot rescue. Das et al. [7] compare communication
schemes among mobile robots. Zhang et al. [13] use a
probabilistic method for searching landmines.

To use multiple robots efficiently, they have to be de-
ployed at the proper locations. Simmons et al. [12] study
the multi-robot coordination using robot deployment as
an example. Their paper focuses on the control and
coordination. Rybski et al. [11] use large “ranger” robots
to transport and deploy small “scout” robots. The rangers
can travel up to 20 kilometers, greatly extending the
search range of scouts. Chang et al. [5] study the energy
and time properties of different dispatching algorithms
for ant-like robot systems. The ant-like robots start from
a nest to explore unmapped terrains. Cloqueur et al. [6]
discuss the sensor deployment strategy. Considering both
the deployment cost and the sensor cost, they provide
a sequential deployment process; however, they do not
consider the timing constraints. An efficient deployment
can decrease the deployment overhead, thus reducing
the number of robots needed. Mei et al. [8] present a
probabilistic model to determine the number of robots
for serving random pickup-delivery requests with timing
and energy constraints.

III. PROBLEM DESCRIPTION

Deployment is a complex problem. For simplicity, we
make the following assumptions in this paper.

(a) All robots are the same; they have the same
amount of initial energy £. Each robot’s power
consumption is affected only by its speed. All the
robots have the same deadline; i.e., they have to
finish their jobs before the same time.

Each robot is equipped with sensors. The sensing
range is d from the robot’s center; d is called the
sensing distance. The sensed region is a square of
2d x 2d = 4d? from the robot’s center. The area
covered by one robot is the product of 2d and the
robot’s traveling distance.

The area to be covered is a two-dimensional region
without obstacles. The robots travel along scan-
lines to cover the area; the time and energy for
changing directions are not considered. A detailed
analysis of the energy consumption of scanlines is
presented in our previous study [9].

(b)

(©)
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(d) The carrier travels at a much higher speed than the
robots so the carrier’s traveling time is negligible.
This assumption is justified because the carrier can
be a truck, a helicopter, or even an aircraft driven
by a human rescuer. The time to unload n robots
at the same location is u(n) = ug + ¢ X n, where
c is a positive constant. The item ug is the time to
stop the carrier even if no robot is unloaded.

We consider only one carrier in this paper but our
method can be extend to multiple carriers. At time ¢ = 0,
the carrier starts moving to the first unloading site. The
area has to be covered before the deadline ¢ = 7. The
carrier unloads robots at & different locations. At the 3*"
location (1 < i < k), n; robots alge unloaded. The total

number of robots used is n = > n;. We organize the

i=1
robots into k groups. The robots that are unloaded at the
same location belong to the same group. Let 7; ; (1 <
1 <k,1 <35 <n;)be arobot that is unloaded at the ith
location. The area covered by this robot is denoted as
ng
a; ;. The area covered by the it" group is > a; ;. The
j=1
k n;
total area covered by all robots is A = Y > a; ;. The
i=1j=1
deployment problem is to find a solution that minimizes
the total number of robots, n, for covering a given area
of size A under the energy and timing constraints.

IV. DEPLOYMENT STRATEGY

This section describes our deployment strategy. We
first present robots’ power models and explain three
types of overhead during deployment. Our method cal-
culates the area covered by one group of robots; then it
determines the number of groups.

A. Mobile Robots’ Energy Models

We consider the robots” motion power only— the sum
of the power consumed by the motors. A DC motor’s
power consumption is primarily due to the output me-
chanical power and the armature loss [4]. We use p(v)
to represent the power consumption at speed v, within
the maximum speed v,,. The energy efficiency can be
defined as the distance traveled with one unit of energy,
and the energy efficiency at speed v is p(“; 3 Higher
efficiency means less energy for the same distance. We
use v, (0 < v, < v,) to represent the speed of the
highest efficiency: % > ﬁ, Vu,0 < v < vyp. In
this paper, we assume all the robots move at the optimal
speed v,. A detailed discussion of the effects of speed
and energy efficiency is available in our previous study

[9].




1 Df R
2d B ioi i
h P
2d A B L sci
(@) (b)
Fig. 1. (a) A scanline-covering route. (b) Three robots are unloaded

at A. The starting locations are A, B, and C. The segments AB and
AC represent the dispersing overhead. The second robot runs out of
energy and stops at E.

B. Overhead in Deployment

There are several ways to cover an area, as discussed
in our previous study [9]. This paper considers scanlines
only. Figure 1 (a) shows a scanline route of one robot.
The height is h; the distance between two adjacent lines
is 2d because the sensing distance is d from the robot’s
center. There are three types of overhead that increases
the number of robots needed to cover an area.

(a) The first type of overhead is the time spent for
unloading the robots.

The second type of overhead comes from the time
and the energy spent by each robot to reach its
starting location after being unloaded.

The third type of overhead occurs when a robot
cannot finish a scanline due to energy or timing
constraints or both. As a result, another robot
has to cover the rest of this line. We call this
fragmentation overhead because it is similar to
fragmentation of hard disks.

(b)

()

They are called unloading, dispersing, and fragmen-
tation overhead in the rest of this paper. These types of
overhead are related. Figure 1 (b) illustrates the second
and third types of overhead. Suppose three robots are
unloaded at location A. Their starting locations are A,
B, and C respectively. The first robot has zero dispersing
time. The second robot’s dispersing overhead is to travel
through AB; the third robot’s dispersing overhead is
the distance AC'. Suppose the second robot stops at E
when it exhausts energy after completing three scanlines,
shown in solid lines. The third robot has to cover CE;
otherwise, this area is not covered by any robot. To
simplify our analysis, each robot finishes only integer
numbers of scanlines. In other words, the second robot
stops at D because its remaining energy and time do not
allow the robot to finish another scanline.
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C. The Area Covered by One Group

Our method first considers the dispersing and frag-
mentation overhead of a single group. To reduce the
dispersing overhead, the robots’ starting locations should
be close to the unloading location. Since the robots travel
along scanlines and cover rectangles, our method covers
the four quadrants symmetrically in a two-dimensional
Cartesian coordinates centered from the unloading loca-
tion. Figure 2 shows an example of an area covered by a
group of 12 robots. In the figure, point A is the unloading
location of the whole group and the starting point of the
first four robots. The first four robots move in different
directions from point A to cover a1, as, ag, and ay. Point
B is the starting location of the 5" and 6" robots. Point
C is the starting location of next two robots— the 7t"
and the 8'". Because the 5" robot spends time traveling
across AB, its covered area cannot be larger than a1, i.e.
a1 > as. Because these four quadrants are symmetric,
we can obtain the relationship a; = as = a3 = a4 >
as = ag = a7 = ag > g = G190 = a11 = ai2. In the
rest of this paper, we consider the first quadrant only.

w
a12 agla, a, ag ag h
Q Q Q Q Q
E C A B D
aj|ay 2y Ay 868y

Fig. 2. The area is covered by a group of 12 robots. The areas
subscribed from 1 to 12 are the areas covered by these robots. The
areas are symmetric to the unloading location A.

Let w be the width of the area covered by one quarter
of the robots in the same group, as shown in Figure 2.
The total dispersing distance of the three robots covering
a1, as and ag is 0 + AB + AD ~ O—i—%—l—%“ = w.
We can extend this observation to more robots. If this
group contains 4 robots (¢ for each quadrant), the total
dispersing distance in one quadrant is approximately % +
21/—1)” + ..+ (d’:j)w = (1#721)“’. The average dispersing
@-—Dwi

2 9
the average fragmentation overhead for each robot is %
Using these two values of average overhead, our strategy
chooses values of w and h so that they are as close as
possible. The rationale is explained below.

All robots in the same group can travel the same
maximum distance because each has the same amount

distance for each robot is % Meanwhile,



of energy and time. Let this distance be [. The available
time before the deadline is 7. Suppose the robots travel
at speed v and consume power p. The traveling time of
a robot is at most % so the robot can operate at most
min(£, 7) and travel at most v x min(£, 7). This is the
value of [. Each robot can sense a region of 2d from
its center; hence, to cover the area wh the total traveled
distance of the whole group is 12”—h This area is reduced
due to the overhead so ¥l ~ %3 + (5 + %) Using
the Lagrange multiplier method to maximize the total
covered area, we can obtain the condition w = h. By
setting w = h, we obtain the relationship ¢l ~ % +h.
With the value of 1, we can determine the value of
h, i.e. the height of the scanlines. The area covered by
this group is 4wh (four quadrant). We will calculate the
number of robots in the group, 1/, in the next subsection.

D. Number of Groups and Group Sizes

To minimize the number of robots used is equivalent
to maximize the average area covered by each robot.
The area covered by the robots in each group can be
ordered by the coverage sizes. When more robots are
unloaded at the same location, the minimum size of this
group decreases for two reasons. First, it takes longer
to unload the whole group. Second, some robots need
to travel farther to reach their starting locations. Based
on these observations, our method adopts the following
rules to enlarge the average area covered by each robot:

(1) The minimum area covered by the robots in
each group should be close. Let a; ., and a; be the
minimum areas covered by the i*" and the j*" groups.
If a; ,, is much smaller than a; ,,; due to the dispersing
overhead, then we should use fewer robots in the i'"
group and more robots in the ;" group. By adjusting
the group sizes, we can enlarge the average area covered
by the robots in both groups.

(2) An earlier deployed group should have a group size
larger than or equal to those of latter deployed groups.
According to the first rule, they all have similar minimum
areas. However, later deployed groups have less time
before the deadline.

(3) For two deployments that satisfy the above two
rules and can cover the same assigned area, the one that
has a smaller size of the first group is better because it
makes the minimum area larger.

These three rules together determine the number of
groups and the sizes of groups of a deployment. The next
section presents our algorithm generating deployment
solutions that satisfy the above three rules.

E. Deployment Algorithm

2819

ROBOT-DEPLOYMENT(E, 7, A)
1 & «—&E 171, At — A
/* E: energy, T: deadline, A: total area to cover */
2 np«—1
3 npe—mn
4 17— 71 —u(np)
5 A+« A— GET-TOTAL-AREA(E, T, np)
6 min-area < GET-MINIMUM-AREA(E, T,np)
7 flag < 0 /* no solution yet */
8

while flag =0
9 do n < np /* nis the fleet size */
10 diff < oo /* initialization */

while A >0 and 7 >0

12 do for ¢ < 1 to mp /* select next group size */

13 do 7 — 7 —u(d)

14 temp < GET-MINIMUM-AREA(E, T, 1)

15 if i = 1 and temp < min-area

16 then 7 — —1, A+ 1

17 break

18 /* find the closest minimum area */

19 if | min-area — temp | < diff

20 then diff = | min-area — temp |

21 T

22 T — T+ u(i)

23 T—7—u(z)

24 A — A — GET-TOTAL-AREA(E, T, )

25 n—n+ax

26 Np < T

27 min-area < GET-MINIMUM-AREA(E, T, )

28 if 7 > 0 /* before the deadline */

29 then flag — 1

30 else n1 < n1 + 1 /* change first group size */

31 E—&E, 1711, A— Ay

32 np < N1

33 T — T —u(np)

34 A «— A — GET-TOTAL-AREA(E, T, np)

35 min-area < GET-MINIMUM-AREA(E, T,np)
/* adjust the size of last group */

36 n—n-—=zx

37 A« A+ GET-TOTAL-AREA(E, T, x)

38 771+ u(x)

39 forj«— 1ltox

40 do 7 — 7 —tu(j)

41 if A < GET-TOTAL-AREA(E, T, 5)

42 then n «— n+j

43 break

44 else 7 — 7+ u(y)

45 return n

Our algorithm sets the size of the first group, and then
determines the sizes of the other groups using a greedy
approach. Each group’s size depends on only the sizes of
the previous groups. The algorithm starts from a small
size of the first group then increases the size until a
solution is found. The size of the first group is initialized
to one. This corresponds to the third rule in the last
section. The outer while loop finds the size for the first
group until a solution is found.

The inner while loop assigns the sizes of the other

groups until either the area A has been covered or the
deadline has passed. The variable n,, keeps the size of the



latest assigned group. The minimum area covered by the
previous group, i.e. a,,,, is calculated, and it is recorded
by the variable min_area. According to rule (2), the
next group size is at most n,. In the for loop from line
12, the algorithm computes the minimum areas of the
next groups with sizes from 1 to n,, and selects the size
when the next group has the closest minimum area with
man_area. This is required by the first rule. The func-
tions GET-TOTAL-AREA and GET-MINIMUM-AREA
compute the total area and the minimum area covered
by one group of robots, respectively.

There are three possible cases that the algorithm may
leave the inner while loop. (a) The first case happens in
the first if statement inside the inner while loop. When
the next group size is 1 and the minimum area is less than
the previous minimum area, the first rule is impossible
to be fulfilled. Therefore, we assign a negative value to 7
to leave the inner while loop. (b) In the second case, the
time left 7 is non-positive, while the left area A is still
positive. This means the area has not been fully covered
but no time is left. (c) The third case happens when the
area is covered and there is still time. In cases (a) and
(b), the algorithm does not find a solution. It increases
n1 by 1, renews the parameters, and continues the outer
while loop. In the third case, a successful deployment
is found and the variable flag is set to leave the outer
while loop. Because the determination of the last group
size depends only on the comparison of minimum areas,
not the area left before unloading the last group, we may
use more robots than necessary to cover the whole area
in the last group. The last steps adjust the size based
on the area left for the last group. This algorithm will
report the situation when it is impossible to cover the
area under the constraints.

V. A CASE STUDY

A. Simulation Setup

A commercial robot called PPRK is used for our case
study. The robot is developed at Carnegie Mellon Uni-
versity [10]. It has three polyurethane omni-directional
wheels driven by three MS492MH DC servo motors.
The energy capacity is 20736J for four AA batteries
(1200 mAh and 1.2V). A data acquisition card is used to
measure the voltage and current to calculate the robot’s
power at different speeds [9]. The power model used
in this paper is p(v) = 48.31v? — 3.37v + 0.69. The
maximum speed is 0.16m/s, and the optimal speed is
0.12m/s with power consumption 0.98W. The unloading
time is u(n) = 600 + 2.5n seconds for n robots. The
sensing distance used is 0.8m.
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Fig. 3. Area covered by different number of robots with different
ratios of height and width

B. Area Covered by One Group

Figure 3 shows the size of the area covered by differ-
ent numbers of robots with different height-width ratios.
The robots have 6 hours before the deadline. When the
ratio is less than one, the covered area increases as the
ratio increases. This is because the dispersing overhead
dominates when the width is larger and the overhead
decreases as the ratio increases. Point A indicates the
area when h = 0.1w for 60 robots. Point B has h = w
and the covered area increased by more than 6%. When
the ratio of h and w exceeds one, the covered area
becomes unstable, sometimes increasing and sometimes
decreasing. The reason is that fragmentation overhead is
very sensitive to the value of h. The figure shows three
different group sizes. With 60 robots, an area larger than
B can be covered when h is 10w. However, the same
ratio h = 10w can cover a smaller area with 48 robots.
Hence, we choose h ~ w in our algorithm because this
provides stably large covered areas.

C. Simulation Results

We compare our method with two heuristics. The first
is equal-number deployment. This method unload equal
number of robots each time until the assigned area can be
covered. The number of robots in each group is decided
before the deployment. The second unloads all robots
at one location. We call this one-unloading method.
This method saves the unloading time but increases the
dispersing overhead.

Figures 4 and 5 have deadlines (7) four and eight
hours, respectively. For equal-number deployment, we
choose two different numbers, 4 and 10. In both figures,
our method requires the fewest robots to cover the areas.
To cover the same area, more robots are needed when
the deadline is earlier (Figure 4). In Figure 4, equal-
number (4) needs the most robots and it can cover at
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most 4.45x 10°m?2. The last group is deployed very close
to the deadline and no more groups can be deployed
before the deadline. Figure 5 allows a longer deadline
so unloading time is less important. Deployments with a
small group size can save dispersing and fragmentation
overhead, thus requiring fewer robots than the deploy-
ments with a large group size. Equal-number (4) needs
almost the same number of robots as our method, while
one-unloading needs the most robots. Table I shows the
details of the deployment generated by our method to
cover an area of 6.8 x 10°m? within 4 hours. This
deployment uses 328 robots. With the same conditions,
the one-unloading method has to use 416 robots, and
the average area per robot is 1634m?. Our method has
a higher average area than that of the one unloading
method, and saves more than 26% of the robots.

VI. CONCLUSION

This paper presents a method to deploy mobile robots
for covering an area with energy and timing constraints.
Our approach determines the number of robots in each
group and the number of groups. The principles in our
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Group number 1 2 3 4 5

Group size 120 84 64 52 8

Minimum area 1783 1808 1836 1876 1936

Average area 2214 2118 2008 1892 1936

Total area | 265680 | 177912 | 128512 | 98384 | 15488
TABLE I

DEPLOYMENT FOR COVERING 6.8 X 10°m2 WITHIN FOUR HOURS.

approach are making the width equal to the height in
each group and making the minimum area covered by
each group the same. We use a case study to demonstrate
the effectiveness of our method. For future work, we plan
to extend this research in two aspects: (1) considering
obstacles, and (2) including speed variations.
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