
AC 2010-1563: USING THE TETRIS GAME TO TEACH COMPUTING

Yung-Hsiang Lu, Purdue University
Yung-Hsiang Lu is an associate professor in the School of Electrical and Computer Engineering.
In 2008, he was one of the three recipients of Purdue "Class of 1922 Helping Student Learn
Award." In 2004, he obtained the National Science Foundation Career Award. He obtained the
Ph.D. degree from the Department of Electrical Engineering at Stanford University. This study is
supported in part by NSF CNS 0722212 "CPATH EAE: Extending a Bottom-Up Education
Model to Support Concurrency from the First Year." Any opinions, findings, and conclusions or
recommendations are those of the authors and do not necessarily reflect the view of the sponsor. 

Guangwei Zhu, Purdue
Guangwei Zhu received Bachelor's degree in Automation at Tsinghua University, Beijing. He is
currently a Ph.D. candidate and teaching assistant in Electrical and Computer Engineering at
Purdue University. He received Magoon's Award in Teaching Excellence in Spring 2009. His
research interests include control theory, applied mathematics and object orient design and
programming. 

Cheng-Kok Koh, Purdue University
Cheng-Kok Koh received the B.S. degree with first class honors and the M.S. degree, both in
computer science, from the National University of Singapore in 1992 and 1996, respectively. He
received the Ph. D. degree in computer science from University of California at Los Angeles in
1998. 

Currently, he is an Associate Professor of Electrical and Computer Engineering at Purdue
University, West Lafayette, Indiana. His research interests include physical design of VLSI
circuits and modeling and analysis of large-scale systems. 

Cheng-Kok Koh received the Lim Soo Peng Book Prize for Best Computer Science Student from
the National University of Singapore in 1990, and the Tan Kah Kee Foundation Postgraduate
Scholarship in 1993 and 1994. He received the GTE Fellowship and the Chorafas Foundation
Prize from the University of California at Los Angeles in 1995 and 1996, respectively. He
received the ACM Special Interest Group on Design Automation (SIGDA) Meritorious Service
Award in 1998, the Chicago Alumni Award from Purdue University in 1999, the National
Science Foundation CAREER Award in 2000, the ACM/SIGDA Distinguished Service Award in
2002, and the Semiconductor Research Corporation Inventor Recognition Award in 2005. 

© American Society for Engineering Education, 2010 





(a) (b) (c)

Figure 2: (a) Three pieces with different orientations; Tetris allows rotations so these pieces are the same.
(b) and (c) Two pairs of pieces that are mirrors but cannot be obtained by rotations; these four pieces are
considered unique in Tetris.

uses a computer game to help computer engineering students integrate many subjects learned in different
courses.

Tetris is one of the most popular computer games. Tetris has seven pieces, each with four squares. A
player rotates a piece or move it horizontally as it falls. When a horizontal line is completely filled by
squares, the line is eliminated. The player’s score increases as a new piece enters the Tetris window or when
a line is eliminated. Figure 1 is a snapshot of a Tetris game. A player’s goal is to maximize the number
of eliminated lines given a sequence of Tetris pieces. Tetris is a 2-dimensional packing problem and it is
NP-complete [8]. Many problems related to Tetris are also NP-complete, even for off-line games when the
sequences are known in advance [8]. It is computationally expensive to find the minimum height or the
maximum number of cleared rows. Some researchers consider Tetris as an optimization problem [9]. Some
educators use Tetris for teaching game development [10–15].

In the fall semester of 2009, we used Tetris as a semester-long project in a course of object-oriented
programming. This course teaches both Java and C++; the Qt library is used to create graphical user
interfaces for C++ programs. The students had taken at least two programming courses (C Programming and
Advanced C Programming) as prerequisites. Many students had taken or were taking discrete mathematics
and data structures. The project extends the original Tetris program by adding pieces of 5, 6, or 7 squares
per piece. The project requires students to:

• create programs with graphical user interfaces and handle user inputs.

• use timers and handle timer events.

• apply permutations and combinations to generate additional Tetris pieces.

• communicate with another program through the Internet using TCP sockets.

• develop intelligent strategies to rotate and horizontally move pieces.

The main purpose of adopting a popular computer game as a course project is to motivate students in
learning these concepts and skills.

The project is divided into four stages: (1) generating Tetris pieces, (2) developing single-player games,
(3) developing two-player games through networks, and (4) devising game strategies for competition. The
forty-six students were divided into fifteen teams of three or four people per team. They changed teammates
in different stages so that the students could interact with more classmates and learn different programming
styles. Students decide which language (C++ or Java) to use and they may change languages in different
stages. The detail of each stage is explained in the following sections.

2 Stage 1: Generating Pieces

In the first stage, students developed algorithms to generate the additional pieces of 5, 6, or 7 squares. There
are 280 different pieces with 4, 5, 6, or 7 squares per piece (excluding one 7-square piece that has a hole at

2



(a) (b) (c) (d) (e)

Figure 3: Five different Tetris pieces: (a) 5 squares, (b) 6 squares, (c)-(e) 7 squares. (c) and (d) are different
by shifting the bottom row.

the center). Tetris allows rotations; hence, the three pieces in Figure 2(a) are considered the same. Tetris
does not allow mirrors and the two pairs in Figures 2(b) and (c) count as four unique pieces. Figure 3 shows
five different pieces of 5, 6, or 7 squares. In this stage, students applied their knowledge about permutation
and combination to generate the new pieces. The students also applied linear algebra to rotate pieces and
detect duplicates.

The students used several different ways to generate the pieces. The most common approach starts with
a two-square piece and grows the piece by adding another square in six possible locations. These 3-square
pieces are then used to generate 4-square pieces by adding another square in different locations. This process
continues recursively until 7-square pieces are generated. This is a bottom-up approach.

Another approach adopts a top-down strategy by using integer partition. To generate 7-square pieces,
the value 7 is partitioned into the sums of positive integers; for example, 7 = 4 + 3 = 1 + 3 + 2 + 1 = 2 + 2
+ 3 are three different ways to partition 7. Each number in the partitions represents the number of squares
in a row. Figure 3(c) and (d) use the partition of 1 + 4 + 2 and Figure 3(e) uses the partition of 4 + 1 +
2. The rows are then shifted to produce different pieces. Figure 3(c) and (d) show two different pieces by
shifting the last row.

Another common algorithm uses a grid by selecting different and connected cells to fill. In this stage,
performance was not critical but students were advised not to use an algorithm that was “apparently ineffi-
cient.” An example of an inefficient algorithm is as follows. A piece has at most 7 squares and a 7 × 7 grid
can be used to indicate the locations of the squares. There are C49

7
ways to select 7 squares in this grid of 49

squares. Among the C49

7
≈ 8.6× 107 combinations, most are invalid because the squares are not connected.

Hence, this algorithm is inefficient.
Both the top-down and the bottom-up approaches of generating Tetris pieces produce duplicates. Dupli-

cates may occur for two reasons: (1) adding a square to two (k − 1)-square pieces at different locations may
produce identical k-square pieces, or (2) rotating some pieces may produce identical pieces. After the pieces
are generated, duplicates are eliminated. Most of the students used 2-dimensional arrays (i.e. matrices) to
represent the pieces. To detect duplicates, the students applied their knowledge in linear algebra by using
matrix transformations.

3 Stage 2: Developing One-Player Games

The second stage handles user inputs, rotates and moves the falling pieces, detects collisions, and eliminates
lines. This stage is designed to convey the concepts of object-oriented programming. Essential techniques
include class, encapsulation, inheritance, event handling, and file input/output. In order to compete in the
final stage, all teams had to agree on the original orientations of pieces. A file was provided to all teams and
the pieces were defined in the file. By reading this file, the students’ programs did not have to generate the
pieces when the programs started and could reduce the initialization time. Students learned the differences
between off-line computation and on-line computation. The internal representations of a piece could vary,
for example, using 2-dimensional arrays or adjacency matrices. Different representations required different
ways to handle rotations. The programs had to handle user inputs from keyboards and mouses. Moreover,

3



the keys could be reconfigured by players and the programs had to be flexible enough to redefine keys at
run-time.

Students encapsulated methods into corresponding classes and avoided static functions (similarly to
functions in C). For example, rotation should be a member method of the Tetris piece class because rotating
each piece produces a unique result. There are up to 280 different pieces and this makes it impractical
writing a “C-Style” function using more than 200 cases inside a switch block. For the students that had
no prior experience in object-oriented programming, the crucial concept is the combination of data and
operations by creating member functions. This stage has relatively few requirements for algorithm design.
Hence, students could focus on writing well-structured programs in the anticipation of the next two stages.
This stage provided important experience writing extensible programs that could be improved by adding
new features later.

4 Stage 3: Developing Two-Player Games

The third stage extends the project to consider two players. The two players may use different keys of the
same keyboard on the same computer. The players may also play through the Internet. This is the most
difficult stage due to the wide range of new concepts to learn. First, students changed their team partners
in each stage. Thus, in the third stage, each student had worked with two different groups of classmates.
Starting from the second stage, each team had to choose a code base among the team members’ code from the
previous stage and learn the pros and cons of different programming styles from their partners. Second, this
stage required many new features and students learned the importance of writing well-structured code that
could be easily extended. Third, the students learned how to use built-in classes for network communication.
Moreover, they had to organize their programs so that the algorithms for determining rotations and positions
could be improved in the fourth stage.

We provided a game server to which two game clients were connected. For simplicity, the clients and the
server were fully synchronized: each move or rotation command from the client received an acknowledgment
from the server. A client could send another command only after receiving the acknowledgment of the
previous command. The two players competed by sending eliminated lines to the bottoms of the opponents’
windows. Figure 4 shows an example. When a line is eliminated, the line is sent to the bottom of the
opponent, without the most recently filled squares. In this example, when the rotated T piece falls, two lines
are sent to the right side simultaneously. When these two lines are eliminated again by the right player, the
lines are completely removed so that squares do not accumulate. The programs had to keep track of the
sources of squares on the board: from a new piece or from the opponent. In a two-player game, speed is
also important. If a player can eliminate more lines and send them to the opponent, the former has a better
chance of winning. The students also learn how to make robust programs. One requirement of the third
stage is that a program must not crash (for example segmentation fault or exception). Run-time exceptions
had to be caught. Common problems include being unable to find the server, unexpected disconnection by
the server or by the opponent. Even though the server sends only messages allowed by the specification, the
other client may send unexpected messages. In the fourth stage competition, one team’s program crashed
when the opponent sent the team’s name in a format different from the specification. The first team should
have reported a wrong format from the opponent without an uncaught exception.

5 Stage 4: Devising Strategies for Competition

In the final stage, the students’ programs competed across the Internet using the game server. A program
had to pass a qualification by eliminating at least 200 lines in a sequence given in advance. The sequence
contained mostly 4-square pieces with occasional pieces of 5, 6, or 7 squares. Among the fifteen teams in the
class, ten teams passed qualification. The teams that passed the qualification competed against each other.
The last four teams entered the semifinals and the final competitions. Figure 5 shows the server’s view of
the competitions. An additional constraint was added in this stage. To prevent any player from sending an

4



(a)

⇒

(b)

Figure 4: When a line is eliminated, the line is sent to the bottom of the opponent’s window without the
most recently filled square or squares. In this example, two lines are eliminated when the rotated T piece
falls. The two lines are sent to the right player.

excessive amount of commands, the server enforced a 20-millisecond limit. If a command was sent within 20
milliseconds after another command, the later command was discarded. A common strategy for a human
player would try to minimize the following numbers (1) the maximum height, (2) the number of holes, and
(3) the variations of heights. Meanwhile, a player would try to maximize the number of lines eliminated.
One difficulty is determining the relative weights of these factors. We invited a professor whose reach area
specialized in artificial intelligence to explain game-playing strategies used in computers.

6 Evaluation

Judging from the students’ codes, documentations and course feedbacks, we found that through this four-
stage group programming assignment, many students demonstrated strong capability in writing network-
enabled programs, designing effective and efficient algorithms for artificial intelligence and team collaboration.

Some teams developed strategies beyond our expectation. In the final stage, winning teams must have
better strategies for both network communication and artificial intelligence. Timing is a crucial factor in
winning. For example, the champion developed an adaptive strategy to achieve a higher speed in dropping
pieces and sending eliminated lines to the opponent. The team measured the response time from the server
to determine how soon the next command could be sent. This approach is actually similar to TCP Tahoe, a
congestion control mechanism that is widely used in the Internet. Some groups developed computer players
that could horizontally slide falling pieces to fill overhang holes. Sliding moves are unavailable in most
existing Tetris programs; sliding is particularly difficult in a networked game. If the command is sent too
early, the command is ignored due to collision. If the command is sent too late, the falling piece has landed
and is no longer moveable. Several teams developed different algorithms and made them compete to select
the better algorithms. One team designed an algorithm with several tuning parameters whose values were
automatically improved through feedback using self competition. Meanwhile, some students improved their
algorithms by “trial-and-error” without systematic approaches. Some students were fluent in applying linear
algebra in rotations even though some others used unnecessarily complex algorithms due to the lack of
mathematical skills in matrix manipulations. Some students showed appreciation of the close relationships
between generating Tetris pieces and discrete mathematics.

Students’ feedback suggested that most students were strongly motivated to learn many different concepts
related to Tetris, from linear algebra to networking, from artificial intelligence to feedback tuning. They also
learned teamwork and team dynamics. The students wrote comments such as “The class was hard, but I
learned a lot.” “Good course. I learned a lot and enjoyed developing games.” “I wish I had taken this class
earlier on.” “This has been my favorite class and I have definitely learned the most.” “Most of my interview
questions have been supported by this class alone. I would recommend this class to any computer engineer
as I believe it is one of the most important.” Many teams created demonstration videos and posted them

5





[2] David L. Dill and Daniel Castro. The U.S. should ban paperless electronic voting machines. Commu-

nications of the ACM, 51(10):29–33, 2008.

[3] Jaikumar Vijayan. Will security concerns darken Google’s government cloud?
http://www.computerworld.com/, September 17 2009.

[4] IDG News Service. Fcc’s national broadband plan: What’s next?
http://news.idg.no/cw/art.cfm?id=64A5457F-1A64-67EA-E4A95D435AFC2864, March 16 2010.

[5] Committee on Prospering in the Global Economy of the 21st Century. Rising Above
the Gathering Storm: Energizing and Employing America for a Brighter Economic Future.
http://www.nap.edu/catalog.php?record id=11463, 2007.

[6] Elliot Soloway. How the Nintendo Generation Learns. Communications of the ACM, 34(9):23–ff., 1991.

[7] Kate Sanders and Lynda Thomas. Checklists for Grading Object-Oriented CS1 Programs: Concepts and
Misconceptions. In SIGCSE Conference on Innovation and Technology in Computer Science Education,
pages 166–170, 2007.

[8] Erik D. Demaine, Susan Hohenberger, and David Liben-Nowell. Tetris is Hard, Even to Approximate,
pages 351–363. Springer, 2003.

[9] Xingguo Chen, Hao Wang, Weiwei Wang, Yinghuan Shi, and Yang Gao. Apply ant colony optimization
to Tetris. In Annual Conference on Genetic and Evolutionary Computation, pages 1741–1742, 2009.

[10] Carolina Cabral, Juana Dehanov, José Miguel Salles Dias, and Rafael Bastos. Developing games with
Magic Playground: a gesture-based game engine. In ACM SIGCHI International Conference on Ad-

vances in computer entertainment technology, pages 361–362, 2005.

[11] Guillaume Chanel, Cyril Rebetez, Mireille Bétrancourt, and Thierry Pun. Boredom, Engagement and
Anxiety as Indicators for Adaptation to Difficulty in Games. In International Conference on Entertain-

ment and Media in the Ubiquitous Era, pages 13–17, 2008.

[12] Magy Seif El-Nasr and Brian K. Smith. Learning through Game modding. Computer Entertainment,
4(1):7, 2006.

[13] Jeff Sinclair, Philip Hingston, and Martin Masek. Considerations for the design of exergames. In
International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast

Asia, pages 289–295, 2007.

[14] Niklas Ravaja, Mikko Salminen, Jussi Holopainen, Timo Saari, Jari Laarni, and Aki Järvinen. Emotional
Response Patterns and Sense of Presence during Video Games: Potential Criterion Variables for Game
Design. In Nordic Conference on Human-Computer Interaction, pages 339–347, 2004.

[15] Mark C. Lewis and Berna Massingill. Graphical Game Development in CS2: a Flexible Infrastructure
for a Semester Long Project. In SIGCSE Technical Symposium on Computer Science Education, pages
505–509, 2006.

7


