
Memory Energy Management for an Enterprise
Decision Support System

Karthik Kumar
School of Electrical and

Computer Engineering

Purdue University

West Lafayette, IN 47907

kumar25@purdue.edu

Kshitij Doshi
Software Services Group

Intel Corporation

Chandler, AZ 85226

kshitij.a.doshi@intel.com

Martin Dimitrov
Software Services Group

Intel Corporation

Chandler, AZ 85226

martin.p.dimitrov@intel.com

Yung-Hsiang Lu
School of Electrical and

Computer Engineering

Purdue University

West Lafayette, IN 47907

yunglu@purdue.edu

Abstract—Energy efficiency is an important factor in designing
and configuring enterprise servers. In these servers, memory
may consume 40% of the total system power. Different memory
configurations (sizes, numbers of ranks, speeds, etc.) can have
significant impacts on the performance and energy consumption
of enterprise workloads. Many of these workloads, such as deci-
sion support systems (DSS), require large amounts of memory.
This paper investigates the potential to save energy by making
the memory configuration adaptive to workload behavior. We
present a case study on how memory configurations affect energy
consumption and performance for running DSS. We measure the
energy consumption and performance of a commercial enterprise
server, and develop a model to describe the conditions when
energy can be saved with acceptable performance degradation.
Using this model, we identify opportunities to save energy in
future enterprise servers.

I. INTRODUCTION

Energy efficiency of enterprise servers has become a major
concern in recent years due to increasing power and cooling
costs, and environmental impacts of data centers. These servers
must meet strict power, cooling, and thermal constraints. It has
become increasingly important to identify power-hungry com-
ponents in a server, and apply power management techniques
to these components. Figure 1 shows the power breakdown
in several servers. The processors and the memory are major
power consumers; in IBM’s Power7 server, memory consumes
46% power, more than the processors’ 41%. From Power6 to
Power7, memory power consumption increases (as a fraction
of the total power), but CPU power consumption decreases.
It has been projected that for future computing systems, with
more sockets and more memory per core, the memory sub-
system will be the single largest source of power dissipation
[1].

Power management for memory is less developed compared
with CPU power management. Existing low-power modes in
memory, such as power-down, still consume large amounts of
power. Deeper low-power modes like self refresh are hardly
visited due to long exit latencies [2]. It is more difficult
applying conventional power management techniques (slowing
down and shutting down idle or unused components) in
memory for the following reasons: (1) Memory references
have both temporal and spatial variations. If we want to
shut down a part of memory, we need to predict both when

and where memory may be referred to by an application
program. (2) When the CPU is slowed down by a certain

Fig. 1. (a) Power consumption breakdown for different servers from
IBM, Sun, and Google (reproduced from [3]). Memory consumes significant
amounts of power. (b) Increase in memory power consumption is observed
from IBM’S Power6 to Power7 architectures (reproduced from [4]). Memory
is the largest power consumer in IBM’s Power7, exceeding CPU power
consumption.

factor, it is easier to predict the impact of the slowdown on the
application’s performance. As a first-order approximation, if
a processor reduces its frequency by half, the execution time
doubles. Meanwhile, the power consumption is reduced to one
eighth. This predictability —how much the application may
slow down— is one main reason why dynamic voltage and
frequency scaling for CPUs is widely accepted. In contrast,
power management in memory does not have such predictable
properties and it is difficult to generalize performance and
energy of workloads with different memory configurations.

A program’s memory footprint refers to the amount of
memory referenced during the program’s execution. Enterprise
applications usually use large amounts of memory, and have
time- and space- varying footprints. In the past, performance
was the most, probably the only, important consideration for
enterprise applications. Hence enterprise servers have as much
memory as possible, subject to only budget and capacity con-
straints. The memory is configured with the minimum latency
and the highest bandwidth; this is achieved by powering all
available memory and is called the peak configuration in this
paper. However, in many run-time scenarios, the performance
degradation may be negligible when less memory or slower
memory is used. This is because enterprise applications, such
as databases, have highly advanced memory management,
and the ability to modify their query execution and caching
strategies based on the amount of memory available. Hence

978-1-61284-660-6/11/$26.00 © 2011 IEEE 277

there are scenarios where the application may provide energy-
proportional performance at more power-efficient memory
configurations than the peak configuration. However, few stud-
ies are available examining the power-performance tradeoffs
for different memory configurations on a commercial server.

This paper presents a case study of the relationships between
memory, performance, and energy consumption of a server
running a decision support system (DSS). We use a Nehalem-
EP 2-socket server (3 channels in each socket) with 16 Intel
Xeon 5500 processors, 48 GB of DDR3 SDRAM memory, and
Solid State Drives (SSDs) for storage. The 48GB of memory is
organized in 12 DIMMS of 4GB each. Each DIMM contains
2 ranks of memory. Table I shows details about the memory
and cache used. We use PostgreSQL [5], an open-source
database system, and the DBT-3 benchmark [6] with industry
standard DSS queries. We use hardware sampling tools to
obtain different memory references and read Model-Specific
Registers (MSRs) to obtain information about the memory
configuration. In this study, we vary the memory latency and
capacity, to identify opportunities for energy reduction with
acceptable performance impacts. Using the measurement re-
sults, we develop a model to describe the relationships among
these factors. Our model suggests that it is possible to save 10-
25% system energy by using adaptive memory configurations.
We also analyze the performance impacts of adapting the
memory configuration, such as reductions in bandwidth and
different mappings of physical addresses. We believe this is the
first study to quantitatively examine the power-performance
tradeoffs of a commercial enterprise application using different
memory configurations.

II. RELATED WORK AND CONTRIBUTIONS

A. Background

Memory is spatially organized into channels, ranks, banks,
rows and columns as shown in Figure 2. Each channel has a
memory controller, and the channels are populated with ranks,
typically of 2GB each. The rank is the smallest unit of power
management. This implies that if memory is to be transitioned
into a low power state, it can only be done at the rank level.
Within the rank, there are banks, rows, and columns.

When there is a last level cache miss (Figure 2), the physical
address is used to reference a specific channel, rank, bank, row,
and column in memory. A permutation of bits of the physical
address is used to determine which bits index the channel,
rank, bank, etc. Typically, the lower order bits of the physical
address are used to index the channel and rank. Successive
(temporally adjacent) memory references are more likely to
have variation in the lower order bits than the higher order bits.
Using the lower order bits to index channel and rank results
in more parallelism in memory references. This is because
each channel has a memory controller, and temporally adjacent
memory references are sent to different memory controllers
and different ranks. However, this parallelism also means that
a large amount of memory may be “touched” to reference a
single page in virtual memory.

Many studies have been conducted for dynamic voltage and
frequency scaling; however most studies focus on processors.
As mentioned earlier, memory power management is more
challenging. Bi et al. [7] propose delay hiding in energy

management for DRAM. They predict which ranks can be
transitioned into low power states for enterprise workloads.
Their approach is orthogonal to ours because we reduce the
memory footprint (and hence the total number of ranks that
are touched) of the application. Qureshi et al. [8] propose
phase change memories, an alternate memory technology to
alleviate DRAM power consumption. A study from Intel [9]
shows that most non-virtualized workloads operate at less than
peak memory capacity, and examines how this can save energy
for virtualization. Our paper motivates the need to adaptively
vary the capacity and frequency of memory for enterprise
workloads. Prior work has also addressed application level
variations; for example, Dhodapkar et al. [10] compare dif-
ferent techniques to detect program phases.

Prior work has addressed making virtual memory energy
efficient. Lebeck et al. [11] propose power aware page alloca-
tion; Huang et al. [12] propose power aware virtual memory.
Both highlight the importance of OS-level memory mapping.
They suggest mapping frequently used memory pages onto
“hot” ranks so that other ranks may remain in low power
modes. In practice, this is not adopted because most appli-
cations and operating systems do not support energy-efficient
memory mapping. However the principle of involving the
application in memory usage is still important. Our case study
is based on this principle, and goes beyond previous works
by quantifying the potential energy savings, and the power-
performance tradeoffs for adaptive memory provisioning using
a DSS application.

B. Contributions

This paper has the following contributions: (1) We quantify
the power and performance implications of applying memory
frequency scaling, and reducing the memory footprint of a
DSS application on an enterprise server. Previous studies use
simulation but we use physical measurements of performance
and power in our analysis. We also quantify the effects when
giving the application a smaller amount of memory. The
purpose of this paper goes beyond identifying that workloads
have drastically different reference patterns; rather, we use
our experiments to provide evidence for rethinking memory
design. (2) We provide a mathematical model to relate sys-
tem level energy efficiency with application performance and
memory power consumption. Our model quantifies how much
overhead is allowable, in order to transition memory to a
low-power configuration and still be energy efficient. (3) We
make the case for an energy-efficient memory design that
is adaptive to spatial and temporal variations in workload
behavior. Using hardware sampling of memory references, we
provide evidence that supports this claim.

III. POWER-PERFORMANCE TRADEOFFS FOR MEMORY

CONFIGURATIONS

A. Memory Configurations

The system setup has been explained in Section I. We
vary the memory configurations by changing the capacity
and the frequency of operation. Table II shows the different
configurations considered in this study. Mp is the peak config-
uration. There are three different capacity configurations (Mc1,
Mc2, Mc3) with lower capacities and two different frequency

278

(a) (b) (c)

Fig. 2. Spatial organization of memory into channels, ranks, banks, rows and columns. (a) When there is a last level cache miss, different bits from the
physical address are used to index the channel, rank, bank, row and column in memory. (b) Each channel has a memory controller, and contains DIMMs. A
dual ranked DIMM has 2 ranks. (c) Within the rank, the bank, row, and column ids are used to reference memory.

Memory Organization Cache Organization
Sockets 2 L1 Cache size 32KB

Channels/Socket 3 L2 Cache size 256KB
Ranks/Channel 4 L3 Cache size 8MB

Banks/Rank 8 L1 Associativity 8 way
Rows/Bank 16384 L2 Associativity 8 way

Columns/Row 2048 L3 Associativity 16 way

TABLE I
MEMORY AND CACHE ORGANIZATION OF THE SERVER

USED IN THIS STUDY.

Capacity Frequency
Mp 48GB 1066MHz
Mc1 36GB 1066MHz
Mc2 24GB 1066MHz
Mc3 12GB 1066MHz
Mf1 48GB 866MHz
Mcf2 24GB 866MHz

TABLE II
MEMORY CONFIGURATIONS USED IN

THIS STUDY.

Symbol Definition
PSp

total system power of Mp

PSα
total system power of Mα

PMp
memory power of Mp

PMα
memory power of Mα

P∆ power to transition from Mp to Mα

t∆ time to transition from Mp to Mα

tp application execution time with Mp

tα application execution time with Mα

TABLE III
SYMBOLS AND DEFINITIONS.

configurations (Mf1, Mcf2) at a lower frequency. The low
capacity configurations are obtained by restricting the amount
of memory that is available to applications. This may be done
by using the “mem” parameter in the Linux kernel, or by de-
populating the memory; we found no performance difference
between the two methods. The low frequency configuration is
obtained by throttling down Model-Specific Registers (MSRs).

We install PostgreSQL, a leading open source database
system [5]. For the Decision Support System, we use the DBT-
3 workload kit from the Open Source Database Labs (OSDL)
[6]. This workload is representative of the TPC-H workload
[13], a benchmark used to model database queries for business
or organizational decision-making activities. The database
files occupy around 80GB on the SSDs. We instrument the
motherboard to measure the power consumed by individual
DIMMs, and we measure the application performance. The
observations obtained from our measurements is presented in
the next section.

B. Experimental Data

In this section, we present our measurements of memory
power and application-level performance. The DBT-3 work-
load has 22 different sets of queries: we ran the queries
under the different memory configurations. Then, we picked
three sets of queries that appeared to be the most sensitive,
least sensitive, and moderate, to the memory configuration.
Section III-B1 describes the observations for the low frequency

configurations Mf1 and Mcf2, and Section III-B2 describes
the low capacity configurations Mc1, Mc2, and Mc3.

1) Varying Memory Frequency: Figures 3 (a), (b), and (c)
show the percentage performance degradation of Mf1 from
Mp and Mcf2 from Mc2. Some queries are not sensitive to
memory latencies. For example, Q2, Q3, Q5, Q18, Q13, Q17,
and Q22 have negligible performance degradations. Q16, Q9
and Q20 have performance degradations of less than 5%,
Q1 has a performance degradation of 10% at Mf1, but no
performance degradation at Mcf2. Q8 has a performance
degradation of ≈ 20% at both Mf1 and Mcf2.

2) Varying Memory Capacity: Figures 3 (d), (e), and (f)
show the percentage performance degradation of Mc1, Mc2,
and Mc3, all from Mp. There is no visible correlation between
the queries that are capacity sensitive, and the queries that
are frequency sensitive. The queries in (d) and (e) have low
to moderate performance degradations at reduced capacities,
and the queries in (f) have large performance degradation
at the reduced capacity. We also observed that the database
system changed the query plan for some queries when the
capacity was reduced. For example, Q2 used hash joins at
higher capacities, and nested loops at lower capacities.

3) Memory Power Measurements: We measure the power
consumption of the DIMMs; Figure 4 shows the memory
power consumption of Mp and Mf1. We find that an active
DIMM (4GB of memory) consumes approximately 4.6 Watts
of power at Mp. The average power is ≈ 10% less at Mf1,

279

(a) (b) (c)

(d) (e) (f)

Fig. 3. DBT-3 Queries performance degradations. A|B means the percentage performance degradation of A with respect to B. (a), (b), and (c) show the
performance degradation using slower memory. (d), (e), and (f) show the percentage performance degradation using smaller memory. (f) has a different scale
on the yaxis (0-100%).

with the average power per DIMM being 4.14 Watts. The
total power consumed by memory depends on the amount of
memory that is powered, and thus the total power of the other
configurations can be obtained by linear scaling.

Fig. 4. Rank power consumption for Mp and Mf1.

C. Quantitative Analysis

Sections III-B1 and III-B2 show the performance degra-
dation at different memory configurations; Section III-B3
shows the power consumption. This section presents a model
describing the conditions when it is energy-efficient, at the
system level, to adaptively change the memory configurations.
Table III shows some of the symbols used and their definitions.
The objective is to reduce system-level energy with negligible
performance degradation. The energy consumption running an
application for t seconds is ES = PS×t, where PS is the total
power. PS may be expressed as the sum of three components:
(1) PC , the average CPU power, (2) PM , the average memory
power, and (3) PO , the average power consumed by the

remaining components including solid state drives, fans, etc.
Thus we have

ES = (PC + PM + PO)× t (1)
The total system power can vary greatly depending on how

the CPUs and memory are utilized. Since we only alter the
memory configuration, we make an approximation that the
remaining system power is a constant. For this analysis, we
assume that the memory power is 40% of the total system
power, as suggested in [3], [4], [2]. Note that this fraction
could be greater or lower, depending on how the CPUs are
utilized by the application, and how aggressively unused CPUs
are moved into deep low power states.

Now we let the peak configuration of memory be Mp, and
a lower power configuration be Mα, (α can be c1, c2, c3, f1,
or cf2). We need to examine when it is energy efficient to
transition the memory from Mp to Mα. The execution times
of the application using the two memory configurations are tp
and tα. There may be an overhead in transitioning from Mp

to Mα; we use P∆ and t∆ to denote the system level power
and time for the transition overhead. The transition from Mp

to Mα is energy efficient if the following inequality holds

γE =
PSp

× tp

PSα
× tα + P∆ × t∆

> 1 (2)

Since we assume that memory consumes 40% of the total
system power (PMp

=0.4× PSp
), the remaining system power

is written as 0.6×PSp
. It is the same in the denominator since

we change only the memory configuration. Thus
(PMp

+ 0.6× PSp
)× tp

(PMα
+ 0.6× PSp

)× tα + P∆ × t∆
> 1 (3)

280

The ratio γT =
tp

tα + t∆
(4)

gives the performance degradation due to the transition and
typically we want this ratio to be bounded.

1) Reducing Memory Frequency (α=f1): The memory
controller can change the operating frequency by modifying
MSRs with very small overhead, and thus we assume that
t∆ ≈ 0 in equations (3) and (4). Section III-B3 showed that
PMf1

≈ 0.9× PMp
. Using this in equation (3), we obtain

(0.4× PSp
+ 0.6× PSp

)× tp

(0.9× 0.4× PSp
+ 0.6× PSp

)× tα
> 1 (5)

Simplifying equation (5) gives

γE =
tp

0.96× tα
(6)

as the system level energy savings. In other words, equation
(6) specifies how the application level performance ratio
impacts the system level energy efficiency. Figures 3 (a), (b)
and (c) show the percentage performance degradations when
Mf1 is used instead of Mp. As an example, Q17, Q3, Q22,
and Q18, tp ≈ tf1, and gives γE ≈ 1.042, corresponding to
system level energy savings of 4.2%. All the queries, except

Q1 and Q8 have
tp
tf1

≈ 0.98 to 1, and this corresponds to

system energy savings of 2 to 4%. For Q1 and Q8 however,
slowing the memory results in large performance drops. For

Q1,
tp
tα

= 0.9, resulting in an energy loss of 8%; Q8 has even
larger performance and energy losses.

This clearly shows that most queries do not require the
memory system to be operating at the peak frequency (with
lowest possible latency). The key observation is that in many
cases energy savings can be easily obtained (almost for free),
even though the savings are only 2% to 4%. To achieve the
savings, we can use a simple scheme to identify the queries
that are sensitive to the memory’s frequency by monitoring
application performance over smaller time intervals, and de-
livering feedback to the memory controller.

2) Reducing Memory Capacity (α=c1, c2 or c3): Reducing
the memory capacity from Mp to Mα scales the total power
by a fraction x=0.75, 0.5 and 0.25 for Mc1, Mc2, and Mc3

respectively. Using this in equation (2), and diving by PSp

gives

γE =
tp

(0.4× x+ 0.6)× tα + P∆

PSp
× t∆

(7)

Let’s consider Mc2, where x = 0.5. We now have

γE =
1

0.8× tc2
tp

+ P∆

PSp
×

t∆
tp

(8)

To make a conservative estimate, we assume that P∆ ≈ PSp
.

The value of γE now depends on the performance ratios
tc2
tp

and t∆
tp

. Figures 3 (d), (e), (f) show the percentage

performance degradations for the various queries. Q2, Q3,
Q5, Q13, and Q22 have tc2

tp
≤ 1.04. Substituting the upper

bound in equation (8) gives γ = 1

0.832+
t∆
tp

. The value of tp

can be several minutes; if we assume that the overhead in
reducing the capacity of memory is 5%, then the value of γ is
≈ 1.14%, corresponding to system energy reduction of at least

14%. Three queries: Q9, Q17, and Q20 suffer performance
degradations of 46%, 200% and 589% and cannot benefit from
the lowered capacity.

For Mc3, with x = 0.25, we have

γE =
1

0.7× tc3
tp

+ t∆
tp

(9)

Most of the queries in Figures 3 (d), (e), (f) have tc3
tp

≤

1.07. Assuming the same 5% overhead, we can obtain γ =
1/0.799 ≈ 1.25. This corresponds to platform energy savings
of 25%. If the overhead in making the transition is 10%, the
savings would be 15%. This is again a conservative estimate,
since 10% of the execution time of a query may be several
minutes, which is a large allowance for an overhead. In this
case, for Mc3, four queries: Q9, Q22, Q17, and Q20 suffer
large performance degradations and do not benefit from the
reduced capacity. Similar analysis can be performed for c1
(reducing capacity by 25%) and cf2 (reducing capacity by
50% and reducing frequency to 866MHz).

The analysis presented in this section shows that it is
possible to save up 15-25% system energy if the memory
configuration can be made adaptive to workload behavior.
Given the way existing memory systems operate, all 48GB
of memory need to be powered for all queries because

of the few queries that require larger amounts of memory.
This is because the pages containing the data are interleaved
across all memory ranks, and all 48GB of memory ranks
would be “touched” by the application, even if the total data
accessed may be much lesser than 48GB. The solution lies
in adaptively compacting memory references over subsets of
ranks. Enabling this involves several considerations. In the
next section, we discuss some of the considerations involved,
and present some motivating evidence.

IV. DISCUSSION

Our observations indicate that adaptively adjusting memory
configurations based on applications’ behavior may provide
significant energy savings. Adjusting frequencies is relatively
simple and the overhead is negligible. Changing capacities,
however, requires that the application change how it uses
memory. This is a more complex problem; a solution would
require the involvement of multiple layers across the software
stack, including database applications, the operating system,
and the chipset and memory controller. It would probably
involve adaptively mapping subsets of pages onto subsets of
ranks, as shown in Figure 5 (a), and possibly involve principles
from prior work on power-aware page mapping.

One consequence of power management using different
memory configurations is that the effective bandwidth avail-
able to the application is reduced. When some pages are
mapped onto a smaller set of ranks, successive references
could be mapped onto a smaller set of memory controllers
and ranks. This indicates a reduction in bandwidth. In the
remainder of this section, we present some analysis on the
performance of the DSS queries at a reduced bandwidth, and
on the spatial distribution of some sampled memory refer-
ences. Our analysis supports the hypothesis that the application
does not suffer substantial performance degradation when
the bandwidth is reduced, and shows that existing memory

281

(a) (b) (c)

Fig. 5. (a) Application-level, OS and chipset need to collaborate for compaction. Application would decide which sets of pages are important during
compaction, and deliver performance feedback to the lower layers for a memory configuration. The OS and chipset would decide when and how to alter the
memory configuration. (b) Reducing memory bandwidth from S1 to S2. It is observed that most of the queries do not incur much performance degradation
at the lower bandwidth, indicating that it may not be necessary to always interleave memory references as much as possible. (c) Rank-wise distribution of
memory references in a 0.5s interval: the x axis is sorted in the order of number of memory references. It is observed that there is a a skew in the distribution,
indicating that ranks are not referenced uniformly.

references already exhibit a skew in their spatial distribution
of references.

A. Reducing Memory Bandwidth

Setting Memory Read Memory Write
S1 37479 MB/s 36553 MB/s
S2 15089 MB/s 13531 MB/s

TABLE IV
MEMORY BANDWIDTH SETTINGS

We reduce the server’s memory bandwidth using MSRs, and
obtain two settings (S1 and S2). We use a tool that measures
the platform bandwidth with all prefetchers disabled, and find
that the two settings have the bandwidths shown in Table IV.
Figure 5 (b) shows the execution time of the queries, when
the system bandwidth is reduced from S1 to S2. It is observed
that most of the queries have very small drops in performance.
This indicates that in most cases, the application can sustain
its performance under lower bandwidths; this could enable less
interleaved, more power efficient memory configurations.

B. Memory Address Access Patterns

In this section, we examine the spatial distribution of the
memory references made by the application. We collect spatial
access patterns of the application using a hardware sampling
tool. The patterns correspond to the virtual addresses of the
application; examining these patterns provides an idea of how
memory is spatially referenced in a given time window. Figure
5 (c) shows the rank-wise distribution of memory references
in a time interval of 0.5 seconds. The rank-wise distribution is
constructed using the linear addresses, since a distinct linear
address typically corresponds to a distinct physical address.
We observe that there is a spatial skew towards a subset of
ranks. This skew in access distribution - of some ranks being
utilized a lot more than others - persisted for two different
address maps, and over different time intervals. This indicates
that the ranks are not utilized equally by the application, and
the under-utilization can be addressed by a compacting scheme
that uses fewer ranks and is more energy efficient.

V. CONCLUSION

This paper presents the power consumption in different
scenarios on an enterprise server running a database program
for decision support. The measured data suggest that there
is large potential for energy savings, if the application can
coordinate with the lower layers of the software stack, allowing
the memory configuration to be adaptive. Many enterprise
applications are already adaptive to the amount of available
memory. As energy efficiency becomes an increasingly im-
portant factor in future server design, we envision that future
software will incorporate power management into the design.

REFERENCES

[1] M. Tolentino, J. Turner, and K. Cameron, “Memory miser: Improving
main memory energy efficiency in servers,” IEEE Transactions on
Computers, pp. 336–350, 2008.

[2] Q. Deng, D. Meisner, L. Ramos, T. Wenisch, and R. Bianchini, “Mem-
Scale: Active Low-Power Modes for Main Memory,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2011.

[3] D. Meisner, B. Gold, and T. Wenisch, “PowerNap: eliminating server
idle power,” ACM SIGPLAN Notices, vol. 44, no. 3, pp. 205–216, 2009.

[4] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. Rubio, F. Rawson, and
J. Carter, “Architecting for power management: The IBM R© POWER7
approach,” in HPCA, 2010, pp. 1–11.

[5] http://www.postgresql.org/, “PostgreSQL.”
[6] http://osdldbt.sourceforge.net/, “Open Source Database Labs.”
[7] M. Bi, R. Duan, and C. Gniady, “Delay-Hiding energy management

mechanisms for DRAM,” in International Symposium on High Perfor-
mance Computer Architecture, 2010, pp. 1–10.

[8] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in International Symposium on Computer Architecture, 2009, pp. 24–33.

[9] S. Chahal and T. Glasgow, “Memory Sizing for Server Virtualization,”
in White Paper. Intel Corporation, 2007.

[10] A. Dhodapkar and J. Smith, “Comparing program phase detection tech-
niques,” in IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2003, pp. 217–227.

[11] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page
allocation,” ACM SIGOPS Operating Systems Review, vol. 34, no. 5,
pp. 105–116, 2000.

[12] H. Huang, P. Pillai, and K. Shin, “Design and Implementation of Power-
aware Virtual Memory,” in USENIX Annual Technical Conference, 2003,
pp.5–16.

[13] http://www.tpc.org, “Transaction Processing Council.”

282

