
Teaching Large-Scale Image Processing over
Worldwide Network Cameras

Wei-Tsung Su
Department of Computer Science and Information

Engineering
Aletheia University

New Taipei City, Taiwan
au4451@au.edu.tw

Kyle McNulty and Yung-Hsiang Lu
School of Electrical and Computer Engineering

Purdue University

West Lafayette, IN, USA
{mcnulty, yunglu}@purdue.edu

Abstract—This paper presents a software system for large-scale
image processing. Through this system, students may choose to
analyze the images from several thousand network cameras
deployed worldwide. This system allows both real-time analysis of
live data or storing the data for off-line analysis. This system
currently supports image processing using OpenCV-Python. The
system allocates cloud instances as the computational engine and, as
a result, allows users to analyze the images from many cameras
simultaneously. The system demonstrates the ability to process
5,000 images from 500 cameras for lane detection in less than 2
minutes.

Keywords—image processing; big data; DSP education; real-time

I. INTRODUCTION
Visual data has been growing rapidly in recent years. Cisco

estimates that in 2018, a million minutes of video will cross the
Internet every second [1]. It is common that a person has multiple
cameras, in the mobile phone, in the tablet, and in the laptop.
Users upload millions of images to social networks every day.
The large amounts of images from many sources make the
subject of image processing increasingly important. Many
students are interested in learning the technologies of image
processing. Commonly adopted approaches for teaching image
processing use archival data. Students implement the processing
algorithms in computer programs and execute the programs using
some images provided by the instructors or the students
themselves. It would be difficult if students want to analyze live
data.

Many organizations deploy network cameras and stream the
data to the Internet for anyone interested seeing. Figure 1 shows
two examples of images from network cameras. Some network
cameras provide video streams, while the others provide periodic
snapshots (once every few seconds to every few hours). Through
these cameras, students can observe many places in the world, for
example, near their hometowns or the destinations of their next
vacations. It would be educational if the students can analyze the
data from the sources of their interest. Students may feel more

motivated exploring new ideas if the data have personal
meanings.

 (a) (b)

Figure 1. Examples of cameras providing live data: (a) Yellowstone North
Entrance. (b) Decorah Eagle Cam.

Organizing and analyzing data from network cameras,
unfortunately, may be difficult. First, students have to find the
cameras that provide data interesting to them. This can be
achieved by searching the Internet. The result of these internet
searches is typically a large set of dissimilar cameras. As a result,
the student must be able to quickly sort and filter the cameras, to
then manually verify that each camera is actually relevant to their
interests. The next challenge is to
retrieve the data from the cameras.
Different brands of cameras may
adopt different protocols and
require different ways to retrieve
the data. Even though many
network cameras use HTTP, they
have different paths to retrieve
images using the GET commands.
Moreover, the cameras may
provide different data formats,
such as JPEG, MJPEG, or MP4.
Yet another challenge is to
manage computational resources
to execute analysis programs.
Image processing can be computationally intensive. If a student
chooses a dozen cameras and wants to analyze the data at a high
frame rate, it is likely that the student’s own computer will be

select cameras

create a configuration

upload a program

start (or schedule)
execution

Figure 2. Procedure to use
the proposed system.

-)))�-RXIVREXMSREP�'SRJIVIRGI�SR�(MKMXEP�7MKREP�4VSGIWWMRK�����

unable to meet the performance requirements. Due to these many
challenges, it is uncommon to ask students that are learning
image processing to analyze live data streams from the sources of
their interest. It is more common to give students image files.

We have been building a software system through which
students can analyze the live data from many cameras without
worrying about finding relevant image data or the underlying
complex distributed system. Figure 2 shows the procedure to use
this system. A student first selects the cameras of interest by their
geographical location. The student can also see a snapshot from
each camera to manually determine whether to choose this
camera. It is possible to select a group of cameras in the same
geographical region at once. It is also possible to select individual
cameras. The set of selected cameras is part of a configuration. A
configuration also includes additional information about the
intended analysis, such as the desired frame rate (e.g. one frame
every 10 seconds), the duration (e.g. two hours), and the starting
time (e.g. from 8AM on Wednesday). Then the student can write
a program (also called a module) that analyzes the live data and
then upload the program to the system. This system currently
supports Python because it is one of the most widely adopted
languages [2]. Moreover, the OpenCV library is built-in to
support image processing. The program must use the API
(application programming interface) provided by the system. This
API provides a uniform interface handling the data from
heterogeneous cameras. If the student already has a program for
analyzing data from files, only a few changes (mostly related to
input and output) are needed. The system already has a dozen
sample programs for students to learn how to use the API.
Finally, the student creates a submission to execute the program;
the student also has the option scheduling the execution for a later
time. The system handles resource management by allocating
cloud instances to execute the program. Multiple cloud instances
may be allocated to meet the performance requirements.

This paper has the following contributions: First, we present a
system that is designed to analyze images at large scales. Second,
we explain how to manage heterogeneous cameras and retrieve
data from these cameras. Third, we present several case studies
showing how this system may be used to analyze live data.
Fourth, this system already has alpha release to some users. More
fifty people have registered as users.

II. BACKGROUND
Many studies have been conducted analyzing video and

image. Kastrinaki et al. [3] write a survey paper about the
techniques for processing video from traffic cameras. Some
datasets are publicly available for example, ImageNet [4] and
AMOS [5]. These are archival data and do not provide live data.
Many organizations provide real-time data to the public. The
departments of transportation in many countries deploy traffic
cameras and make the data available. Some provide video
streams, and the others provide frequent snapshots. Many national
parks install network cameras in visitor centers. Many cameras
are deployed in the United Kingdom observing waterways [6].

The data can provide valuable information about our environment
but significant efforts are needed to use the data. Different
methods are needed to retrieve data from different sources. Some
cameras have web servers inside and have specific IP addresses.
Even though these cameras support HTTP, different paths are
needed to retrieve data from these heterogeneous cameras.

III. TEACGING LARGE-SCAKE IMAGE PROCESSING
In the proposed system, users can write and upload their

programs to process and analyze the live images from worldwide
network cameras. Moreover, cloud computing is utilized to
process a large volume of images in a parallel manner. Thus, we
believe that the proposed system is beneficial for teaching and
learning large-scale image processing due to the following
reasons.

1. The proposed system supports the OpenCV library, which
implements many algorithms for computer vision [7], such as
feature extraction, edge and motion detection. Moreover, the
OpenCV library has rich documentations (including sample
programs and the description of the underlying algorithms, as
well as citations of relevant publications) and large user
community. As a result, the learning curve of image
processing could be smoother.

2. Students can easily select a large set of live images from
worldwide network cameras. For testing the adaptability of
their analysis programs, students can select cameras which
provide images in different environments (such as indoor vs.
outdoor, daytime vs. night). Live images encourage students
to develop better programs that handle any unknown image
input, instead of programs that are tailored and designed for a
specific set of image inputs.

3. Students do not need to worry about interfacing with cloud
instances when their analysis programs process images from
hundreds of cameras. The proposed system will automatically
allocate cloud instances to execute the programs.

The system could help students learn developing application
of image processing in three phases described as follows.

A. Design Phase
Image processing is widely used in many applications in

recent years. Microsoft Kinect [8] demonstrates its wide
diversity of such applications. Unfortunately, the learning curve
of image processing is still too high.

For education purposes, the system allows students to learn
from a top-down approach: they may use OpenCV and treat the
same programs as black boxes first, with only tuning parameters.
As shown in Figure 3, students could quickly write a lane
detection program with Canny edge detection and Houge line
dedection algorithms without undersing the details. After gaining
some intuition, the students can then study the details of these
algorithms for better insight.

Original image Edge detection Lane detection

Figure 3. Using computer vision algorithms to analyze images from traffic
cameras.

B. Development Phase
A student can write a module to analyze images. The module

may have the following classes:
1. The FrameMetadata class allows the student to obtain the

information of a frame captured from cameras, such as date,
time, and camera ID.

2. The CameraMetata class allows the student to obtain the
information of a camera, such as latitude and longitude.

3. The Analyzer class allows the student to analyze the images
from many sources.
The student’s program needs to override in three methods:

1. The method initialize is called once at the beginning of the
execution. The student can initialize tuning parameters used
in the program.

2. The method on_new_frame will be called every time a new
frame is retrieved from the selected cameras. This event
handler is automatically triggered by the system. The image
processing will take place inside this method.

3. The method finalize is called once after all frames are
analyzed based on the configuration. The student can perform
the final calculation (such as summarizing the information
from all frames) and save results in files.

Figure 4. Web user interface for camera selection. (a) Select cameras by location,
time zone, Camera ID, and weather. (b) Select cameras by image.

C. Testing Phase
As shown in Figure 4, the system currently allows students to

select cameras by location, time zone, camera ID, weather, or by
image. A set of images with different characteristics may be used
to evaluate whether the student’s program can handle the
different environments (such weather and lighting). For example,
Figure 5 shows images from different cameras, a desired
program for lane detection should be able to handle these
images.

IV. CASE STUDY: LANE DETECTION
Edge detection is common in teaching image processing.

Students can apply the techniques in edge detection for detecting

lanes in these examples. One purpose of lane detection is to
determine whether any car spans two lanes and cause danger to
the other vehicles. In the design phase, a student could find many
examples for lane detection algorithm (LDA) in OpenCV [9, 10].
Some sample programs are available written in OpenCV-C# or
OpenCV-Python. After studying these resources, the student can
learn that LDA is composed of multiple steps, using Canny edge
detection, Hough line detection, and line filter. In this phase, the
student could also learn the effect of parameters of these
algorithms, as shown in Figure 6.

Only a few changes (mostly related to input and output) are
needed for migrating a program that processes archival data (i.e.,
files) to processing live data using the system’s API. The tuning
parameters of LDA are initialized in the initialize method. The
main body of is in the on_new_frame method for processing the
arrival of each frame from a camera. Finally, in the finalize
method, the program summarizes the results, such as calculating
the average from all frames. Figure 7 shows an example of an
analysis program. To test this program, a configuration is created
using 500 cameras in Arizona USA. One frame is captured and
processed every 10 seconds from each camera. This is the desired
frame rate. The actual frame rate can be lower due to network
delays. The system processes more than 5,000 images in less than
2 minutes. Moreover, as shown in Figure 8, the results can be
downloaded to evaluate wheatear LDA can handle the images
with different features.

Figure 5. Test images in different environments

(a) Results of Canny edge detection with using 10 (left) and 100 (right) as the
first threshold for the hysteresis procedure

(b) Results of Hough line detection with using 60 and 1 as the minimum length

Figure 6. Learning the effect of parameters of computer vision algorithms

class MyAnalyzer(Analyzer):
 def initialize(self):
 self.LaneCfg = {
 'canny' : {
 'threshold1' : 50,
 'threshold2' : 150,
 'apertureSize' : 3
 },
 'houghlinesp' : {
 'rho' : 1,
 'theta' : np.pi/180,
 'threshold' : 25,
 'minlinelength' : 60,
 'maxlinegap' : 10
 },
 'filter' : {
 'invtheta' : 180 / np.pi,
 'angle' : 10
 },
 . . .
 def on_new_frame(self):
 # Get the frame
 frame = self.get_frame()

 # Get frame metadata
 frameMD = self.get_frame_metadata()

 # Get the date/time of frame
 date_time =
 frameMD.datetime.strftime(
 '%Y-%m-%d_%H-%M-%S')

 # Get the camera id
 camera_id =
 frameMD.camera_metadata.camera_id

 cfg = self.LaneCfg

 # Main body of LDA algorithm begin
 gray =
 cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 # gaussian smooth
 gray = cv2.GaussianBlur(gray, (5,5), 3)

 # canny edge detection
 edge = cv2.Canny(
 gray,
 cfg['canny']['threshold1'],
 cfg['canny']['threshold2'],
 cfg['canny']['apertureSize']
)
 # Hough line detection
 lines = cv2.HoughLinesP(
 edge,
 cfg['houghlinesp']['rho'],
 cfg['houghlinesp']['theta'],
 cfg['houghlinesp']['threshold'],
 minLineLength =
 cfg['houghlinesp']['minlinelength'],
 maxLineGap =
 cfg['houghlinesp']['maxlinegap'])
 . . .
 def finalize(self):
 . . .

Figure 7. Sample Lane Detection Program using the System’s API

Figure 8. Results of LDA for handling images with different features

V. CONCLUSION
This paper presents a system which allows students to select

cameras for image processing. The system retrieves live data
from the selected cameras and students and experiment different
processing methods using built-in functions in OpenCV or
writing their own analysis modules. The system’s API greatly
simplifies the procedure for large-scale image analysis. This
system is open to instructors and students as alpha users.

REFERENCES
[1] Cisco Visual Networking Index: Forecast and Methodology, 2013–2018
[2] Stephen Cass. Top 10 programming languages. http://spectrum.ieee.org/

computing/software/top-10-programming-languages, Jul. 2014.
[3] V. Kastrinaki, M. Zervakis, , K. Kalaitzakis, A survey of video processing

techniques for traffic applications, Image and Vision Computing, Vol. 21,
No. 4, 1 April 2003, Pages 359–381

[4] http://www.image-net.org/
[5] http://amos.cse.wustl.edu/
[6] https://www.farsondigitalwatercams.com/
[7] http://openc v.org/
[8] Z. Zhang, Microsoft Kinect Sensot and its Effect, IEEE MultiMedia

Magazine, Vol. 19, No. 2, 27 April 2012, Pages 4-10
[9] Leran Computer Vision, Lane Detection with OpenCV and C#. Available:

http://www.learncomputervision.com/articles/programming/lane-detection-
with-opencv-and-c/

[10] https://github.com/funningboy/ca

