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Abstract— In recent years, the success of single-robot SLAM
has led to more multi-robot SLAM (MR-SLAM) research. A
team of robots with MR-SLAM can explore an environment
more efficiently and reliably; however, MR-SLAM also raises
many challenging problems, including map fusion, unknown
robot poses and scalability issues. The first two problems can be
considered as an optimization problem of finding a consistent
joint map based on robots’ relative poses and sensory data. This
optimization problem exhibits a similar property of a single-
robot topological/metric mapping. To exploit this property, we
propose a multi-robot SLAM (MR-SLAM) algorithm, which
builds a graph-like topological map with vertices representing
local metric maps and edges describing relative positions of
adjacent local maps. In this MR-SLAM algorithm, the map
fusion between two robots can be naturally done by adding an
edge that connects two topological maps, and the estimation of
relative robot pose is simply performed by optimizing this edge.
For the third scalable problem, the proposed algorithm is also
scalable to the number of robots and the size of an environment.
Computer simulations with a public data set and experimental
work on Pioneer 3-DX robots have been conducted to validate
the performance of the proposed MR-SLAM algorithm.

Index Terms— Mobile robotics, simultaneous localization and
mapping, multi-robot systems.

I. INTRODUCTION

When a robot is exploring an unknown environment, it
usually needs to obtain two important information – a map
of the environment and the robot’s location in the map. Since
mapping and localization are related to each other, these two
problems are usually considered as a single problem called
simultaneous localization and mapping (SLAM). Most of
SLAM studies focus on addressing challenging problems
associated with a single robot, including data association,
loop closure, and complex computations. To overcome these
difficulties, researchers have utilized various probabilistic
techniques [1] to solve the SLAM problem. With some
success of these techniques, it is natural to extend the SLAM
problem from a single-robot system to a multi-robot system.

Although it seems straightforward to implement a multi-
robot SLAM (MR-SLAM) algorithm from an existing
single-robot SLAM algorithm, several distinctive problems
between them must be addressed: 1) unknown relative
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robot poses, 2) map fusion, and 3) scalability issues in the
number of robots and the map size. To deal with these
problems, we first investigate a scalable single-robot SLAM
algorithm called topological/metric SLAM approach (TM-
SLAM), which has been realized in various single-robot
systems [2]–[4]. We then derive the Bayesian formulation
of the proposed algorithm, which shows that it divides a
large SLAM problem into smaller SLAM problems, each
with localization problems. The results show that the TM-
SLAM algorithm is indeed scalable in map size. To take
the advantage of scalability in MR-SLAM, we deploy the
TM-SLAM algorithm in each robot. In the proposed MR-
SLAM with TM-SLAM algorithm (MRTM-SLAM), the map
fusion becomes connecting appropriate topological maps.
The connection process is simply done by adding a link
between two topological places utilizing the observations
of relative robot poses. Hence, the MRTM-SLAM is also
scalable to the number of robots due to the simplicity of
map fusion.

To implement MRTM-SLAM, we propose an algorithm
that each robot builds a topological map along with lo-
cal metric maps. The local metric maps are fixed-sized,
occupancy-grid maps, which are constructed by a Rao-
Blackwellized particle filter. For the topological map, it is
a graph-like map consisting of vertices and edges. Each
vertex represents a topological place (i.e., a location visited
by the robot) and includes a local metric map. If a robot
is travelling between two vertices, an edge is inserted to
connect these two vertices. Meanwhile, the edges also store
transformation matrices and uncertainties to describe the
relationship between connected vertices.

This paper is organized as follows. In Section II, we
briefly review the related work of multi-robot SLAM and
topological/metric SLAM. In Section III, we shall briefly
introduce the probabilistic formulation of the SLAM prob-
lem, and then derive the Bayesian formulation of a single-
robot TM-SLAM and show that MR-SLAM has the similar
problem structure to TM-SLAM. In Section IV, we describe
the implementation of MRTM-SLAM. In Section V, experi-
mental results are presented and discussed, and conclusions
are summarized in Section VI.

II. RELATED WORK

The goal of a multi-robot SLAM algorithm is to build a
global joint map and localize the robots in the map. Simmons
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et al. proposed a multi-robot SLAM approach based on a
likelihood maximization to find maps that are maximally
consistent with the sensor data and odometry [5]. Thrun et
al. presented a multi-robot SLAM algorithm with sparse-
extended-information filters without the constraint of relative
initial positions [6]. Howard proposed a manifold map struc-
ture, and a maximum-likelihood algorithm was employed to
merge overlapped maps [7]. Howard also employed a multi-
robot SLAM with a Rao-Blackwellized particle filter [8]. Ko
et al. proposed a method to merge maps through an adaptive
particle filter [9]. The particle filter estimates the position of
a robot in the other robots’ partial maps.

To mimic the way how a human memorizes a map,
Kuipers proposed a graph-like map called topological map
[10]. However, a topological map lacks the details of an
environment. To solve these problems, a hybrid map was
proposed [11], and submap-based approaches can be consid-
ered a close approach to the hybrid SLAMs. They both have
detailed local maps, but the submap-based approaches do not
maintain a topological structure of an environment. Leonard
and Fender decoupled a SLAM problem, which discards the
topology of the environment, by dividing an environment
into equal-sized submaps [12]. A more appropriate submap
approach to our topological/metric algorithm is the relative
submaps approach proposed by Chong et. al [2], and was
improved by Williams with a constrained relative submap
filter (CRSF) [3]. Later, Bosse et al. proposed an Atlas
Framework for scalable single-robot mapping [4].

III. MULTI-ROBOT SLAM WITH TOPOLOGICAL/METRIC
MAPS

A. The SLAM problem

Consider the sets of robot locations Xk =
{x1, x2, . . . , xk}, motion commands Uk = {u1, u2, . . . , uk},
and observations Zk = {z1, z2, . . . , zk}, where k is the
discrete-time index, xk is the robot pose, uk is the
motion command, and zk is the observation, all at the
kth time instant. Given the motion commands Uk and the
observations Zk, the SLAM problem is to calculate the
distribution P (xk,M |Zk, Uk, x0), where M is the map.
The SLAM problem can be further derived as

P (xk,M |Zk, Uk, x0) = κ× P (zk|xk,M)× Λ (1)

where κ is a normalizing constant and

Λ =
∫

P (xk|xk−1, uk)×P (xk−1,M |Zk−1, Uk−1, x0)dxk−1.

If we assume all the variables are Gaussian distributed, we
can utilize a Kalman Filter (KF) or an Extended Kalman
Filter (EKF) to realize Eq. (1).

To show the computational burden in a KF/EKF, we
assume that M contains landmarks labeled l1, . . . , li, where i
is the landmark index. For simplicity, only the first four steps
are shown in Fig. 1(a), where the robot observes landmarks
l1 and l2 at x1 and so on. If we perform the marginalization
[13], then the Markov Random Field (MRF) becomes a
fully connected graph (i.e., a clique) as shown in Fig. 1(b).

Because each update operation needs to modify every vertex
and edge, the update time is O(n2), where n is the number
of landmarks.
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Fig. 1. (a) The MRF at first four time steps with four landmarks, l1, l2,
l3 and l4. (b) The MRF after performing marginalization.

B. Bayesian Formulation of Topological/Metric SLAM

One way to avoid a fully connected MRF is to reserve
all robot poses Xk. This approach keeps the original MRF
structure in Fig. 1(a). This approach is called GraphSLAM
[14] or smoothing SLAM [15] since it builds a map similar
to building a graph incrementally and smoothing the whole
robot trajectory. This results in changing the computational
dominator from the number of landmarks to the number of
recorded robot poses in the trajectory. Since a robot only
observes a limited number of landmarks at each pose, the
computation cost is O(np), where np is the number of stored
robot poses. In fact, one can consider that smoothing SLAM
and EKF-SLAM are two extreme SLAM algorithms. Their
efficiencies depend on the size of the environment (i.e., the
number of landmarks) or the run-time of the robot (i.e., the
number of stored robot poses).

The TM-SLAM is a method between EKF-SLAM and
smoothing SLAM. In a TM-SLAM algorithm, the SLAM
problem is divided into several limited-sized SLAM prob-
lems along with localizing topological places (i.e., some
selected robot poses). The limited-sized SLAM problem can
be handled by a traditional SLAM algorithm such as EKF-
SLAM or a particle-filter SLAM, and the localization of
topological places can be considered as smoothing some
selected robot poses in a robot trajectory. To show this
structure, let us denote Mi as a local metric map, where
i is the index, M = {M1,M2, . . . ,MN}, and N is the
number of local maps; φi denotes the topological place
of Mi. The topological map Φ is a set of topological
places Φ = {φ1, φ2, . . . , φN}. The sensory measurements
and commands are combined as Ψ = {Uk, Zk, x0}. We
also define X = {Xk} = {X̄1, ..., X̄i, ...X̄N} andΨ =
{Zk, Uk, x0} = {Ψ̄1, ...Ψ̄i, ..., Ψ̄N} where X̄i and Ψ̄i are
the corresponding trajectories and measurements when the
robot builds Mi. Now, we write the Bayesian formulation
of TM-SLAM as P (Xk,Φ,M |Ψ). If we factor out a local
metric map Mi, the topological places φi and the trajectory
X̄i, then we obtain

P (Mi, X̄i, φi|Ψ, M̂i, X̂i, Φ̂i)P (M̂i, X̂i, Φ̂i|Ψ) (2)

where X̂i = X\X̄i, Φ̂i = Φ\φi and M̂i = M\Mi. The
set operator “\” on X and X̄i is defined as X\X̄i = {x :
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x ∈ X and x /∈ X̄i}. The first term in Eq. (2) describes the
local metric SLAM and its topological place. Because φi

is determined by the relations to its adjacent maps, adjacent
topological places and sensory data Ψ̄i, we can further derive
this term by factorizing out φi as

P (Mi, X̄i, φi|Ψ, M̂i, X̂i, Φ̂i)
= P (Mi, X̄i|Ψ̄i, φi)P (φi|Ψ̄i,Φadj(Mi),Madj(Mi))

= P (Mi, X̄i|Ψ̄i, φi)
∏

α∈adj(Mi)

P (T{i,α}|φα,Mα, Ψ̄i)

(3)

where Madj(Mi) are the adjacent maps of Mi, {adj(Mi)}
is the index set of adjacent maps of Mi, where T{i,α} is
the transformation matrices between the coordinate frame i
and α. From Eq. (3), we observe that the local SLAM is
partitioned into two parts: a traditional SLAM problem and
a localization problem of localizing topological place in the
adjacent maps. Substituting Eq. (3) into Eq. (2), we obtain

P (X,Φ,M |Ψ)

=
N∏

i=1

P (Mi, X̄i|Ψ̄i, φi)︸ ︷︷ ︸
SLAM

P (φi|Ψ̄i,Φadj(Mi),Madj(Mi))︸ ︷︷ ︸
Localization

.
(4)

From Eq. (4), it is clear that a TM-SLAM is a combina-
tion of SLAMs and localization processes. The MRF of
topological/metric SLAM is shown in Fig. 2. The TM-
SLAM decouples the graph into smaller connected cliques
and chained by selected topological places.
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Fig. 2. The MRF of a single-robot TM-SLAM. A bold edge indicates
full connections. For example, φ1 is fully connected to every element in
M1 and therefore, {φ1, M1} forms a clique. The cliques are connected
to their adjacent cliques through transformation vertices such as T{1,2},
T{1,3} and T{2,3}.

C. Bayesian Formulation of Multi-Robot SLAM

In the TM-SLAM structure, a new edge is inserted when
a robot builds a new local map or re-visits an explored area.
For a multi-robot SLAM with topological/metric maps, a
new edge can also be created when robots meet with each
other. Therefore, when we derive the Bayesian formulation
of a multi-robot SLAM with topological/metric maps, we
shall focus on the relative pose estimation since it is the
major difference between a TM-SLAM and an MR-SLAM.
For a two-robot case, the probabilistic form of a general
multi-robot SLAM problem is

P (1M, 2M, 1Xk, 2Xk, {1,2}R|1Ψ, 2Ψ, {1,2}∆) (5)

where {1,2}R is the relative pose, the left superscript indi-
cates the robot index, and ∆ is a set of sensory measurements
of relative poses. By factoring out {1,2}R, we obtain

P ({1,2}R|1Ψ, 2Ψ, {1,2}∆, 1M, 2M, 1Xk, 2Xk)×
P (1M, 2M, 1Xk, 2Xk|1Ψ, 2Ψ, {1,2}∆).

(6)

The second term is factored into two independent SLAMs
as

P (1M, 1Xk|1Ψ, {1,2}∆)︸ ︷︷ ︸
SLAM for robot 1

P (2M, 2Xk|2Ψ, {1,2}∆)︸ ︷︷ ︸
SLAM for robot 2

. (7)

The first term in Eq. (6) represents the estimation of relative
pose. The relative pose, {1,2}R, can also be described by two
transformation matrices as {21R, 1

2R}, where 2
1R indicates a

coordinate frame 2 is expressed with respect to a coordinate
frame 1. For example, the pose of robot 2 expressed in
the coordinate frame of robot 2 is written as 2

2xk and is
transformed to the coordinate frame of robot 1 as

2
1xk = 2

1R
2
2xk.

We rewrite the relative pose estimation as

P (21R, 1
2R|1Ψ, 2Ψ, {1,2}∆, 1M, 2M, 1Xk, 2Xk)

≈ η′P (21R|2Ψ, 2∆, 2Xk, 1M)P (12R|1Ψ, 1∆, 1Xk, 2M).
(8)

P (21R|2Ψ, 2∆, 2Xk, 1M) can be further approximated by

η′′ P (21R|2Ψ, 1M)︸ ︷︷ ︸
Localization

P (21R|2∆, 2Xk)︸ ︷︷ ︸
Direct Sensing Model

(9)

where η′ and η′′ are normalizing constants. In this form,
we observe that the relative pose 2

1R is estimated from a
direct sensing model and a localization process. Comparing
with Eq. (4), a multi-robot SLAM is also a combination
of SLAMs and localization processes, but we have an extra
term from the direct sensing model. Therefore, if every robot
has a topological/metric map structure, the map fusion will
become extremely simple by connecting topological vertices
and adding an edge by Eqs. (8) and (9).

IV. IMPLEMENTATION OF THE MRTM-SLAM

A. Map Structure

The topological map is a graph-like map consisting of
vertices and edges. Each vertex represents a topological
location, which has been visited by a robot, and the vertex
also includes a metric map with its own coordinate frame.
If two vertices are connected by an edge, it means that a
robot can traverse between these two topological places.
Since each vertex has its own coordinate frame, a connecting
edge consists of two transformation matrices to describe
the relationship of these two connected vertices. Also, the
transformation matrix accompanies with a covariance matrix
representing the uncertainty of the transformation.

For local metric maps, we adopt the occupancy-grid map
representation that preserves the details of an environment.
The shape of a local map is a fixed-size square with width
4ds, where ds is the sensing range. When a robot creates
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a new metric map, the initial location of the robot is set to
the center of the square. When a robot moves in the square
with width 2ds in the local map, all sensing measurements
are preserved and processed. If the robot leaves the square
with width 2ds, we say that it leaves the current metric map
(vertex) and enters another metric map (vertex). To build
local metric maps, we utilize a Rao-Blackwellized particle
filter (RBPF) [16], which works well with the occupancy-
grid map representation [17].

B. The MRTM-SLAM Algorithm

Since we do not have a centralized structure, each robot
has to perform the MRTM-SLAM algorithm. The proposed
multi-robot SLAM algorithm is described below.
MRTM-SLAM Algorithm: For a robot with index i, given
sensory measurements iΨ and relative pose measurements
i∆, the MRTM-SLAM algorithm builds a topological map,
local metric maps and a jointed global map. The single-robot
TM-SLAM algorithm is described in Steps M3-M8. In Steps
M9-M11, the map fusion procedures are performed when
robot i meets with other robots. When there is no further
sensory measurements can be processed (i.e., the exploration
task is finished), an optimization process (Step M13) is
performed to retrieve a global map. All the variables in this
algorithm are associated with robot i except Steps M9-M11,
where the associated robot indices will be specified.

M1. [Initialization.] Create a new vertex V0. Set time index
k ← 0, where ← stands for “assign with.” Set current
map index number cv ← 0. Set number of vertices
Nv ← 1. Create and initialize a new local metric map
Mcv . Initialize current robot position to [0]T , where
superscript T indicates matrix transpose. Set new edge
flag FLnew ← true. Set the re-enter previous-map flag
FLre−enter ← false.

M2. [Data query.] Obtain sensory data Ψk and ∆k at time
k.

M3. [Build local metric map.] If FLre−enter = true,
generate a set of particles with variance Σini and set
FLre−enter ← false.
Given sensory measurements Ψk at time k, execute
RBPF-SLAM algorithm to build local metric map Mcv ,
and obtain current robot pose xcv

k and its variance Σcv
k ,

which is approximated by calculating the variance from
particles.

M4. [Determination of leaving current local map.] Check
if the robot stays in current local metric map.
IF current robot pose xcv

k remains in map Mcv and
inside the boundary 2ds, THEN go to Step M9.

M5. [Edge update.] If the edge Ecv,pv is not a first-time
created edge, the edge is updated through a covariance
intersection where the index pv is a vertex index that
the robot travels from Vpv to current vertex Vcv . The
edge update is performed when a robot is leaving Vcv

because the robot is well localized in Vcv and thus, it
is the best opportunity to update Ecv,pv .
IF FLnew = true, THEN go to Step M6, ELSE

perform a covariance intersection.

(Σcv,pv)−1 ← ω(Σcv
ini)

−1 + (1− ω)(Σcv,pv)−1

T pv
cv ← Σcv,pv[ω(Σcv

ini)
−1T pv,new

cv

+(1− ω)(Σcv,pv)−1T pv
cv ]

where T pv,new
cv is a new transformation matrix obtained

from the localized entering robot pose in Vcv and the
leaving robot pose in Vpv . Σcv

ini is the covariance matrix
of leaving robot pose with respect to the coordinate
frame of Vcv . For simplicity, we set ω to 0.5.

M6. [Determination of re-entering a built map.] The current
robot pose xcv

k is projected to all other vertices, and
then the projected poses are examined if they are in
any previous built maps. If there are more than one
projected poses that can describe current robot pose, we
will only select the best one. This procedure consists
of two processes: 1) find the projection pose for all
vertices, and 2) find the best projected robot pose if it
exists.
M6a. For each vertex Vn, n = 1, ..., Nv , perform
Dijkstra’s shortest path algorithm to find the short-
est path Ph(Vcv, Vn). Calculate the projection matrix
TPh(Vcv,Vn) by concatenating the transformation matri-
ces along Ph(Vcv, Vn). Calculate the projected robot
pose xn

k = TPh(Vcv,Vn) × xcv
k . Similarly, calculate the

Jacobian matrix JTPh(Vcv,Vn) of TPh(Vcv,Vn). Project
current robot pose’s uncertainty with respect to vertex
Vn’s coordinate frame as Σn

k = JTPh(Vcv,Vn) ×Σcv
k ×

[JTPh(Vcv,Vn)]T + ΣPh(Vcv,Vn), where ΣPh(Vcv,Vn) is
the accumulated uncertainty of transformation matrices
along the path. Set pv ← cv.
M6b. For each projected pose xn

k , n = 1, ..., Nv , if xn
k

is inside the local metric map Mn and within boundary
2ds, store xn

k in a candidate set Xcs.
IF Xcs is not empty, THEN select xVbv

k that det(Σbv) is
minimum in Xcs where bv is the index of the selected
vertex.
IF xVbv

k exists, THEN set FLre−enter ← true, set
Σini ← Σbv

k and set FLnew ← false.
IF xVbv

k exists and there is no edge between Vbv and
Vcv , THEN go to Step M8.
ELSE go to Step M9.

M7. [Vertex creation.] A new vertex is created when a robot
leaves current metric map and explores a new area.
The new vertex creation procedure consists of two
processes: 1) initialize a new vertex and a new local
metric map, and 2) insert an edge between Vcv and the
new created vertex.
M7a. Set Nv ← Nv + 1. Create a new vertex VNv

.
Create and initialize a new local metric map MNv

.
Initialize current robot position to [0]T .
M7b. Insert an edge Ecv,Nv between Vcv and VNv .
The transformation matrix on the edge is obtained from
T cv

Nv
← f(xcv

k , [0]) where f(·) is a function to obtain a
transformation matrix from a robot pose with respect to
two coordinate frames. Because the uncertainty of the
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transformation comes from xcv
k , the variance ΣNv,cv is

set to Σcv
k . Set current map index number cv ← Nv .

Set FLnew ← true. Go to Step M9.
M8. [Loop edge insertion.] When the robot enters a non-

adjacent vertex Vbv from Vcv , then a loop edge Ecv,bv

is inserted between Vcv and Vbv .
Set T cv

bv ← TPh(Vcv,Vbv). Set Σbv,cv ← Σbv
k . Set current

robot pose to xbv
k . Set cv ← bv. Set FLnew ← true.

M9. [Robot detection in vicinity .] IF i∆k is empty, THEN
go to Step M12, ELSE create a set RV containing all
robot indices in current vicinity, and go to Step M10.

M10. [Map exchanging process.] Exchange topological and
local metric maps with robots where indices are in
RV . The exchanged maps are the maps that have been
updated recently or have never been exchanged before.

M11. [Fusing edge insertion.] When a robot observes other
robots, a fusing edge is inserted between two ex-
changed topological maps. For all j ∈ RS, if vertex
iVcv and vertex jVcv is not connected, add an edge
Ejcv,icv . Set T

icv
jcv ← f(ixcv

k , jxcv
k ) and set Σjcv,icv ←

Σob where the covariance matrix Σob is obtained
from the sensing model. Note that this process only
applies the direct sensing model in Eq. (9), and finding
optimized transformation matrices (i.e., localization
process) is performed in Step M13.

M12. [Termination of on-line SLAM process.] While there
remains sensory data to be processed, go to Step M2
and set k ← k + 1; otherwise go to Step M13.

M13. [Final global-map retrieving procedure.] After the ex-
ploration task is done, retrieve an optimized topological
map and a global metric map. The global metric map
is fused from all local maps with respect to one
coordinate frame.
Set initial vertex V0 as the root and its coordinate frame
as the global coordinate frame. From V0, construct
a tree by using Dijkstra’s algorithm, which gives the
shortest path from the root to all vertices. Use this tree
as an initial solution of a global fused map.
In local metric maps, there are overlapped regions
between connected vertices; utilize these regions to
align adjacent metric maps and the transformation ma-
trices. This alignment is considered as an optimization
problem as follow

T̂ = arg max
T

∏
m,n

P (Mm,Mn, φn|φm, Tini)

= arg max
T

∑
m,n

L(Mm,Mn, φn|φm, Tini)

where m,n are vertex indices in the topological maps,
T is a set of all transformation matrices ∀T{m,n} ∈ T,
Tini is the initial transformation matrices extracted
from the tree, and L(·) is the log-probability form,
which is used in the occupancy-grid maps. The op-
timization process is an Expect Maximization method
described in [1]. Utilizing the optimized T̂, fuse all
metric maps in the global coordinate frame and obtain
a global metric map.

END MRTM-SLAM Algorithm.

V. EXPERIMENTAL RESULTS

Two experiments were conducted to verify the perfor-
mance of the proposed MRTM-SLAM algorithm. The first
experiment was performed by running data sets downloaded
from the Robotics Data Set Repository (Radish) [18], and
the second experiment was conducted on the first floor of
MSEE building at Purdue University. In these experiments,
Pioneer 3-DX robots equipped with a SICK LMS-200 laser
ranger were used. The effective sensing range is set to 10m,
and the size of a local metric map is 20m×20m. To identify
robots and estimate relative robot poses, a retro-reflective
tag was attached to every robot. The number of particles
in the RBPF is set to 40 for local metric-map building. In
all experiments, most of the on-line computation power is
used for local metric map building, which is performed by a
RBPF. Since the number of particles and the size of the map
are small, each RBPF iteration is about 4 times faster than
a RBPF with 200 particles that is usually used in RBPF-
based SLAMs. Moreover, the map fusion on a topological
map is also very efficient because adding an edge is an O(1)
operation.

The first experiment was a public data set of 45 minutes
runtime. The test environment was the Fort AP Hill. The
mapping result of robot 1 and robot 2 are shown in Fig.
3(a) and 3(b), respectively. The final fused map before global
optimization is shown in Fig. 4(a). The optimization process
is done off-line in MATLAB and took about 12 seconds,
and the optimized map is shown in Fig. 4(b). During the
fusion process, we have several vertices describing the same
areas. For example, vertex 6 in Fig. 3(a) and vertex 5 in Fig.
3(b) are two vertices representing the bottom-left room. Both
vertices contain high-quality local metric maps as shown in
Fig. 5. Hence, the map fusion process does not bring in too
much benefits in the overlapped areas. In fact, the major
advantage of the map fusion is in the non-overlapped area,
which is the bottom right of the map. In addition, the bottom-
right local-metric maps were improved and aligned after the
global optimization process. The second experiment were
performed with three robots. The final fused maps are shown
in Fig. 6. In these experiments, we coordinated the robots to
explore different areas, and the overlapped areas are limited.
Hence, we do not have different topologies of the same
area, and the topological maps are correctly representing the
topologies of the environment.

VI. CONCLUSIONS

In this paper, we have proposed a multi-robot SLAM
algorithm with topological/metric maps. With the proposed
algorithm, a team of robots can explore an environment and
build a consistent joint map. In addition, we have derived its
Bayesian formulation, which indicates that a SLAM problem
can be decoupled into several smaller SLAM problems along
with their localization problems. This decoupled structure
allows us to design a scalable multi-robot SLAM. The
proposed algorithm also has some minor limitations. Since
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Fig. 3. (a) The first robot mapping result. (b) The second robot mapping
result.
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Fig. 4. (a) The fused map before global optimization from robot 1 and
robot 2. (b) The map after global optimization.

we perform off-line optimization in topological maps, in a
large exploration task, the robots sometimes may need to
stop the exploration and perform optimization process before
they resume the exploration task. Thus, one of the important
future work is to develop an efficient algorithm for on-line
topological map optimization.
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