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Abstract-Simultaneous localization and map building 
(SLAM) h a fundamental and complex problem in mobile 
mbot research. In SLAM, Kalman-Filter-like implementa- 
tions are widely adopted lo localize B mobile robot and 
build a map simultaneously and incrementally. However, this 
approach requires extensive computations of order O(N*),  
where N is the total number of landmarks. To make the 
computations more manageable, we propose a logarithmic- 
map partitioning algorithm that partitions the global map 
into one local region and several sub-maps. The size of each 
sub-map is based on its distance from the mobile robot, and in 
each sub-map, a centmid landmark is selected lo represent all 
the landmarks in the sub-map for SLAM computations. With 
this logarithmic-map partitioning, it maintains correlation up- 
daw with each sub-map and provides an efRclent suboptimal 
solution to the SLAM problem. The number of landmarks 
reduces from N lo a logarithm-based function of N, and the 
computational requirement d u c e s  fmm O ( N 3 )  U) O ( N Z ) ,  
where NL is the number of local landmarks. Furthermore, 
utilizing the Compressed Exlended Kalman Filter, the real- 
time computational complexity reduces ta ~ ( N L ’ ) .  Computer 
simulation results showed that the proposed algorithm is 
consistent and efficient for a large number of landmarks. 

I. INTRODUCTION 
Simultaneous localization and map building (SLAM) [I] ,  

121, also refereed by many as the concurrent mapping and 
localization (CML) problem [3], [41, is a fundamental and 
complex problem in mobile robotics research. The goal of 
SLAM is to put a mobile robot in an unmapped terrain, and 
the mobile robot explores the terrain and conshucts a map 
without any priori map information. An efficient SLAM 
algorithm can make a mobile robot huly “autonomous:’ 
which is invaluable in many real-world applications such 
as search-and-rescue operations. planetary exploration, un- 
dersea operation, and air-borne robotics surveillance [5]- 
VI. 

The seminal SLAM paper was presented by Smith, el 
al. [I]. In their paper, the authors proposed a probabilistic 
procedure to build a stochastic map and localize the mobile 
robot in the map. Since then, the probabilistic techniques 
have been widely adopted to solve the SLAM problem. 
Generally speaking, these techniques are all based on 
Bayesian filters. They use previous sensory information 
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and motion command to estimate the best mobile robot 
pose (i.e., position and orientation) and build a map simul- 
taneously. If the noise model is Gaussian, Kalman Filter 
(KF) or Extended Kalman Filter (EKF) provides a recursive 
optimal solution for the SLAM problem [S]-[lOl. However, 
as the number of landmarks increases, KF and EKF require 
O ( N z )  computation time in each iteration. When N is 
large, it is almost impossible to update the map in real 
time. To overcome this problem, several approaches were 
developed [11]-[16]. 

In [ I  11, the authors divided the map into same-size local 
maps and applied the Compressed Extended Kalman Filter 
(CEKF) to achieve a computation time of O(N‘’) in the 
local map. The major problem of this approach is that it 
rcquires a full SLAM update when the mabilc robot moves 
from one local map to another, and it requires an update 
computation time of O ( N 2 ) .  By observing the correlation 
between landmarks, Sparse Extended Information Filter 
(SEW [I51 has O(1) performance thmugb representing 
maps in local, web-like maps and neglects distance corre- 
lation. In [13], an overlapping map method with fixed size 
sub-map is adopted to achieve 0(1) computation. However, 
it loses the correlation between two non-adjacent sub- 
maps and ignores some measurements, which can assist 
the convergence of sub-maps more quickly. In [121, the 
local submap is independent to each other and it uses a 
covariance matrix to represent the relationship between the 
local frames and the global frame. In their approach, the 
number of sub-maps is still proportional to the number of 
the landmarks, and the computational requirement is still 
O ( N Z )  from a global point of vicw. In [17], decoupled 
stochastic mapping (DSM), an 0(1) algorithm, divides the 
environment into multiple overlapping sub-maps, each with 
its own stochastic map hut only one activated sub-map is 
updated with the mobile robot. 

FastSLAM [IS] with O(log N) computational complex- 
ity successfully deals with the nonlinear SLAM problem. It 
divides SLAM into two subproblems, localization and map- 
ping, and solves them by using Rao Blackwellized particle 
filter and EKF, respectively. However, the computational 
complexity depends linearly on the number of particles, 
which scales with the environment size. 

From previous research, it has been shown that map 
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partitioning approaches were widely used and successfully 
applied to the SLAM problem. However, in many O(1) 
algorithms, the relations between two non-adjacent sub- 
maps are ignored or treated equally important in the same- 
size sub-maps. In this paper, we assume that data associ- 
ation is known and it can be solved by using techniques 
such as Joint Compatibility Testing [I91 or scan matching 
[ZO]. With this assumption, we investigate a new efficient 
SLAM algorithm based on logarithmic-map partitioning, 
which divides a global map into a local region and several 
sub-maps with different sizes. The size of each sub-map 
depends on its distance f" the mobile robot. In addi- 
tion, the proposed SLAM algorithm maintains acceptable 
covariance approximation between each sub-map. We then 
use the Compressed Extended Kalman Filter (CEKF) to 
compute the local map in O(NL*) and update the global 
map in O((Nr. + logN)'), where NL << N. Once the 
mobile robot moves from one local map to another, the pro- 
posed SLAM algorithm updates all the landmarks in each 
sub-map without running the full SLAM algorithm, and 
then partitions the global map again. Using the proposed 
logarithmic-map partitioning method, the computational 
requirement of constructing a whole global map reduces 
from O(N3) to O(N2). 

II. SLAM WITH EXTENDED KALMAN FILTER 
This section briefly describes the notations in EKF and 

the mobile robot model. The system state is defined as 
X ( k )  = [Xm(k) ,X1,X2 ,..., X, ,..., X,vIT, where k is 
the time index, X,(k)  = [z,(k),ym(k),6',(k)lT is the 
mobile robot position and orientation angle (i.e., pose) 
at time k,  and X ,  = ( ~ ~ , y $ ) ~ ,  i = 1 , .  . . , N, are the 
stationary landmark locations, and N is the number of 
landmarks. The system can be described as 

X ( k  + 1 )  = F ( X ( k ) ,  U @ ) )  + u ( k )  
Z ( k )  = X ( X ( k ) ) + w ( k )  (1) 

where F( . )  is a nonlinear function that generates the 
next state of the system from the current state and robot 
command U ( k ) ,  u ( k )  is the system noise, X(.) is a 
nonlinear observation function, w(k)  is the measurement 
noise, and Z(k) is the measurement of landmarks from 
the mobile robot. In the EKF approach, both v(k )  and 
w(k)  are independent Gaussian noises with zero mean and 
covariance matrices QF and QH. respectively. 

As shown in Fig. 1. the command of the mobile robot 
consists of velocity V ( k )  and steering angle ~ ( k ) .  

= [V(k )>  P(k)IT (2) 

From the kinematics shown in Fig. 1, X,(k) is expressed 
as: 

X,,,(k) = 1 V ( k )  x At x cos(6',(k - 1)) + z,(k - 1 )  
V ( k )  x At x sin(O,(k - 1)) + y,(k - 1) [ x tan(y(k)) + ~ , ( k  - 1) 

Observation function H ( . )  generates the observation of 
the landmarks from the current mobile robot pose and 
decomposes it into H ( X ( k ) )  = [HI,. . . , H i , .  . . , HNIT. 

Y t  

Fig. 1. The Linematics of h mobile mbt. 

If there is an observation of landmark X, at system state 
X(k + l), then Hi is expressed as 

Nexr we apply the EKF algorithm to th is  system. ?ivo 
stages are included in the EKF algorithm: prediction stage 
and update stage. In the prediction stage, EKF predicts 
system state X ( k + l l k )  andcovariance matrix P ( k + l l k )  
from the previous system state X(klk)  and covariance 
matrix P(klk): 

X ( k +  Ilk) = F ( X ( k l k ) , U ( k ) )  
P ( k +  I l k )  = J d k ) P ( k l k ) [ J ~ ( k ) l ~  + Q F ( ~ )  (4) 

where J F ( ~ )  is the Jacobian matrix of F with respect 
to X ( k ) .  In the update stage, EKF updates the previous 
prediction (in Eq. (4)) using the current observation, the 
Kalman innovation matrix S and the Kalman gain matrix 
w 

S ( k +  1) = J H ( ~ +  l ) P ( k + l ( k ) [ J . q ( k + l ) l T  
+QH(k+1) 

W ( k + 1 )  = P ( k + l l k ) [ J H ( k +  l)ITIS(k+l)]-'  
X ( k + l I k + l )  = X ( k + I ~ k ) + W ( k + 1 ) ( Z ( k + l )  

-H(X(k+  Ilk)) 
P ( k  t Ilk + 1) P(k + Ilk) - W ( k +  1)S(k + 1) x 

[W(k  + UT ( 5 )  

= 

where J H ( ~ )  is the Jacobian matrix of H with respect 
to.X(k). Since the landmarks are stationary, the Jacobian 
matrix Jp(k)  can he decomposed into 

where JF- is the partitioned Jacobian matrix relating to the 
mobile robot pose, 0 and I are appropriate x r o  matrix and 
identity matrix, respectively. If the mobile robot observes 
landmark X, ,  the Jacobian matrix of this observation is 
Jxi and can be computed as following: 



where Ax,,  Ay,, and Ai are, respectively, defined as: 

A z ~  = ~ , - x i , A y ,  = ym-y i ;A;  = J(Az i )*  + (Ay,)*.  
(8) 

Fig. 2. PartiUoning a local region and b e  global region from the map. 
"he gay area k the effective sensor raoge of tbe mobile mht.  "he local 
region is deflned ar the recta0Sul.w area hounded by the bold h e .  7be 
global region is outside the local e&. 

111. SLAM WITH LOGARITHMIC-MAP PARTITIONING 

The objective of map partitioning is to partition a large 
map into several more manageable sub-maps. Once the 
global map is properly partitioned, it can reduce the 
number of landmarks that needs to be computed in the 
EKF. Hence, the computation of the EKF will be reduced 
to an acceptable order. The concept of logarithmic-map 
partitioning is inspired from the observations in SEIF and 
DSM. In SEIF and DSM, they have shown that the updates 
for landmarks surrounding the mobile robot are necessary 
while the updates for distant landmarks can be ignored. 
However. in a map with uniformly distributed landmarks, 
it is difficult to determine a reasonable boundary between 
the surrounding and distant landmarks. From this p i n t  of 
view, the proposed logarithmic-map partitioning provides 
an efficient scheme in determining the different sizes of 
sub-maps. 

The performance of the proposed logarithmic-map parti- 
tioning depends on three major issues: (1) Partitioning the 
terrain into global and local regions, (2) centroid-landmark 
representation in each sub-map, and (3) determining the 
size of each sub-map. 

A. Panirioning Map info Global and Local Regions 

In the logarithmic-map pdtioning, the first step is 
to divide the terrain into a local region and a global 
region. The landmarks in the local region have strong 
correlations to each other and they cannot be ignored in 
EKF computations. Thus, the estimated locations of the 
landmarks in the local region will he predicted and updated 
by the EKF in realtime. The landmarks in the global region 
are less correlated to the landmarks in the local region, and 
they can be updated less frequent. 

As shown in Fig. 2, a local region is defined as the 
rectangular area bounded by the boldline. The area outside 
the local region is the global region. Inside the lccal region, 
the gray area is the effective sensor range of the mobile 
robot when it is at the center of the area. This local-region 
partition will be updated when the mobile mbot moves 
outside of the local region. 

With this local-global-region partitioning, landmarks 
computed in EKF can be considered as consisting of two 
different sets, one in the local region, X', and the other 
in the global region, XG.  

Their corresponding covariance matrix P(klk)  is defined 

where the covariance matrix, PLL, indicates the correla- 
tions between the mobile robot and local region landmarks. 

From Section II, the prediction stage of the partitioned 
covariance matrix can he expressed as: 

P L L ( ~ +  Ilk) = JF,, ,(~+ ~ P L L ( ~ I ~ ) [ J F , , , ( ~ +  111' 
+ Q F , ( ~  + 1 )  

P L G ( ~ +  Ilk) = [ P ~ d k + I l k ) I ~  
= JF,,.(~ + 1 ) & d k / k )  

pGG(k+ I l k )  = PGG(klk) 

The innovation matrix S;(k + 1) and the Kalman gain 
matrix W(k + 1) of this observation are, respectively, 

S , ( k + 1 )  = K H < ( ~ + ~ ) P L L ( ~ +  ~ I k ) [ K H ( ( k + l ) i ~  
+ Q H . ( ~  + 1) 

where K H ,  ( k )  is defined in Eq. (7). The covariance P(k+ 
l lk+l )  can be derived from the Kalman gain matrix W(k+ 
1 ) s  

P ( k + I l k + l ) = P ( k + l l k ) - A P ( k + l )  (10) 

where AP(k  + 1 )  is 

A P ( k + l )  = W ( k + 1 ) S ( k + 1 ) [ W ( k + I ) j r  

1 A P L L ( ~ +  1 )  A P ~ c ( k + l )  = I  A P G L ( ~ + ~ )  A P G G ( ~ + ~ )  

A P L L ( ~ +  I) = P L L ( ~  + llk)$(k+ ~ ) P L L ( ~  + Ilk) 
AP&k + 1) P G L ( ~  + l lk)d(k + ~ ) P L G ( ~  + I lk )  
A P L G ( ~ + ~ )  = [ A P c ~ ( k + l ) j '  

= P ~ ~ ( k + l l k ) d ( k + l ) P ~ ~ ( k + l / k )  

= 

?lr(k + 1 )  = [KH.(k)lTISt(k + l) l- 'KH,(k) 

From the above equations, the correlations between the 
global landmarks and the local landmarks are determined 
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by PLc(klk). By applying CEKF, the computational re- 
quirement in the local region is bounded by ~ ( N L ' ) .  
When the mobile robot leaves the local region, Pcc(klk) 
and P,,c(klk) are updated by running. the full SLAM 
algorithm. To overcome the full SLAM computational 
burden, only one landmark (i.e., a centroid landmark) is 
selected to represent all the landmarks in a sub-map in 
the global region. In the next subsection, the effect of the 
centroid-landmark representation is analyzed. 

B. Analysis of Centroid-landmark Representation 

Since the number of landmarks dominates the computa- 
tional requirement in the EKF algorithm, an inNitive way 
is to reduce the number of landmarks in the global region 
since they are less correlated to the landmarks in the local 
region. An effective way is to select one representative 
landmark (i.e., a centroid landmark) to represent all the 
landmarks in each partitioned sub-map in the global region. 

Assume that there are two neighboring landmarks Xcl 
and XGZ. which are in the same sub-map. The coordinate 
difference between X G ~  and XCI is 6X: that is, 

XGZ = XGI + 6X, where SX = [6z, 6ylT. 

The covariance matrices P ~ c ( k l k )  and Pcc(k1k) are 
redefined as: 

PLC(kIk) = [ PLCI(klk)> PLC2(klk) I 

PLGl(k(k)  and PLGZ(klk) are obtained'from Eq. (IO), and 
their difference is A P L G ~ , L G ~ ( ~  + I lk  + 1) 

A P ~ c i , ~ c z ( k  + I lk + 1) 

= [ I - P L L ( k + l / k ) ? b ( k + l ) )  x 

= PLGl(k+l lk+ 1 ) - P L G z ( k f l l k + 1 )  

[ ~ L c l ( ~ + l l ~ ) - ~ L C z ( ~ + ~ l ~ ) l  (11) 

Hence the update of PLG~(~I~) and PLGl(klk) relies 
on their initial value. However, the effect of the initial 
value will be diminished after several EKF iterations. l l ~ u s ,  
APLGI,LGZ is controlled by $(k) .  If we use landmark 
X c 2  to represent landmark Xc1, the covariance matrix 
PLCZ will be used to represent the covariance matrix P L C ~ .  
The difference between PLCI and PLGZ will dominate the 
accnmulation error. To see the difference, assume we have 
an observation on landmark X c i  to construct PLci 

P L G ~ ( ~  t l l k +  1) 
= ( I - P ~ ~ ( k t l l k ) l j i c i ( k + l ) )  x P ~ c i ( k + l I k )  

$ci(k + 1) = [ J H ~ . ( ~  + 1)IT[sci(k t l ) ] - ' J ~ ~ < ( k  + 1) 
(12) 

The difference between P L G I ( ~  + 1) and P~cz(k + 1) 
is caused by the initial value and the Jacobian matrices 

JH,,(~) and JH,,(~). If we set them to have the same ini- 
tial value, then the only difference is J H ~ ,  (k)- JH,,(~) = 

A J H O , , C , ( k ) .  

When X c l  is close to Xcz. they both have about the 
same distance, A,,, to the mobile robot, and 6 s  << A,,, 
6y << AGI. Hence, JH,,(k) % JH,,(~) and it implies 
Scz(k+ I) = Scl (k+  1) and PLGI = PLGZ. The update 
of XCI and XGZ can be replaced by Eq. (14) if there is 
an observation on local landmark X i  and the updates are 
shown in Fig. 3. 

AVc1 = Wc,(k+ l )AZ,  
X c i ( k + I l k + l )  = X ~ i ( k + l l k ) + A V ~ i  
k c z ( k + I l k + l )  = X c z ( k + l l k ) + A V c i  (14) 

AZi = Zi(k + 1) - H i ( X ( k  t I l k ) )  

WCl(k+ 1) = PGIL(~+I~~)[~HCI(~)]~[SCI(~~ I)]-' 
= Wcz(k+ 1) (15) 

whereXcz(k+l lk+l )  is anestimateof X c z ( k + l l k + l )  
from the EKF computation. 

K 
Mobile Robot 

Fig. 3. The update in the sub-map is determined by the reprrsentalive 
landmark XCI and its update v e c m  Avol. Evely Landmark in the snb- 
m p  will be shifted by Avo,. 

This approximation is only valid when the distance to the 
mobile robot is much larger than the distance between these 
two landmarks. In the next subsection, this relationship is 
used to define an error range that will be used to determine 
an appropriate size of each sub-map. 

C. Logarithmic-Map Parfitioning 
From the last subsection, the error is determined by %. 

If an acceptable mmimum error of map partitioning is 
E = $, then we can calculate the acceptable sub-map 
size from this error E. The map partitioning is shown in 
Fig. 4(a), where the sub-map size depends on the distance 
to the current mobile robot location and E.  The sub-maps 
have the same size in the same level. At levels ' + 1 and 

because of A,+l > A,, where A, is the &stance from the 
j ,  we have = 3 = E ,  and = 2.  > 1 

,+I  6 r j ,  A .  - 



mobile robot to the sub-map level j .  The area size of the 
sub-map is 2(6sj)', which means that 6sj determines the 
width of the s u b "  at level j. The growing ratio of the 
area size is (*), = (%r > 1. Figure 4(b) shows 
that as the distance Increases, t e submap size increases 
exponentially, which is, in essence, partitioning the map in 
logarithmic. 

g 

Y1 

Fig. 4. (a) Logdthmic-map pardtionkg. @) Ihe sub-map she i s  defmned 
by the serc*1r range and E.  The smor range is Set to 57% d = 1Dm and 
E = 0.1 

Since the proposed logarithmic-map partitioning utilizes 
the traditional EKF approach, its convergence and con- 
sistence properties have been proved in 181. Consider a 
simple case, if the mobile robot only moves in the local 
region and there exists only one landmark in each sub-map, 
then the EKF guarantees that the solution will converge. If 
there were more than one landmark in each sub-map, the 
local-region map will always converge because a centroid 
landmark was being used to represent all the landmarks in 
that sub-map. As the mobile robot moves out of the local 
region, it constructs a new converged local map again and 
again to cover the terrain. 

O(N). Thus, the total computational requirement is O ( N )  
for one local map construction. 

Assume that the mobile robot explores the unknown 
terrain with a constant velocity and the landmarks are 
uniformly distributed in the terrain. The exploration time 
of the mobile robot through the whole terrain will be 
O ( N ) .  Hence, the time in which the mobile robot needs 
to consmct the whole map is O(N2) .  

V. COMPUTER SIMULATION RESULTS 
Computer simulations were performed on the proposed 

SLAM algorithm and the original full SLAM algorithm. 
The simulation parameters are set as following: velocity 
Imls, mobile mbot pmess  noise (std. dev.) O.Olm/8, 
sensor range 3m, d = 6m, sensor noise (std. dev.) 0.05m. 
partitioning error parameter E = 0.2, map size 20m x 20m 
with 50 landmarks and a sampling period of 0.1s. To 
construct a complete map, the mobile robot path is planned 
as a scanline to cover the whole area. In each time step, 
visible landmarks are selected to generate the observations. 

figure 5 shows the relative location error between 
the mobile robot and landmark XI and landmark XZ, 
respectively by using the proposed algorithm. Figure 5 
is compared with Fig. 6, which is generated by the full 
SLAM algorithm. It shows the convergence of localization 
in the proposed algorithm. Figure 7 shows the landmark 
location error. Spikes occurred at the first time when 
the mobile robot entered a new local region with a new 
map partitioning. The spikes disappeared when the mobile 
mbot re-entered explored local regions. When the map is 
fully explored, there are 50 landmarks in the full SLAM 
algorithm. In the proposed algorithm, at most 27 landmarks 
existed in the EKF computations which dramatically re- 
duced the computational complexity. The generated final 
map of the terrain is shown in Fig. 8. 

IV. ANALYSIS OF COMPUTATIONAL COMPLEXITY 
We shall focus on three major computational compo- 

nents: logarithmic-map partitioning, execution of EKF in 
the local region, and the updating of centroid-landmark in 
each sub-map. Logarithmic-map partitioning assigns a sub- 

E 
- 0  

1 
I I map number to each landmark and selects one centmid 6m laxi 1% 

requires O(N) .  After the map partitioning, the number of 

logarithm-based function of N .  Thus, the computational 

is equal to O(N" + (log N ) 2 ) ,  To further reduce the real- 

landmark to represent each suh-map. This pmess only 

landmarks used in the EKF computation is reduced to a 

requirement in EKF is reduced to O((N,+log N ) 2 ) ,  which 

time computational requirement Compressed Extended 

ow - c 
- 0  

1 

nm.* 

Kalman Filter (CEKF)-is utilized in' bur algorithm. In 
CEKF, real-time computational requirement in the local 
region is bounded by O(NL*).  When the mobile robot 
leaves the local region, it updates with a full SLAM algo- 
rithm in CEKF with O(NL* + (logN)z). This is because 
logarithmic-map partitioning reduces the number of land- 
marks used in the EKE Before the next map partitioning, 
as shown in Fig. 3, the locations of all the landmarks in 
the submaps are updated. The covariance matrix data are 
also updated in each landmark. This procedure wilt require 

Fig. 5. The relative Iwdization error between the mobile m b l  and the 
landmarks. Tbe upper one is 10 landmuk XI with LT = 0.0148, and !he 
lower one is to landmark Xz wilb m = 0.0136. 

VI. CONCLUSIONS 
In this paper, we proposed a logarithmic-map panition- 

ing algorithm that partitions the map into several sub-maps 
and one local area. The sub-map size is based ou the 
distance from the mobile robot to the sub-map, and in each 
sub-map, a centroid landmark is selected to represent it in 



Fig. 6. The relative localization error between the mobile r o b t  and the 
landmarks in the full SLAM algorithm. The upper one is to landmark XI 
witha = 0.0117,andthelaweroneislalandmarirXzwitho =0.0127. 

. .  
2 .  .. . . 

Fig. 7. The estimated error of the 50 landmarks of the proposed SLAM 
algorithm. Spikes ac-d at the hrst time when the mobile robot entered 
B new local r e ~ m  with a new map padtiming. The spikes disappeared 
when the mobile mbot re-entered explored local regions. 

EKE We analyzed the effect of map-partitioning in the 
EKF and also illustrated how to determine the sub-map 
size by a pre-defined error bound. The proposed SLAM 
algorithm provides a suboptimal but efficient solution to 
the SLAM problem, and the computational requirement 
of constructing a map reduces from O ( N 3 )  to O ( N 2 ) .  
Our computer simulation result verified that the proposed 
SLAM algorithm is convergent and consistent. Future 
work will include experimentation of the proposed SLAM 
algorithms on our Pioneer 3-DX mobile robots with sonar 
sensors. 
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